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Summary. We propose a semiparametric latent Gaussian copula model for modelling mixed
multivariate data, which contain a combination of both continuous and binary variables. The
model assumes that the observed binary variables are obtained by dichotomizing latent vari-
ables that satisfy the Gaussian copula distribution. The goal is to infer the conditional indepen-
dence relationship between the latent random variables, based on the observed mixed data.
Our work has two main contributions: we propose a unified rank-based approach to estimate the
correlation matrix of latent variables; we establish the concentration inequality of the proposed
rank-based estimator. Consequently, our methods achieve the same rates of convergence for
precision matrix estimation and graph recovery, as if the latent variables were observed. The
methods proposed are numerically assessed through extensive simulation studies, and real
data analysis.
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1. Introduction

Graphical models (Lauritzen, 1996) have been widely used to explore the dependence structure
of multivariate distributions, arising in many research areas including machine learning, image
analysis, statistical physics and epidemiology. In these applications, the data that are collected
often have high dimensionality and low sample size. Under this high dimensional setting, param-
eter estimation and edge structure learning in the graphical model attract increasing attention in
statistics. Owing to mathematical simplicity and wide applicability, Gaussian graphical models
have been extensively studied by Meinshausen and Bühlmann (2006), Yuan and Lin (2007),
Rothman et al. (2008), Friedman et al. (2008, 2010), d’Aspremont et al. (2008), Rocha et al.
(2008), Fan et al. (2009), Peng et al. (2009), Lam and Fan (2009), Yuan (2010), Cai et al. (2011)
and Zhang and Zou (2014), among others. To relax the Gaussian model assumption, Xue and
Zou (2012) and Liu et al. (2009, 2012) proposed a semiparametric Gaussian copula model for
modelling continuous data by allowing for monotonic univariate transformations. Recently,
there has been a large body of work in the machine learning literature focusing on the compu-
tational aspect of graphical model estimation; see Hsieh et al. (2011, 2013), Rolfs et al. (2012),
Oztoprak et al. (2012) and Treister and Turek (2014), among others.
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Both Gaussian and Gaussian copula models are tailored only for modelling continuous data.
However, many multivariate problems may contain discrete data or data of hybrid types with
both discrete and continuous variables. For instance, genomic data such as DNA nucleotides
data may take binary values. In social science, covariate information that is collected from sample
surveys often contains both continuous and discrete variables. For binary data, Xue et al. (2012),
Höfling and Tibshirani (2009) and Ravikumar et al. (2010) proposed a penalized pseudolikeli-
hood approach under the Ising model. Recently, there has been a sequence of work studying the
mixed graphical model. For instance, Lee and Hastie (2014) proposed a penalized composite
likelihood method for pairwise graphical models with mixed Gaussian and multinomial data.
Later, Cheng et al. (2013) extended the model by incorporating further interaction terms. A
non-parametric approach based on random forests was proposed by Fellinghauer et al. (2013).
Recently, Yang et al. (2014a) and Chen et al. (2015) proposed exponential family graphical
models, which allow the conditional distribution of nodes to belong to the exponential family.
Later, a semiparametric exponential family graphical model was studied by Yang et al. (2014b).

In many applications, it is often reasonable to assume that the discrete variable is obtained by
discretizing a latent (unobserved) variable (Skrondal and Rabe-Hesketh, 2007). For instance,
in psychology, the latent variables can represent abstract concepts such as human feeling or
recognition that exist in hidden form but are not directly measurable and, instead, they can
be measured indirectly by some surrogate variables. In the analysis of gene expression data,
there is often unwanted variation between different experiments which is known as batch effects
(McCall et al., 2014; Lazar et al., 2013). To remove them, a commonly used procedure is to
dichotomize the numerical expression data into 0–1 binary data (McCall and Irizarry, 2011).
In many social science studies, the responses are often collected from a survey, which may take
the form of yes–no or categorical answers. Since in all these applications the existence of latent
variables seems reasonable, the modelling of these types of discrete data can be improved by
incorporating this latent variable structure.

In this paper, we consider a generative modelling approach and propose a latent Gaussian
copula model for mixed data. The model assumes that the observed discrete data are generated
by dichotomizing a latent continuous variable at some unknown cut-off. In addition, the latent
variables for the binary components combined with the observed continuous variables jointly
satisfy the Gaussian copula distribution. The model proposed extends the Gaussian copula
model (Xue and Zou, 2012; Liu et al., 2009, 2012) and the latent Gaussian model (Han and
Pan, 2012) to account for mixed data. In this modelling framework, our goal is to infer the con-
ditional independence structure between latent variables, which provides deeper understandings
of the unknown mechanism than that between the observed binary surrogates. Under the latent
Gaussian copula model, the conditional independence structure is characterized by the sparsity
pattern of the latent precision matrix.

Our work has two major contributions. Our first contribution is to propose a unified rank-
based estimation procedure. The framework proposed extends the existing rank-based method
by Xue and Zou (2012) and Liu et al. (2012) to a more challenging setting with mixed data.
To the best of our knowledge, this paper for the first time proposes such a generalized no-
tion of a rank-based estimator for mixed data. Given the new rank-based estimator, the existing
graph estimation procedures, such as the graphical lasso (Friedman et al., 2008), the constrained
l1-minimization for inverse matrix estimation estimator CLIME (Cai et al., 2011) and the adap-
tive graphical lasso (Lam and Fan, 2009), can be directly used to infer the latent precision matrix.
Our second contribution is to establish concentration inequalities for the generalized rank-based
estimator. Based on this result, the estimator of the precision matrix achieves the same rates of
convergence and model selection consistency, as if the latent variables were observed.
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Compared with existing methods for mixed data, our model and estimation procedures are
different. The work by Lee and Hastie (2014), Cheng et al. (2013), Yang et al. (2014a) and
Chen et al. (2015) essentially models the nodewise conditional distribution by generalized lin-
ear models. In contrast, the latent Gaussian copula model is a generative model which combines
continuous and discrete data through a deeper layer of unobserved variables. In addition, the
model is semiparametric and allows more complicated joint distributions of continuous and
discrete data. The existing methods by Lee and Hastie (2014), Cheng et al. (2013), Yang et al.
(2014a) and Chen et al. (2015) cannot offer such flexibility for modelling the interaction between
the mixed variables. Compared with the non-parametric approach in Fellinghauer et al. (2013),
our semiparametric approach can be much more efficient, which is demonstrated through ex-
tensive numerical studies. A composite likelihood method was proposed by Han and Pan (2012)
for latent Gaussian models. However, such an approach cannot be applied to mixed data in high
dimensional settings, owing to the high computational cost for maximizing the composite like-
lihood. Instead, our rank-based estimation method is computationally much more convenient.

