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SUMMARY

In classical statistics, much thought has been put into experimental design and data collection.
In the high-dimensional setting, however, experimental design has been less of a focus. In this
paper, we stress the importance of collecting multiple replicates for each subject in this setting. 20

We consider learning the structure of a graphical model with latent variables, under the assump-
tion that these variables take a constant value across replicates within each subject. By collecting
multiple replicates for each subject, we are able to estimate the conditional dependence rela-
tionships among the observed variables given the latent variables. To test the null hypothesis of
conditional independence between two observed variables, we propose a pairwise decorrelated 25

score test. Theoretical guarantees are established for parameter estimation and for this test. We
show that our proposal is able to estimate latent variable graphical models more accurately than
some existing proposals, and apply the proposed method to a brain imaging dataset.

Some key words: Experimental design; Nuisance parameter; Pairwise decorrelated score test; Semiparametric expo-
nential family graphical model. 30

1. INTRODUCTION

Experimental design and data collection have been the subjects of extensive research (Box
et al., 2005; Montgomery, 2008). For instance, randomised clinical trials are conducted to deter-
mine the treatment effect of a new drug, and sample size calculations are performed to determine
the smallest number of patients needed to give sufficient power to detect the treatment effect. In 35
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contrast, in the high-dimensional setting, statisticians are usually not involved in experimental
design and data collection. Given a cost constraint, investigators often try to obtain the largest
possible number of subjects; that is, replicates are typically not collected for each subject. In this
paper, we show that collecting replicates aids when learning an undirected graphical model with
latent variables.40

In an undirected graphical model, each node represents a random variable, and an edge con-
necting a pair of nodes indicates that the two variables are conditionally dependent, given all
the other variables. The Gaussian graphical model has been studied extensively (Meinshausen &
Bühlmann, 2006; Yuan & Lin, 2007; Friedman et al., 2008; Rothman et al., 2008; Peng et al.,
2009; Ravikumar et al., 2011; Cai et al., 2011; Sun & Zhang, 2013). Other authors have consid-45

ered extensions to the case in which each node-conditional distribution belongs to a univariate
exponential family (Ravikumar et al., 2010; Yang et al., 2015; Lee & Hastie, 2015; Chen et al.,
2015). Others have considered estimating conditional dependence relationships using semipara-
metric or nonparametric approaches (Liu et al., 2009, 2012; Fellinghauer et al., 2013; Voorman
et al., 2014).50

However, in many scientific studies, we observe only a subset of the relevant variables. For
instance, in the context of a gene expression study, certain patients may have undiagnosed disease
or some unknown risk factors. If the heterogeneity among patients is ignored, then the estimated
conditional relationships among the genes may be distorted. This is made apparent in recent work
on Gaussian graphical modelling in the presence of latent variables (Chandrasekaran et al., 2012),55

which showed that after marginalizing over the latent variables, the conditional independence
graph corresponding to the observed variables may be dense.

In this paper, we propose an estimator and develop theory for the semiparametric exponential
family graphical model with latent variables. This work builds upon an unpublished 2014 tech-
nical report by Yang et al. (arXiv:1412.8697), in which the semiparametric exponential family60

graphical model was introduced. We assume that these variables are constant across replicates
within a given subject and that we have at least two replicates per subject. We exploit the repli-
cates in order to construct a nuisance-free loss function that does not depend on the latent vari-
ables. In addition, we propose a pairwise decorrelated score test of the null hypothesis that two
variables are conditionally independent, given all the other variables.65

2. A MODEL FOR LATENT VARIABLE GRAPHICAL MODELS

2·1. Review of the semiparametric exponential family graphical model
We provide a brief review of the semiparametric exponential family graphical model pro-

posed in Yang et al. (arXiv:1412:8697). Let X be a p-dimensional random vector and let
X�j = (X

1

, . . . , Xj�1

, Xj+1

, . . . , Xp)
T. The p-dimensional random vector X follows the semi-70

parametric exponential family graphical model if, for any node j, the conditional density of Xj

given X�j satisfies

p(xj | x�j) = exp

�

xj�
T
j,�jx�j + fj(xj)�Aj(�j , fj)

 

, (1)

where �j,�j encodes the conditional dependence relationships between the jth node and the
other nodes, fj(·) is an unknown function, and Aj(·) is the log-partition function. Because fj(·)
is unknown, obtaining the maximum likelihood estimator of (1) may be infeasible. To estimate75

�j,�j , we can instead construct a loss function that does not depend on fj(·).
Let Xi and xi be the random variables and data corresponding to the ith subject, respectively.

