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Abstract: Natural lagoons and estuaries worldwide are experiencing accelerated ecosystem
degradation due to increased anthropogenic pressure. As a key driver of coastal zone dynamics,
suspended sediment concentration (SSC) is difficult to monitor with adequate spatial and temporal
resolutions both in the field and using remote sensing. In particular, the spatial resolutions of currently
available remote sensing data generated by satellite sensors designed for ocean color retrieval,
such as MODIS (Moderate Resolution Imaging Spectroradiometer) or SeaWiFS (Sea-Viewing Wide
Field-of-View Sensor), are too coarse to capture the dimension and geomorphological heterogeneity
of most estuaries and lagoons. In the present study, we explore the use of hyperspectral (Hyperion)
and multispectral data, i.e., the Landsat TM (Thematic Mapper) and ETM+ (Enhanced Thematic
Mapper Plus), ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer), and
ALOS (Advanced Land Observing Satellite), to estimate SSC through semi-analytical and empirical
approaches in the Venice lagoon (Italy). Key parameters of the retrieval models are calibrated and
cross-validated by matching the remote sensing estimates of SSC with in situ data from a network of
water quality sensors. Our analysis shows that, despite the higher spectral resolution, hyperspectral
data provide limited advantages over the use of multispectral data, mainly due to information
redundancy and cross-band correlation. Meanwhile, the limited historical archive of hyperspectral
data (usually acquired on demand) severely reduces the chance of observing high turbidity events,
which are relatively rare but critical in controlling the coastal sediment and geomorphological
dynamics. On the contrary, retrievals using available multispectral data can encompass a much wider
range of SSC values due to their frequent acquisitions and longer historical archive. For the retrieval
methods considered in this study, we find that the semi-analytical method outperforms empirical
approaches, when applied to both the hyperspectral and multispectral dataset. Interestingly, the
improved performance emerges more clearly when the data used for testing are kept separated from
those used in the calibration, suggesting a greater ability of semi-analytical models to “generalize”
beyond the specific data set used for model calibration.
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1. Introduction

Suspended sediment is an important optically-active water constituent and descriptor of the
quality of a water body, with important implications for the geomorphological and ecological dynamics
of aquatic systems. The suspended sediment concentration (SSC) largely determines water turbidity, a
chief control of coastal ecosystem dynamics [1]. Furthermore, sediment supplied by rivers and tidal
currents is essential to the survival of intertidal (i.e., saltmarshes) and sub-tidal structures (i.e., tidal
flats) as sea level rise accelerates [2–8]: sediment “starvation” is one of the main sources of ongoing
coastal degradation [9–13]. Consequently, methods for monitoring SSC in a spatially-distributed
manner are vital for understanding and managing coastal systems. However, due to the high spatial
and temporal variability of SSC, point measurements within networks of monitoring stations cannot
adequately characterize the space-time distribution of SSC.

In recent years, the use of satellite data, such as the SeaWifs, MODIS-Aqua, and MERIS (MEdium
Resolution Imaging Spectrometer), for the retrieval of SSC has been used with some success, allowing
effective monitoring of ocean (Case I) and coastal (Case II) waters in a distributed manner [14–17].
However, the low spatial resolution of these sensors designed for ocean applications (typically between
250 and 1000 m) is inadequate to resolve the heterogeneous spatial distribution of SSC in most lagoons
and estuaries around the world [18–20].

Originally designed for terrestrial applications, multispectral sensors with finer spatial resolutions
(10 to 30 m), such as Landsat TM and ETM+, ASTER, and ALOS, have been successfully applied to
SSC retrievals in estuaries and lagoons [21–23]. The improved spatial resolution significantly improves
the description of the SSC spatial variability typical of estuaries and lagoons. Moreover, the longer
data archive and periodic acquisitions provide a large database that can better capture events of
intense sediment re-suspension, of key importance for estuarine dynamics [21,24]. The limited spectral
resolution and coverage of these sensors have often been considered as the main limitations for their
use in water quality monitoring [19]. Hyperspectral sensors, such as HICO (Hyperspectral Imager
for the Coastal Ocean), Hyperion, and CHRIS (Compact High Resolution Imaging Spectrometer),
provide similar spatial resolutions (60 m for HICO, 30 m for Hyperion, and 18m or 36 m for CHRIS
depending on configuration) and high spectral resolutions (5 nm for HICO, 10 nm for Hyperion, and
1.3 nm–11.3 nm for CHRIS) if compared to the above-mentioned multispectral sensors. However,
whether the low spectral resolution of these multispectral sensors (typically about 60 nm in the visible
spectrum) have significantly curtailed the accuracy of SSC estimates in shallow coastal areas, despite
their larger data archive, is still unknown, particularly in comparison with the existing and planned
hyperspectral missions.

The first objective of this paper is to determine whether the use of hyperspectral sensor data
presents advantages with respect to the use of multispectral sensor data for SSC retrievals in shallow
coastal zones, a subject relatively under-examined in the existing literature. A comparison of the
performance of hyperspectral- and multispectral-based SSC retrievals is particularly relevant in
light of the planned hyperspectral missions for coastal water quality monitoring (such as HyspIRI
(Hyperspectral Infrared Imager) from NASA (National Aeronautics and Space Administration)) and
the increasing availability of multispectral sensors with high spatial resolutions (such as Sentinel-2).
In this study, we seek to quantify the potential of future hyperspectral missions for coastal SSC
retrieval by systematically analyzing SSC estimation from a variety of Hyperion bands. Results are
then compared with those obtained from the same SSC retrieval methods using multispectral sensors
(Landsat TM and ETM+, ASTER, and ALOS).
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The second objective of the present work is to explore the relative strengths and weaknesses
of empirical versus semi-analytical approaches in the retrieval of SSC in shallow coastal areas.
Semi-analytical method is based on a simplified description of the physical processes governing
radiative transfer in the water columns (e.g., [25–28]), and empirical methods only seek a
correspondence between the observed optical “response” and SSC (e.g., [15,29,30]). A variety of
semi-analytical and empirical approaches have been used for SSC retrieval, as reviewed in [31]. A recent
study compared 31 empirically-based methods to retrieve SSC using MODIS reflectance [32]. Binding et
al. [33] explored the empirical correlation between SSC and the ratios of different MODIS bands in “Red”
and near-infrared (NIR) spectrum, so as to infer an optimal spectral band to calibrate a semi-analytical
model. However, no direct and systematic comparison of empirical versus semi-analytical methods
has been made. As a result, there is no quantitative evidence as to the optimal approach for the remote
sensing retrieval of SSC, particularly in complex shallow waters and in regions where field calibration
data are scarce. In this study, we evaluate the performance of empirical and semi-analytical methods
to retrieve SSC from hyperspectral and multispectral data in the Venice lagoon (Italy). First, remote
sensing data are atmospherically corrected, and processed to eliminate the potential effect of sun
glint and whitecaps. We then comparatively apply a simplified radiative-transfer model in the water
column [25,26] and empirical regressions between SSC and selected combinations of spectral bands.
In situ measurements from a network of multi-parametric water quality sensors are used to calibrate
and validate remote sensing estimates.

2. Materials and Methods

2.1. Study Site and Datasets

The Venice Lagoon is one of the largest lagoons in Europe with a surface area of about 550 km2

and a watershed of 1800 km2. It is separated from the Adriatic Sea by two barrier islands, with three
large inlets connecting it to the sea. The lagoon is relatively shallow, with a mean depth of about 1.2 m
and a mean semi-diurnal tidal amplitude of about 0.7 m. It includes several islands with a total surface
of 29 km2, salt marshes (covering almost 40 km2), and tidal flats. The lagoon is incised by a network
of channels (total length of about 1500 km) ranging from shallow (less than 1 m deep) to very deep
(the Malamocco inlet is 22 m deep). Due to a very low sediment input from the watershed caused by
historical river diversions, most of the spatial variability in suspended sediment is due to sediment
re-suspension by wind waves and its transport by tidal circulation [24]. Because of the asymmetry
in the tidally-driven sediment exchange between the sea and the lagoon, the lagoon is currently
characterized by a marked erosional trend and an annual sediment deficit of about 400,000 m3.