The rest of the paper is organized as follows. In Section 2, we review the Gaussian copula
model. In Section 3, we define the latent Gaussian copula model for mixed data. In Section
4, we propose a general rank-based estimation framework for mixed data. In Section 5, we
consider latent graph estimation based on the rank-based approach proposed. We conduct
extensive simulation studies and apply our methods to a real data example in Sections 6 and 7
respectively. Discussion and concluding remarks are presented in Section 8. The programs that
were used to analyse the data can be obtained from

http://wileyonlinelibrary.com/journal/rss-datasets

For the following development, we introduce some notation. Let M = .Mjk/ ∈ Rd×d and
v = .v1, : : : , vd/T ∈ Rd be a d × d matrix and a d-dimensional vector. We denote vI to be the
subvector of v whose entries are indexed by a set I and v−I to be the subvector of v with vI

removed. We define ∥M∥max :=max{|Mij|} as the matrix elementwise maximum norm, ∥M∥1 =
Σ1!i!d Σ1!j!d |Mij| as the elementwise L1-norm, ∥M∥2 as the spectral norm and ∥M∥F as the
Frobenius norm.

2. Gaussian copula model

In multivariate analysis, the Gaussian model is commonly used because of its mathematical sim-
plicity (Lauritzen, 1996). Although the Gaussian model has been widely applied, the normality
assumption is rather restrictive. To relax this assumption, Xue and Zou (2012) and Liu et al.
(2009, 2012) proposed a semiparametric Gaussian copula model.

Definition 1 (Gaussian copula model). A random vector X = .X1, : : : , Xd/T is sampled from
the Gaussian copula model, if there is a set of monotonically increasing transformations f =
.fj/d

j=1, satisfying f.X/= .f1.X1/, : : : , fd.Xd//T ∼Nd.0,Σ/ with Σjj =1 for any 1!j !d. Then
we denote X ∼NPN.0,Σ, f/.

Under the Gaussian copula model, the sparsity pattern of Ω=Σ−1 encodes the conditional
independence between X. Specifically, Xi and Xj are independent given the remaining variables
X−.i,j/ if and only if Ωij = 0. Hence, inferring the graph structure under the Gaussian copula
model can be accomplished by estimating Ω.

3. Latent Gaussian copula model for mixed data

Despite the flexibility of the Gaussian copula model (Xue and Zou, 2012; Liu et al., 2009, 2012),
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it can handle only continuous data. In this section, we extend the model to account for mixed
data. We call it the latent Gaussian copula model.

Definition 2 (latent Gaussian copula model for mixed data). Assume that X = .X1, X2/,
where X1 represents d1-dimensional binary variables and X2 represents d2-dimensional con-
tinuous variables. The random vector X satisfies the latent Gaussian copula model, if there is
a d1-dimensional random vector Z1 = .Z1, : : : , Zd1/T such that Z := .Z1, X2/ ∼ NPN.0,Σ, f/
and

Xj = I.Zj >Cj/ for all j =1, : : : , d1,

where I.·/ is the indicator function and C= .C1, : : : , Cd1/ is a vector of constants. Then we den-
ote X ∼LNPN.0,Σ, f , C/, where Σ is the latent correlation matrix. When Z∼N.0,Σ/, we say
that X satisfies the latent Gaussian model LN.0,Σ, C/.

In the latent Gaussian copula model, the 0–1 binary components X1 are generated by a
latent continuous random vector Z1 truncated at some unknown constants C. Combining with
the continuous components X2, Z = .Z1, X2/ satisfies the Gaussian copula model. Owing to
the flexibility of the Gaussian copula model, the distribution of the latent variable Z can be
skewed or multimodal. We also note that the latent correlation matrix Σ is invariant, if X is a
vector of binary variables and Xj is recoded as XÅ

j = 1 − Xj for j = 1, : : : , d. In other words,
if X ∼ LNPN.0,Σ, f , C/ then XÅ ∼ LNPN.0,Σ, fÅ, CÅ/ for some fÅ and CÅ, where XÅ =
.XÅ

1 , : : : , XÅ
d /T. We defer the details to the on-line supplementary material. Let Ω=Σ−1 denote

the latent precision matrix. Similarly to Liu et al. (2009), the zero pattern of Ω characterizes the
conditional independence between the latent variables Z. Thus, our goal reduces to inferring
the sparsity pattern of the latent precision matrix Ω even though latent variables are not directly
observable.

The latent Gaussian copula model suffers from the identifiability issue. To see the reason,
consider the following joint probability mass function of the binary component X1 at a point
x1 ∈{0, 1}d1 ,

P.X1 =x1; C,Σ, f/= 1
.2π/d1=2|Σ11|1=2

∫

u∈U
exp

{
−1

2
uT.Σ11/−1u

}
du, .3:1/

where u = .u1, : : : , ud1/ and the integration region is U = U1 ×: : : × Ud1 with Uj = [fj.Cj/, ∞]
if xj = 1 and Uj = [−∞, fj.Cj/] otherwise for j = 1, : : : , d1. By equation (3.1), we find that
only fj.Cj/ is identifiable for the binary component. For notational simplicity, we denote ∆=
.∆1, : : : , ∆d1/, where ∆j =fj.Cj/.

Another consequence of the identifiability constraint is that the proposed latent Gaussian
copula model is equivalent to the latent Gaussian model for binary outcomes. This is ex-
pected, because the binary outcomes contain little information to identify the marginal trans-
formations, whose effect can be offset by properly shifting the cut-off constants in the latent
Gaussian model. However, when the observed variable X has both continuous and discrete
components, the family of latent Gaussian copula models is strictly larger than the latent
Gaussian model. This is because, by incorporating the marginal transformations, the joint
distribution of a continuous variable Xj and a discrete variable Xk is more flexible. Hence,
the proposed latent Gaussian copula model can better explain the association between mixed
variables than the latent Gaussian model, which is the main advantage of the model prop-
osed.
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4. A unified rank-based estimation framework

4.1. Methodology
Assume that we observe n independent vector-valued data X1, : : : , Xn ∼ LNPN.0,Σ, f , C/. In
this section, we propose a generalized rank-based estimator of Σ. Because the latent variable Z1
is not observable, the existing rank-based method in Xue and Zou (2012) and Liu et al. (2012)
cannot be applied to estimate Σ. The main contribution of this paper is to introduce a unified
rank-based estimation framework, which can handle mixed data.

Consider the following Kendall’s τ calculated from the observed data .X1j, X1k/, : : : , .Xnj,
Xnk/:

τ̂ jk = 2
n.n−1/

∑
1!i<i′!n

sgn{.Xij −Xi′j/.Xik −Xi′k/}, .4:1/

where Xij and Xik are possibly binary components of Xi. Here, we define sgn.0/=0. Although
τ̂ jk quantifies certain correlation between Xij and Xik, it does not directly estimate the latent
correlation parameter Σjk. Our main idea is to construct a bridge function, such that it can
connect Kendall’s τ to Σjk. For this, we first define the population Kendall’s τ as τjk = E.τ̂ jk/.
By equation (4.1), we can show that

τjk =2P.Xij −Xi′j > 0, Xik −Xi′k > 0/−2P.Xij −Xi′j > 0, Xik −Xi′k < 0/: .4:2/

Since Xij − Xi′j > 0 is equivalent to fj.Xij/ − fj.Xi′j/ > 0 for any monotonically increasing
function fj.·/, the right-hand side of equation (4.2) is a function of Σjk and independent of f .
Thus, we can denote this function by F.Σjk/, where the concrete form of F.·/ will be described
case by case in the later development. We call this function F.·/ the bridge function, since it
establishes the connection between the latent correlation Σjk and the population Kendall’s τ τjk.
Provided that F.·/ is invertible, we have Σjk = F−1.τjk/. Therefore, a plugged-in estimator of
Σjk is given by Σ̂jk =F−1.τ̂ jk/.