Let x·j = (x
1j , . . . , xnj)T, and let x(·)j and z·j be the order and rank statistics of x·j , respec-
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tively. For instance, if x·j = (1, 5, 2)T, then x(·)j = (1, 2, 5)T and z·j = (1, 3, 2)T. Furthermore,
let x·,�j denote an n⇥ (p� 1) matrix obtained by stacking the vectors x·k for k 6= j. The joint 80

conditional density of the jth variable given the others can be decomposed as

p(x·j | x·,�j ,�j,�j , fj) = p
n

z·j | x·,�j , x
(·)
j ,�j,�j

o

p
n

x(·)j | x·,�j ,�j,�j , fj
o

,

the product of the conditional density of the rank statistics given the order statistics, and the
density of the order statistics. The former does not depend on fj(·): the key insight is that the
rank statistics given the order statistics have no information about fj(·). Rather than estimating
�j,�j from the joint conditional density that involves the unknown function fj(·), we can estimate 85

�j,�j by maximising the conditional density of the rank statistics.
However, computing the conditional density of the rank statistics may be computationally

prohibitive. Thus, we can consider the conditional density formed by a single pair of samples,
and construct a nuisance-free likelihood function by multiplying the conditional densities of the
n(n� 1)/2 pairs of samples. This approach is also considered in Ning et al. (2016) in the context 90

of semiparametric regression.

2·2. Semiparametric exponential family graphical models with latent variables
We generalise the semiparametric exponential family graphical model to accommodate latent

variables. Let X = (XT
O, X

T
H)

T be a (p+ h)-dimensional random vector, where XO 2 Rp and
XH 2 Rh are the vectors of observed and latent random variables, respectively. We let O = 95

{1, . . . , p} and H = {p+ 1, . . . , p+ h} denote the index sets of the observed and latent random
variables, respectively.

DEFINITION 1. A (p+ h)-dimensional random vector X = (X

T
O ,X

T
H)

T follows a semipara-
metric exponential family graphical model with latent variables, if for any node j, the conditional
density of Xj given X�j satisfies 100

p(xj | x�j) = exp

�

xj�
T
j,�jx�j + fj(xj)�Aj(�j , fj)

 

,

where fj(xj) is some possibly unknown function and Aj(�j , fj) is the log-partition function.

For any j 2 O, we write XO\j = (X
1

, . . . , Xj�1

, Xj+1

, . . . , Xp)
T 2 Rp�1 and X�j =

(XT
O\j , X

T
H)

T 2 Rp+h�1. Let �j,O\j = (�j1, . . . ,�j,j�1

,�j,j+1

, . . . ,�jp)T 2 Rp�1, �j,H =

(�j,p+1

, . . . ,�j,p+h)
T 2 Rh, and �j = (�T

j,O\j ,�
T
j,H)

T. The model introduced in Definition 1 can
be rewritten as 105

p(xj | x�j) = exp

n

xj�
T
j,O\jxO\j + xj�

T
j,HxH + fj(xj)�Aj(�j , fj)

o

. (2)

The parameters �j,O\j and �j,H encode the conditional dependence relationships between the
jth node and all the other observed and latent variables, respectively. In particular, �jk = 0 if
and only if the jth and kth nodes are conditionally independent, given all the other nodes.

In this paper, we assume that: �jk = �kj and exp{Pp+h
j=1

P

k 6=j �jkxjxk/2 +
Pp+h

j=1

fj(xj)}
is integrable with respect to its measure. By an application of Proposition 1 in Chen et al. (2015), 110

under these conditions, there exists a joint probability distribution for the model introduced in
Definition 1 that takes the form

p(x) / exp

8

<

:

1

2

p+h
X

j=1

X

k 6=j

�jkxjxk +
p+h
X

j=1

fj(xj)

9

=

;

. (3)
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We provide two special cases of (2), and consider them in Section 4.