Several hyperspectral (Hyperion) and multispectral (Landsat, ASTER and ALOS) datasets are
used here. Launched in 2001, Hyperion is onboard the EO-1 satellite and typically covers a swath of
7.7 km (width) by 42 km (length), with a spectral coverage from 400 to 2500 nm (~10nm full width
at half maximum, or FWHM) and a spatial resolution of 30 by 30 m [34]. Five cloud-free Hyperion
scenes, two collected in winter and three in summer, are considered here (Table 1). Concurrent wind
data were obtained from a nearby meteorological station (45.459444◦N, 12.249722◦E), which recorded
hourly wind measurements at a 10 m height. The average wind speed for the 5 Hyperion scenes
analyzed here was 2.8 m/s (with a standard deviation of 1.1 m/s), slightly higher than the annual
average of 2.5 m/s. Spectral bands in the 460–700 nm range are selected to constrain the semi-analytical
retrieval model (Section 2.3), mainly due to their high sensitivity to water constituents [28]. In this
spectral range, absorption and backscattering coefficients of water constituents are estimated from local
measurements [21,27]. 13 multispectral images (Landsat 5 TM, Landsat 7 ETM+, ASTER, and ALOS)
are also used in this study (Table 1), with the purpose of comparing the estimation accuracy attained
using hyperspectral and multispectral observations. The cloud-free, nadir-viewing multispectral
images were specifically selected to sample windy conditions (average wind speed 3.6 m/s with a
standard deviation of 1.2 m/s, almost 50% greater than the annual average of 2.5 m/s). Because
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sediment re-suspension from the bottom is mainly driven by wind-introduced waves, the selection of
high wind speeds ensures that high turbidity values are included in the dataset, and thus the largest
range of SSC values can be explored in training and testing the retrieval models.

Field data are provided by the Italian Ministry of Public Works, which monitors the water
quality of the Venice lagoon through a network of 10 multi-parametric water quality sensors (Figure 1).
All sensors are inspected and maintained by the Venice Water Authority (including bio-fouling cleaning
if necessary) at least monthly. Sensors are routinely removed from the field (and substituted with spare
calibrated sensors) and tested in the laboratory for re-calibration if needed. Raw data are processed
and abnormal/unphysical sensor readings are discarded. Available data include water pressure at
the sensors (from which water level was inferred for this study), temperature, conductivity, dissolved
oxygen, pH, chlorophyll-a, and turbidity at 30-minute intervals. Turbidity (also applies to chlorophyll-a
concentration and water pressure) at the satellite overpassing time is obtained by linear interpolation
of the closest sensor data (e.g., sensor data recorded at 9:30 a.m. and 10:00 a.m. is used to estimate
turbidity at satellite overpassing at 9:46 a.m.). Turbidity is determined, at all stations, by Seapoint
optical turbidity meters, which measure the amount of scattering by the water column in a beam
emitted at a wavelength of 880 nm. According to the turbidity meter nominal characteristics, it has ±2%
deviation (noise level) from 0 to 1250 Formazine Turbidity Units (FTU) [35]. The amount of scattering
is proportional to the concentration of the matter suspended in the water column. These turbidity
observations are expressed in FTU, which can be directly related to the SSC (g/m3). We applied a linear
relationship with a unit slope to convert FTU to g/m3, suggested by a previous study that utilized
the same sensor data [36]. Chlorophyll-a concentration (CC) is observed by a Seapoint chlorophyll
fluorometer, which measures the emission spectrum at 685 nm after excitation at 470 nm, and water
pressure is measured by a pressure transducer included in the Ocean Seven 316 CTD multi-parameter
sensor. Both CC and water depth are used as inputs in the SSC retrievals. Due to the limited Hyperion
swath width, only 5 to 6 sensors are covered by a typical Hyperion scene (Figure 1). After excluding
data from stations affected by cloud/haze or by probe malfunctioning, we have a total of 20 reliable
sensor measurements from the 5 available Hyperion scenes. The number of sensor measurements
corresponding to the 13 multispectral scenes, is 53 when obtained through a similar procedure.
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Table 1. Satellite data used in this study.

Product
(Preprocessing

Level)

Spectral Band
and Range

(µm)

Spatial
Resolution

(m)

Number
of Images

Date of
Acquisition

Solar
Azimuth
(Degree)

Solar Zenith
(Degree)

Satellite Zenith
(Degree)

Aerosol Optical
Thickness at

550 nm 1

Hyperion (1R)

B12–B35:
0.467–0.701
B141–B160:
1.56–1.75

30 5

10 Februar2005 153.8 63.4 3.2 0.21
18 June 2005 135.2 27.6 3.0 0.40
4 July 2005 135.5 28.5 3.1 0.40

20 July 2005 136.1 30.6 3.3 0.34
7 Januar 2006 157.7 70.8 −0.3 0.23

Landsat TM (1R) B3: 0.63–0.69 30 2
8 December 2001 159.1 71.5

Nadir
0.05

25 June 2007 134.2 27.3 0.24

Landsat ETM+ (1R) B3: 0.63–0.69 30 2
14 September 2002 151.2 46.2

Nadir
0.35

11 December 2005 161.2 71.3 0.10

ASTER (1B) B2: 0.63–0.69 15 8

26 May 2005 148.8 27.1

Nadir

0.11
11 June 2005 145.6 25.6 0.31
13 July 2005 144.7 27.3 0.20
29 July 2005 146.7 30.4 0.37
14 June 2006 145.3 25.5 0.17
24 June 2007 148.5 25.1 0.14
10 July 2007 147.8 26.1 0.04

5 September 2007 157.4 40.6 0.02

ALOS (1B1) B3: 0.61–0.69 10 1 8 July 2007 145.9 26.1 Nadir 0.08
1 Data obtained from the aerosol robotic network (AERONET).
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Figure 1. Bathymetric map of the Venice lagoon showing the location of the 10 measurement stations 
(white circles, VE1 to VE10). The Venice lagoon is located within the black circle on the map of Italy 
on the upper left. 

2.2. Data Processing 

The preprocessed Hyperion data (Level 1R) are known to exhibit striping in certain spectral 
bands due to poorly calibrated detectors [37]. We first replace the erroneous stripes with a linear 
interpolation of the adjacent columns. Data were then atmospherically corrected using the ACORN 
(Atmospheric CORrection Now) software, which implements the MODTRAN 4.0 (moderate 
resolution atmospheric transmission) Radiative Transfer Model developed by the Air Force 
Research Lab [38]. ACORN also automatically corrects for the “smile” effect, which is a wavelength 
shift in across-track pixels mainly caused by the push-broom sensor configuration [39]. A 
mid-latitude, seasonally-dependent, atmospheric model was applied. The atmospheric water vapor 
distribution is estimated by ACORN on a pixel-by-pixel basis using both the 940 nm and the 1140 
nm bands [40]. Visibility was assumed to be spatially homogeneous over the entire scene, and 
calculated using the aerosol optical thickness (AOT) values measured by sun-photometers from the 
aerosol robotic network (AERONET) network [41]. Data from two AERONET sites are used in the 
study: the Istituto per lo Studio della Dinamica delle Grandi Masse-Consiglio Nazionale delle 
Ricerche (ISDGM-CNR) site, located on the roof of a building in central Venice (45.43698°N, 
12.33198°E), and the Venice site, located in the Adriatic Sea 8 nautical miles offshore from the Venice 
Lagoon (45.31390°N, 12.50830°E). The average AOT values from these two sites are used when both 
data values are available. Finally, spectral bands ranging from 1560 nm to 1750 nm are used to 
correct for radiance contributions from the air-water interface such as sun glint and whitecaps. By 

Figure 1. Bathymetric map of the Venice lagoon showing the location of the 10 measurement stations
(white circles, VE1 to VE10), modified after [24]. The Venice lagoon is located within the black circle on
the map of Italy on the upper left.