When both Xij and Xik are continuous variables, the bridge function F.·/ has the explicit
form F.Σjk/= 2 sin−1.Σjk/=π, as shown in Kendall (1948). Thus, the rank-based estimator of
Σjk, when both Xij and Xik are continuous, is

R̂jk = sin
(

π

2
τ̂ jk

)
: .4:3/

In what follows, we focus on the calculation of the bridge function F.·/ on the two cases: case
I, both Xij and Xik are binary variables, and case II, Xij is binary and Xik is continuous. By
symmetry, the case that Xij is continuous and Xik is binary is identical to case II.

In case I, since sgn.Xij −Xi′j/=Xij −Xi′j, a direct calculation of the population Kendall’s τ
τjk =E.τ̂ jk/ yields

τjk =2E.XijXik/−2E.Xij/E.Xik/

=2P{fj.Zij/>∆j, fk.Zik/>∆k}−2P{fj.Zij/>∆j}P{fk.Zik/>∆k}
=2{Φ2.∆j, ∆k, Σjk/−Φ.∆j/Φ.∆k/}: .4:4/

Here, we denote Φ2.u, v, t/=
∫

x1<u

∫
x2<v φ2.x1, x2; t/dx1dx2 by the cumulative distribution func-

tion of the standard bivariate normal distribution, where φ2.x1, x2; t/ is the probability density
function of the standard bivariate normal distribution with correlation t. Let Φ.·/ be the cumu-
lative distribution of the standard normal distribution.

To emphasize the dependence of the bridge function on ∆j and ∆k, we denote equation (4.4)
by

F.t;∆j, ∆k/=2{Φ2.∆j, ∆k, t/−Φ.∆j/Φ.∆k/}: .4:5/
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As a special case, when ∆j =∆k =0, by Sheppard’s theorem (Sheppard, 1899), F.t; 0, 0/ can be
further simplified to F.t; 0, 0/ = .1=π/ sin−1.t/, i.e. τjk = .1=π/ sin−1.Σjk/. As will be shown in
lemma 2, we verify that F.t;∆j, ∆k/ is invertible with respect to t, and we denote the inverse
function by F−1.τ ;∆j, ∆k/. Thus, given ∆j and ∆k, we can estimate Σjk by F−1.τ̂ jk;∆j, ∆k/.
In practice, the cut-off values ∆j and ∆k can be estimated from the moment equation E.Xij/=
1 −Φ.∆j/: Namely, ∆j can be estimated by ∆̂j =Φ−1.1 − X̄j/, where X̄j =Σn

i=1Xij=n. Thus,
the rank-based estimator of Σjk, when both Xij and Xik are binary, is

R̂jk =F−1.τ̂ jk; ∆̂j, ∆̂k/: .4:6/

Given ∆̂j and ∆̂k, the estimator R̂jk is the root of the equation F.t; ∆̂j, ∆̂k/ = τ̂ jk. As seen in
lemma 2 below, the function F.t; ∆̂j, ∆̂k/ is strictly increasing, and therefore its root can be
easily solved by using Newton’s method.

In case II, when Xij is binary and Xik is continuous, the following lemma establishes the
bridge function that connects the population Kendall’s τ to Σ for mixed data.

Lemma 1. When Xij is binary and Xik is continuous, τjk =E.τ̂ jk/ is given by τjk =F.Σjk;∆j/,
where

F.t;∆j/=4Φ2.∆j, 0, t=
√

2/−2 Φ.∆j/: .4:7/

Moreover, for fixed ∆j, F.t;∆j/ is an invertible function of t. In particular, when ∆j =0, we
have F.t, 0/= .2=π/sin−1.t=

√
2/, and hence Σjk =√

2 sin.πτjk=2/.

Similarly, the unknown parameter ∆j can be estimated by ∆̂j = Φ−1.1 − X̄j/, where X̄j =
Σn

i=1Xij=n. When Xij is binary and Xik is continuous, the rank-based estimator is defined as

R̂jk =F−1.τ̂ jk; ∆̂j/, .4:8/

where F−1.τ , ∆j/ is the inverse function of F.t, ∆j/ for fixed ∆j.
Thus, combining these three cases, the rank-based estimator of Σ is given by R̂, where R̂ is a

symmetric matrix with R̂jj =1, R̂jk = sin.πτ̂ jk=2/ for d1 +1! j<k !d, R̂jk =F−1.τ̂ jk; ∆̂j, ∆̂k/
for 1! j<k !d1 and R̂jk =F−1.τ̂ jk; ∆̂j/ for 1! j !d1, d1 +1!k !d.

4.2. Theoretical results
In this section, we establish concentration results for the rank-based estimator, which plays
the key role in the theory of graph estimation and model selection. We first consider case I,
where both Xij and Xik are binary. The following lemma justifies that the inverse function of
F.t;∆j, ∆k/ exists, such that the rank-based estimator R̂jk in equation (4.6) is well defined.

Lemma 2. For any fixed ∆j and ∆k, F.t;∆j, ∆k/ in equation (4.5) is a strictly increasing
function on t ∈ .−1, 1/. Thus, the inverse function F−1.τ ;∆j, ∆k/ exists.

To study the theoretical properties of R̂, we assume the following regularity conditions.

Assumption 1. There is a constant δ > 0 such that |Σjk|!1− δ, for any 1! j<k !d1.

Assumption 2. There is a constant M such that |∆j|!M, for any j =1, : : : , d1.

Conditions 1 and 2 are adopted for technical reasons and they impose little restriction in
practice. Specifically, condition 1 rules out the singular case that fj.Zij/ and fk.Zik/ are per-
fectly collinear. Condition 2 is used to control the variation of F−1.τ ;∆j, ∆k/ with respect to
.τ ;∆j, ∆k/. The following theorem establishes the convergence rate of R̂jk −Σjk uniformly over
1! j, k !d1.
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Theorem 1. Under assumptions 1 and 2, for any t> 0 we have

P

(
sup

1!j,k!d1

|R̂jk −Σjk|>t

)
!2d2

1 exp
(

− nt2

8L2
2

)
+4d2

1 exp
(

− nt2π

162L2
1L2

2

)

+4d2
1 exp

(
− M2n

2L2
1

)
, .4:9/

where L1 and L2 are positive constants given in lemmas A.2 and A.1 in the on-line supplemen-
tary materials, respectively, i.e., for some constant C independent of .n, d/, sup1!j,k!d1

|R̂jk −
Σjk|!C

√
{log.d/=n} with probability greater than 1−d−1.