Example 1. The Gaussian graphical model with latent variables: let X = (X

T
O ,X

T
H)

T ⇠
N(0,⌃), where ⌃ 2 R(p+h)⇥(p+h) and let ⇥ = ⌃

�1. For j 2 O, the conditional density of Xj115

given all the other variables is

p(xj | x�j) =

✓

⇥jj

2⇡

◆

1/2

exp

8

>

<

>

:

�xj⇥
T
j,O\jxO\j � xj⇥

T
j,HxH �⇥jjx

2

j/2�
⇣

⇥

T
j,�jx�j

⌘

2

2⇥jj

9

>

=

>

;

.

Comparing this to (2), we see that �j,O\j = �⇥j,O\j , �j,H = �⇥j,H , fj(xj) = �⇥jjx2j/2, and
Aj(�j , fj) = (

P

k 6=j ⇥jkxk)2/(2⇥jj) + log(2⇡/⇥jj)/2.

Example 2. The Ising model with latent variables: let Xj 2 {0, 1} with joint density p(x) /
exp(

P

j<k ⇥jkxjxk). For j 2 O, the conditional density of Xj given the other variables is120

p(xj | x�j) = exp

h

xj⇥
T
j,O\jxO\j + xj⇥

T
j,HxH � log

�

1 + exp

�

⇥

T
j,�jx�j

� 

i

.

Comparing this to (2), we see that �j,O\j = ⇥j,O\j , �j,H = ⇥j,H , fj(xj) = 0, and Aj(�j , fj) =
log{1 + exp(⇥

T
j,�jx�j)}.

2·3. From replicates to a nuisance-free loss function
Recall that we are interested in estimating the conditional dependence relationships among the

observed variables given the latent variables, �j,O\j . Due to the presence of the possibly unknown125

function fj(xj) and the latent variables xH in (2), it is not possible to directly maximise (2) with
respect to �j,O\j . By collecting multiple replicates per subject, and assuming that the latent
variables are constant across replicates for a given subject, we construct a loss function that does
not depend on the latent variables and the unknown function.

Let Ri be the number of replicates for the ith subject. To simplify bookkeeping, we assume that130

R
1

= · · · = Rn = R, though this assumption is not critical. Suppose that X r
i , the random vector

for the rth replicate for the ith subject is distributed as in (3), for i = 1, . . . , n and r = 1, . . . , R.
Throughout the paper, we assume that X r

i and X

r
i0 are independent, while X

r
i and X

r0
i may be

dependent. Let xri = {(xriO)T, (xriH)

T}T be the data corresponding to the rth replicate of the ith
subject. We make two assumptions on the replicates.135

Assumption 1. The latent variables are constant across replicates, that is, xriH = xr
0

iH = xiH
for all 1  r0  r  R.

Assumption 2. Given the latent variables, the R replicates are mutually independent. That is,
p(x1iO, . . . , x

R
iO | xiH) =

QR
r=1

p(xriO | xiH).

Assumptions 1 and 2 are plausible in many scientific settings. For instance, consider a gene140

expression study in which the expression levels of thousands of genes are measured for a num-
ber of subjects. Certain subjects may have unknown risk factors that might be associated with
their gene expression levels. In this setting, the observed variables are the genes, and the latent
variables represent unknown risk factors. Assumption 1 is satisfied if the disease status or the
unknown risk factors do not change across time. Assumption 2 is likely to be satisfied, if the145

gene expression levels are measured in multiple independent clinical visits.
We now construct a nuisance-free loss function using an approach similar to the one outlined

in Section 2·1, by exploiting the fact that R replicates are available for each subject. Under
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Assumption 2, the joint conditional density for the ith subject for j 2 O is

p(x1ij , . . . , x
R
ij | x1i,�j , . . . , x

R
i,�j) =

R
Y

r=1

p(xrij | xri,�j).

