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SUMMARY
In multivariate analysis, a Gaussian bigraphical model is commonly used for modelling matrix-

valued data. In this paper, we propose a semiparametric extension of the Gaussian bigraphi-
cal model, called the nonparanormal bigraphical model. A projected nonparametric rank-based
regularization approach is employed to estimate sparse precision matrices and produce graphs
under a penalized likelihood framework. Theoretically, our semiparametric procedure achieves
the parametric rates of convergence for both matrix estimation and graph recovery. Empirically,
our approach outperforms the parametric Gaussian model for non-Gaussian data and is compet-
itive with its parametric counterpart for Gaussian data. Extensions to the categorical bigraphical
model and the missing data problem are discussed.
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1. INTRODUCTION
The Gaussian bigraphical model, also called the matrix-normal graphical model (Dawid,

1981; Gupta & Nagar, 1999) or the Gaussian Kronecker graphical model (Werner et al., 2008),
is commonly used for modelling matrix-valued data. The model assumes that a high-dimensional
covariance matrix is separable as the Kronecker product of two low-dimensional component
matrices which encode the dependence structures of row and column variables. Owing to
its flexibility and interpretability, the Kronecker product covariance model has been widely
used to analyse spatiotemporal data (Mardia & Goodall, 1993; Genton, 2007), multivariate data
with repeated measurements (Naik & Rao, 2001) and genomic data (Teng & Huang, 2009).
Estimation procedures for variance matrices include maximum likelihood estimation methods
(Dutilleul, 1999; Lu & Zimmerman, 2005; Mitchell et al., 2005, 2006), empirical Bayes methods
(Theobald & Wuttke, 2006) and Bayesian methods (Wang & West, 2009). Hoff (2011a, b) fur-
ther extended the Bayesian approach to accommodate multi-dimensional data arrays. Most lit-
erature on matrix-valued data considers the classical setting, n > p2q2, where n is the number
of replicates, p is the number of rows, and q is the number of columns. Recently, Yin & Li
(2012) proposed an L1-penalized likelihood method to estimate sparse precision matrices in the
high-dimensional Gaussian bigraphical model, which allows p and q to increase with n. They
established rates of convergence and sparsistency of lasso-type estimators.
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The popularity of the Gaussian bigraphical model is mainly due to its simplicity (Lauritzen,
1996, Ch. 5). However, the normality assumption is rather restrictive. To relax this assumption,
Liu et al. (2009) proposed a semiparametric Gaussian copula model. Instead of assuming the data
to be Gaussian, they assume that there exists a set of unknown transformations such that the trans-
formed data follow a Gaussian distribution. To estimate the precision matrix, Liu et al. (2012)
proposed a rank-based approach, which avoids the estimation of marginal transformations. The
resulting estimator achieves the optimal parametric rates of convergence for both matrix estima-
tion and graph recovery.

In this paper, we propose a semiparametric extension of the Gaussian bigraphical model, called
the nonparanormal bigraphical model. We show that only row and column correlation matrices
are estimable in the model. To infer the graph structure and estimate the precision matrices, we
propose using a projected nonparametric rank-based regularization approach under a penalized
likelihood framework, without estimating the marginal transformations. A novel projection pro-
cedure is introduced to guarantee positive definiteness of the rank-based correlation estimators.
From a computational point of view, the full data are summarized by a single rank-based corre-
lation matrix, whereas currently available algorithms for maximizing the likelihood require the
full dataset as input. To calculate our estimators, we develop an iterative algorithm based on a
new representation proposition. The convergence properties of the proposed algorithm are estab-
lished. We also obtain the rates of convergence of the proposed matrix estimators, which are
identical to the parametric rates obtained from the Gaussian bigraphical model. In addition, we
show that our method yields faster rates of convergence than the best results in Yin & Li (2012)
for the Gaussian bigraphical model. As a by-product, we give the rates of convergence for esti-
mating the composite precision matrix in both the Frobenius norm and the spectral norm. The
sparsistency of the proposed estimator is established. Furthermore, we illustrate how to extend
our method to the categorical bigraphical model. An EM algorithm of normal-score type is pro-
posed for missing data imputation, which extends the algorithm developed by Allen & Tibshirani
(2010) for the Gaussian bigraphical model.

2. BACKGROUND
2·1. Notation

We adopt the following notation throughout this paper. For v = (v1, . . . , vd)T ∈ Rd and 1 !
q ! ∞, we define ∥v∥q = (

∑d
i=1 |vi |q)1/q and ∥v∥∞ = max1!i!d |vi |. For any p × q matrix

M = (M jk), let MT denote the matrix transpose of M and vec(M) the vectorization of M ,
i.e., vec(M) = (M11, . . . , Mp1, M12, . . . , Mp2, . . . , M1q , . . . , Mpq)T. Let f = ( f jk) be a matrix
of functions with elements f jk , and let f (X) be a matrix with elements f jk(X jk). Let Mi∗
denote the i th row of M , M∗ j the j th column of M , M−{i, j}∗ the submatrix of M with
i th and j th rows removed, and M∗−{i, j} the submatrix of M with i th and j th columns
removed. The matrix spectral norm, elementwise maximum norm and Frobenius norm of M
are defined, respectively, by ∥M∥s = max(∥Mx∥2/∥x∥2 : x ∈ Rq , x |= 0), ∥M∥max = max(|Mi j |)
and ∥M∥F = (

∑
i, j M2

i j )
1/2. For a square matrix M , the smallest and largest eigenvalues of M are

denoted by λmin(M) and λmax(M). Let A ⊗ B be the Kronecker product and A ◦ B the Hadamard
product of matrices A and B. The d × d identity matrix is denoted by Id .

2·2. The matrix-normal distribution and Gaussian bigraphical model

A p × q random matrix X follows a matrix-normal distribution MN(M; U, V ), with
mean matrix M and row and column component covariance matrices U and V , if and
only if the density of X is pr(X) = k(U, V ) exp[−tr{(X − M)TU−1(X − M)V −1/2}], where
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k(U, V ) = (2π)−pq/2|U |−q/2|V |−p/2. An equivalent representation of X ∼ MN(M; U, V ) is
that vec(X) ∼ Npq{vec(M), V ⊗ U }. Let A = U−1 and B = V −1 be the precision matrices of
the row and column variables, respectively. By Chapter 5 of Lauritzen (1996), the precision
matrices A and B encode the conditional independence structures of row and column variables,
respectively; that is, the i th and j th rows Xi∗ and X j∗ are independent, given the remaining rows
X−{i, j}∗, if and only if Ai j = 0. Similarly, the i th and j th columns X∗i and X∗ j are independent,
given the remaining columns X∗−{i, j}, if and only if Bi j = 0.

2·3. Rank-based estimation in the Gaussian graphical model

As a semiparametric extension of the Gaussian graphical model, Liu et al. (2009) introduced
the nonparanormal graphical model. A random vector X = (X1, . . . , Xd)T satisfies a nonparanor-
mal distribution, X ∼ NPN(0, #, f ), if and only if there exists a set of monotonic transformations
f = ( f j )

d
j=1 such that f (X) = { f1(X1), . . . , fd(Xd)}T ∼ Nd(0, #) with diag(#) = (1, . . . , 1).

Given n independent observations X1, . . . , Xn where Xi = (Xi1, . . . , Xid) ∼ NPN(0, #, f ), the
aim is to estimate the precision matrix $ = #−1 which encodes the conditional independence
structure. To this end, Liu et al. (2009) suggested a normal-score method; however, the rate of
convergence obtained for estimating $ is not optimal. The same model was also considered by
Hoff (2007), who proposed a Bayesian approach based on the marginal rank likelihood, which is
free of the nuisance transformations f (·) but does not have an analytical form. Liu et al. (2012)
proposed a rank-based approach, with which rank-based correlations such as Spearman’s rho
and Kendall’s tau are used to estimate # directly, by virtue of their invariance under monotonic
transformations. We define Spearman’s rho and Kendall’s tau as

ρ̂ jk =
∑n

i=1(ri j − r̄ j )(rik − r̄k)

{
∑n

i=1(ri j − r̄ j )2
∑n

i=1(rik − r̄k)2}1/2 , (1)

τ̂ jk = 2
n(n − 1)

∑

1!i<i ′!n

sign{(Xi j − Xi ′ j )(Xik − Xi ′k)}, (2)

where ri j is the rank of Xi j among X1 j , . . . , Xnj and r̄ j = n−1∑n
i=1 ri j = (n + 1)/2. The

correlation matrix # can be estimated by R̂ρ = (R̂ρ
jk) or R̂τ = (R̂τ

jk), where

R̂ρ
jk =

{
2 sin

(π

6
ρ̂ jk

)
, j |= k,

1, j = k,
R̂τ

jk =
{

sin
(π

2
τ̂ jk

)
, j |= k,

1, j = k.
(3)

Once an estimate of # has been obtained, it can be inserted into any matrix estimation procedure
for the Gaussian graphical model (Yuan, 2010; Cai et al., 2011; Friedman et al., 2008). Liu et al.
(2012) showed that such a procedure achieves the optimal parametric rates for parameter estima-
tion and graph recovery.

3. NONPARANORMAL BIGRAPHICAL MODEL
3·1. Definition and identifiability condition

We start with the definition of a matrix-nonparanormal distribution.

DEFINITION 1. A p × q random matrix X follows a matrix-nonparanormal distribution
MNPN(M; U, V ; f ), with mean matrix M, row covariance component matrix U and column
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covariance component matrix V , if and only if there exists a set of monotonic transformations
f = ( f jk) such that

vec{ f (X)} = vec[{ f jk(X jk)}] ∼ Npq{vec(M), V ⊗ U }.

The choices f (x) = x and f (x) = log(x) yield the matrix-normal distribution and the
matrix-lognormal distribution, respectively. Since we only require that the f (·) be monotone,
the matrix-nonparanormal distribution provides a much richer family of distributions than does
the matrix-normal distribution. Indeed, the matrix-nonparanormal distribution can be viewed as
a latent-variable model, where the latent variables f (X) follow a matrix-normal distribution and
must be symmetric, while the observed variables X need not be symmetric. Let A = U−1 and
B = V −1 be the precision matrices of the row and column variables, respectively. Following
arguments similar to those of Yin & Li (2012), we can show that the sparsity patterns in A and
B represent the conditional independence structures of the row and column variables.

PROPOSITION 1. Let X ∼ MNPN(M; U, V ; f ), and let A = U−1 and B = V −1. The i th and
jth rows Xi∗ and X j∗ are independent given the remaining rows X−{i, j}∗ if and only if Ai j = 0.
Similarly, the i th and jth columns X∗i and X∗ j are independent given the remaining columns
X∗−{i, j} if and only if Bi j = 0.