Now we consider case II, where Xij is binary and Xik is continuous. The following concen-
tration result similar to theorem 1 holds.

Theorem 2. Under assumptions 1 and 2, for any t> 0 we have

P

(
sup

1!j!d1,d1+1!k!d
|R̂jk −Σjk|>t

)
!2d1d2 exp

(
− nt2

8L2
3

)
+2d1d2 exp

(
− nt2π

122L2
1L2

3

)

+2d1d2 exp
(

− M2n

2L2
1

)
,

where L1 and L3 are positive constants given in lemmas A.2 and A.3 in the on-line supple-
mentary material respectively. i.e., for some constant C independent of .n, d/,

sup
1!j!d1, d1+1!k!d

|R̂jk −Σjk|!C
√

{log.d/=n}

with probability greater than 1−d−1.

Analogously to theorems 1 and 2, for continuous components, the following lemma in Liu
et al. (2012) provides the upper bound for supd1+1!j, k!d |R̂jk −Σjk|.

Lemma 3. For n> 1, with probability greater than 1−d−1
2 , we have

sup
d1+1!j,k!d

|R̂jk −Σjk|!2:45π
√{

log.d2/

n

}
:

Combining theorems 1 and 2 and lemma 3, we finally obtain the concentration inequality for
|R̂jk −Σjk| uniformly over 1! j, k !d.

Corollary 1. Under assumptions 1 and 2, with probability greater than 1−d−1, we have

sup
1!j,k!d

|R̂jk −Σjk|!C

√{
log.d/

n

}
,

where C is a constant independent of .n, d/.

5. Latent graph structure learning for mixed data

The structure of the latent graph is characterized by the sparsity pattern of the inverse correlation
matrix Ω. In this section, we show that a simple modification of the existing estimators for the
Gaussian graphical model can be used to estimate Ω. For concreteness, we demonstrate the
modification for the graphical lasso estimator (Friedman et al., 2008), CLIME (Cai et al., 2011)
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and adaptive graphical lasso estimator (Fan et al., 2009, 2014), which are given as follows: for
the graphical lasso,

Ω̂=arg min
Ω≽0

{tr.R̂Ω/− log|Ω|+λ
∑
j ̸=k

|Ωjk|}; .5:1/

for the adaptive graphical lasso,

Ω̂=arg min
Ω≽0

{tr.R̂Ω/− log|Ω|+
∑
j ̸=k

pλ.|Ωjk|/}; .5:2/

for CLIME,

Ω̂=arg min∥Ω∥1, subject to ∥R̂Ω− Id∥max !λ, .5:3/

where Id is a d ×d identity matrix, λ is a tuning parameter and pλ.θ/ is a folded concave penalty
function such as the smoothly clipped absolute deviation penalty (Fan and Li, 2001) and mini-
max concave penalty (Zhang, 2010). Compared with the original formulation of the graphical
lasso, CLIME and adaptive graphical lasso estimators, the modification that we conduct is that
the sample covariance matrix is now replaced by the rank-based estimator R̂. The same mod-
ification can be also applied to other existing Gaussian graphical model estimators with the
sample covariance matrix as the input.

However, one potential issue with the rank-based estimator is that R̂ may not be positive
semidefinite. Since we do not penalize the diagonal elements of Ω in equations (5.1) and (5.2),
the resulting estimator may diverge to ∞. Even though optimization problem (5.1) remains
convex, the computational algorithms in Friedman et al. (2008) and Hsieh et al. (2011), among
others, may not converge. To regularize the estimator further, we can project R̂ into the cone of
positive semidefinite matrices, i.e.

R̂p =argmin
R≽0

∥R̂ −R∥max: .5:4/

The smoothed approximation method in Nesterov (2005) can be used to calculate R̂p; see also
Liu et al. (2012) and Zhao et al. (2014) for some computationally efficient algorithms. Hence,
we can replace R̂ in problems (5.1) and (5.2) by R̂p. The following corollary shows that a similar
error bound holds for the projected estimator R̂p in equation (5.4).

Corollary 2. Under assumptions 1 and 2, with probability greater than 1−d−1, we have

∥R̂p −Σ∥max !C

√{
log.d/

n

}
,

where C is a constant that is independent of .n, d/.

By corollaries 1 and 2, under assumptions 1 and 2, the graphical lasso (5.1), adaptive graph-
ical lasso (5.2) and CLIME (5.3) with R̂ or R̂p enjoy the same theoretical properties as those
established by Raskutti et al. (2008), Fan et al. (2014) and Cai et al. (2011) respectively. Thus, our
estimator achieves the same rate of convergence for estimating Ω and model selection consis-
tency, as if the latent variables Z1, : : : , Zn were observed. We refer the reader to the corresponding
references for the detailed theoretical results.

The optimization problem (5.2) is non-convex because of the penalty function. In practice,
we suggest use of the local linear approximation algorithm that was proposed by Zou and Li
(2008) and Fan et al. (2014) to solve problem (5.2). In our context, we can solve the weighted
l1-penalization problem
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Ω̂A =arg min
Ω≽0

{tr.R̂pΩ/− log |Ω|+
∑
j ̸=k

p′
λ.|Ω̂0

jk|/|Ωjk|}, .5:5/

where p′
λ.θ/ is the derivative of pλ.θ/ with respect to θ and Ω̂

0 = .Ω̂0
jk/ is an initial estimator of

Ω which can be taken as the graphical lasso or CLIME estimator.
To select the tuning parameter λ in the graphical lasso (5.1), adaptive graphical lasso (5.2) and

CLIME (5.3), we suggest use of the high dimensional Bayesian information criterion that was
proposed by Wang et al. (2013) and Fan and Tang (2013). In particular, we use Ω̂λ to denote the
estimators (5.1), (5.2) and (5.3) corresponding to the tuning parameter λ. The high dimensional
Bayesian information criterion is defined as

HBIC.λ/= tr.R̂Ω̂λ/− log |Ω̂λ|+Cn
log.d/

n
sλ,

where, as suggested by Wang et al. (2013) and Fan and Tang (2013), we take Cn = log{log.n/}
and sλ is the number of edges corresponding to Ω̂λ. Then, the tuning parameter is chosen by
λHBIC = arg minλ∈Λ HBIC.λ/, where Λ is a sequence of values for λ. This procedure is further
empirically assessed by simulation studies.

6. Simulation studies

6.1. Data generation
To evaluate the accuracy of graphical estimation, we adopt similar data-generating procedures
to that in Liu et al. (2012). To generate the inverse correlation matrix Ω, we set Ωjj = 1, and
Ωjk = tajk, if j ̸=k. Here, t is a constant which is chosen to guarantee the positive definiteness of
Ω, and ajk is a Bernoulli random variable with a success probability pjk = .2π/−1=2 exp{∥zj −
zk∥2=.2c1/}, where zj = .z

.1/
j , z

.2/
j / is independently generated from a bivariate uniform [0, 1]

distribution, and c1 is chosen such that there are about 200 edges in the graph. We choose
t = 0:15. In the simulation studies, we consider three possible values for the dimensionality of
the graph: d = 50, 250, 3000, which represent small, moderate and large-scale graphs. Since Σ
needs to be a correlation matrix, we rescale the covariance matrix such that the diagonal elements
of Σ are 1.