2.2. Data Processing

The preprocessed Hyperion data (Level 1R) are known to exhibit striping in certain spectral bands
due to poorly calibrated detectors [37]. We first replace the erroneous stripes with a linear interpolation
of the adjacent columns. Data were then atmospherically corrected using the ACORN (Atmospheric
CORrection Now) software, which implements the MODTRAN 4.0 (moderate resolution atmospheric
transmission) Radiative Transfer Model developed by the Air Force Research Lab [38]. ACORN
also automatically corrects for the “smile” effect, which is a wavelength shift in across-track pixels
mainly caused by the push-broom sensor configuration [39]. A mid-latitude, seasonally-dependent,
atmospheric model was applied. The atmospheric water vapor distribution is estimated by ACORN on
a pixel-by-pixel basis using both the 940 nm and the 1140 nm bands [40]. Visibility was assumed to be
spatially homogeneous over the entire scene, and calculated using the aerosol optical thickness (AOT)
values measured by sun-photometers from the aerosol robotic network (AERONET) network [41].
Data from two AERONET sites are used in the study: the Istituto per lo Studio della Dinamica
delle Grandi Masse-Consiglio Nazionale delle Ricerche (ISDGM-CNR) site, located on the roof of
a building in central Venice (45.43698◦N, 12.33198◦E), and the Venice site, located in the Adriatic
Sea 8 nautical miles offshore from the Venice Lagoon (45.31390◦N, 12.50830◦E). The average AOT
values from these two sites are used when both data values are available. Finally, spectral bands
ranging from 1560 nm to 1750 nm are used to correct for radiance contributions from the air-water
interface such as sun glint and whitecaps. By assuming zero reflectance in the shortwave infrared
(SWIR) region for turbid waters also [42], we postulate that the non-zero reflectance in the SWIR after
atmospheric correction is due to effects at the air-water interface. As a result, reflectance at 1650 nm
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(mean reflectance from 1560 nm to 1750 nm) was subtracted from that of all the bands, assuming
that the reflection from the air-water interface is uniform over the entire Hyperion spectrum [42,43].
The atmospherically-corrected Hyperion images were georeferenced with a root-mean-square-error
(RMSE) <1.5 pixels to ensure a suitable matching between the remote sensing image and the locations
of the water quality sensors (Figure 1).

The multispectral data are atmospherically corrected using MODTRAN 4.1 implemented in the
ATCOR (Atmospheric and Topographic CORrection) 2/3 [44]. The AOT values were retrieved from
the AERONET network [41], and specifically from the same locations (ISDGM-CNR site and Venice
site) used for atmospheric correction of Hyperion data. The atmospheric correction was applied using
the “maritime” aerosol type and the “mid-latitude” water vapor content. The resulting above-surface
remote sensing reflectances were compared to available reference spectra as described in [21].

The atmospheric correction process can potentially introduce errors, especially for Case II
waters, in the absence of water-leaving radiance measurements [45]. Hence, we validate our
atmospheric correction by comparing the reflectance obtained from Hyperion with the MODIS surface
reflectance product (MOD09GA, with preprocessing level 2G), which provides global daily surface
spectral reflectance at 500-m and 1-km resolutions [46]. The atmospheric correction of the MODIS
surface reflectance products was validated at the coast of Lanai Island, Hawaii, during its early
development [47], and has been subsequently verified in moderate to high turbid coastal environments
or estuaries, such as the Gironde estuary [48], Adour River plume [15], and Gulf of Mexico [49].
It should be noted that all MODIS data selected for the comparison were acquired within 30 min of the
corresponding Hyperion overpass.

We first simulated MODIS reflectances for bands B1 (620–670 nm), B3 (459–479 nm), and B4
(545–565 nm), by resampling the atmospherically-corrected Hyperion bands falling within the spectral
interval of these MODIS bands and by applying the appropriate MODIS spectral response functions.
Only MODIS pixels that completely falls on water were considered in the comparison, and pixels
located at the edge of the lagoon were excluded to avoid effects of mixed land/water pixels. For
each MODIS pixel (500 by 500 m), we selected ~256 “synthetic” MODIS spectra resampled from the
Hyperion pixels (30 by 30 m each) that fell within it. The mean value of the spectral reflectance of
the ~256 synthetic MODIS pixels selected in this manner, which we call here the Hyperion Synthetic
MODIS (HSM) reflectance, were used to compare against the MODIS reflectance.

2.3. Radiative Transfer Model

For a nadir-viewing sensor, the above-surface remote sensing reflectance Rrs (sr−1), defined as the
ratio of water-leaving radiance to downwelling irradiance, can be approximated as [26]:

Rrs =
0.5rrs

1 − 1.5rrs
(1)

where rrs (sr−1) is the below surface remote sensing reflectance in the nadir looking direction.
Following [25,26], rrs (sr−1) can be modeled as a function of the water depth, the optical properties of
the water column, and the optical properties of the water bottom:

rrs = rdp
rs

[
1 − e−(kd+kc

u)H
]
+

ρb
π

e−(kd+kB
u )H (2)

where rdp
rs (sr−1) is the subsurface remote sensing reflectance for an infinitely deep water, kd is the

vertically-averaged diffuse attenuation coefficient for downwelling irradiance, and kc
u and kB

u are the
vertically-averaged diffuse attenuation coefficients for upwelling irradiance from the water body and
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from the bottom, respectively. H (m) is the water depth, and ρb is the bottom reflectance (assuming to
be Lambertian). rdp

rs , kd, kc
u, and kB

u can be calculated following [26]:

rdp
rs = bb

a+bb

(
0.17 bb

a+bb
+ 0.084

)
kd = 1

cosθ (a + bb)

kc
u = 1.03(a + bb)

√
2.4 bb

a+bb

kB
u = 1.04(a + bb)

√
5.4 ∗ bb

a+bb

(3)

where a (m−1) and bb (m−1) are the total absorption and backscattering coefficients of water, respectively.
θ (rad) is the subsurface solar zenith angle. bb is considered as a fraction of the total scattering
coefficient (b (m−1)). We adopt a fixed ratio of bb/b = 0.019 suggested by existing observations in
turbid waters [50] and assume this ratio to be independent of wavelength [21,51]. Both theoretical [52]
and observational studies [53–56] show a weak spectral dependence of the bb/b ratio between 440 nm
and 700 nm, with values in the range of 0.018–0.055 for measured turbidity ranges from 2.7 to 30 g/m3.
Higher SSC values correspond to lower a bb/b ratio, and we consider the fixed value bb/b = 0.019 to
be reasonable given the relatively turbid waters in the Venice lagoon. The mean (standard deviation) of
summer and winter SSC are 25.5 (44.6) and 20.5 (33.3) g/m3, respectively. The high standard deviation
of SSC suggests a marked temporal variability of suspended sediment, which is mainly wind/tidal
driven in the lagoon.

a and b can be estimated as:

a = aw + anap + aph + acdom
b = bw + bnap + bph

(4)

where aw (m−1), anap (m−1), aph (m−1), and acdom (m−1) are the absorption coefficients of pure water,
inorganic particles, phytoplankton, and colored dissolved organic matter (CDOM), respectively.
bw (m−1), bnap (m−1), and bph (m−1) are the backscattering coefficients for pure water, inorganic
particles, and phytoplankton. aw is obtained from previous studies [57]. anap, and aph are modeled as
a function of SSC, CC, and their corresponding specific absorption coefficients a∗NAP(λ) and a∗ph(λ),
respectively [21,27].

aNAP(λ) = a∗NAP(λ)× SSC
aph(λ) = a∗ph(λ)× CC (5)

Field measurements show that a∗NAP(λ) follows an exponential decay with increasing wavelength,
while a∗ph(λ) has a bimodal behavior with two peaks located at 440 and 675 nm [27]. Following [21,58],

we model a∗NAP as: a∗NAP(λ) = γ × 0.75 × e−0.0128(λ−443), in which γ (m2/g) is a calibration parameter.
a∗ph(λ) values are obtained from [27] as measured during a field campaign in the Venice lagoon.

We assume that acdom(λ) also follows an exponential function [21,58]:

acdom(λ) = a∗cdome−0.0192(λ−375) (6)

where a∗cdom is acdom at λ = 375 nm. Due to a lack of CDOM measurement specific for this study, we
used a fixed a∗cdom = 1.25 m−1, which is consistent with field measurements [59] and other modeling
studies [21] from the Venice lagoon.

In turbid waters, bw and bph are negligible with respect to bnap in Equation (4) [21,58]. Following
Volpe et al. [21], we model bnap as a function of SSC and its corresponding suspended sediment specific
backscattering coefficient (b∗nap(λ)).

bnap(λ) = b∗nap(λ) ∗ SSC (7)
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We assume b∗nap(λ) = η ∗ (400/λ)0.3 following [60], where η [m2/g] is a calibration parameter. As
reported in Venier et al. [36], the median sediment diameter ranges from 10 to 74 µm and the bottom
sediment is chiefly composed of sandy silts. Given the narrow range of sediment diameter, we consider
a single b∗nap(λ) value to be sufficient in this study area (e.g., [21,27]).