If f (·) is differentiable, the joint probability density function of X is

pr(X | M, U, V, f )

= k(U, V ) exp
(

−1
2

tr[{ f (X) − M}TU−1{ f (X) − M}V −1]
) p∏

i=1

q∏

r=1

| f ′
ir (Xir )|,

where k(U, V ) = (2π)−pq/2|U |−q/2|V |−p/2.
The model in Definition 1 is not identifiable. The distribution remains the same if f (X)

and M are replaced by f (X) − K and M − K , respectively, with K ∈ Rp×q . To make the
model identifiable, we impose the constraint that M = 0. We get the same distribution if
vec{ f (·)} j and diag(V ⊗ U ) j are replaced by c vec{ f (·)} j and c−2 diag(V ⊗ U ) j where c is
any positive scalar, so we can let diag(V ⊗ U ) = (1, . . . , 1). Moreover, pr(X | U, V, f ) = pr(X |
c2U, V, c f ) = pr(X | U, c2V, c f ). We then set V11 = 1. These two conditions together imply that
diag(V ) = (1, . . . , 1) and diag(U ) = (1, . . . , 1). Hence we can assume that U and V are corre-
lation matrices. With these identifiability conditions, the matrix-nonparanormal distribution is
denoted by MNPN(U, V ; f ) with diag(U ) = (1, . . . , 1) and diag(V ) = (1, . . . , 1).

3·2. Estimation

We now consider estimation of the precision matrices A = U−1 and B = V −1 based on n
independent matrix-valued random variables X1, . . . , Xn , where Xi ∼ MNPN(U, V ; f ). We
enforce sparsity on A and B by regularization, so A and B can be estimated by minimizing
the L1-penalized negative loglikelihood

w{A, B, f (·)} = −q log |A| − p log |B| + 1
n

n∑

i=1

tr{ f (Xi )
T A f (Xi )B}

+ λ
∑

i |= j

|Ai j | + γ
∑

i |= j

|Bi j |,



Semiparametric bigraphical models 659

where λ and γ are tuning parameters. To obtain fast rates of convergence, we do not penalize
the diagonal elements of A and B (Rothman et al., 2008). The dependence of w{A, B, f (·)}
on the functions f (·) complicates the minimization procedure. To avoid estimation of f (·),
we extend the rank-based approach of Liu et al. (2012). Let Yi = (Yi1, . . . , Yid) = vec(Xi ),
where d = pq. Spearman’s rho and Kendall’s tau statistics are given by (1) and (2), where
ri j is the rank of Yi j among Y1 j , . . . , Ynj . The correlation matrix # = V ⊗ U can be esti-
mated by R̂ = R̂ρ or R̂τ as in (3). To obtain an estimate of (A, B) without estimating f (·),
one can minimize the objective function φ(A, B) = −q log |A| − p log |B| + tr{(B ⊗ A)R̂} +
λ
∑

i |= j |Ai j | + γ
∑

i |= j |Bi j |, where R̂ is either R̂ρ or R̂τ . However, one potential problem

with the rank-based estimator is that R̂ may not be positive definite. Since we do not penalize the
diagonal elements of A and B, the diagonal elements of the minimizer of φ(A, B) can diverge to
infinity. To further regularize the estimator, we propose a new projection procedure. We project
R̂ to the space of positive-definite matrices:

R̂p = arg min
R∈Ppq

∥R̂ − R∥max, (4)

where Pd denotes the space of d × d positive-definite matrices. The calculation of R̂p can be
based on a smoothed approximation method; see Nesterov (2005) for details. Given the projected
rank-based estimator R̂p, we suggest the projected L1-penalized negative loglikelihood

φp(A, B) = −q log |A| − p log |B| + tr{(B ⊗ A)R̂p} + λ
∑

i |= j

|Ai j | + γ
∑

i |= j

|Bi j |.

For the Gaussian bigraphical model, Yin & Li (2012) proposed an iterative algorithm to minimize
the L1-penalized negative loglikelihood with respect to matrices A and B, but their algorithm
required the full set of data X1, . . . , Xn as input. Here the data are summarized by the projected
rank-based estimator R̂p in φp(A, B), and the matrices A and B are entangled together in the
Kronecker product. To minimize φp(A, B), the following representation proposition is crucial.

PROPOSITION 2. Let Kℓ be a pq × q matrix whose {ℓ + p( j − 1), j}th element is 1 and other
elements are 0, where j = 1, . . . , q and ℓ = 1, . . . , p. Let Lℓ be a p × pq matrix whose ℓth p × p
submatrix is Ip and other elements are 0, where ℓ = 1, . . . , q. Then

tr{(B ⊗ A)R̂p} = tr(R̂B A) = tr(R̂A B),

where R̂B is a p × p matrix whose (ℓ, m)th element is tr(KℓBK T
m R̂p) and R̂A is a q × q matrix

whose (ℓ, m)th element is tr(LT
ℓ ALm R̂p).

The proof is presented in the Appendix. From Proposition 2 we develop the following projected
rank-based bigraphical lasso algorithm.

Step 1. Calculate R̂p in (4) using the method of Nesterov (2005).

Step 2. Set B̂(1) = Iq and k = 1.

Step 3. Given the current estimate B̂(k), the estimate of A is

Â(k+1) = arg min
A

{
{−q log |A| + tr(R̂(k)

1 A) + λ
∑

i |= j

|Ai j |
}
,

where the (ℓ, m)th element of R̂(k)
1 is tr(Kℓ B̂(k)K T

m R̂p) (ℓ, m = 1, . . . , p).
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Step 4. Given the current estimate Â(k+1), the estimate of B is

B̂(k+1) = arg min
B

{
− p log |B| + tr(R̂(k+1)

2 B) + γ
∑

i |= j

|Bi j |
}
,

where the (ℓ, m)th element of R̂(k+1)
2 is tr(LT

ℓ Â(k+1)Lm R̂p) (ℓ, m = 1, . . . , q).

Step 5. Repeat Steps 3 and 4 until ∥ Â(k+1) − Â(k)∥F + ∥B̂(k+1) − B̂(k)∥F < ϵ, where ϵ is a
small positive number. Then set ( Â, B̂) = ( Â(k), B̂(k)).

The minimizations in Steps 3 and 4 can be solved using the R functions glasso (Friedman et al.,
2008; Witten et al., 2011) and huge (Zhao et al., 2012). Since φp(A, B) is not a convex function
for (A, B) jointly, the algorithm is not guaranteed to reach the global minimum. The convergence
properties of the algorithm are shown in Theorem 1, whose proof is given in the Supplementary
Material.

THEOREM 1. For k = 1, 2, . . . , the sequence ( Â(k), B̂(k)) generated from the projected rank-
based bigraphical lasso algorithm satisfies

lim
k→∞

(
∥ Â(k+1) − Â(k)∥F + ∥B̂(k+1) − B̂(k)∥F

)
= 0.

Moreover, the accumulation point of ( Â(k), B̂(k)) is a stationary point of φp(A, B).

Following arguments like those in the proof of Theorem 1, we can also establish the conver-
gence properties of the algorithm in Yin & Li (2012).

4. ASYMPTOTIC PROPERTIES
Since φp(A, B) is not convex, in this section we establish the existence of a local minimizer

with a certain rate of convergence. Let U0 and V0 be the true row and column correlation matrices,
and let A0 = U−1

0 = (A(0)
i j ) and B0 = V −1

0 = (B(0)
i j ) be the true row and column precision matri-

ces. Moreover, we write SA = {(i, j) : A(0)
i j |= 0} and SB = {(i, j) : B(0)

i j |= 0} for the supports of
the true row and column precision matrices, respectively. Let s1 and s2 be the number of nonzero
off-diagonal elements of A0 and B0. The magnitudes of s1 and s2 represent the degrees of sparsity
of A0 and B0. Let #0 = V0 ⊗ U0. The concentration result for the projected rank-based estimator
R̂p is given in Theorem 2.

THEOREM 2. Given the projected rank-based estimator R̂p in (4), for n large enough and t > 0
we have

pr
(
∥R̂p − #0∥max ! 16π t

)
" 1 − p2q2 exp(−nt2).

This theorem implies that ∥R̂p − #0∥max = Op[{log(pq)/n}1/2]. Hereafter, we assume the
following regularity conditions.

Condition 1. There exist constants δ1 and δ2 such that 0 < δ1 < λmin(A0) ! λmax(A0) <
δ2 < ∞.

Condition 2. There exist constants δ3 and δ4 such that 0 < δ3 < λmin(B0) ! λmax(B0) <
δ4 < ∞.
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Condition 3. The tuning parameter λ satisfies

λ = O

[
q
(

1 + s2

q
+ ps2

qs1

)1/2{ log(pq)

n

}1/2
]

, q
(

1 + s2

q

)1/2{ log(pq)

n

}1/2

= O(λ).

Condition 4. The tuning parameter γ satisfies

γ = O

[
p
(

1 + s1

p
+ qs1

ps2

)1/2{ log(pq)

n

}1/2
]

, p
(

1 + s1

p

)1/2{ log(pq)

n

}1/2

= O(γ ).

Conditions 1 and 2 provide upper and lower bounds for the eigenvalues of A0 and B0. Similar
assumptions were made by Yin & Li (2012) for analysing the Gaussian bigraphical model, and
by Lam & Fan (2009) and Rothman et al. (2008) for analysing the Gaussian graphical model.
Conditions 3 and 4 provide upper and lower bounds for λ and γ . We find that λ and γ cannot be
too large, or the estimator will be substantially biased and even inconsistent due to the presence
of the L1 penalty. On the other hand, the tuning parameters cannot be too small, or the resulting
estimator will not be sparse. The rates of convergence are given in Theorem 3, whose proof is
outlined in the Appendix.

THEOREM 3. Under Conditions 1–4, there exists a local minimizer ( Â, B̂) of φp(A, B) such
that as n → ∞,

∥ Â − A0∥F = Op

{(
log p + log q

n

)1/2(s1s2 + ps2 + qs1

q

)1/2
}

,

∥B̂ − B0∥F = Op

{(
log p + log q

n

)1/2(s1s2 + ps2 + qs1

p

)1/2
}

(5)

if (s1s2 + ps2 + qs1)(nq)−1 log(pq) = o(1) and (s1s2 + ps2 + qs1)(np)−1 log(pq) = o(1).

The rates of convergence in the Gaussian bigraphical model, as a special case of the nonpara-
normal bigraphical model, were considered by Yin & Li (2012). They assume X1, . . . , Xn ∼
MN(0, A−1

c , B−1
c ), where Ac and Bc are the inverse row and column covariance matrices. The

estimates of Ac and Bc are obtained by minimizing w(A, B, f ), with f consisting of identity
functions. As in Theorem 3, we can establish the rates of convergence in the Gaussian bigraphical
model.