Assume the cut-off C ∼Unif[−1, 1]. Consider the following four data-generating scenarios.

(a) Simulate data X = .X1, : : : , Xd/, where Xj = I.Zj > Cj/, for all j = 1, : : : , d, and Z ∼
N.0,Σ/.

(b) Simulate data X = .X1, : : : , Xd/, where Xj = I.Zj > Cj/, for all j = 1, : : : , d, and Z ∼
N.0,Σ/, where 10% entries in each Z are randomly sampled and replaced by −5 or 5.

(c) Simulate data X = .X1, : : : , Xd/, where Xj = I.Zj > Cj/, for j = 1, : : : , d=2, Z ∼ N.0,Σ/
and Xj =Zj, for j =d=2+1, : : : , d.

(d) Simulate data X = .X1, : : : , Xd/, where Xj = I.Zj > Cj/, for j = 1, : : : , d=2, Z ∼ NPN.0,
Σ, f/ and Xj =Zj, for j =1, : : : , d=2, where fj.x/=x3 for j =d=2+1, : : : , d.

In scenarios (a) and (b), the binary data are generated. In particular, scenario (a) corresponds
to the latent Gaussian model and scenario (b) represents the setting where the binary data can
be misclassified because of the outliers of the latent variable. Scenarios (c) and (d) correspond to
the mixed data generated from the latent Gaussian model and the latent Gaussian copula model
respectively. The sample size is n=200 when d =50 and d =250. For the large-scale graph with
d =3000, we use n=600. We repeat the simulation 100 times.

6.2. Estimation error
In this section, we examine the empirical estimation error for the precision matrix. Here, we
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compare five estimation methods:

(a) the latent graphical lasso estimator L-GLASSO in problem (5.1),
(b) the latent adaptive graphical lasso estimator L-GSCAD in problem (5.2),
(c) the approximate sparse maximum likelihood estimator AMLE in Banerjee et al. (2008),
(d) ZR-GLASSO (where ‘ZR’ denotes rank-based correlation of random variable Z) and
(e) ZP-GLASSO (where ‘ZP’ denotes the Pearson correlation of Z).

The weight in L-GSCAD is based on the smoothly clipped absolute deviation penalty with
a=3:7 and the estimator is calculated by the local linear approximation algorithm (Zou and Li,
2008; Fan et al., 2014). AMLE refers to the graphical lasso estimator with the modified sample
covariance matrix Σ̃, where

Σ̃= 1
n

n∑
i=1

.Xi − X̄/.Xi − X̄/T + 1
3

, X̄ = 1
n

n∑
i=1

Xi,

as the input. In ZR-GLASSO and ZP-GLASSO, we assume the latent variable Z is observed. In
particular, the rank-based covariance matrix of Z (Liu et al., 2012) and the sample covariance
matrix of Z are plugged into the graphical lasso procedure. Since Z represents the latent variable,
ZR-GLASSO and ZP-GLASSO are often unavailable in real applications. Here, we use these
two estimators as benchmarks to quantify the loss of information of our proposed estimators
constructed on the basis of the observed data X. We find that the CLIME estimator (5.3)
has similar performance to the L-GLASSO estimator. Hence, we present only the results for L-
GLASSO. We also examine the performance of a naive estimator corresponding to the graphical
lasso estimator with the sample covariance matrix of X as the input. This estimator has similar
performance to AMLE. For simplicity, we report only the latter.

We note that the competing methods for mixed data (Lee and Hastie, 2014; Fellinghauer et al.,
2013; Cheng et al., 2013; Yang et al., 2014a; Chen et al., 2015) do not consider the problem
of precision matrix estimation and therefore they are not suitable for comparison from the
precision matrix estimation perspective. Later, we shall compare their performance in terms of
graph structure recovery in Section 6.4.

Table 1 reports the mean estimation error of Ω̂−Ω in terms of the Frobenius and the matrix
L1-norms. The entries for L-GLASSO and L-GSCAD are calculated under the tuning parameter
chosen by the HBIC-method. For the remaining procedures, similar HBIC-methods are used
to determine λ. It is seen that L-GLASSO has smaller estimation errors than AMLE under
all scenarios. This becomes more transparent, as the dimension grows. In addition, the folded
concave estimator L-GSCAD further reduces the estimation error of L-GLASSO, which is
consistent with the literature. Compared with the estimation errors of the benchmarks ZR-
GLASSO and ZP-GLASSO, Table 1 suggests that the proposed estimators L-GLASSO and
L-GSCAD suffer little loss of information for d =50, 250 and only moderate loss of information
for the very high dimensional setting with d =3000. Additional simulation results in the on-line
supplementary material show that the conclusions are stable with respect to the signal strength
of the true precision matrix.

6.3. Graph recovery
Define the number of false positive FP.λ/ and true positive results TP.λ/ with regularization
parameter λ as the number of lower off-diagonal elements .i, j/ such that Ωij = 0 but Ω̂ij ̸= 0,
and the number of lower off-diagonal elements .i, j/ such that Ωij ̸= 0 and Ω̂ij ̸= 0. Define the
false positive rate FPR.λ/ and true positive rate TPR.λ/ as
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Table 1. Average estimation error of L-GLASSO, L-GSCAD, AMLE, ZR-GLASSO and ZP-GLASSO for
Ω̂!Ω as measured by the matrix L1-norm L and the Frobenius norm F †

d Scenario Norm Results for the following estimators:

L-GLASSO L-GSCAD AMLE ZR-GLASSO ZP-GLASSO

50 (a) F 3.74 (0.29) 3.67 (0.25) 4.52 (0.18) 3.01 (0.18) 2.88 (0.20)
L 3.00 (0.49) 2.94 (0.39) 3.14 (0.42) 2.87 (0.33) 2.77 (0.35)

(b) F 3.92 (0.24) 3.77 (0.30) 4.52 (0.20) 3.59 (0.29) 4.27 (0.41)
L 3.11 (0.49) 3.00 (0.45) 3.32 (0.46) 3.40 (0.46) 3.59 (0.58)

(c) F 3.66 (0.28) 3.40 (0.20) 4.50 (0.26) 3.01 (0.18) 2.88 (0.20)
L 3.10 (0.52) 3.02 (0.45) 3.39 (0.55) 2.87 (0.33) 2.77 (0.35)

(d) F 3.80 (0.35) 3.56 (0.39) 6.27 (0.77) 3.04 (0.26) 3.70 (0.24)
L 3.23 (0.52) 3.08 (0.46) 4.54 (0.56) 2.93 (0.36) 3.10 (0.35)