Combining Equations (1)–(7), we obtain:

SSCE = fR

(
η, γ, ρb, H, θ, αw(λ), a∗ph(λ), a∗CDOM, CC, Rrs(λ)

)
(8)

Equation (8) is the inversion of the radiative transfer model (RTM) and can be solved numerically
to estimate SSC (denoted as SSCE). The parameters used in Equation (8), and their typical values and
ranges, are summarized in Table 2. It should be noted that the reported ranges of ρb, a∗ph(λ), and aw(λ)

refer to the observed variability as a function of wavelength λ from 460 nm to 700 nm.

2.4. Empirical Retrieval Models

Various empirical models have been developed to correlate SSC with remote sensing reflectance.
Readers may refer to [19] for a detailed review. In many cases, a linear regression of SSC with a
single “Red” band or with a NIR/Red ratio shows high correlations, especially for highly turbid
waters (e.g., [48,49,61–65]). Other methods use log-linear (e.g., [66]), exponential (e.g., [67]), or linear
regressions over multiple spectral bands [68,69]. However, the regression coefficients retrieved through
in-situ calibration are typically site-specific and are not generally applicable to other datasets. Given
the range of observed reflectance (0.01–0.04 sr−1) and turbidity data (4–100 g/m3) as shown in Table 2,
we found the log-linear or exponential models inappropriate. In this study, we apply polynomial
functions (first and second order) that relate SSC with either the reflectance of an individual spectral
band, Rrs(λ), or with the ratio of reflectance values from pairs of spectral bands, Rrs(λ2)/Rrs(λ1),
where λ, λ1 and λ2 cover the same range of wavelengths used in the RTM for a direct comparison.
Bottom reflectance was not taken into account since most sensors are installed in locations where water
depth are greater than 1.3 m (Table 2), above which the contribution of the bottom reflectance is less
than 10% of the total reflectance for turbid waters typical of the Venice lagoon [21].

SSCE =

{
fE,1(Rrs(λ))

fE,2

(
Rrs(λ2)
Rrs(λ1)

) (9)

2.5. Calibration and Validation

The RMSE between estimated and measured SSC is used to evaluate model performance:

RMSE =

√
∑N

1 (SSC − SSCE)
2

N
(10)

where N is the number of measurements.
For the RTM (Equation (8)), the absorption and backscattering coefficients of the suspended

sediment, (γ and η), are calibrated to minimize RMSE. For the empirical models (Equation (9)), the
coefficients of the polynomial functions are calibrated to minimize RMSE. In the calibration process,
Equation (10) is evaluated iteratively so as to determine the combination of coefficients (η, γ for
RTM and regression coefficients for empirical models) that obtains the minimal RMSE. To validate the
prediction performance of different models, we use a leave-one-out approach, in which one observation
is left out from the calibration sample and is later used to compute a mean square distance between
SSC and SSCE based on this independent observation. By leaving out in succession, one element at a
time from the available sample, and using this element to estimate the predictive error, an RMSE value
can be computed that characterizes the predictive abilities of the model [21,70,71].
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Table 2. List of variables used in Equations (1)–(8).

Name Description (Unit) Value (Range) Source

Rrs(λ) Above surface remote sensing reflectance (460 to
700 nm) (sr−1) 0.01–0.04 1

ρb Bottom reflectance (460 to 700 nm) 0.05–0.09 2

H Water depth (m) 1.2–2.5 3

θ Subsurface solar zenith angle (rad) 0.35–0.78 1

aw(λ)
Absorption coefficient of pure water (460 to 700 nm)
(m−1) 0.01–0.64 4

a∗ph(λ)
Phytoplankton-specific absorption coefficient (460 to
700 nm) (m2/mg) 0.001–0.027 5

a∗CDOM
Colored dissolved organic matter (CDOM)-specific
absorption coefficient at 375 nm (m−1) 1.25 2

η
Suspended sediment specific backscattering
coefficient at 400 nm (m2/g) 0.34, 0.38 5, 6

γ
Suspended sediment specific absorption coefficient
at 443 nm (m2/g) 0.033–0.067 7

CC Chlorophyll-a concentration (mg/m3) 0.2–6.8 3

SSC Suspended sediment concentration (g/m3) 4–100 3

Sources: 1: Satellite sensor data, 2: Volpe et al. [21], 3: In-situ measurement, 4: Pope and Fry [57], 5: Santin et al. [27],
6: Babin et al. [72], 7: Babin et al. [58].

2.6. Spectral Band Selection

The use of hyperspectral data involves the adoption of a strategy for spectral band selection.
Brando and Dekker [28] and Giardino et al. [73] used a semi-analytical retrieval approach to estimate
water constituent concentrations through a direct inversion of the bio-optical model, given that the
number of spectral bands equals the number of unknowns. Through trial and error, Brando and
Dekker [28] selected three spectral bands (centered at 490 nm, 670 nm, and the average of five spectral
bands from 700–740 nm) for estimating SSC, chlorophyll-a concentration (CC), and CDOM. Based on a
first-derivative approach, Giardino et al. [73] first evaluated the sensitivity of spectral bands to one
water constituent at a time, and then used the average of two groups of spectral bands (480–500 nm and
550–560 nm) to estimate CC and SSC. In both studies, the usefulness of other unselected hyperspectral
bands, which could be beneficial, remained unknown. Santini et al. [27] estimated SSC and CC by
minimizing the sum of square errors between the observed and modeled remote sensing reflectance
evaluated at all hyperspectral bands (e.g., 22 Hyperion bands from 488 to 702 nm, and 41 spectral bands
from 472 to 700 nm obtained from the compact airborne spectrographic imager, or CASI), weighted
by the signal-to-noise ratio of each spectral band. Compared with the direct inversion method, this
approach utilizes all available hyperspectral bands, which can potentially better constrain the model.
However, data redundancy can cause convergence problems, and noise in any spectral band will
propagate nonlinearly to the retrieval results [74]. Lee and Carder [75] first demonstrated that around
15 spectral bands in the visible spectrum are adequate for simultaneously retrieving SSC, CC, CDOM,
water depth, and bottom albedo using hyperspectral data. Lee et al. [76] then identified the optimal
spectral locations of the bands by applying first- and second- derivative analysis of the remote sensing
reflectance. However, the optimal spectral band(s) for retrieval of individual water constituent (e.g.,
SSC) remains undetermined.

In summary, previous studies involving hyperspectral data explored the use of a number of
spectral bands (e.g., 2 or 3) equal to the number of unknowns, all available spectral bands, and
multiple (around 15) selected spectral bands for simultaneously retrieval of several water constituents.
A systematic evaluation of the set of spectral bands that maximizes information utilization and
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minimizes redundancy for SSC retrieval is still lacking. Here we apply three types of band selection
procedures to calibrate and validate both the RTM (with two unknown parameter γ and η in Equation
(8)) and the empirical models (up to three fitting parameters in Equation (9)). First, we use all available
spectral bands (24) similar to [27]. Then, we choose spectral bands centered at 560 nm and 660 nm
following [28] and [73]. The spectral bands centered at 490 nm were not considered, because the
blue spectral region is relatively noisier than other regions for Hyperion data [28,73]. Finally, given
the model complexity (2–3 unknown parameters), we explore a subset of combinations of up to four

spectral bands (
4
∑

i=1

(
24
i

)
, where i is the number of spectral bands). Ideally, all combinations of

spectral bands should be tested since a large number of spectral bands could be beneficial for model
calibration. However, we observed diminishing returns when exploring combinations beyond three
spectral bands (see Section 3.3), suggesting that a further increase of spectral bands may provide
little improvement. In addition, given the size of our dataset (24 candidate Hyperion bands), further
increasing the number of spectral bands would be computationally demanding given the non-linearity
of Equation (8). As a result, we tested the combinations of up to four spectral bands to contain the
computational burden of the process.