COROLLARY 1. Let X1, . . . , Xn ∼ MN(0, A−1
c , B−1

c ). Under Conditions 1–4, there exists a
local minimizer ( Ã, B̃) of w(A, B, f ), with f consisting of identity functions, such that as
n → ∞,

∥ Ã − Ac∥F = Op

[(
log p + log q

n

)1/2{(p + s1)(q + s2)

q

}1/2
]

,

∥B̃ − Bc∥F = Op

[(
log p + log q

n

)1/2{(p + s1)(q + s2)

p

}1/2
]

, (6)

if (p + s1)(q + s2)(nq)−1 log(pq) = o(1) and (p + s1)(q + s2)(np)−1 log(pq) = o(1).
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Remark 1. Recall that the rate derived by Yin & Li (2012) for estimating A in the Gaussian
bigraphical model is

∥ Ã − Ac∥F = Op

{(
log p + log q

n

)1/2

(p + s1)
1/2q1/2

}
, (7)

which is equivalent to (6) when s2 = O(q2). However, when B is sparse, the convergence rate in
(6) is much faster. For instance, when s2 = o(q), the rate in (6) is Op(q1/2) faster than that in (7).
Similar results hold for the estimate of B.

Remark 2. The estimation of (A, B) in the nonparanormal bigraphical model achieves the
same rate of convergence as that in the Gaussian bigraphical model.

Remark 3. Comparing (5) with (6), we find that a factor of order Op[{p log(pq)/n}1/2] dis-
appears. This is because in (5) we only estimate the inverse correlation matrix, rather than the
inverse covariance matrix.

Remark 4. When q is fixed, (5) reduces to ∥ Â − A0∥F = Op[{(p + s1) log p/n}1/2]. As
shown by Lam & Fan (2009), in the Gaussian graphical model the rate of convergence for esti-
mating the inverse correlation matrix is Op{(s1 log p/n)1/2}. The same rate of convergence was
established by Liu et al. (2012) in the nonparanormal graphical model. An extra term of order
Op{(p log p/n)1/2} appears in the bigraphical model, arising from the fact that estimation of A
and B is intertwined, as has been shown in the computational algorithm. Even though A is the
inverse of a correlation matrix, we must estimate all of its diagonal elements, since they are con-
volved with the elements of B. Estimating the nonparanormal bigraphical model is thus more
challenging than estimating the nonparanormal graphical model.

Remark 5. As p, q → ∞ and when A and B are sparse, in the sense that s1 = o(p) and
s2 = o(q), (5) reduces to ∥ Â − A0∥F = Op[{n−1(s1 + ps2/q) log(pq)}1/2]. Hence, the magni-
tude of ps2/q characterizes the impact of dimensionality and sparsity of B on the estimation of A.
Furthermore, if s1 and s2 are finite and p and q are of the same order, then we can allow p, q ≫ n
without violating the consistency property of Â and B̂, provided that (log p + log q)/n = o(1).
In this case, the contribution of high dimensionality is merely of a logarithmic factor.

Remark 6. The estimation error in the matrix spectral norm, ∥ Â − A0∥s, has the same rate of
convergence as ∥ Â − A0∥F, since ∥ Â − A0∥s ! ∥ Â − A0∥F.

Let $0 = B0 ⊗ A0 and $̂ = B̂ ⊗ Â be the true and estimated composite precision matrices.
The rate of convergence of $̂ to $0 is given in the next corollary, whose proof is deferred to the
Supplementary Material.

COROLLARY 2. Under the conditions in Theorem 3, as n → ∞ we have

∥$̂ − $0∥F = Op

[{
(s1s2 + ps2 + qs1)(log p + log q)

n

}1/2
]

,

∥$̂ − $0∥s = Op

[{
(s1s2 + ps2 + qs1)(log p + log q)

n

}1/2( 1
p

+ 1
q

)1/2
]

.
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The following theorem provides the sparsistency result. The proof is similar to that of
Theorem 4 in Yin & Li (2012) and is therefore omitted.

THEOREM 4. Under the conditions in Theorem 3, let ( Â, B̂) be any local minimizer of
φp(A, B) satisfying the rate of convergence given in Theorem 3 and such that ∥ Â − A0∥s =
Op(ηA) and ∥B̂ − B0∥s = Op(ηB) for some ηA, ηB → 0. Then, with probability tending to 1, we
have that Âi j = 0 for any (i, j) ∈ Sc

A and B̂i j = 0 for any (i, j) ∈ Sc
B, given the following condi-

tions:

qηA + q1/2

{
1 +

(
q log q

n

)1/2
}(

log p + log q
n

)1/2(s1s2 + ps2 + qs1

q

)1/2

= O(λ), (8)

pηB + p1/2

{
1 +

(
p log p

n

)1/2
}(

log p + log q
n

)1/2(s1s2 + ps2 + qs1

p

)1/2

= O(γ ). (9)

Remark 7. The conditions (8) and (9) give lower bounds for λ and γ . To check whether the
lower bounds and upper bounds in Conditions 3 and 4 are compatible, we consider the worst-
case scenario, where ηA = ∥ Â − A0∥F and ηB = ∥B̂ − B0∥F, and the best-case scenario, where
ηA = ∥ Â − A0∥F/p1/2 and ηB = ∥B̂ − B0∥F/q1/2. After some algebra, we can show that in the
worst-case scenario, we need s1 = O(1) and s2 = O(1) to ensure compatibility. Similarly, in
the best-case scenario, we need s1 = O{q(1 + q log q/n)−1} and s2 = O{p(1 + p log p/n)−1},
which reduce to s1 = o(n) and s2 = o(n) when q log q/n = O(1) and p log p/n = O(1).

5. NUMERICAL RESULTS
5·1. Simulation studies

In simulation studies we adopt the same data-generating procedures as in Liu et al. (2012). To
generate the inverse row correlation matrix A, we set A j j = 1 and A jk = tb jk if j |= k, where t
is a constant which guarantees the positive definiteness of A and b jk is a Bernoulli random vari-
able with success probability p jk = (2π)−1/2 exp{∥z j − zk∥2

2/(2s1)}; here each z j = (z(1)
j , z(2)

j )
is independently generated from a bivariate uniform [0, 1] distribution, and s1 determines the
sparsity of A. Similar procedures can be used to generate the precision matrix B, whose spar-
sity parameter is s2. We rescale A and B such that the diagonal elements of A−1 and B−1 are
1; see the Supplementary Material for details. We sample X1, . . . , Xn from MN(0; A−1, B−1),
MNPN(0; A−1, B−1; f ) and MT(0; A−1, B−1, e), where MT(0; A−1, B−1, e) represents the
matrix-t distribution with e degrees of freedom and A and B are row and column precision
matrices. The definition of the matrix-t distribution is given in the Supplementary Material.
In the matrix-nonparanormal distribution, for any i ∈ {1, . . . , p} and j ∈ {1, . . . , q}, fi j (t) =
funi(t) with f −1

uni (t) = g0(t){
∫

g2
0(s)φ(s) ds}−1/2, where φ(·) is the standard Gaussian den-

sity function and g0(t) = sign(t)|t |α. We take α = 3 in MNPN(0; A−1, B−1; f ) and e = 3 in
MT(0; A−1, B−1, e), representing moderate deviations from normal distributions.

The following scenarios with different dimensions, sample sizes and degrees of sparsity
are considered. Scenario (i) has n = 100, p = 30, q = 30 and s1 = 1, s2 = 1. Scenario (ii) has
n = 100, p = 100, q = 100 and s1 = 2, s2 = 2. Scenario (iii) has n = 50, p = 100, q = 50 and
s1 = 2, s2 = 1. Scenario (iv) has n = 30, p = 200, q = 200 and s1 = 8, s2 = 8. Scenario (i) is an
example in which n is larger than p and q. In scenario (ii), p and q are comparable to n. The
numbers of rows and columns are different in scenario (iii). Scenario (iv) has p, q ≫ n.
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Fig. 1. Plots of the mean number of true positive edges against the mean total number of edges detected for
various tuning parameters λ, based on 100 replicates of simulation scenarios (i) and (ii), using the method of
Yin & Li (2012) (solid lines) and our proposed method (dashed lines): (a) matrix-normal data in scenario (i);
(b) matrix-nonparanormal data in scenario (i); (c) matrix-t data in scenario (i); (d) matrix-normal data in sce-

nario (ii); (e) matrix-nonparanormal data in scenario (ii); (f) matrix-t data in scenario (ii).

We conducted 100 replicate simulations. To simplify the selection of tuning parameters,
we took λ/p = γ /q (Allen & Tibshirani, 2010). Simulation results based on Kendall’s tau and
Spearman’s rho were almost identical; hence we only present the results based on Kendall’s tau.

For each simulated dataset, we applied our proposed method and the L1-penalized Gaussian
likelihood method of Yin & Li (2012). To examine the performance of these two methods with
respect to graph recovery, we plotted the number of true positive edges against the total number
of edges detected for different tuning parameters λ; here the number of true positive edges refers
to the number of lower off-diagonal elements (i, j) such that Ai j |= 0 and the estimated Ai j is
also nonzero, and the total number of edges detected refers to the number of estimated nonzero
lower off-diagonal elements. In simulation scenario (i), the mean number of true edges was 149,
whereas in scenario (ii) it was 1685.

Figure 1 shows the plot based on 100 replicates in scenarios (i) and (ii). Simulation results
for scenarios (iii) and (iv) are given in the Supplementary Material. In scenarios (i) and (ii), the
row and column precision matrices are symmetric with the same dimension and sparsity. To save
space, we only present the plot for the row precision matrix. For the matrix-normal data, our
method performs as well as that of Yin & Li (2012), although the latter method shows a slight
advantage in the sense that, given the same total number of edges detected, it identifies more true
positive edges than our method. The performance of the method of Yin & Li (2012) gets worse
when the data-generating distribution is not Gaussian. For the matrix-nonparanormal data, our
method outperforms that of Yin & Li (2012), as expected. While both Gaussian and nonparanor-
mal bigraphical models are misspecified for matrix-t data, our method still performs better than
that of Yin & Li (2012). The same conclusions hold in simulation scenarios (iii) and (iv).
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Table 1. Estimation errors of our method and the method of Yin & Li (2012)
for .A = Â − A and .B = B̂ − B, as measured by the spectral and Frobenius
norms, together with associated optimal tuning parameters, based on 100 repli-
cations. Numbers in parentheses are the simulation standard errors. All values

have been multiplied by 100
Data distribution Scenario Method ∥.A∥F ∥.B∥F λ∗

F ∥.A∥s ∥.B∥s λ∗
s

MN (i) PR 49(2) 49(2) 25 19(1) 19(1) 11
BL 48(2) 48(2) 29 18(1) 18(1) 16

(ii) PR 123(3) 124(3) 27 26(2) 26(2) 12
BL 102(2) 102(2) 26 24(1) 24(1) 11

(iii) PR 201(3) 99(3) 47 49(2) 25(1) 10
BL 182(3) 85(2) 44 47(2) 23(1) 10

(iv) PR 116(3) 116(3) 352 21(1) 21(1) 230
BL 104(3) 104(3) 382 20(1) 19(1) 243

MNPN (i) PR 48(2) 49(2) 41 18(1) 18(1) 20
BL 65(2) 64(3) 22 30(3) 29(3) 18

(ii) PR 124(2) 123(2) 44 35(2) 34(2) 18
BL 190(2) 189(2) 30 57(2) 56(2) 15

(iii) PR 189(3) 91(2) 43 57(3) 43(2) 7
BL 245(4) 122(3) 29 86(3) 66(3) 8

(iv) PR 94(2) 95(2) 598 23(1) 23(1) 410
BL 131(3) 131(2) 544 35(2) 36(2) 370

MT (i) PR 68(5) 64(4) 64 35(3) 37(3) 21
BL 81(6) 82(6) 60 48(4) 48(4) 25

(ii) PR 138(4) 140(5) 85 61(4) 63(4) 24
BL 161(5) 164(5) 97 80(4) 83(4) 31

(iii) PR 195(7) 119(3) 165 94(4) 56(4) 52
BL 239(7) 132(3) 184 116(4) 77(4) 74

(iv) PR 118(3) 118(3) 928 32(2) 31(2) 879
BL 142(3) 146(3) 951 42(2) 42(2) 924

MN, matrix-normal distribution; MNPN, matrix-nonparanormal distribution; MT, matrix-t dis-
tribution; PR, our projected rank-based lasso estimator; BL, the bigraphical lasso estimator of
Yin & Li (2012).