250 (a) F 6.50 (0.31) 6.12 (0.25) 9.42 (0.10) 5.50 (0.20) 5.41 (0.23)
L 3.55 (0.35) 3.50 (0.29) 3.70 (0.44) 3.38 (0.27) 3.37 (0.25)

(b) F 6.56 (0.24) 6.50 (0.30) 9.40 (0.12) 5.72 (0.22) 6.70 (0.65)
L 3.68 (0.30) 3.66 (0.26) 3.73 (0.26) 3.49 (0.32) 3.79 (0.33)

(c) F 6.70 (0.38) 6.43 (0.30) 7.10 (0.26) 5.50 (0.20) 5.41 (0.23)
L 3.66 (0.32) 3.52 (0.35) 4.64 (0.35) 3.38 (0.27) 3.37 (0.25)

(d) F 6.99 (0.37) 6.63 (0.34) 9.34 (0.29) 5.30 (0.17) 5.55 (0.30)
L 3.72 (0.40) 3.57 (0.37) 4.19 (0.33) 3.40 (0.29) 3.59 (0.30)

3000 (a) F 12.5 (1.43) 10.8 (1.39) 18.8 (2.45) 7.97 (0.76) 7.53 (0.77)
L 2.52 (0.36) 2.50 (0.34) 3.42 (0.54) 1.16 (0.20) 1.22 (0.25)

(b) F 12.7 (1.50) 10.8 (1.39) 18.9 (2.45) 7.64 (0.70) 9.62 (0.90)
L 2.83 (0.47) 2.77 (0.40) 3.38 (0.60) 1.11 (0.24) 1.56 (0.43)

(c) F 13.5 (1.78) 11.0 (1.67) 18.4 (1.88) 7.97 (0.76) 7.53 (0.77)
L 3.35 (0.58) 3.30 (0.50) 3.96 (0.59) 1.16 (0.20) 1.22 (0.25)

(d) F 13.0 (1.73) 11.4 (1.58) 19.9 (2.10) 8.13 (0.85) 8.33 (0.87)
L 3.39 (0.55) 3.30 (0.52) 4.21 (0.66) 1.09 (0.26) 1.20 (0.31)

†Numbers in parentheses are the simulation standard errors.

FPR.λ/= FP.λ/

d.d −1/=2− |E|
,

TPR.λ/= TP.λ/

|E|
,

where |E| is the number of edges in the graph. Fig. 1 shows the plot of TPR.λ/ against FPR.λ/ for
L-GLASSO, L-GSCAD, AMLE, ZR-GLASSO and ZP-GLASSO, when d =50. We find that
L-GLASSO always yields higher TPR than AMLE for any fixed FPR under all four scenarios,
and L-GSCAD improves L-GLASSO in terms of graph recovery. By comparing the receiver
operating characteristic curves in scenarios (a) and (b), L-GLASSO and L-GSCAD are more
robust to data misclassification than the benchmark estimators ZR-GLASSO and ZP-GLASSO.
This robustness property demonstrates the advantage of the dichotomization method. In the
absence of misclassification, it is seen that the receiver operating characteristic curves of L-
GLASSO and ZR-GLASSO are similar, suggesting little loss of information for the graph
recovery due to the dichotomization procedure.

6.4. Further comparison with competing approaches
In this section, we further compare the proposed estimator L-GLASSO with competing ap-
proaches for mixed graphical models. The following four estimators are considered in this study:
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Fig. 1. TPR versus FPR for graph recovery of L-GLASSO ( ), L-GSCAD ( ), AMLE ( ),
ZR-GLASSO ( ) and ZP-GLASSO (— —), when d D50: (a) scenario (a); (b) scenario (b); (c) scenario
(c); (d) scenario (d)

Nodewise-1, PMLE, Nodewise-2 and Forest. Specifically, the Nodewise-1 estimator refers to
penalized nodewise regression based on the pairwise exponential family (Chen et al., 2015; Yang
et al., 2014a); the PMLE estimator refers to the penalized pseudolikelihood estimator in the
mixed graphical model (Lee and Hastie, 2014); the Nodewise-2 estimator refers to weighted
L1-penalized nodewise regression (Cheng et al., 2013); and finally the Forest estimator refers to
the random-forests estimator for mixed graphical models (Fellinghauer et al., 2013).

We adopt the same data-generating procedures. Fig. 2 displays the plot of TPR against FPR
for graph recovery of L-GLASSO, Nodewise-1, PMLE, Nodewise-2 and Forest. In all four
scenarios, L-GLASSO outperforms the existing estimators in terms of graph recovery. The
estimators Nodewise-1 (Chen et al., 2015; Yang et al., 2014a) and PMLE (Lee and Hastie,
2014) have similar performance and both have lower TPR than the method proposed. This is
because both of them are derived on the basis of the exponential family graphical model which
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Fig. 2. TPR versus FPR for graph recovery of L-GLASSO ( ), Nodewise-1 ( ), PMLE ( ),
Nodewise-2 (— —) and Forest ( ) when d D 50: (a) scenario (a); (b) scenario (b); (c) scenario (c); (d)
scenario (d)

is different from the data-generating model. The Nodewise-2 estimator in Cheng et al. (2013) is
identical to Nodewise-1 for the binary data in scenarios (a) and (b) and attempts to incorporate
more sophisticated interaction than PMLE for mixed data. It shows improved performance in
scenarios (c) and (d). Finally, as a non-parametric estimator, the Forest estimator (Fellinghauer
et al., 2013), tends to be less efficient than the parametric and semiparametric approaches. This
explains the fact that our estimator L-GLASSO has higher TPR than does the Forest estimator.
Further comparison of these estimators for d = 250 demonstrates the same patterns; see the
on-line supplementary material for details.

7. Analysis of Arabidopsis data

In this section, we consider the graph estimation for the Arabidopsis data set that was analysed
by Lange and Ghassemian (2003), Wille et al. (2004) and Ma et al. (2007). As an illustration,
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Table 2. Number of different edges among L-GLASSO
versus AMLE, L-GLASSO versus Nodewise-1, L-
GLASSO versus PMLE and L-GLASSO versus Forest in
the Arabidopsis data

Total edges Number of edges for the following methods:

AMLE Nodewise-1 PMLE Forest

80 27 29 30 34
60 19 20 24 20
45 15 17 14 12
25 7 9 10 6
10 6 5 6 3

we focus on 39 genes which are possibly related to the mevalonate or non-mevalonate pathway.
In addition, 118 GeneChip (Affymetrix) microarrays are used to measure the gene expression
values under various experimental conditions.

To remove the batch effects due to different experiments, we apply the adaptive dichotomiza-
tion method that is implemented by the ArrayBin package in R (https://cran.r-proj
ect.org/web/packages/ArrayBin/index.html). This method transforms the numer-
ical expression data into 0–1 binary data, where genes with higher expression values are encoded
as 1 and genes with lower expression values are encoded as 0. Although the loss of information is
inevitable in the discretization procedure, McCall and Irizarry (2011) argued that this procedure
can potentially improve the accuracy of the statistical analysis. In contrast to Wille et al. (2004)
and Ma et al. (2007) who imposed the Gaussian model assumption on the numerical expression
values, we work on the derived binary data with the purpose of removing batch effects.