3. Results

3.1. Atmospheric

We first compared a set of above-surface Correction Validation reflectance spectra from MODIS
pixels and the Hyperion pixels falling within the same MODIS pixels (not shown here). The comparison
shows a good agreement, suggesting a successful atmospheric correction of the Hyperion scenes using
ACORN. For a direct comparison, we plot the reflectance from a MODIS product (MOD09) against
Hyperion Synthetic MODIS (HSM) in Figure 2. In this figure, each row of subplots represents different
MODIS bands derived from a single Hyperion scene and each column of subplots represents different
Hyperion scenes with an identical MODIS band. The Spearman’s rank correlation coefficient (COR)
and root-mean-square-error (RMSE) are calculated for each subplot to quantify the agreement between
the two datasets.

The values of the COR show that the HSM reflectance is positively correlated with MODIS
reflectance for all data. A scene-to-scene comparison indicates that HSM and MODIS reflectance
are less-correlated for data collected in winter seasons than summer seasons. In particular, the data
collected on 7 January 2006 (Figure 2m–o) has the lowest reflectance and the smallest COR values
compared with the remaining scenes. We suggest that the low reflectance on that specific day is related
to a low SSC value (only 10.8 g/m3 averaged over all stations, about half of the winter seasonal mean
20.5 g/m3) that effectively reduced reflectance. Also, it has been shown that a low solar zenith angle
(typical of winter time) will greatly attenuate the signal-to-noise ratio (SNR) of Hyperion, especially
on a water surface [77–79]. As a result, the small COR is due to a combination of this low reflectance
and a low SNR. A band-to-band comparison shows that RMSE values are generally smallest for band
4 (545–565 nm), medium for band 1 (620–670 nm) and largest for band 3 (459–479 nm). This can be
attributed to the fact that the spectral reflectance of a water surface tends to be higher in the “Green”
than both “Red” and “Blue” part of the spectrum. Also, the Hyperion data were found to be noisy
in the “blue” part of the spectrum [28,73]. On the other hand, the accuracy of the MOD09 product
has been evaluated against global AERONET measurement, with satisfactory performance except for
band 3, which is mainly used for aerosol inversion [46]. When evaluated at the ISDGM-CNR site using
2000–2009 data, the mean bias (root-mean-square deviation) of the MOD09 product is 8.7% (9.4%),
37% (39%), and 12.8% (13.5%) for bands 1, 3, and 4 respectively [80]. Given the different spectral and
spatial resolution, the difference in the acquisition times (around 30 min), the uncertainties associated
with the atmospheric correction algorithm of both dataset, and the construction of the synthetic bands,
the general agreement between MODIS and HSM reflectance in the “Green” and “Red” parts of
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the spectrum suggests that the correction applied to the Hyperion data was effective in removing
atmospheric effects. In contrast, the utilization of the Hyperion data in the “blue” part of the spectrum
will be considered critically since both the Hyperion and MOD09 products are problematic.Remote Sens. 2017, 9, 393  11 of 27 
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turbidity greater than 20 g/m3. Given an averaged water depth of 1.6 m and an averaged turbidity of 
22 g/m3, we expect the effect of ߩ to be minimal as suggested by [21]. In order to confirm this for 
the Hyperion dataset, we apply the inversion of the RTM (Equation (8)) to estimate SSC using all 24 
Hyperion bands with a range of typical ߩ values and keep other parameters unchanged, except for 
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Figure 2. Comparison of reflectance estimated from the moderate-resolution imaging spectroradiometer
(MODIS) against the Hyperion Synthetic MODIS (HSM), with data collected on 10 February 2005
(a–c), 18 June 2005 (d–f), 4 July 2005 (g–i), 20 July 2005 (j–l), and 7 January 2006 (m–o). Colors denote
the density (in percentage) of the points, which is estimated as a 2 dimensional histogram using 20
equally spaced bins in both x and y directions. Yellow (black) means a high (low) density of points in a
given area of the plot. The Spearman’s rank correlation coefficient (COR) and root-mean-square-error
(RMSE) are indicated in each subplot. The p-values for testing the null hypothesis that there is no
correlation between the reflectance estimated from MODIS and HSM are all <0.001, suggesting a
significant correlation.

3.2. Evaluation of Bottom Reflectance

The contribution of bottom reflectance (ρb) to the total amount of Rrs is a function of water
depth, bottom reflectance, and concentrations of water constituents, as described in Equation (2).
Volpe et al. [21] tested typical values of ρb observed in the Venice lagoon, and showed that the effect of
ρb to the total reflectance is less than 10%, with water depth greater than 1.3 m and turbidity greater
than 20 g/m3. Given an averaged water depth of 1.6 m and an averaged turbidity of 22 g/m3, we
expect the effect of ρb to be minimal as suggested by [21]. In order to confirm this for the Hyperion



Remote Sens. 2017, 9, 393 13 of 28

dataset, we apply the inversion of the RTM (Equation (8)) to estimate SSC using all 24 Hyperion bands
with a range of typical ρb values and keep other parameters unchanged, except for the calibration
parameters (γ and η). We compare the RMSE (Equation (10)), and the calibrated γ and η values given
different ρb inputs to evaluate the model’s sensitivity to ρb parameterization.

Since the main bottom sediment type is silt in the Venice lagoon [21], we selected the range of ρb
from 0 to 0.25, based on literature values for the reflectance of silt sediments that ranges from 0.04 to
0.22 [81,82]. As shown in Figure 3, this sensitivity analysis shows that the RMSE is relatively unchanged
with respect to the different ρb values. Though the calibrated γ value is relatively unaffected, the
calibrated η value decreases slightly when ρb increases. In a previous field campaign conducted in the
Venice lagoon, measured mean ρb was between 0.017 to 0.029 sr-1 from 460 nm to 700 nm [21], which
translates to a range of 0.05 to 0.09 if the bottom is assumed to be Lambertian (Table 2). Given the
relative insensitivity of model results to ρb within its measured range (Figure 3), and to minimize the
number of parameters, we decide to use a single value of ρb = 0.085 (measured 0.027 sr−1 at 644 nm)
similar to [21] in the following analysis.
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3.3. SSC Estimation Using Hyperion Data

The atmospherically corrected Hyperion data are used to calibrate the parameters in the RTM
and the empirical models. The results from solving the inversion of the RTM (Equation (8)) using
all 24 Hyperion bands are plotted in Figure 4. The RMSE estimated from Equation (10) is plotted
as a function of γ and η in Figure 4a. The RMSE plot can be roughly divided into two regions by a
quasi-linear relationship between γ and η: η/γ = r. In the lower right part of the plot, where η/γ < r,
the RMSE increases dramatically with relatively small changes of γ and η. In this part of the parameter
space, the model fails completely. In the upper left part of the plot, where η/γ > r, the RMSE shows
a concave shape. It decreases quickly moving away from the line of η/γ = r and reaches a region
of local minima, and then increases gradually in the up and left direction. In between these regions,
we find a cluster of γ, η pairs, which correspond to local RMSE minima and are roughly aligned
parallel to the line η/γ = r. This observation further constrains the calibration of the parameters γ

and η, identifying a small range of parameter values for which the model shows an approximately
optimal performance (light blue/white in Figure 4a). Values of γ and η measured in situ in the Venice
lagoon [27], in nearby regions [58,72], or from model calibration [21], tend to fall within this area
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of RMSE local minima, and within 10% of the global minimum. Figure 4b compares the values of
estimated SSCE using Equation (8) (with γ and η corresponding to the minimum RMSE in Figure 4a)
to measured SSC. There is a general agreement between retrieved and observed SSC values, even
though the lack of an adequate number of large SSC values prevents a definitive validation of the
hyperspectral retrievals.
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bands (RMSE values are color-coded based on the color bar legend), and (b) estimated SSCE versus
measured SSC using optimal γ and η in (a).