Table 1 reports the mean estimation errors of Â − A and B̂ − B in terms of the spectral and
Frobenius norms, together with associated optimal tuning parameters. The optimal tuning param-
eters λ∗

F and λ∗
s for the estimator ( Â, B̂) are defined as λ∗

F = arg minλ(∥ Â − A∥F + ∥B̂ − B∥F)

and λ∗
s = arg minλ(∥ Â − A∥s + ∥B̂ − B∥s). For the Gaussian data, the estimation error for the

method of Yin & Li (2012) is only 4% to 10% smaller than that for our method. In contrast, the
estimation errors for our method are up to 40% smaller than those for the method of Yin & Li
(2012) when X follows the matrix-nonparanormal distribution, or up to 25% smaller when X
follows the matrix-t distribution. In summary, our method is more robust with respect to the
data-generating distribution.

5·2. Genomic data

In this section, we present the results of applying our method and that of Yin & Li (2012) to
the atlas of gene expression in the mouse aging project dataset (Zahn et al., 2007), which con-
tains gene expression values for 8932 genes in 16 tissues. Yin & Li (2012) showed that the gene
expression levels in different tissues are correlated. To identify statistically significant genes, we
need to take into account gene and tissue dependence structures (Allen & Tibshirani, 2012). In
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Table 2. Total number of edges identified by the graph
estimators and the number of different edges between the
estimated graphs based on our method and the method of

Yin & Li (2012), for 37 genes and 8 tissues
Gene network Tissue network

Number of edges 20 27 50 100 10 15 20
Number of different edges 3 4 10 18 2 3 4

addition, the correlation structures of genes and tissues are often of interest in their own right.
For simplicity, we only focus on a subset of 37 genes belonging to the mouse vascular endothelial
growth factor signalling pathway in 8 tissues. The number of replicates is n = 40.

Applying the model diagnostic procedure described in the Supplementary Material, we find
that the Kronecker correlation assumption is reasonable for this dataset. Furthermore, the
quantile-quantile plot in the Supplementary Material shows that many gene expression levels may
not be normally distributed. Hence, our method potentially produces more accurate estimates of
gene and tissue dependence graphs. To compare our method with the method of Yin & Li (2012),
the tuning parameters were selected separately so that the number of edges identified by the two
methods are identical. As summarized in Table 2, about 20% of the edges identified by the two
methods are different. Given the degrees of sparsity of the graphs, our findings are potentially of
biological interest.

For a similar dataset, Yin & Li (2012) identified a gene graph with 27 edges and a tissue graph
with 15 edges. As a comparison, we present the graphs with the same numbers of edges in the
Supplementary Material. Many important association patterns are revealed by both methods. For
instance, it has long been recognized that a group of PLC-γ genes in the PKC-dependent pathway
is crucial for ERK phosphorylation and proliferation (Holmes et al., 2007). We observe that the
dependence of genes Plcg2, Pla2g6 and Ptk2 in this pathway is recovered by both methods.
Similarly, several genes related to the migration of endothelial cells, such as Mapk13, Mapk14
and Mapkapk2 are also identified in both graphs. In the tissue network, kidney, lung and adrenal
glands belonging to the vascular tissue group are connected. Many neural tissues, such as the
spinal cord, hippocampus and cerebrum, are correlated as well. As far as the graph differences
are concerned, the genes Mapk3 and Mapkapk2, which are likely to be functionally dependent
(Christodoulou et al., 2006), are shown to be connected by our method, although not by that of
Yin & Li (2012). In addition, it is commonly believed that the function of the thymus is directly
associated with the functions of lung and adrenal tissues (Healy et al., 1983); the corresponding
correlations are only identified by our method. In summary, the gene and tissue dependence
graphs generated by our method seem to be more biologically meaningful than those generated
by the method of Yin & Li (2012).

6. EXTENSIONS
6·1. Binary bigraphical model

We consider the following binary bigraphical model: for a p × q binary matrix-valued
random variable Z , we assume that there exists an underlying matrix-valued variable X ∼
MNPN(U, V ; f ) such that Z jk = I (X jk > C jk), where C = vec{(C jk)} is a pq × 1 vector of
constants. Given n independent copies of Z , say Z1, . . . , Zn , the aim is to infer the conditional
independence structure of the latent random variable X , which is encoded by the sparsity patterns
in the precision matrices A and B, where A = U−1 and B = V −1.
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Let . jk = f jk(C jk). Assume that the f (·) functions are monotonically increasing and
that Z jk = I { f jk(X jk) > . jk} for j = 1, . . . , p and k = 1, . . . , q. Then E(Z jk) = 1 − /(. jk),
where /(x) is the standard normal cumulative distribution function. Thus . jk can be estimated
by /−1(1 − Z̄ jk), where Z̄ jk =

∑n
i=1(Zi ) jk/n.

As shown in the Supplementary Material, the underlying correlation matrix # = V ⊗ U can
be recovered by Kendall’s tau. Once # is estimated by a rank-based estimator, we can simi-
larly project it to the space of positive-definite matrices. The precision matrices A and B can be
estimated by minimizing the projected L1-penalized negative loglikelihood of the latent random
variables X1, . . . , Xn . We also consider the case where some of the observed variables are binary
and some are continuous; see the Supplementary Material.

6·2. Missing data

Missing data is an important challenge with matrix-valued variates. Allen & Tibshirani (2010)
proposed an EM algorithm for missing-data imputation, applicable when X follows a matrix-
normal distribution. In this section, we extend our estimation method to data with missing values.

Compared to the Gaussian bigraphical model, our nonparanormal bigraphical model is more
complicated, due to the presence of the nuisance functions f (·). To extend the EM algorithm of
Allen & Tibshirani (2010), the f (·) must be estimated. For complete data, the rank-based cor-
relation is invariant under monotonic transformations. This invariance property is not preserved
when missing data are imputed from the observed data, so we propose a normal-score-type EM
algorithm to estimate { f (·), A, B} simultaneously. We first estimate the transformed data f (X)
when they are missing, then update the functions f (·) using a normal-score method similar to
that of Liu et al. (2009) based on the imputed data, and finally minimize the penalized negative
conditional loglikelihood to obtain estimates of A and B. The algorithm is iterated until con-
vergence is achieved. Details of the EM algorithm are given in the Supplementary Material. The
Bayesian approach of Hoff (2011a) can also be generalized to handle missing data. Given a prior
distribution for the correlation matrix, the posterior distribution can be computed using Markov
chain Monte Carlo simulation.
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results, figures for the genomic data, more details on the categorical bigraphical model, an EM
algorithm for handling missing data, and discussions of the model diagnostic procedure and the
nonparanormal bigraphical model with n = 1.

APPENDIX
Proof of Proposition 2

Since R̂p is positive definite, we consider the Cholesky decomposition R̂p = T T T, where T =
(t1, . . . , tpq) is a lower triangular matrix and ti is a pq × 1 vector. Let ti = vec(Wi ), where Wi is a p × q
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matrix. We have

tr{(B ⊗ A)R̂p} = tr{T T(B ⊗ A)T } =
pq∑

i=1

tT
i (B ⊗ A)ti

=
pq∑

i=1

vec(Wi )
T(B ⊗ A)vec(Wi ) =

pq∑

i=1

tr(W T
i AWi B).

Then, the (ℓ, m)th element of
∑pq

i=1 W T
i AWi is

(
pq∑

i=1

W T
i AWi

)

ℓm

=
pq∑

i=1

(Wi )
T
∗ℓ A(Wi )∗m =

pq∑

i=1

vec(Wi )
T LT

ℓ ALmvec(Wi )

=
pq∑

i=1

tT
i LT

ℓ ALmti = tr(T T LT
ℓ ALm T ) = tr

(
LT

ℓ ALm R̂p

)
,

where Lm is as given in Proposition 2. Similarly, the (ℓ, m)th element of
∑pq

i=1 Wi BW T
i is

(
pq∑

i=1

Wi BW T
i

)

ℓm

=
pq∑

i=1

(Wi )ℓ∗ B(Wi )m∗ =
pq∑

i=1

vec(Wi )
T Kℓ BK T

mvec(Wi )

=
pq∑

i=1

tT
i Kℓ BK T

mti = tr(T T Kℓ BK T
m T ) = tr

(
Kℓ BK T

m R̂p

)
,

where Km is as given in Proposition 2. The proof is complete.

Proof of Theorem 3

The main idea of the proof follows from Yin & Li (2012), Lam & Fan (2009) and Rothman et al. (2008).
Let .1 = αnU1, where U1 is a symmetric matrix of size p. Let .2 = βnU2, where U2 is a symmetric matrix
of size q. Let

αn =
{

log(pq)

n
(s1s2 + ps2 + qs1)

q

}1/2

, βn =
{

log(pq)

n
(s1s2 + ps2 + qs1)

p

}1/2

.

The aim is to show that there exists a local minimizer ( Â, B̂) of φp(A, B) in

A= {(A0 + .1, B0 + .2) : ∥.1∥F < C1αn, ∥.2∥F < C2βn},

where C1 and C2 are large enough constants. Hence, ∥ Â − A0∥F = Op(αn) and ∥B̂ − B0∥F = Op(βn). Let
∂A= {(A0 + .1, B0 + .2) : ∥.1∥F = C1αn, ∥.2∥F = C2βn}. It suffices to show that

pr
{

inf
(A0+.1,B0+.2)∈∂A

φp(A0 + .1, B0 + .2) > φp(A0, B0)

}
→ 1 (A1)

for sufficiently large constants C1 and C2. Let A1 = A0 + .1 = (A(1)
i j ), B1 = B0 + .2 = (B(1)

i j ) and $1 =
B1 ⊗ A1. Then

φp(A1, B1) − φp(A0, B0) = −q(log |A1| − log |A0|) − pr(log |B1| − log |B0|) + tr{R̂($1 − $0)}

+ λ
∑

i |= j

(|A(1)
i j | − |A(0)

i j |) + γ
∑

i |= j

(|B(1)
i j | − |B(0)

i j |)

= I1 + I2 + I3 + I4 + I5.