Estimating �j,O\j by maximising the joint conditional density, which depends on both the un- 150

measured data xiH and the possibly unknown function fj(·), may not be feasible.
Let x(r,r

0
)

ij = {min(xrij , x
r0
ij),max(xrij , x

r0
ij)} be the order statistics of a pair of replicates for

the ith subject. The joint conditional density for the pair of replicates is

p
⇣

Xr
ij = xrij , X

r0
ij = xr

0
ij | xri,�j , x

r0
i,�j

⌘

= p
n

Xr
ij = xrij , X

r0
ij = xr

0
ij | xri,�j , x

r0
i,�j , x

(r,r0)
ij

o

p
n

x(r,r
0
)

ij | xri,�j , x
r0
i,�j

o

.
(4)

The following proposition shows that the conditional density p{Xr
ij = xrij , X

r0
ij = xr

0
ij |

xri,�j , x
r0
i,�j , x

(r,r0)
ij } does not depend on xriH , xr0iH , or on the unknown function fj(·). 155

PROPOSITION 1. Under Assumptions 1 and 2, for j 2 O,

p
n

Xr
ij = xrij , X

r0
ij = xr

0
ij | xri,�j , x

r0
i,�j , x

(r,r0)
ij

o

=

n

1 +Rrr0
ij (�j,O\j)

o�1

, (5)

where Rrr0
ij (�j,O\j) = exp{�(xrij � xr

0
ij)�

T
j,O\j(x

r
i,O\j � xr

0

i,O\j)}.

In the absence of latent variables, similar results were established in the context of the semi-
parametric generalised linear model (Equation (3.4) in Ning et al., 2016) and the semiparametric
exponential family graphical model (Equation (3.1) in Yang et al. (arXiv:1412.8697)), both of 160

which applied the approach outlined in Section 2·1.

Remark 1. When Assumption 1 is violated, the conditional density (5) takes the form
h

1 + exp

n

�(xrij � xr
0

ij)�
T
j,O\j(x

r
i,O\j � xr

0

i,O\j)� (xrij � xr
0

ij)�
T
j,H(xriH � xr

0
iH)

oi�1

,

which has an additional term (xrij � xr
0

ij)�
T
j,H(xriH � xr

0
iH) that depends on the latent variables.

Provided that |xriH � xr
0

iH | is sufficiently small, this term is ignorable, and therefore it has negli-
gible effect on the estimation of �j,O\j . 165

To obtain an estimate of �j,O\j , we ignore the term p{x(r,r0)ij | xri,�j , x
r0
i,�j} in (4), and consider

the product of joint conditional densities over all pairs of replicates across the n subjects,
n
Y

i=1

Y

1r<r0R

p
n

xrij , x
r0
ij | xri,�j , x

r0
i,�j , x

(r,r0)
ij

o

.

This leads to a nuisance-free loss function that does not depend on the latent variables or on the
unknown function, i.e.,

`j(�j,O\j) =
1

n

n
X

i=1

2

4

✓

R

2

◆�1

X

1r<r0R

log

n

1 +Rrr0
ij (�j,O\j)

o

3

5 . (6)

From now onwards, we let �⇤j,O\j be the true parameter values in (2) that encode the under- 170

lying conditional dependence relationships between the jth variable and the observed variables.
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Similarly, we let f⇤
j be the underlying function in (2). The following proposition justifies the use

of the loss function (6) for estimating �⇤j,O\j .

PROPOSITION 2. For all j 2 O, E{r`j(�⇤j,O\j)} = 0 and �⇤j,O\j is a global minimizer of
E{`j(�j,O\j)}, where E(·) is the expectation under the true parameters (�⇤j,O\j , f

⇤
j ).175

To encourage the estimated parameter to contain many zero elements, we solve

minimize

�j,O\j2Rp�1

�

`j(�j,O\j) + �k�j,O\jk1
 

, (7)

where � is a non-negative tuning parameter that controls the sparsity of the estimate ˆ�j,O\j . The
loss function (6) can be interpreted as a logistic loss function with xrij � xr

0
ij as the outcome and

xri,O\j � xr
0

i,O\j as the covariates. We create a pseudo-binary outcome x̃rr
0

ij = sign(xrij � xr
0

ij)

and pseudo covariates x̃rr0i,O\j = (xri,O\j � xr
0

i,O\j)|xrij � xr
0

ij |. We can then solve (7) using the R180

package glmnet for fitting an `
1

-penalised logistic regression to obtain an estimate of �j,O\j .
When there are ties in the outcome, that is, xrij = xr

0
ij , we ignore the pair of observations, since

its contribution to the loss function (6) is free of the parameter of interest, �j,O\j .