We compare the performance of our proposed L-GLASSO with several estimators, i.e. AMLE
(Banerjee et al., 2008), Nodewise-1 (Chen et al., 2015), PMLE (Lee and Hastie, 2014) and
Forest (Fellinghauer et al., 2013). Note that the Nodewise-2 estimator in Cheng et al. (2013)
is identical to Nodewise-1 in Chen et al. (2015) for binary data. The tuning parameters are
selected separately, such that the estimated graphs have the same number of edges. The number
of different edges for L-GLASSO versus AMLE, L-GLASSO versus Nodewise-1, L-GLASSO
versus PMLE and L-GLASSO versus Forest is presented in Table 2. We find that our estimator
produces 30–60% different edges compared with the existing methods, depending on the level
of sparsity of the estimated graphs. When the number of estimated edges is small (i.e. 10 edges),
the graph that is estimated by L-GLASSO is more concordant with that estimated by the non-
parametric Forest estimator.

From a biological perspective, some well-known association patterns are identified by all
the methods. For instance, when the number of total edges is 10, all four methods identify
the gene–gene interaction between AACT2 and MK, and the interaction between AACT2 and
FPPS2. These results are consistent with the findings in Wille et al. (2004). More importantly,
many interesting association patterns are identified by L-GLASSO rather than by the existing
methods. For instance, L-GLASSO is the only method that concludes that genes CMK and
MCT, and CMK and MECPS are dependent. These genes are on the non-mevalonate pathway
and are known to be associated in the literature (Hsieh and Goodman, 2005; Phillips et al.,
2008; Ruiz-Sola and Rodrı́guez-Concepción, 2012). Similarly, the association between genes
MECPS and HDS supported by Phillips et al. (2008) is recovered by our estimator L-GLASSO
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and the non-parametric Forest estimator. Hence, we conclude that our method identifies some
interesting dependence structure that is missed by the existing methods.

8. Discussion

In this paper, we propose a latent Gaussian copula model for mixed data. We assume that there
is a deeper layer of unobserved driving factors that govern the observed mixed data. Thus, our
primary interest is to learn the dependence structure of the latent variables. It is important to
note that the conditional independence between latent variables (i.e. Zj and Zk are independent
given Z−.j,k/) does not imply the conditional independence between observed binary variables
(i.e. Xj and Xk are independent given X−.j,k/, where Xj = I.Zj >Cj/).

Recently, Chandrasekaran et al. (2012) studied the latent variable graphical model. This
model assumes that a subset of random variables is not observed. These variables are called
latent variables or missing variables. This model is useful to account for unobserved confounding
variables. In the current paper, we introduce latent variables to model the observed binary data.
Hence, these two models are fundamentally different.

Although we focus on binary data in this paper, in principle, our methods can be extended
to ordinal data with more than two categories. Specifically, once Kendall’s τ has been defined,
we can apply the proposed framework to derive the bridge function that connects the latent
correlation matrix to the population of Kendall’s τ . However, unlike the binary case, the bridge
function for ordinal data may not have a simple form and needs to be calculated case by case.
One potentially unified approach to study ordinal data is to collapse the data into two categories.
It is of interest to study the statistical properties of this procedure and to quantify the loss of
information due to data collapse. We leave this problem for future investigations.

9. Supplementary materials

The supplementary material contains the proofs of the theoretical results, additional simulation
studies and an analysis of a music data set.
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where the last step follows from �2(�j

, 0,�t) = �(�
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Sheppard’s theorem (Sheppard, 1899), we get
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By the proof of Lemma 4.2, we can show that

@H(t;�
j

)

@t
= 4

@�2(�j

, 0, t/
p
2)

@t
> 0.

This implies that H(t;�
j
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A.2 Proof of Lemma 4.2

Proof. We will show that the partial derivative of F (t;�
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where �(x) is the probability density function of a standard normal variable. Hence,
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Since �(x) < 1, from the dominated convergence theorem, it is valid to interchange the di↵erenti-
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A.3 Proof of Theorem 4.3

To prove Theorem 4.3, we need the following two Lemmas.
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proof.
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Lemma A.2. ��1(y) is Lipschitz in y 2 [�(�2M),�(2M)], i.e., there exists a Lipschitz constant
L1 such that
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Proof of Lemma A.2. It su�ces to show that there exists a constant L2 such that d��1(y)/dy  L1,
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The exception probability is controlled by
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where the last step follows from the Hoe↵ding’s inequality, since X
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Since b⌧
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is a U-statistic with bounded kernel, the Hoe↵ding’s inequality for U-statistics yields,
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Let �21(x, y, t) = @�2(x, y, t)/@x, and �22(x, y, t) = @�2(x, y, t)/@y. For I2, we have
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where ⇠1, ⇠2, ⇠3 and ⇠4 are the intermediate values from the mean value theorem. It is easily seen
that
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Combining (A.8), (A.11) and (A.6), we find
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where the last step follows from the Hoe↵ding’s inequality. Combining results (A.9), (A.12) and
(A.7), we now obtain
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A.4 Proof of Theorem 4.4

Lemma A.3. Under Conditions (A1) and (A2), F�1(⌧ ;�
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Proof of Lemma A.3. The proof follows the same argument as that for Lemma A.1. We omit the
details.
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Proof of Theorem 4.4. Let A
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For any t > 0, we have
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The Hoe↵ding’s inequality for U-statistics yields,
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Recall that �21(x, y, t) = @�2(x, y, t)/@x, and �22(x, y, t) = @�2(x, y, t)/@y. As shown in the proof
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where ⇠1 and ⇠2 are the intermediate values from the mean value theorem. Thus, the Hoe↵ding’s
inequality yields

I2  P
 

L1

�

�

�

1

n

n

X

i=1

X
ij

� (1� �(�
j

))
�

�

�

>
t
p
2⇡

12L3

!

 2 exp

✓

� nt2⇡

122L2
1L

2
3

◆

. (A.17)

Combining results (A.14), (A.15), (A.16), (A.17) and (A.13), we now obtain

P
⇣

�

�

�

F�1(b⌧
jk

; b�
j

)� ⌃
jk

�

�

�

> t
⌘

 2 exp

✓

� nt2

8L2
3

◆

+ 2 exp

✓

� nt2⇡

122L2
1L

2
3

◆

+ 2 exp
⇣

� M2n

2L2
1

⌘

.

This implies that

P
 

sup
1jd1,d1+1kd

| bR
jk

� ⌃
jk

| > t

!

 2d1d2 exp

✓

� nt2

8L2
3

◆

+ 2d1d2 exp

✓

� nt2⇡

122L2
1L

2
3

◆

+2d1d2 exp
⇣

� M2n

2L2
1

⌘

,
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Hence, taking t = C
p

log d/n for some constant C, sup1jd1,d1+1kd

| bR
jk

� ⌃
jk

|  C
p

log d/n
with probability greater than 1� d�1.