Let I4 = λ
∑

(i, j)∈Sc
A
|A(1)

i j | + λ
∑

i |= j,(i, j)∈SA
(|A(1)

i j | − |A(0)
i j |) = I41 + I42. Using Taylor’s expansion,

I1 = −q tr(A−1
0 .1) + q vec(.1)

T

{∫ 1

0
(1 − v)g(v, Av) dv

}
vec(.1), (A2)
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where g(v, Av) = A−1
v ⊗ A−1

v . A similar expansion holds for I2. The bilinearity of the Kronecker product
yields

I3 = tr{(R̂p − #0)(.2 ⊗ A0)} + tr{(R̂p − #0)(B0 ⊗ .1)} + tr{(R̂p − #0)(.2 ⊗ .1)}
+ tr{#0(.2 ⊗ A0)} + tr{#0(B0 ⊗ .1)} + tr{#0(.2 ⊗ .1)}. (A3)

Following from the facts that (A ⊗ B)(C ⊗ D) = (AC) ⊗ (B D) and tr(A ⊗ B) = tr(A)tr(B), we have

tr{#0(.2 ⊗ A0)} = tr{(B−1
0 .2) ⊗ I } = p tr(B−1

0 .2). (A4)

Combining equations (A2), (A3) and (A4), we have

I1 + I2 + I3 = q vec(.1)
T

{∫ 1

0
(1 − v)g(v, Av) dv

}
vec(.1)

+ p vec(.2)
T

{∫ 1

0
(1 − v)g(v, Bv) dv

}
vec(.2) + tr{(R̂p − #0)(.2 ⊗ A0)}

+ tr{(R̂p − #0)(B0 ⊗ .1)} + tr{(R̂p − #0)(.2 ⊗ .1)} + tr(A−1
0 .1)tr(B−1

0 .2)

= K1 + K2 + K3 + K4 + K5 + K6.

Arguments similar to those in Lam & Fan (2009) yield K1 " 2−1qC2
1α2

n{δ2 + o(1)}−2 and K2 "
2−1 pC2

2β
2
n {δ4 + o(1)}−2. Next, we will show that |K4| is dominated by K1 + I41, i.e., that |K4| < K1 + I41

for sufficiently large n and C1. Then

|K4| !
∑

i |= k

|(R̂p − #0)ik(B0 ⊗ .1)ik |

! ∥R̂p − #0∥max

∑

i |= j

|(.1)i j |
∑

k |= ℓ

|(B0)kℓ| + ∥R̂p − #0∥max

∑

i= j

|(.1)i j |
∑

k |= ℓ

|(B0)kℓ|

+ ∥R̂p − #0∥max

∑

i |= j

|(.1)i j |
∑

k=ℓ

|(B0)kℓ| = K41 + K42 + K43.

Let us consider K41, K42 and K43 separately. By Theorem 2, ∥R̂p − #0∥max = Op[{log(pq)/n}1/2]. For
K41, we have

K41 ! Op

[{
log(pq)

n

}1/2
]⎧⎨

⎩(s1s2q)1/2∥B0∥sC1αn + (s2q)1/2∥B0∥s

∑

i |= j,(i, j)∈Sc
A

|A(1)
i j |

⎫
⎬

⎭ .

Since ∥B0∥ ! δ4 by Condition 2, one can show that |K41| is dominated by K1 + I41. Following similar
steps, K43 is also shown to be dominated by K1 + I41. By the Cauchy–Schwartz inequality, we have

K42 ! Op

[{
log(pq)

n

}1/2
]

p1/2∥.1∥F(s2q)1/2∥B0∥s ! Op(qα2
n).

Combining the upper bounds for K41, K42 and K43, we know that |K4| is dominated by K1 + I41. As
shown in the Supplementary Material, |K3| and |K5| are also controlled, and |K6| is bounded above by
K1 + K2. Furthermore, |I42| ! λ

∑
i |= j,(i, j)∈SA

|A(1)
i j − A(0)

i j | ! λs1/2
1 ∥.1∥F ! Op(qα2

n), where the last step
follows from Condition 3. Then I42 is dominated by K1 > 0. We have shown that φp(A1, B1) − φp(A0, B0)

is bounded from below by a positive constant independent of .1 and .2. Therefore (A1) holds, which
completes the proof.
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SUMMARY

This supplementary file includes the proofs, further simulation results, figures for the genomic
data, more details on the categorical bigraphical model, an EM algorithm for handling miss-
ing data, and discussions of the model diagnostic procedure and the nonparanormal bigraphical
model with n = 1.

PROOF OF THEOREM 1
To show Theorem 1, we begin with the following lemmas.

LEMMA 1. If (Â(k), B̂(k)) ̸= (Â(k+1), B̂(k+1)), then φp(Â(k+1), B̂(k+1)) < φp(Â(k), B̂(k)).

Proof of Lemma 1. Note that − log |A| is a convex function of A. The quantity tr{(B ⊗A)R̂p}
is a linear function of A by fixing B, and the penalty term

∑
i ̸=j |Aij | is also convex by the tri-

angle inequality. Then φp(A,B) is strictly convex as a function of A, assuming B is fixed, and
similarly it is also strictly convex as a function of B, assuming A is fixed. Hence, the minimiza-
tion in steps (iii) and (iv) of the algorithm yields non-increasing values of φp(A,B), i.e.,

φp(Â
(k+1), B̂(k+1)) ≤ φp(Â

(k+1), B̂(k)) ≤ φp(Â
(k), B̂(k)).

If (Â(k), B̂(k)) ̸= (Â(k+1), B̂(k+1)), at least one of above inequalities is strict. Then
φp(Â(k+1), B̂(k+1)) < φp(Â(k), B̂(k)).

LEMMA 2. There exist compact convex sets A ⊆ Rp×p and B ⊆ Rq×q, such that the sequence
(Â(k), B̂(k)) is contained in (A,B).

Proof of Lemma 2. We only need to show that ∥Â(k)∥F and ∥B̂(k)∥F are bounded, say by a
constant K. Then we can take A = [−K,K]p×p ∩ Pp and B = [−K,K]q×q ∩ Pq, where Pd is
the space of d× d positive definite matrices. If the statement is false, then there exists a subse-
quence indexed by ki such that ∥Â(ki)∥F + ∥B̂(ki)∥F diverges to infinity. For notational simplic-
ity, we assume ∥Â(k)∥F + ∥B̂(k)∥F → ∞. By the arguments as in Lemma 1 and as k → ∞, we
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2 YANG NING AND HAN LIU

get

lim
k→∞

φp(Â
(k), B̂(k)) ≤ φp(Â

(2), B̂(1)). (1)

Next, we will show that, φp(Â(k), B̂(k)) is unbounded, i.e., φp(Â(k), B̂(k)) → +∞, as k →
∞. Since B̂(k) ⊗ Â(k) and R̂p are both positive definite, we can consider their Cholesky de-
compositions. Write B̂(k) ⊗ Â(k) = T (k)T (k)T and R̂p = S(k)S(k)T , where S(k) = (s(k)ij ) and

T (k) = (t(k)ij ) are lower triangular matrices. Note that if all the diagonal elements of Â(k) can be-
come arbitrarily small, i.e., ∥diag(Â(k))∥F → 0 as k → ∞, all the eigenvalues of Â(k) approach
0. It implies −q log |Â(k)| → +∞, and then φp(Â(k), B̂(k)) → +∞. Similarly, if all the diagonal
elements of B̂(k) are arbitrarily small, −p log |B̂(k)| → +∞, and then φp(Â(k), B̂(k)) → +∞.
The remaining situation is that at least one of the diagonal elements of B̂(k) and at least one of the
diagonal elements of Â(k) are bounded from below by a positive constant. It implies that ∥A(k)∥F
and ∥B(k)∥F are both bounded from below. Note that ∥T (k)T (k)T ∥F = ∥A(k)∥F ∥B(k)∥F . Then
∥A(k)∥F + ∥B(k)∥F → ∞, implies ∥T (k)T (k)T ∥F → ∞, and then there exists at least one t(k)im
diverging to infinity.

The function φp(A(k), B(k)) can be writen as a function of S(k) and T (k) as

φp(A
(k), B(k)) = −2

pq∑

j=1

log t(k)jj +
pq∑

i,j=1

(
pq∑

m=1

t(k)ims(k)mj

)2

+ λ
∑

i ̸=j

|A(k)
ij |+ γ

∑

i ̸=j

|B(k)
ij |

≥ −2
pq∑

j=1

log t(k)jj +
pq∑

i,j=1

(
pq∑

m=1

t(k)ims(k)mj

)2

.

Denote

Q(T (k)) = −2
pq∑

j=1

log t(k)jj +
pq∑

i,j=1

(
pq∑

m=1

t(k)ims(k)mj

)2

.

If the off-diagonal element t(k)im goes to infinity, Q(T (k)) is dominated by (t(k)im )2{
∑pq

j=1(s
(k)
mj)

2}.

Since s(k)mm > 0, φp(A(k), B(k)) → +∞, as k → ∞. Likewise, if the diagonal element t(k)jj goes

to infinity, Q(T (k)) is dominated by (t(k)jj )2(s(k)jj )2. Again, φp(A(k), B(k)) → +∞.
By (1), we then deduce that φp(Â(2), B̂(1)) = +∞. However, according to the definition of

Â(2), we know φp(Â(2), B̂(1)) ≤ φp(Ip, Iq). Then, φp(Â(2), B̂(1)) must be finite, which yields a
contradiction.

LEMMA 3. The sequence φp(Â(k), B̂(k)) converges monotonically, and (Â(k), B̂(k)) has at
least one accumulation point. For any accumulation point (A∗, B∗), it is a stationary point of
φp(A,B).

Proof of Lemma 3. Since A and B in Lemma 2 are compact and φp(A,B) is continuous,
φp(A,B) has a finite minimum and therefore is bounded from below. Together with Lemma
1, the sequence φp(Â(k), B̂(k)) converges monotonically to a limit value. Also from the com-
pactness of A and B, (Â(k), B̂(k)) has at least one accumulation point. Next, we will show that

φp(A
∗, B∗) ≤ φp(A,B

∗), φp(A
∗, B∗) ≤ φp(A

∗, B), (2)
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for any A ∈ A and B ∈ B. We know that there exists a convergent subsequence (Â(ki), B̂(ki))
with a limit point (A∗, B∗). Since φp(A,B) is continuous, we get

φp(A
∗, B∗) = lim

ki→∞
φp(Â

(ki+1), B̂(ki)) ≤ lim
ki→∞

φp(A, B̂(ki)) = φp(A,B∗),

for any A ∈ A. Similarly, φp(A∗, B∗) ≤ φp(A∗, B), for any B ∈ B. Since (2) is true, the partial
derivatives of φp(A,B) at (A∗, B∗) are 0. Then (A∗, B∗) is a stationary point of φp(A,B).