2·4. Pairwise decorrelated score test
In this section, we consider testing a pre-specified component in �⇤j,O\j and �⇤k,O\k, that is,185

H
0

: �⇤jk = �⇤kj = 0 versus H
1

: �⇤jk = �⇤kj 6= 0, (8)

for any j, k 2 O, by treating the remaining parameters �⇤j,O\{j,k} and �⇤k,O\{j,k} as nuisance pa-
rameters. The classical score test is often used for this purpose in the low-dimensional setting.
However, in the high-dimensional setting, the score test statistic is not asymptotically normal,
because the number of nuisance parameters is large. We propose a pairwise decorrelated score
test to test the null hypothesis given in (8). The test is constructed so that the effect of the nui-190

sance parameters is asymptotically negligible. The decorrelated score test has been previously
considered in Ning & Liu (2016), Ning et al. (2016), and Yang et al. (arXiv:1412.8697).

Let r`j(�j,O\j) 2 Rp�1 and r2`j(�j,O\j) 2 R(p�1)⇥(p�1) be the gradient and the Hessian of
the loss function `j(�j,O\j) in (6), respectively. For k 2 O \ j, we let

rk`j(�j,O\j) =
@`j(�j,O\j)

@�jk
2 R, r�k`j(�j,O\j) =

@`j(�j,O\j)

@�j,O\{j,k}
2 Rp�2.

Similarly, for k 2 O \ j, we let195

r2

k,�k`j(�j,O\j) =
@2`j(�j,O\j)

@�jk@�j,O\{j,k}
2 Rp�2, r2

�k,�k`j(�j,O\j) =
@2`j(�j,O\j)

(@�j,O\{j,k})2
2 R(p�2)⇥(p�2).

Define Hj
= E{r2`j(�⇤j,O\j)} 2 R(p�1)⇥(p�1), and for k 2 O \ j, let

Hj
k,�k = E

n

r2

k,�k`j(�
⇤
j,O\j)

o

2 Rp�2, Hj
�k,�k = E

n

r2

�k,�k`j(�
⇤
j,O\j)

o

2 R(p�2)⇥(p�2).

Let (w⇤
jk)

T
= (Hj

k,�k)
T
(Hj

�k,�k)
�1 2 Rp�2, and let �j_k = (�jk,�T

j,O\{j,k},�
T
k,O\{j,k})

T 2
R2p�3 denote the parameters associated with the loss functions for the jth and kth observed
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variables. The pairwise decorrelated score function for �jk is defined as

Sjk(�j_k) = rk`j(�j,O\j) +rj`k(�k,O\k)� (w⇤
jk)

Tr�k`j(�j,O\j)� (w⇤
kj)

Tr�j`k(�k,O\k).
(9)

The last two terms in (9) are constructed so that the effect of the nuisance parameters on the 200

score function is asymptotically negligible (Section 3·2 of Ning et al., 2016).
The pairwise decorrelated score function (9) depends on the unknown quantities w⇤

jk and w⇤
kj .

We estimate them using a Dantzig selector type estimator (Candès & Tao, 2007),

ŵjk = argmin

w2Rp�2
kwk

1

subject to

�

�

�

r2

k,�k`j(0, ˆ�j,O\{j,k})� wTr2

�k,�k`j(0, ˆ�j,O\{j,k})
�

�

�

1
 �w,

(10)
where (0, ˆ�j,O\{j,k}) is an estimate of �j,O\j obtained by solving (7) and replacing ˆ�jk with
zero, and �w is a non-negative tuning parameter. With some abuse of notation in (10), we use the 205

notation (0, ˆ�j,O\{j,k}) to indicate (

ˆ�j1, . . . , ˆ�j,k�1

, 0, ˆ�j,k+1

, . . . , ˆ�jp).
The estimated pairwise decorrelated score function for testing �⇤jk = 0 is obtained by replacing

�j,O\j , �k,O\k, w⇤
jk, and w⇤

kj in (9) with the estimated parameters (0, ˆ�j,O\{j,k}), (0, ˆ�k,O\{j,k}),
ŵjk, and ŵkj , respectively, leading to