Following Brando and Dekker [28] and Giardino et al. [73], two groups of spectral bands centered
at 560 and 660 nm are used to estimate SSCE using the RTM. Since we are interested in comparing the
performance of hyperspectral data against multispectral data, we choose nine spectral bands from
520 nm to 600 nm and seven spectral bands from 630 nm to 690 nm, which correspond to typical
multispectral sensor bands, such as those from Landsat ETM+ (Table 1). This choice of spectral bands
allows a direct comparison between data obtained from different sensors (and times) with similar
spectral ranges but different resolutions. Figure 5 shows the RMSE obtained from calibrating Equation
(10) with different combinations of γ and η, using these two groups of spectral bands. Comparing
Figure 5 with Figure 4a, we can clearly notice a similar pattern, with a shift of the cluster of the
nearly-optimal γ and η pairs. Interestingly, we find that the in situ measurements of γ and η still
correspond to a RMSE within 10% of global minimum. However, the model-calibrated γ and η values
from Volpe et al. [21] deviate from the local minimum region. This discrepancy might be caused by the
fact that the γ and η values from Volpe et al. [21] are based on multispectral remote sensing data, while
this study uses different spectral bands (narrower than multispectral bands) from a different data set.

Here we validate Equation (8) using the leave-one-out method as detailed in Section 2.5.
The values of RMSE minima obtained from the model calibration and validation are shown in Table 3,
when considering all 24 Hyperion bands from 460 nm to 700 nm, and spectral bands near 660 nm
and 560 nm. As expected, the RMSE calculated using the leave-one-out validation approach is higher
than the values obtained from calibration. Spectral bands centered at 660 nm give the lowest RMSE
for both calibration and validation. The spectral bands centered at 560 nm show a slightly larger
RMSE for validation, and smaller difference of RMSE between model calibration and validation. The
similar RMSE values obtained from very different band selections suggest that the semi-analytical
model is relatively insensitive to the specific selection of spectral bands. However, use of a subset
of spectral bands leads to a smaller RMSE compared to the use of all available spectral bands. This
finding strongly suggests that many Hyperion bands are redundant or cross-correlated for the purpose
of SSC retrieval. Therefore, the use of an excessive number of spectral bands will introduce additional
noise, thus adversely affect SSC retrieval.
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Table 3. Least root-mean-square-error (RMSE) obtained from the inversion of radiative transfer model
(Equation (8)) with calibration and validation (see Section 2.5 for detail) using Hyperion data.

Calibration RMSE
(g/m3)

Validation RMSE
(g/m3)

Difference between
Calibration and

Validation (g/m3)

Spectral bands from 460 nm to 700 nm 17.56 27.00 9.44
Spectral bands centered at 660 nm 15.56 22.48 6.92
Spectral bands centered at 560 nm 17.68 23.81 6.13

Finally, we explore the calibration and validation of inversion of the RTM (Equation (8)) using

a subset of up to four spectral bands (the total number of such combinations being
4
∑

i=1

(
24
i

)
,

where i is the number of spectral bands). When i = 1 (single spectral band), we report the RMSE
values when calibrating/validating the Equation (8) using each of the 24 spectral bands. When i > 1
(multiple spectral bands), we report the statistics (median and variance) of the RMSE with respect to
all the combinations explored for that particular value of i. Figure 6 shows the modeled RMSE as a
function of the number of spectral bands used for both model calibration (Figure 6a) and validation
(Figure 6b). It should be noted that the combination of two spectral bands performs nearly as well
as the combination of three or four spectral bands in terms of minimum and median RMSE for both
model calibration and validation, and adding more spectral bands does not significantly improve the
model performance. This can be further validated when comparing against the RMSE estimated using
all available spectral bands and two groups of spectral bands recommended by other studies (Table 2).
Compared with the cases of combinations of 2–4 spectral bands, the single spectral band method
has higher data variability around the median. Though the single spectral band approach yields the
smallest median and minimum RMSE for model calibration, its performance degrades dramatically in
the model validation. In contrast, for both calibration and validation, combinations of 2–4 spectral
bands show more robust and consistent performance than use of a single spectral band. These results
can be interpreted by considering that the two parameters (γ and η) remain poorly constrained when
just one spectral band is used in the calibration/validation process (even though the system is still
over-determined, since as many conditions as observations, i.e., 20, are imposed in the calculation of
the RMSE).
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Figure 6. Root-mean-square error (RMSE) obtained from calibration (a) and validation (b) of the
inversion of the radiative transfer model (Equation (8)) using combinations of different number of
Hyperion bands. In the box-whisker plots, the red central line is the median, the edges of the box are the
25th and 75th percentiles, the whiskers extend to the extreme data points within approximately ±2.7
standard deviation from the mean (covering 99.3% data), and outliers are plotted as red crosses. Out of
range data (indicate complete model failure) are represented with an arrow and the corresponding
RMSE values are reported next to it.

To explore the relative performance of each of the 24 spectral bands for calibrating and validating
Equation (8), we calculate the RMSE for different spectral band combinations (Figure 7). In the case
of combinations of 2–4 spectral bands, the statistics (mean, minimum, and standard deviation) of a
spectral band centered at a specific wavelength is computed using all the possible combinations of
that spectral band with the remaining ones. In general, the results confirm that even though the single
spectral band method performs slightly better in calibration, it clearly performs worse in validation
when compared with the combinations of multiple spectral band (Figure 7). For the single spectral band
case, there are four spectral bands (528 nm, 589 nm, 640 nm, and 701 nm) that yield locally-optimal and
consistent performance for both model calibration and validation. In the case of 2–4 spectral bands
combinations, the differences between the minimum values of the RMSE across spectral bands are
much less pronounced than in the single spectral band case (Figure 7c,d). Considering just model
calibration, the values calculated for the optimal 2–4 spectral bands combinations are comparable with
those calculated for the single spectral band method (Figure 7c). Moreover, the mean and standard
deviation of the RMSE values are almost identical throughout the spectrum (Figure 7a), suggesting that
all spectral bands perform almost equally well. A similar behavior is found in the model validation,
confirming that as more spectral bands are used in the calibration of the Equation (8), the sensitivity of
the result to the specific spectral bands chosen is reduced (Figure 7b). However, further addition of
spectral bands progressively produces less marginal improvements in the minimum RMSE (Figure 7d).
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Figure 7. Root-mean-square error (RMSE) obtained from calibration left (a,c) and validation right (b,d)
of the inversion of the radiative transfer model (Equation (8)) using different number of Hyperion
bands combinations: mean and one standard deviation, which is denoted as error bar (a,b), and
minimum (c,d), computed at a spectral band using all the possible pairs of that spectral band with the
others. Out of range data (indicate complete model failure) are represented with an arrow and the
corresponding RMSE values are reported next to it.

For the empirical models, we applied a linear and a second order polynomial regression method
that relate single spectral band reflectance or the ratio of two spectral bands with SSC (Equation (9)).
In this dataset, the reflectance in the NIR spectral range is small and not sensitive to changes in
turbidity (not shown here). For a direct comparison, we use the same initial pool of spectral bands
for the empirical models (Equation (9)) as for the RTM-inversion method (Equation (8)). Using the
single spectral band method, the RMSE estimated from the empirical model and the RTM-inversion are
plotted for the calibration (Figure 8a) and the validation (Figure 8b) procedures. For model calibration,
the second order polynomial method shows smaller RMSE values than the linear regression, partly
due to its additional degree of freedom. However, the linear regression gives smaller RMSE values
than the second polynomial method in validation procedure. The RTM-inversion method using a
single spectral band yields the smallest RMSE values for model calibration. In the model validation,
similar RMSE values were obtained when comparing the use of RTM-inversion and the empirical
models. Overall, when a single spectral band method is selected, the RTM-inversion method and the
empirical models have similar performances.

Figure 8c,d shows that the linear regression of the spectral band ratio has slightly larger (smaller)
mean RMSE compared with the second order polynomial regression method for calibration (validation).
However, the linear regression method has much less variance and thus is more robust compared to
the second order polynomial method. In addition, the optimal RMSE values obtained using the second
order polynomial method are smaller than those obtained with the linear regression method for both
calibration and validation (Figure 8e,f) across wavelengths. These results show that the second order
polynomial regression of spectral band ratios has a better performance in terms of RMSE. However, this
method is sensitive to the specific selection of spectral bands. The RTM-inversion method gives smaller
mean RMSE and variance than the second order polynomial regression, for both model calibration and
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validation (Figure 8c,d). In terms of the optimal RMSE (Figure 8e,f), the RTN-inversion shows slightly
higher (similar) than the second order polynomial method for calibration (validation). Therefore, the
RTM-inversion method is considered to be superior to both linear and second polynomial regressions
when using two spectral bands.