Proof of Theorem 1. We use the method of proof by contradiction. Assume that there exist
δ > 0 and infinitely many ki, such that ∥Â(ki+1) − Â(ki)∥F + ∥B̂(ki+1) − B̂(ki)∥F > δ. Since A
is compact, we can select a convergent subsequence in the sequence (Â(ki+1), Â(ki)). Among the
selected subsequence, we can select a further convergent subsequence in (B̂(ki+1), B̂(ki)). For
notational simplicity, we assume that the sequences (Â(ki), B̂(ki)) and (Â(ki+1), B̂(ki+1)) con-
verge to (A1, B1) and (A2, B2) with ∥A1 −A2∥F + ∥B1 −B2∥F ≥ δ. Since (Â(ki), B̂(ki)) ̸=
(Â(ki+1), B̂(ki+1)), by Lemma 1 we have φp(Â(ki+1), B̂(ki+1)) < φp(Â(ki), B̂(ki)). Then

φp(A1, B1) = lim
ki→∞

φp(Â
(ki), B̂(ki)) ≥ lim

ki→∞
φp(Â

(ki+1), B̂(ki+1)) = φp(A2, B2).

Since ki−2 + 1 < ki, likewise, we have

φp(A1, B1) = lim
ki→∞

φp(Â
(ki), B̂(ki)) ≤ lim

ki→∞
φp(Â

(ki−2+1), B̂(ki−2+1)) = φp(A2, B2).

Then we derive φp(A1, B1) = φp(A2, B2). According to the definition, φp(Â(ki+1), B̂(ki+1)) ≤
φp(Â(ki+1), B) for any B ∈ B, and φp(Â(ki+1), B̂(ki)) ≤ φp(A, B̂(ki)) for any A ∈ A. As ki →
∞,

φp(A2, B2) ≤ φp(A2, B), φp(A2, B1) ≤ φp(A,B1), (3)

for any B ∈ B, and A ∈ A. Since φp(A2, B) is strictly convex as a function of B for fixed
A and as a function of A for fixed B, (3) becomes an equality only if B = B2 and A = A1.
Thus φp(A1, B1) = φp(A2, B2) implies A1 = A2 and B1 = B2, which yields a contradiction.
By Lemma 3, the accumulation point of (Â(k), B̂(k)) is a stationary point of φp(A,B). The proof
is complete.

PROOF OF THEOREM 2
Liu et al. (2012) showed the following concentration inequality of the rank-based estimator R̂.

LEMMA 4. Given the rank-based estimator R̂, for n large enough and t > 0

pr
(
∥R̂− Σ0∥max ≤ 8πt

)
≥ 1− p2q2 exp

(
−nt2

)
.

Proof of Theorem 2. According to the definition of R̂p,

∥R̂p − Σ0∥max ≤ ∥R̂p − R̂∥max + ∥R̂− Σ0∥max ≤ 2∥R̂− Σ0∥max. (4)

By Lemma 4, we have

pr
(
∥R̂p − Σ0∥max ≤ 16πt

)
≥ pr

(
∥R̂− Σ0∥max ≤ 8πt

)
,

which completes the proof.
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4 YANG NING AND HAN LIU

PROOF OF THEOREM 3
Proof of Theorem 3. The main idea of the proof follows from Yin & Li (2012); Lam & Fan

(2009); Rothman et al. (2008). Let ∆1 = αnU1, where U1 is a symmetric matrix of size p. Let
∆2 = βnU2, where U2 is a symmetric matrix of size q. Let

αn =

{
log(pq)

n

(s1s2 + ps2 + qs1)

q

}1/2

, βn =

{
log(pq)

n

(s1s2 + ps2 + qs1)

p

}1/2

.

The aim is to show that there exists a local minimizer (Â, B̂) of φp(A,B) in

A := {(A0 +∆1, B0 +∆2) : ∥∆1∥F < C1αn, ∥∆2∥F < C2βn}, (5)

where C1 and C2 are large enough constants. Hence, ∥Â−A0∥F = Op(αn) and ∥B̂ −B0∥F =
Op(βn). Let

∂A = {(A0 +∆1, B0 +∆2) : ∥∆1∥F = C1αn, ∥∆2∥F = C2βn}.

It suffices to show that

pr
{

inf
(A0+∆1,B0+∆2)∈∂A

φp(A0 +∆1, B0 +∆2) > φp(A0, B0)

}
→ 1, (6)

for sufficiently large constants C1 and C2. The reason is as follows. The function φp(A,B)
is continuous and therefore attains the minimum in the closure of A. Since (6) implies that
φp(A0, B0) is smaller than the infimum of φp(A,B) over ∂A, the infimum is attained in the
interior of A. Then there exists at least one local minimizer of φp(A,B) in the region A.

Let A1 = A0 +∆1 = (A(1)
ij ), B1 = B0 +∆2 = (B(1)

ij ), and Ω1 = B1 ⊗A1. Then,

φp(A1, B1)− φp(A0, B0) = −q(log |A1|− log |A0|)︸ ︷︷ ︸
I1

−p(log |B1|− log |B0|)︸ ︷︷ ︸
I2

+ tr{R̂(Ω1 − Ω0)}︸ ︷︷ ︸
I3

λ
∑

i ̸=j

(|A(1)
ij |− |A(0)

ij |)

︸ ︷︷ ︸
I4

+ γ
∑

i ̸=j

(|B(1)
ij |− |B(0)

ij |)

︸ ︷︷ ︸
I5

= I1 + I2 + I3 + I4 + I5.

Let

I4 = λ
∑

(i,j)∈Sc
A

|A(1)
ij |+ λ

∑

i ̸=j,(i,j)∈SA

(|A(1)
ij |− |A(0)

ij |) = I41 + I42,

I5 = γ
∑

(i,j)∈Sc
B

|B(1)
ij |+ γ

∑

i ̸=j,(i,j)∈SB

(|B(1)
ij |− |B(0)

ij |) = I51 + I52.

Using Taylor’s expansion with integral remainder, we have

I1 = −qtr(A−1
0 ∆1) + qvec(∆1)

T
{∫ 1

0
(1− v)g(v,Av)dv

}
vec(∆1), (7)

I2 = −ptr(B−1
0 ∆2) + pvec(∆2)

T
{∫ 1

0
(1− v)g(v,Bv)dv

}
vec(∆2), (8)
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where g(v,Av) = A−1
v ⊗A−1

v , Av = A0 + v∆1 and g(v,Bv) can be similarly defined. By the
bilinearity property of the Kronecker product, we have

I3 = tr{(R̂p − Σ0)(∆2 ⊗A0)}+ tr{(R̂p − Σ0)(B0 ⊗∆1)}+ tr{(R̂p − Σ0)(∆2 ⊗∆1)}
+tr{Σ0(∆2 ⊗A0)}+ tr{Σ0(B0 ⊗∆1)}+ tr{Σ0(∆2 ⊗∆1)}. (9)

Following from the fact that (A⊗B)(C ⊗D) = (AC)⊗ (BD), and tr(A⊗B) = tr(A)tr(B),
we have

tr{Σ0(∆2 ⊗A0)} = tr{(B−1
0 ∆2)⊗ I} = ptr(B−1

0 ∆2). (10)

Combining equations (7), (8), (9) and (10), we have

I1 + I2 + I3 = qvec(∆1)
T

{∫ 1

0
(1− v)g(v,Av)dv

}
vec(∆1)

︸ ︷︷ ︸
K1

+ pvec(∆2)
T

{∫ 1

0
(1− v)g(v,Bv)dv

}
vec(∆2)

︸ ︷︷ ︸
K2

+ tr{(R̂p − Σ0)(∆2 ⊗A0)}︸ ︷︷ ︸
K3

+ tr{(R̂p − Σ0)(B0 ⊗∆1)}︸ ︷︷ ︸
K4

+ tr{(R̂p − Σ0)(∆2 ⊗∆1)}︸ ︷︷ ︸
K5

+ tr(A−1
0 ∆1)tr(B−1

0 ∆2)︸ ︷︷ ︸
K6

= K1 +K2 +K3 +K4 +K5 +K6.

By similar arguments as in Lam & Fan (2009), K1 and K2 can be bounded from below,

K1 ≥ (q∥∆1∥2F /2) min
0≤v≤1

λ−2
max(Av)

≥ (q∥∆1∥2F /2)(∥A0∥s + ∥∆1∥s)−2

≥ 1

2
qC2

1α
2
n{δ2 + o(1)}−2,

where we use ∥∆1∥ ≤ ∥∆1∥F = o(1). Similarly,

K2 ≥
1

2
pC2

2β
2
n{δ4 + o(1)}−2.

Next, we will show that |K4| is dominated by K1 + I41, i.e., |K4| < K1 + I41 for sufficiently
large n and C1. In other words, we say |K4| is dominated by K1 + I41. Then

|K4| ≤
∑

i ̸=k

|(R̂p − Σ0)ik(B0 ⊗∆1)ik|

≤ ∥R̂p − Σ0∥max

∑

i ̸=j

|(∆1)ij |
∑

k ̸=ℓ

|(B0)kℓ|

︸ ︷︷ ︸
K41

+ ∥R̂p − Σ0∥max

∑

i=j

|(∆1)ij |
∑

k ̸=ℓ

|(B0)kℓ|

︸ ︷︷ ︸
K42

+ ∥R̂p − Σ0∥max

∑

i ̸=j

|(∆1)ij |
∑

k=ℓ

|(B0)kℓ|

︸ ︷︷ ︸
K43

= K41 +K42 +K43.
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Let us consider K41, K42 and K43 separately. By Theorem 2, we know that

∥R̂p − Σ0∥max = Op

{(
log p+ log q

n

)1/2
}
.

For K41, we have

K41 = Op

{(
log p+ log q

n

)1/2
}
∑

i ̸=j

|(∆1)ij |
∑

k ̸=ℓ

|(B0)kℓ|

= Op

{(
log p+ log q

n

)1/2
}{

∑

i ̸=j,(i,j)∈SA

|(∆1)ij |+
∑

i ̸=j,(i,j)∈Sc
A

|(∆1)ij |
}
∑

k ̸=ℓ

|(B0)kℓ|

≤ Op

{(
log p+ log q

n

)1/2
}(

s1/21 ∥∆1∥F +
∑

i ̸=j,(i,j)∈Sc
A

|A(1)
ij |
)
s1/22 ∥B0∥F

≤ Op

{(
log p+ log q

n

)1/2
}
(s1s2q)

1/2∥B0∥sC1αn

+Op

{(
log p+ log q

n

)1/2
}
(s2q)

1/2∥B0∥s
∑

i ̸=j,(i,j)∈Sc
A

|A(1)
ij |.

Since ∥B0∥ ≤ δ4 by condition (C2), we can show that the first term is dominated by K1 for large
enough C1. The second term is also dominated by I41, by condition (C3),

log p+ log q

n
(s2q) = O(λ2).