ˆSjk = rk`j(0, ˆ�j,O\{j,k}) +rj`k(0, ˆ�k,O\{j,k})� ŵT
jkr�k`j(0, ˆ�j,O\{j,k})� ŵT

kjr�j`k(0, ˆ�k,O\{j,k}).
(11)

Let 210

�̂2jk =

ˆ

⌃

jk
jk,jk � 2

ˆ

⌃

jk
jk,j\kŵjk � 2

ˆ

⌃

jk
jk,k\jŵkj + ŵT

jk
ˆ

⌃

jk
j\k,j\kŵjk + ŵT

kj
ˆ

⌃

jk
k\j,k\jŵkj , (12)

where ˆ

⌃

jk is to be defined in (16). For a given significance level 0 < ↵ < 1, our proposed pair-
wise decorrelated score test takes the form

 jk(↵) =

(

1,
�

�

�

n1/2
ˆSjk/�̂jk

�

�

�

> �

�1

(1� ↵/2),

0, otherwise,
(13)

where �(x) is the standard normal cumulative distribution function. We will show in Section 3·3
that under the null hypothesis given in (8), the type I error of  jk(↵) converges to ↵. We sum-
marise the overall procedure for conducting the pairwise decorrelated score test for (8) in Algo- 215

rithm 1.

Algorithm 1. Pairwise decorrelated score test for testing H
0

: �⇤jk = �⇤kj = 0.

1. Obtain ˆ�j,O\j and ˆ�k,O\k by solving the optimization problem (7).
2. Obtain ŵjk and ŵkj from (10).
3. Calculate the estimated pairwise decorrelated score function ˆSjk as in (11).
4. Calculate �̂2jk as defined in (12).
5. Reject the null hypothesis H

0

: �⇤jk = �⇤kj = 0 if |n1/2
ˆSjk/�̂jk| > �

�1

(1� ↵/2), where
0 < ↵ < 1 is the given significance level.
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3. THEORETICAL RESULTS

3·1. Notation
We use the Landau symbol f(n) = O{g(n)} to indicate the existence of a constant C > 0

such that f(n)  Cg(n) for two sequences f(n) and g(n). We write f(n) = ⌦{g(n)} to indicate220

g(n) = O{f(n)}. In addition, we write f(n) = o{g(n)} if limn!1 f(n)/g(n) ! 0. We use
the stochastic Landau symbol f(n) = OP{g(n)} to indicate that f(n) = O{g(n)} with high
probability. For a vector v = (v

1

, . . . , vd)T 2 Rd, we let v⌦2 denote the outer product vvT. For
a symmetric matrix M 2 Rd⇥d, we let kMk1 = max

1j,j0d|Mjj0 |. Also, let ⇤
min

(M) and
⇤

max

(M) denote the minimum and maximum eigenvalues of M , respectively.225

3·2. Parameter estimation
We provide an upper bound on the estimation error of ˆ�j,O\j obtained from solving (7). We

study the asymptotic regime in which both n and p are allowed to grow, with R and h fixed.
Proofs are deferred to the Supplementary Material. We first state an assumption on the first
moment of the random variables and the local smoothness of the log-partition function.230

Assumption 3. Let �⇤j , f
⇤
j be the true parameters in (3), and define the univariate function

¯Aj(·) : R ! R as

¯Aj(u) = log

2

4

Z

exp

8

<

:

uxj +
1

2

p+h
X

j=1

X

k 6=j

�⇤jkxjxk +
p+h
X

j=1

f⇤
j (xj)

9

=

;

d⌫(x )

3

5 .

For all j 2 O, we assume the following: (i) |E(Xj)|  m, and (ii) maxu:|u|1

¯A
00
j (u)  h.