A.5 Proof of Corollary 5.1

Proof. According to the definition of b

R

p

,

||bR
p

�⌃||max  ||bR
p

� b

R||max + ||bR�⌃||max  2||bR�⌃||max.

We have
P
⇣

||bR
p

�⌃||max � 2t
⌘

 P
⇣

||bR�⌃||max � t
⌘

.

This completes the proof by applying Corollary 4.6.

B Invariance of Latent Correlation Matrix

The interpretation of the latent correlation matrix ⌃ is invariant to the coding of a binary variable.
To see this, recall that if X is a d dimensional 0/1 vector satisfying the latent Gaussian copula
model (Definition 3.1, X ⇠ LNPN(0,⌃, f,C)), then X

j

= I(Z
j

> C
j

), where Z ⇠ NPN(0,⌃, f).
Let X⇤

j

= 1 � X
j

denote the random variable which flips the role of 0 and 1 in X
j

. Then X⇤

j

=
I(Z

j

 C
j

) = I(Z⇤

j

� C⇤

j

), where C⇤

j

= �C
j

and Z⇤

j

= �Z
j

. Let X

⇤ = (X⇤

1 , ..., X
⇤

d

)T , Z⇤ =
(Z⇤

1 , ..., Z
⇤

d

)T and C

⇤ = (C⇤

1 , ..., C
⇤

d

)T . Because we know Z ⇠ NPN(0,⌃, f), by the definition of
Gaussian copula (Definition 2.1) we have Z

⇤ ⇠ NPN(0,⌃, f⇤), where f⇤ = (f⇤

1 , ..., f
⇤

d

) is given by
f⇤

j

(�x) = f
j

(x). Thus, as seen in Definition 3.1, X⇤ satisfies the latent Gaussian copula model
X

⇤ ⇠ LNPN(0,⌃, f⇤,C⇤). This implies that both X and X

⇤ share the same latent correlation
matrix ⌃. Thus, the interpretation of ⌃ is invariant to the coding of the binary variables.

C Additional Simulation Results

We further examine the performance of the proposed methods with respect to the signal strength
in the precision matrix. Recall that to generate the inverse correlation matrix ⌦, we set ⌦

jk

= ta
jk

,
for j 6= k, where t = 0.15 in the simulation studies of the main paper, and a

jk

is a Bernoulli random
variable. In this section, we set t = 0.3. Similar to the simulation studies in the main paper, we
compare the performance of the five estimators L-GLASSO, L-GSCAD, AMLE, ZR-GLASSO and
ZP-GLASSO. Table 3 reports the mean estimation error and standard deviations of b⌦�⌦ in terms
of the Frobenius and the matrix L1 norms. We find that L-GLASSO and L-GSCAD su↵er from
little information loss compared with ZR-GLASSO or ZP-GLASSO, which is consistent with our
findings in the main paper. Hence, our results seem to be stable with respect to the signal strength.

To further compare the proposed method with the existing methods for mixed graphical models,
we plot the number of correctly estimated edges against the total number of estimated edges for
d = 250 and n = 200. The results are shown in Figure 3. It clearly shows that the proposed method
outperforms the competitors in all four scenarios considered in the main paper.
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Table 3: The average estimation error of L-GLASSO, L-GSCAD, AMLE, ZR-GLASSO and ZP-
GLASSO for b

⌦�⌦ as measured by the Matrix L1 norm (L) and the Frobenius (F) norms. Numbers
in parentheses are the simulation standard errors. We set correlation level t = 0.3 and d = 50.

Scenario Norm L-GLASSO L-GSCAD AMLE ZR-GLASSO ZP-GLASSO

(a) F 2.61(0.27) 2.40(0.23) 4.32(0.13) 2.18(0.17) 2.00(0.19)
L 1.99(0.59) 1.92(0.59) 2.07(0.54) 1.94(0.32) 1.77(0.31)

(b) F 2.87(0.32) 2.77(0.30) 4.36(0.15) 2.88(0.30) 3.44(0.55)
L 2.12(0.69) 2.07(0.55) 2.20(0.66) 2.36(0.57) 2.49(0.73)

(c) F 2.63(0.23) 2.46(0.25) 3.86(0.27) 2.18(0.17) 2.00(0.19)
L 1.99(0.44) 1.99(0.50) 2.16(0.61) 1.94(0.32) 1.77(0.31)

(d) F 2.56(0.20) 2.44(0.20) 8.41(0.47) 2.15(0.16) 2.37(0.20)
L 1.99(0.42) 1.93(0.35) 3.36(0.79) 1.94(0.33) 2.03(0.34)

D Analysis of Music Data

We apply the proposed method to a Computer Audition Lab 500-Song (CAL500) dataset (Turn-
bull et al., 2008), available from the Mulan database (Tsoumakas et al., 2011). The dataset contains
502 popular western music tracks in the last 55 years. For each song, 174 binary annotations (0/1)
are given by listeners. These 174 variables can be grouped into six categories: emotions (36 vari-
ables), instruments (33), usages (15), genres (47), song characteristics (27). Besides the 174 binary
variables, there exist 52 continuous variables representing the Mel-frequency cepstral coe�cient
(MFCC) for each song obtained through a short time Fourier transformation; see Turnbull et al.
(2008) for further details. Although some additional continuous variables are available, we do not
incorporate them in the data analysis because those features are not readily interpretable in prac-
tice (Turnbull et al., 2008). Hence, the dataset we analyze consists of n = 502 samples and d = 226
variables with 174 binary components and 52 continuous components.

The same high dimensional BIC method is used to determine the tuning parameter for L-
GLASSO. The resulting graph is shown in Figure 4. For clarification purpose, we only plot the
connected components of the graph. Many interesting patterns can be identified from the estimated
graph. First, the vocal variables and the emotion variables are closed related with each other, which
is consistent with our intuitions. For instance, the calming songs (circle 59) are negatively related
to the songs with heavy beat (circle 150), which are further related to songs with high energy (circle
152) and Laid-back-Mellow (circle 71). Moreover, songs used for party (circle 171) are negatively
related to soft songs (circle 85) and songs not for dance (circle 170). In addition, rock songs (circle
216), songs with aggressive emotion (circle 53) and tonality (circle 167) are both related to the
continuous variable square 51. This seems to suggest that this feature is an important indicator
for such types of songs.

In conclusion, the proposed estimator L-GLASSO reveals many interesting associations among
the binary annotations by listeners that are intuitively reasonable and also finds some potentially
important features (MFCC variables) that can be used to label songs.
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Figure 3: Plot of the number of correctly estimated edges against the total number of estimated
edges for d = 250 and n = 200.
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Figure 4: Plot of the connected component of the estimated graph for the music data with d = 226.
Nodes 1-52 are continuous variables denoted by MFCC. The remaining 174 nodes are binary with
six categories: emotion, genre, vocals, instruments, usage, characteristics.
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