Hence |K41| is dominated by K1 + I41. Similarly for K43, we have

K43 = Op

{(
log p+ log q

n

)1/2
}
∑

i ̸=j

|(∆1)ij |
∑

k=ℓ

|(B0)kℓ|

= Op

{(
log p+ log q

n

)1/2
}{

∑

i ̸=j,(i,j)∈SA

|(∆1)ij |+
∑

i ̸=j,(i,j)∈Sc
A

|(∆1)ij |
}
∑

k=ℓ

|(B0)kℓ|

≤ Op

{(
log p+ log q

n

)1/2
}(

s1/21 ∥∆1∥F +
∑

i ̸=j,(i,j)∈Sc
A

|A(1)
ij |
)
q1/2∥B0∥F

≤ Op

{(
log p+ log q

n

)1/2
}
s1/21 q∥B0∥sC1αn

+Op

{(
log p+ log q

n

)1/2
}
q∥B0∥s

∑

i ̸=j,(i,j)∈Sc
A

|A(1)
ij |.

Similarly, the first term is dominated by K1. The second term is also dominated by I41, by
condition (C3). For K42, by the Cauchy–Schwartz inequality, we have

K42 ≤ Op

{(
log p+ log q

n

)1/2
}
p1/2∥∆1∥F (s2q)1/2∥B0∥s ≤ Op(qα

2
n).
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Combining the upper bounds for K41, K42 and K43, we know that |K4| is dominated by K1 +
I41. Likewise, |K3| is also dominated by K2 + I51. The next step is to provide the bound for
|K5|. Note that

|K5| ≤ ∥R̂p − Σ0∥max

∑

i ̸=j

|(∆1)ij |
∑

k ̸=ℓ

|(∆2)kℓ|

︸ ︷︷ ︸
K51

+ ∥R̂p − Σ0∥max

∑

i=j

|(∆1)ij |
∑

k ̸=ℓ

|(∆2)kℓ|

︸ ︷︷ ︸
K52

+∥R̂p − Σ0∥max

∑

i ̸=j

|(∆1)ij |
∑

k=ℓ

|(∆2)kℓ|

︸ ︷︷ ︸
K53

= K51 +K52 +K53.

Then

K51 +K53 ≤ Op

{(
log p+ log q

n

)1/2
}(

s1
1/2∥∆1∥F +

∑

i ̸=j,(i,j)∈Sc
A

|A(1)
ij |
)
∑

k,ℓ

|(∆2)kℓ|

≤ Op

{(
log p+ log q

n

)1/2
}(

s1/21 αn +
∑

i ̸=j,(i,j)∈Sc
A

|A(1)
ij |
)
qβn.

It is straightforward to verify that
(
log p+ log q

n

)
s1

1/2qαnβn ≤ Op(qα
2
n + pβ2

n).

Moreover, the second term is dominated by I41, i.e.,

qβn

(
log p+ log q

n

)
≤ Op(λ).

Thus, K51 +K53 is dominated by K1 + I41. Symmetrically, K51 +K52 is dominated by K2 +
I51. Then, |K5| is dominated by K1 + I41 +K2 + I51.

By the Cauchy–Schwartz inequality, we get,

|K6| ≤
{
pqtr(∆1A

−1
0 ∆1A

−1
0 )tr(∆2B

−1
0 ∆2B

−1
0 )
}1/2

≤ q

2
tr(∆1A

−1
0 ∆1A

−1
0 ) +

p

2
(∆2B

−1
0 ∆2B

−1
0 ). (11)

To show |K6| is bounded by K1 +K2, we need the fact that A−1
v = (A0 + v∆1)−1 = A−1

0 +
Op(∆1), and tr(ATBCDT ) = vec(A)T (D ⊗B)vec(C). Then

K1 = q

∫ 1

0
(1− v)tr(∆1A

−1
v ∆1A

−1
v )dv

≥ q

2
min
0≤v≤1

tr(∆1A
−1
v ∆1A

−1
v )

=
q

2
tr(∆1A

−1
0 ∆1A

−1
0 ){1 + op(1)}. (12)

Similarly, K2 ≥ ptr(∆2B
−1
0 ∆2B

−1
0 ){1 + op(1)}/2. Therefore, from (11) and (12), |K6| is

bounded above by K1 +K2.
Up to now, we have shown that I1 + I2 + I3 is dominated by K1 + I41 +K2 + I51. If we can

show that I42 and I52 are dominated by K1 > 0 and K2 > 0 respectively, then φp(A1, B1)−
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8 YANG NING AND HAN LIU

φp(A0, B0) is bounded from below by a positive constant independent of ∆1 and ∆2. Therefore,
(6) is true. Note that

|I42| ≤ λ
∑

i ̸=j,(i,j)∈SA

|A(1)
ij −A(0)

ij | ≤ λs1/21 ∥∆1∥F ≤ Op(qα
2
n),

where the last step follows from the condition (C3). Similarly, |I52| is dominated by K2. This
completes the proof.

PROOF OF COROLLARY 2
By the property of Kronecker product, ∥C ⊗D∥F = ∥C∥F ∥D∥F , and ∥C ⊗D∥s =

∥C∥s∥D∥s, and Theorem 3, we have

∥Ω̂− Ω0∥F
= ∥B̂ ⊗ Â−B0 ⊗ Â+B0 ⊗ Â−B0 ⊗A0∥F
≤ ∥(B̂ −B0)⊗ Â∥F + ∥B0 ⊗ (Â−A0)∥F
= ∥B̂ −B0∥F ∥Â∥F + ∥B0∥F ∥Â−A0∥F
≤ ∥B̂ −B0∥F ∥Â−A0∥F + ∥B̂ −B0∥F ∥A0∥F + ∥B0∥F ∥Â−A0∥F
≤ ∥B̂ −B0∥F ∥Â−A0∥F + ∥B̂ −B0∥F ∥A0∥p1/2 + ∥B0∥q1/2∥Â−A0∥F

= Op

{
(s1s2 + ps2 + qs1) log(pq)

n(pq)1/2

}
+Op

[{
(s1s2 + ps2 + qs1)(log p+ log q)

n

}1/2
]

= Op

[{
(s1s2 + ps2 + qs1)(log p+ log q)

n

}1/2
]
.

Similarly, in terms of the spectral norm, we have

∥Ω̂− Ω0∥s
= ∥B̂ ⊗ Â−B0 ⊗ Â+B0 ⊗ Â−B0 ⊗A0∥s
≤ ∥(B̂ −B0)⊗ Â∥s + ∥B0 ⊗ (Â−A0)∥s
= ∥B̂ −B0∥s∥Â∥s + ∥B0∥s∥Â−A0∥s
≤ ∥B̂ −B0∥s∥Â−A0∥s + ∥B̂ −B0∥s∥A0∥s + ∥B0∥s∥Â−A0∥s

= Op

{
(s1s2 + ps2 + qs1) log(pq)

n(pq)1/2

}
+Op

[{
(s1s2 + ps2 + qs1)(log p+ log q)

n

}1/2(1

p
+

1

q

)]

= Op

[{
(s1s2 + ps2 + qs1)(log p+ log q)

n

}1/2(1

p
+

1

q

)]
.

SIMULATION RESULTS

Using the procedure described in our main paper, we can generate two precision matrices A
and B. Since only the correlation matrices in the nonparanormal bigraphical model are estimable,
we need to rescale A and B such that the diagonal elements of A−1 and B−1 are 1. Given the
inverse covariance matrices A and B, we first calculate A−1 = (aij) and B−1 = (bij), then
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Semiparametric Bigraphical Models 9

calculate the correlation matrices U = {aij/(aiiajj)1/2} and V = {bij/(biibjj)1/2}, and finally
obtain the precision matrices U−1 and V −1.

The definition of the matrix-t distribution is as follows.

DEFINITION 1. A p× q random matrix X follows a matrix-t distribution MT(M ;U, V ; e)
with mean matrix M , row covariance component matrix U , column covariance component ma-
trix V and e degrees of freedom, if and only if the density of X is

p(X) = K(U, V )|Ip + U−1(X −M)V −1(X −M)T |−(e+p+q−1)/2, (13)

where

K(U, V ) = |U |−q/2|V |−p/2 Γq {(e+ p+ q − 1)/2}
(eπ)pq/2Γq {(e+ q − 1)/2}

.

Here Γq is the multivariate gamma function.

Similar to the matrix-normal distribution, the matrix-t distribution is also a special case
of the multivariate t-distribution whose variance has a Kronecker product structure. Hence,
X1, ..., Xn ∼ MT(0;A−1, B−1, e) can be simulated using the R function rmvt. Once
X1, ..., Xn are simulated, one can apply our estimation procedure and that of Yin & Li (2012) to
the data. The simulation results under scenarios (a) and (b) are given in section 5.1 of our main
paper.

Under simulation scenario (d), the mean total number of non-zero off-diagonal elements in
the precision matrix is 630. Under simulation scenario (c), the mean total number of non-zero
off-diagonal elements in the row and column precision matrices are 1685 and 590, respectively.
Figures 1 and 2 show the plot of the mean number of true positive edges against the mean
total number of edges detected for different tuning parameters λ based on 100 replicates under
simulation scenarios (c) and (d).

FIGURES FOR THE GENOMIC DATA

Figure 3 presents the quantile-quantile plot for some gene expression levels to examine the
normality assumption in Yin & Li (2012). Figure 4 and 5 show the estimated gene graphs with
27 edges and tissue graphs with 15 edges, based on our method and the method of Yin & Li
(2012) respectively.

BINARY BIGRAPHICAL MODEL

Let Yi = vec(Zi). For n independent copies of (Yij , Yik), (i = 1, ..., n), Kendall’s tau is de-
fined as τ̂jk = {n(n− 1)}−1∑

i ̸=i′(Yij − Yi′j)(Yik − Yi′k). Let Φ2(u, v, t) be the cumulative
distribution function of a standard bivariate normal distribution with correlation t. The following
theorem shows that the underlying correlation matrix Σ = V ⊗ U , can be recovered by Kendall’s
tau.

THEOREM 1. Kendall’s tau τ̂jk is a consistent estimator of F (Σjk), where the function F (t)
is

F (t) = 2{Φ2(∆j ,∆k, t)− Φ(∆j)Φ(∆k)}.