Assumption 3 allows us to control the tail behaviors of the random variables. The same assump-
tion has been used in recent work on the mixed graphical model (Chen et al., 2015).235

Let Sj = {k : �⇤jk 6= 0, k 2 O \ j} be the support set of �⇤j,O\j and let sj = |Sj | be the cardi-
nality of the set Sj . Let s

max

= maxj2O sj . Let 2
min

, RE
min

, and ⇢q,min

be the compatibility
factor, restricted eigenvalue, and weak cone invertibility factor. These depend on the minimal
eigenvalues of the Hessian matrix of the loss function, and will be defined rigorously in the Sup-
plementary Material. These quantities are commonly used to establish upper bounds for estima-240

tion error in the context of `
1

-penalised regression (Bickel et al., 2009; van de Geer & Bühlmann,
2009). We now establish upper bounds on the estimation error of ˆ�j,O\j .

THEOREM 1. Let � = C(log

5 p/n)1/2 for some constant C > 0. For j 2 O, assume the event

A =

⇢

max

1in
max

1r<r0R

�

�

�

⇣

xrij � xr
0

ij

⌘⇣

x

r
i,O\j � x

r0
i,O\j

⌘

�

�

�

1
 M

�

and that Ms
max

�/2
min

= o(1). Under Assumption 3, there exists a constant C 0 > 0 such that

kˆ�j,O\j � �⇤j,O\jk1  C 0s
max

�/2
min

,

kˆ�j,O\j � �⇤j,O\jk2  C 0
(s

max

)

1/2�/RE
min

,

kˆ�j,O\j � �⇤j,O\jkq  C 0
(s

max

)

1/q�/⇢q,min

, (q � 1),

with probability at least 1� p�1.245

Theorem 1 generalises Theorem 4.4 in Yang et al. (arXiv:1412.8697). Interestingly, we obtain
the same rate of convergence even when latent variables are present. Our rate of convergence
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does not depend on the number of latent variables h. Theorem 1 holds with high probability
conditioned on the event A. For binary or categorical variables, A holds with M constant. In the
case of sub-exponential random variables, it can be shown that A holds with high probability, 250

with M = C log

2 p for a sufficiently large constant C.
The upper bounds on the estimation error in Theorem 1 depend on the quantities 2

min

, RE
min

,
and ⇢q,min

. These conditions can be bounded below by a positive constant when the random
variables follow a multivariate Gaussian distribution.

THEOREM 2. Assume that s
max

(log

9 p/n)1/2 = o(1). Let 255

{(X r
iO)

T,X T
iH}T ⇠ N(0,⌃), ⌃ =

✓

⌃O,O ⌃O,H

⌃H,O ⌃H,H

◆

.

Under Assumption 3, for n sufficiently large, the quantities 2
min

, RE
min

, and ⇢q,min

are larger
than C⇤

min

(⌃) with probability at least 1� p�1 for some constant C > 0.

3·3. Pairwise decorrelated score test
In this section, we show that the type I error of the pairwise decorrelated score test in (13)

converges to the desired significance level, under the null hypothesis H
0

: �⇤jk = �⇤kj = 0. We 260

start by introducing some additional notation. Let

U j
i (�

⇤
j,O\j) = � 2

R(R� 1)

X

1r<r0R

Rrr0
ij (�⇤j,O\j)(x

r
ij � xr

0
ij)(x

r
i,O\j � xr

0

i,O\j)

1 +Rrr0
ij (�⇤j,O\j)

2 Rp�1.

Furthermore, let U j
ik(�

⇤
j,O\j) be the element in U j

i (�
⇤
j,O\j) corresponding to the kth feature

and let U j
i,�k(�

⇤
j,O\j) 2 Rp�2 be the vector obtained by removing the entry U j

ik(�
⇤
j,O\j) from

U j
i (�

⇤
j,O\j). For j, k 2 O, we let

gjki (�⇤j_k) =

8

>

<

>

:

U j
ik(�

⇤
j,O\j) + Uk

ij(�
⇤
k,O\k)

U j
i,�k(�

⇤
j,O\j)

Uk
i,�j(�

⇤
k,O\k)

9

>

=

>

;

2 R2p�3 (14)

and 265

⌃

jk
= E



n

gjki (�⇤j_k)
o⌦2

�

=

8

>

<

>

:

⌃

jk
jk,jk ⌃

jk
jk,j\k ⌃

jk
jk,k\j

(⌃

jk
jk,j\k)

T
⌃

jk
j\k,j\k ⌃

jk
j\k,k\j

(⌃

jk
jk,k\j)