Based on these results, the linear and second order polynomial empirical models with either
single spectral band or spectral band ratio cannot achieve equivalent performance (in terms of
mean, minimum, and variance of RMSE for both calibration and leave-one-out validation) as the
RTM-inversion with one or two spectral bands.
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of the inversion of the radiative transfer model (Equation (8)) using: single Hyperion band (a,b);
two Hyperion bands with mean and one standard deviation that is denoted as error bar (c,d) and
minimum (e,f), computed at a spectral band using all the possible pairs of that spectral band with
the other. Out of range data (indicate complete model failure) are represented with an arrow and
the corresponding RMSE values are reported next to it, spectral bands fail with empirical models are
marked as a black cross.

3.4. SSC Estimation Using Multispectral Data

With the purpose of comparing SSC retrievals using Hyperion dataset with that of multispectral
data, we consider the multispectral dataset from a previous study [21]. Reflectance in the “Red”
spectral band (centered around 650 nm) is used in the RTM-inversion and the linear and second
order polynomial model for both calibration and leave-one-out validation. As shown in Table 4, the
RTM-inversion shows 4.95 (1.37) g/m3 and 5.12 (1.93) g/m3 reduction in RMSE comparing to the
linear (second order polynomial) regression for calibration and validation, respectively. The greater
amount of RMSE improvement for validation than calibration suggests that the advantage of the
RTM-inversion is more evident, suggesting that the RTM-inversion has a stronger predictability than
empirical methods that are more rely on the calibration dataset. Meanwhile, the difference between
calibration and validation of the RTM-inversion is only ~70% (50%) of that obtained from the linear
(2nd order polynomial) regression, indicating a more robust performance for the RTM-inversion.
Similar to the case with hyperspectral data, the RTM-inversion method out-performs both empirical
methods in model calibration and validation with this multispectral dataset.
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Table 4. Root-mean-square-error (RMSE) estimated using multispectral data with the “Red” spectral
band (centered around 650 nm).

Calibration
RMSE (g/m3)

Validation
RMSE (g/m3)

Difference between
Calibration and

Validation (g/m3)

RTM-inversion 13.57 14.12 0.55
Linear regression 18.52 19.24 0.72

Second-order polynomial regression 14.94 16.05 1.11

When comparing the difference between RMSE values derived from calibration and validation,
the multispectral dataset (Table 4) shows a more robust performance than the hyperspectral dataset
(Table 3), even though only one multispectral band is used in the analysis. This good performance
might be due to a number of reasons, in primis the fact that the multispectral dataset includes 52 data
points, which is a much larger dataset compared with the hyperspectral one that includes only 20 data
points. To test the importance of the dataset size in determining model performance, a subset the

multispectral data (

(
52
k

)
different subsets, where k is the subset size) is used for RTM-inversion.

The subset size k ranges from 20 to 45 with an increment of 5, and for each k value, we randomly choose
300 different combinations and plot the statistics of results in Figure 9. For comparison, the median,
max, and min RMSE estimated using the Hyperion data (20 data points) with 2 spectral bands are also
plotted. Figure 9 shows that the standard deviation, as expected, decreases with an increasing subset
size, so that the smallest subset size considered (k = 20) introduces the highest deviation (variance)
from the median, indicating higher model uncertainty. However, if we compare the results obtained
using the multispectral dataset with those obtained from the Hyperion data (same size with k = 20), we
notice that the Hyperion dataset has slightly higher median RMSE. However, its range is still bounded
within around 2.7 standard deviations from the median of the multispectral result, proving statistically
similar results. The slightly better performance of the RTM-inversion based on the multispectral
single-band dataset is probably related to the favorable weather conditions (for SSC retrieval purpose)
of the entire multispectral dataset. In fact, given the long data archive, multispectral scenes with
excellent visibility and high wind speed (causing sediment resuspension by wind-introduced waves)
are available. In these cases, the atmospheric effect is minimal and the chance of observing large SSC
values is high, which are critical for the calibration/validation of SSC retrievals models.

In contrast, the limited number of available hyperspectral scenes constrains our ability to choose
suitable datasets for SSC retrieval. This is not a specific result of the present study, but can be
generalized because of the much wider availability, and longer history, of multispectral data compared
to hyperspectral data. The long history and extended spatial coverage of multispectral acquisitions
allow to sample a larger number and wider range of SSC values, which is crucial for model calibration
and validation, and eventually to create a dataset large enough to greatly decrease the error and its
variability as shown in Figure 9. To confirm the key importance of having a large database to extract
the most suitable dataset for the analyses, we estimate Hyperion Synthetic ETM+ (HSE) reflectance
from the Hyperion data using the ETM+ relative spectral response functions. The SSC-reflectance
relationship using HSE and the multispectral data are plotted together in Figure 10, where it is clearly
that the HSE data is more scattered in the low SSC range, and has only one high SSC point. In contrast,
the multispectral data more uniformly sample the SSC-reflectance space, with multiple high SSC data
points. The saturation of changes in Rrs with increasing SSC has been noted before, for example see
Bowers et al. [83] with reference to the AVHRR (Advanced Very-High-Resolution Radiometer) data
and Doxaran et al. [62] for SPOT (Satellite Pour l’Observation de la Terre or Earth-observing Satellites)
data. This saturation phenomenon is mainly caused by the presence of bb

a+bb
in Equation (3), which

asymptotic approaches to a constant with an increase in SSC. However, this saturation effect is only
significant when SSC is higher than 250 g/m3 [62]. Thus, the retrievals are not severely affected in the
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modest range of SSC values observed in the present application (most below 60 g/m3 except for three
values greater than 100 g/m3). We calibrated and validated both the RTM-inversion (Equation (8))
and empirical models (Equation (9)) with the combined HSE and multispectral data. As expected, the
inclusion of the HSE data increases the model RMSE with respect to cases only using multispectral
data (results not shown here). In conclusion, the hyperspectral data are highly scattered and provide a
less robust SSC-reflectance correlation compared with multispectral data.
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data (total of 52). In the box-whisker plots, the red central line is the median, the edges of the box are
the 25th and 75th percentiles, the whiskers extend to the extreme data points within approximately
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4. Discussion

This study used a systematic approach to assess the performance of several empirical methods
and a semi-analytical radiative transfer model (RTM) for the retrieval of SSC in a shallow
coastal environment using both hyperspectral and multispectral data. First, our results show an
inter-dependence between the specific absorption and backscattering coefficients in calibrating the
inversion of the RTM (Equation (8)), with values that are consistent with those found in the literature
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and derived from field measurements (Figures 4 and 5). This result is of key importance to constrain
the parameter space in the model calibration phase. More importantly, this is encouraging for
the application of the semi-analytical model, whose parameter values can be inferred from direct
observations in the same general region, or from the literature, without significantly affecting the
retrieval performance. As shown in Figures 4 and 5, the performance degradation when using literature
values is less than 10% with respect to the performance obtained using locally calibrated parameters.

We then explored the effects of information redundancy and spectral band selection on SSC
retrievals. Our results show that using the hyperspectral dataset and the RTM-inversion method with
two calibration parameters, a two-band approach provides sufficient performance in terms of mean
and minimum RMSE for both model calibration and validation. The two-band approach shows more
robust performance and less sensitivity to spectral band selections compared with the use of a single
spectral band, especially in the validation phase using the leave-one-out approach. Additional spectral
bands (three or four) do not improve the model performance significantly. Though hyperspectral
sensors offer the opportunity of selecting the optimal set of spectral bands, a set of only two spectral
bands has been proven to be sufficient for the retrieval of SSC in the Venice lagoon. The availability
of numerous spectral bands does not, per se, improve the performance of semi-analytical models
in the SSC retrieval. In this sense, the two-band approach is the most effective choice as it uses less
information. From a mathematical point of view, the RTM model contains two unknown parameters (η
andγ), which can be properly constrained using two conditions specified by two spectral bands (e.g.,
also see [28,84]). Lee et al. [76] suggested use of 17 spectral bands to retrieve constituent concentrations
using hyperspectral data, which were collected using an airborne spectroradiometer with high SNR
(>1000 as reported in [85]). SNR values for satellite-based hyperspectral sensors are much lower:
140–160 for Hyperion in the visible range, evaluated at a surface with a 30% albedo [34]. For a water
surface with low reflectance, the SNR is further reduced [86]. For example, the SNR for the HICO
sensor (400 to 570 nm) is greater than 200 for a surface with a 5% albedo [87], and becomes about 100
for a surface with a 1% albedo [88]. Similar reductions in the SNR are to be expected for Hyperion data.
Low SNR values reduce the advantage of using a large number of spectral bands, as a large amount of
calibration data is needed to constrain large amounts of noise in a high-dimensional spectral space
(also known as the Hughes Phenomenon, e.g., see [89,90]). Moreover, exploring all the Hyperion bands
in the 460–700 nm spectral range and extracting the optimal pair of spectral bands, we find that the
model performance is relatively independent of the specific selection of spectral bands (Figure 7d).
Though some existing studies suggest that spectral bands at longer wavelength (e.g., in the “Red” part
of spectrum) are more suitable for SSC retrieval (e.g., [91]), these spectral bands also suffer from lower
SNR compared to spectral bands centered at shorter wavelength [86]. As a result, similar SSC retrieval
performance, largely independent of the choice of wavelength, was observed in this study within the
visible spectrum. This finding becomes relevant when the ideal set of spectral bands suffers from low
SNR due to sensor characteristics or poor atmospheric conditions, and less preferable combinations of
spectral bands can be used without introducing a significant error.