When ∆j = ∆k = 0, F (t) can be simplified to F (t) = π−1 sin−1 t and Σjk can be consistently
estimated by sin(πτ̂jk).
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Fig. 1. Plots of the mean number of true positive edges against the mean total number of edges detected for
different tuning parameters λ based on 100 replicates of simulation scenario (c). The top left panel is for
estimating the row matrix in matrix-normal data, the top middle panel is for estimating the row matrix in
matrix-nonparanormal data, the top right panel is for estimating the row matrix in matrix-t data, the bottom left
panel is for estimating the column matrix in matrix-normal data, the bottom middle panel is for estimating the
column matrix in matrix-nonparanormal data and the bottom right panel is for estimating the column matrix in

matrix-t data. The solid and dashed lines represent the method of Yin & Li (2012) and our method.
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Fig. 2. Plots of the mean number of true positive edges against the mean total number of edges detected for
different tuning parameters λ based on 100 replicates of simulation scenario (d). The top left panel is for
estimating the row matrix in matrix-normal data, the top middle panel is for estimating the row matrix in
matrix-nonparanormal data, the top right panel is for estimating the row matrix in matrix-t data, the bottom
left panel is for estimating the column matrix in matrix-normal data, the bottom middle panel is for estimating
the column matrix in matrix-nonparanormal data and the bottom right panel is for estimating the column
matrix in matrix-t data. The solid and dashed lines represent the method of Yin & Li (2012) and our method.
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Fig. 3. Examples of the quantile-quantile plot for the gene expression data.

Proof. For n independent pairs of binary data (Yij , Yik), where i = 1, ..., n, Kendall’s tau
reduces to

τ̂jk = {n(n− 1)}−1
∑

i ̸=i′

(Yij − Yi′j)(Yij − Yi′j)

= 2(ad− bc)/{n(n− 1)},

where a, b, b, d are the total number of pairs (1, 1), (0, 1), (1, 0) and (1, 1) in (Yij , Yik). By the
law of large numbers, τ̂jk is consistent for F (Σjk), where

F (t) = 2[L(∆j ,∆k, t)Φ2(∆j ,∆k, t)− {Φ(∆j)− Φ2(∆j ,∆k, t)}{Φ(∆k)− Φ2(∆j ,∆k, t)}]
= 2{Φ2(∆j ,∆k, t)− Φ(∆j)Φ(∆k)},

where L(∆j ,∆k, t) = 1− Φ(∆j)− Φ(∆k) + Φ2(∆j ,∆k, t). When ∆j = ∆k = 0, F (t) =
2Φ2(0, 0, t)− 1/2 = π−1 sin−1 t, where the last step follows from the Sheppard’s theorem
(Sheppard, 1899). !
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Fig. 4. Estimated gene network (top panel) and tissue network (bottom panel) for the gene expression
data based on our method. For the gene network, many isolated nodes are not plotted.

MIXED BINARY AND CONTINUOUS BIGRAPHICAL MODEL

In the section, we consider the bigraphical model with both binary and continuous obser-
vations. For a p× q matrix-valued random variable Z, we assume there exists an underlying
matrix-valued random variable X ∼ MNPN(U, V ; f), satisfying Zjk = I(Xjk > Cjk) if Zjk

is binary, and Zjk = Xjk if Zjk is continuous, where Cjk is a constant. Given n independent
copies of matrix-valued data Z1, ..., Zn, our aim is to estimate the precision matrices A = U−1

and B = V −1 respectively.
For binary Zjk, we can similarly estimate ∆jk = fjk(Cjk). Denote Yi = vec(Zi). If (Yij , Yik)

are both binary, Kendall’s tau can be used to estimate Σ = V ⊗ U as shown in Theorem 5. The
rank-based estimators are consider by Liu et al. (2012), if (Yij , Yik) are both continuous. The
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Fig. 5. Estimated gene network (top panel) and tissue network (bottom panel) for the gene expression
data based on the method of Yin & Li (2012). For the gene network, many isolated nodes are not

plotted.

following proposition considers the case where one element of (Yij , Yik) is binary and the other
one is continuous.

PROPOSITION 1. Assume that Yij is binary and Yik is continuous. Kendall’s tau, τ̂jk is a
consistent estimator of H(Σjk), where

H(t) = 4Φ2(∆j , 0, t/2
1/2)− 2Φ(∆j),

where ∆ = vec{(∆jk)}. If ∆j = 0, then H(t) = 2π−1 sin−1(2−1/2t), and Σjk can be consis-
tently estimated by 21/2 sin(πτ̂jk/2).
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14 YANG NING AND HAN LIU

AN EM ALGORITHM FOR MISSING DATA IMPUTATION

We follow similar notations to Allen & Tibshirani (2010). The subscripts o and m indicate
the observed part and missing part respectively. For instance, Xi,o is the observe part of Xi. Let
Ti = f(Xi), i = 1, ..., n. Recall that the penalized negative log-likelihood is

w(A,B, f) = −q log |A|− p log |B|+ 1

n

n∑

i=1

tr(T T
i ATiB) + λ

∑

i ̸=j

|Aij |+ γ
∑

i ̸=j

|Bij |.

Given the current parameter θ′ = (f ′, A′, B′), in the E step of the EM algorithm, we calculate
Q(θ | Xo, θ′), the conditional expectation of w(A,B, f) given the observed data and the param-
eter θ′. By Proposition 3 in Allen & Tibshirani (2010), we know

E{tr(T TATB) | Xo, θ
′} = tr[{T̂ TAT̂ +G(A)}B]

= tr[{T̂BT̂ T + F (B)}A],

where T̂ = E(T | Xo, θ′), G(A) is a q × q matrix G(A) = {tr(C(ij)A)} with C(ij) =
cov(T∗i, T∗j | Xo, θ′), and F (B) is a p× p matrix F (B) = {tr(D(ij)B)} with D(ij) =
cov(Ti∗, Tj∗ | Xo, θ′). Note that C(ij) and D(ij) can be calculated using the formula

cov{vec(T )m, vec(T )m | Xo, θ
′} = Σmm − ΣmoΣ

−1
oo Σom.

Let m be the indices of the missing values of vec(T ) and o be the observed. Since T satisfies the
matrix-normal distribution, we have

vec(T̂ )k =

{
ΣkoΣ−1

oo vec(T )o, if k ∈ m,
Tk, if k ∈ o.

Then in the E step, we can calculate Q function as

Q(θ | Xo, θ
′) = −q log |A|− p log |B|+ 1

n

n∑

i=1

tr[{T̂ T
i AT̂i +G(A)}B] + λ

∑

i ̸=j

|Aij |+ γ
∑

i ̸=j

|Bij |

= −q log |A|− p log |B|+ 1

n

n∑

i=1

tr[{T̂iBT̂ T
i + F (B)}A] + λ

∑

i ̸=j

|Aij |+ γ
∑

i ̸=j

|Bij |.

Now, let us consider the M step. Similar to Liu et al. (2009), we propose a normal-score
method to estimate the unknown function fjk(·). If X is fully observed, f(X) ∼ N(0, 1)
implies pr{f(X) < t∗} = Φ(t∗). Taking t = f−1(t∗), then pr(X < t) = Φ{f(t)}. Replacing
pr(X < t) by the corresponding empirical cumulative distribution function, we get a normal-
score estimate of f(·). Denote T̂ (jℓ)

i the (j, ℓ)th element of T̂i. Since T̂ (jℓ)
i is imputed, given the

current value of f ′
jℓ, we can update fjℓ by

f̂jℓ(t) = Φ−1

[
1

n

n∑

i=1

I
{
T̂ (jℓ)
i < f ′

jℓ(t)
}]

. (14)

To estimate A and B, we have to iteratively minimize Q(θ | Xo, θ′) with respect to A and B
separately. Given an estimator B̂ and estimated functions f̂ ,

Q(f̂ , A, B̂ | Xo, θ
′) ∝ −q log |A|+ 1

n

n∑

i=1

tr[{T̂iB̂T̂ T
i + F (B̂)}A] + λ

∑

i ̸=j

|Aij |. (15)
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Then the estimator of A is obtained by minimizing Q(f̂ , A, B̂ | Xo, θ′). Similarly, given an esti-
mator Â and estimated functions f̂ ,

Q(f̂ , Â, B | Xo, θ
′) ∝ −p log |B|+ 1

n

n∑

i=1

tr[{T̂ T
i ÂT̂i +G(Â)}B] + γ

∑

i ̸=j

|Bij |. (16)

Then the estimator of B is obtained by minimizing Q(f̂ , Â, B | Xo, θ′).
In summary, we develop the following EM algorithm for handling missing data in our matrix-

nonparanormal model.

1. Set A = Ip, B = Iq, f(t) = t and k = 1.
2. Given the current parameter (f̂ (k)

jℓ , Â(k), B̂(k)), for any j = 1, ..., p and ℓ = 1, ..., q,

f̂ (k+1)
jℓ (t) = Φ−1

[
1

n

n∑

i=1

I{T̂ (jℓ)
i < f̂ (k)

jℓ (t)}
]
.

3. E step for estimating A: Calculate T̂iB̂(k)T̂ T
i + F (B̂(k)), for any i = 1, ..., n.

4. M step for estimating A: Minimize Q(f̂ (k+1), A, B̂(k) | Xo, f̂ (k+1), Â(k), B̂(k)) in (15) with
respect to A to obtain Â(k+1).

5. E step for estimating B: Calculate T̂ T
i Â(k+1)T̂i +G(Â(k+1)), for any i = 1, ..., n.

6. M step for estimating B: Minimize Q(f̂ (k+1), Â(k+1), B | Xo, f̂ (k+1), Â(k+1), B̂(k)) in (16)
with respect to B to obtain B̂(k+1).

7. Repeat steps 2-6 until convergence or k = K, where K is a specified integer.

As discussed by Allen & Tibshirani (2010), the EM algorithm for matrix-normal data can
be computationally expensive, so they proposed a one-step approximation method. A similar
technique can be applied to our normal-score type EM algorithm.

DISCUSSION OF MODEL DIAGNOSTIC PROCEDURE AND NONPARANORMAL BIGRAPHICAL
MODEL WITH n = 1

It is also of interest to check whether the matrix-nonparanormal model is appropriate for a spe-
cific dataset. Given X ∼ MNPN(U, V ; f), we have cor{fij(Xij), fi′j′(Xi′j′)} = Uii′Vjj′ , for
any i, i′ = 1, ..., p and j, j′ = 1, ..., p, which yields,

cor{fij(Xij), fi′j′(Xi′j′)} = cor{fij(Xij), fij′(Xij′)}cor{fij(Xij), fi′j(Xi′j)}. (17)

Without knowledge of the marginal transformations f(·), we can still estimate the cor-
relation by the rank-based estimator. Denote by r̂(ij)(i′j′) the rank-based estimator for
cor{fij(Xij), fi′j′(Xi′j′)}. When the matrix-nonparanormal model holds, (17) implies that

r̂(ij)(i′j′) ≈ r̂(ij)(ij′)r̂(ij)(i′j). (18)

A simple procedure for model checking is to calculate the rank-based estimator and check
whether (18) holds approximately.

As pointed out by a referee, matrix-valued data may arise from applications in which n =
1. However, our nonparanormal model includes pq unknown functions f(·) which are of the
same dimension as X , when n = 1. Without any restriction on f(·), they are not estimable. A
similar phenomenon is also observed by Allen & Tibshirani (2010) in the context of the Gaussian
bigraphical model. One possible remedy is to assume that the functions f(·) are the same for
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each row or column. Under this assumption, the number of unknown functions reduces to p
or q. Information can be pooled together to estimate f(·). It is also of interest to develop the
rank-based method in this context.
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