The RTM-based SSC retrieval based on multispectral data, yields a better accuracy than the
estimates from the hyperspectral dataset using two optimal spectral bands. Initially we speculated
that the better performance obtained from multispectral data solely comes from the availability of
a larger dataset. By sub-sampling the original data set to reproduce a situation in which a reduced
number of observations is available, we found that a larger dataset can better constrain the model with
a reduced retrieval uncertainty (Figure 9). However, given an equal size of the multispectral and of the
hyperspectral dataset (i.e., 20 measurements), the performance obtained with multispectral data is
still slightly better than that obtained with hyperspectral observations. These findings suggest that
multispectral data are intrinsically more suitable than the hyperspectral data examined here for SSC
retrievals, despite its comparable/lower SNR [92], the lower spectral and radiometric resolutions [34],
and the use of a single spectral band. The availability of long historical databases of multispectral
scenes allows the selection of data spanning a wider range of wind speed scenarios, leading to a wide
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range of SSC values ([24,93]), which significantly improve retrieval performance. For hyperspectral
sensors with sporadic sampling schedules, the lack of a long historical archive severely limits their
utility in establishing a robust SSC monitoring scheme. In our study, for example, we have only
five cloud-free Hyperion images, which include a total of 20 pixels coinciding with valid sensor
measurement and even fewer high SCC data points. Consequently, the Hyperion Synthetic ETM+
(HSE) reflectance is more scattered compare to the multispectral data in the turbidity-reflectance
plot (Figure 10). In summary, we find that the availability of numerous spectral bands offered by
hyperspectral sensor does not provide significant improvements in the estimation of SSC.

When the results obtained using the RTM-inversion method with hyperspectral data are compared
with those obtained with two empirical models (linear and second order polynomial regressions),
we find that the RTM-inversion is more reliable in terms of minimum, median, and variance of
the RMSE. We also find that the RTM-inversion method displays a more robust performance with
respect to spectral band selection approaches (Figure 8). For multispectral data, the RTM-inversion
model shows smaller RMSE, and thus a better performance, for both model calibration and validation
compared to the two empirical models (Table 4). The advantage of the RTM-inversion over empirical
models is more evident in model validation than calibration, suggesting that the RTM-inversion has a
stronger predictability than empirical methods, which are more rely on the calibration dataset. Given
the superior performances of the RTM-inversion compared with the linear and second polynomial
regression methods using both hyperspectral and multispectral datasets, our findings suggest that
RTM-inversion is a better approach for the retrieval of SSC in estuaries and lagoons. The success of the
RTM-inversion method has been shown in other studies as well. For example, RTM-inversion was
showed to be more accurate than empirical methods for bathymetric retrieval [94] and chlorophyll-a
estimation [95].

The averaged CC and SSC are around 1.5 mg/m3 and 22 g/m3 during the period of RM data
acquisition. The contribution of chlorophyll-a to the remote sensing reflectance, mainly the absorption
coefficient, is less than 10% of that from SSC in most of the visible spectrum. The ratio raised to around
35% from 660 nm to 690 nm, which corresponds to three hyperspectral bands (out of the total of 24
considered here). As a result, the uncertainty of the chlorophyll-a concentration measurement could
only slightly affects the estimation of SSC. Also, the lack of in situ CDOM measurements will contribute
to uncertainties in the evaluation of the absorption coefficient, thus affecting SSC retrieval. Volpe et
al. [21] showed that the uncertainty introduced by CDOM is relatively small when a range of a∗cdom
value are tested in the same study area. Consequently, it is expected that in situ CDOM measurements
may improve SSC retrieval only slightly. Finally, we note that the main source of uncertainty arguably
comes from the atmospheric correction process, which is more stringent and subtle in complex and
shallow waters than open ocean for water constituent retrievals [19]. Atmospheric correction has been
validated using MODIS products, due to a lack of ground measurements to constrain the correction
process. However, the remaining uncertainty could still be significant especially for winter scenes.
The new generation satellite sensors, for example the Landsat OLI, provide improved radiometric
resolution and SNR, and a new coastal blue band, enabling it to provide an improved surface reflectance
product over the use of Landsat TM/ETM+ [96].

Overall, the best RTM RMSE is 13 g/m3 (or about 10% of the maximum observed turbidity value).
This level of uncertainty is not uncommon. For example, Härmä et al. [97] obtained a relative RMSE
(normalized by the maximum turbidity value) between 12 and 25% using simulated Landsat TM data
(from an airborne spectrometer, implying little uncertainty in the atmospheric correction). Doxaran
et al. [62] obtained a relative RMSE of about 25% using SPOT data in Gironde estuary (France). We
interpret the RMSE value obtained in this study is affected by the optical complexity of the shallow
water environment, characterized by high spatial and temporal variability. The uncertainty is such that
multispectral-based SSC retrievals obtained through the approach proposed here can be practically
useful. The approach provides a moderate estimation uncertainty and a large-scale coverage that
cannot be achieved through field measurements, and is difficult to obtain even from airborne sensors.
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Hyperspectral data have been used with considerable success in the evaluation of the
concentrations of water constituents in coastal regions and lagoons [27,28,73,98]. However, this study
finds that larger archives of hyperspectral data are needed to possibly implement a solid retrieval
of suspended sediment. Currently, multispectral data with longer data archive exist, and are more
valuable for long-term monitoring of SSC in shallow coastal areas, compared with hyperspectral
images. However, it is possible that the upcoming NASA HyspIRI mission, which will provide
frequent acquisitions (5 or 19 days revisitation times depending on sensors) and improved SNR
over Hyperion [99], will gradually increase the availability of hyperspectral data and improve
hyperspectral-based SSC retrievals in coastal zones.

5. Conclusions

Our systematic evaluations of hyperspectral versus multispectral data and of a radiative transfer
model versus empirical regressions to retrieve SSC in a shallow coastal area allow a few relevant
conclusions. We find that the use of multiple hyperspectral bands does not significantly improve
remote sensing SSC retrievals using the radiative transfer model. A two-band approach is shown
to provide an optimal tradeoff in terms of accuracy versus complexity. We also find that estimation
uncertainty is relatively independent of the spectral bands selected for the radiative transfer model.

Furthermore, we note that the sporadic sampling of hyperspectral sensors severely limits the
extent of available data archives and the chance of observing high turbidity events. These events are
relatively rare, but critical for calibrating and validating retrieval methodologies over a representative
range of SSC values. Such wider range is, on the contrary, likely to be captured in the large historical
archives available from multispectral sensors. As a result, multispectral data are better suited for SSC
retrieval than hyperspectral data, due to lower information redundancy, lower signal-to-noise ratio,
and longer time series of observations.

Finally, we find that the radiative transfer model-based SSC retrieval method used here is
more robust and accurate than the commonly-used empirical approaches when applied to either
hyperspectral or multispectral data. The sensitivity to the specific spectral bands selections is also
reduced. The general conclusion is that the RTM-based method should be used for SSC retrieval in
shallow estuaries and lagoons, particularly as they show a greater ability to estimate SSC values under
conditions not included in the calibration dataset.
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