T
(⌃

jk
j\k,k\j)

T
⌃

jk
k\j,k\j

9

>

=

>

;

2 R(2p�3)⇥(2p�3). (15)

The quantity ⌃

jk can be estimated using

ˆ

⌃

jk
⇣

0, ˆ�j,O\{j,k}, ˆ�k,O\{j,k}

⌘

=

1

n

n
X

i=1

n

gjki (0, ˆ�j,O\{j,k}, ˆ�k,O\{j,k})
o⌦2

. (16)

In what follows, we write ˆ

⌃

jk to indicate ˆ

⌃

jk
(0, ˆ�j,O\{j,k}, ˆ�k,O\{j,k}).

We now state several assumptions. Recall from (9) that the pairwise decorrelated score func-
tion depends on the quantity (w⇤

jk)
T
= (Hj

k,�k)
T
(Hj

�k,�k)
�1 2 Rp�2. The following assump-

tion on the expected Hessian of the loss function guarantees that the pairwise decorrelated score 270

function (9) is well-defined.
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Assumption 4. Let Hj
= E{r2`j(�⇤j,O\j)}. For all j 2 O, assume that

0 < ⇤

H
lower

 ⇤

min

(Hj
)  ⇤

max

(Hj
)  ⇤

H
upper

< 1.

The next assumption guarantees that gjki (�⇤j_k) defined in (14) is not degenerate, in the sense
that the variance of any linear combination of the elements of gjki (�⇤j_k) is not equal to zero. It
is needed to guarantee the existence of the asymptotic variance of the score function (9).275

Assumption 5. For j, k 2 O, assume that ⇤
min

(⌃

jk
) � ⇤

⌃

lower

> 0.

The following theorem establishes that under the null hypothesis H
0

: �⇤jk = �⇤kj = 0, the type
I error of  jk(↵) in (13) converges to ↵, and the associated p-value is asymptotically uniformly
distributed in the [0, 1] interval.

THEOREM 3. Let the pairwise decorrelated score test with significance level 0 < ↵ < 1,280

 jk(↵), be as defined in (13). We reject the null hypothesis H
0

: �⇤jk = �⇤kj = 0 if  jk(↵) = 1.
The associated p-value is defined as p̂jk = 2{1� �(|n1/2

ˆSjk/�̂jk|)}, where

�̂2jk =

ˆ

⌃

jk
jk,jk � 2

ˆ

⌃

jk
jk,j\kŵjk � 2

ˆ

⌃

jk
jk,k\jŵkj + ŵT

jk
ˆ

⌃

jk
j\k,j\kŵjk + ŵT

kj
ˆ

⌃

jk
k\j,k\jŵkj .

Under Assumptions 3–5 and scaling assumptions in Assumptions S1–S2 in the Supplementary
Material, limn!1 pr{ jk(↵) = 1 | H

0

} = ↵ and p̂jk converges to a uniform distribution on
the interval [0, 1].285

Results similar to Theorem 3 have been proven in the context of semiparametric regres-
sion and graphical models (Theorem 4.1 in Ning et al., 2016; Theorem 4.7 of Yang et al.
(arXiv:1412.8697)).

4. SIMULATION STUDIES

4·1. Overview and competing proposals290

Recall from Definition 1 that �⇤jk 6= 0 if and only if the jth and kth nodes are conditionally
dependent, given all the other variables. To evaluate the performance across different methods,
we define the true positive rate as the proportion of correctly identified non-zeros, and the false
positive rate as the proportion of zeros that are incorrectly identified to be non-zeros. To examine
the finite-sample performance of the pairwise decorrelated score test, we test the null hypothesis295

H
0

: �⇤jk = 0. The type I error and power are calculated as the proportion of falsely rejected H
0

and correctly rejected H
0

, respectively.
Five approaches are compared in our simulation studies: our proposal; the low-rank plus

sparse latent variable Gaussian graphical model (Chandrasekaran et al., 2012); the semipara-
metric exponential family graphical model in Yang et al. (arXiv:1412.8697); the graphical lasso300

(Friedman et al., 2008); and the neighbourhood selection procedure (Meinshausen & Bühlmann,
2006; Ravikumar et al., 2011). Our proposal, Meinshausen & Bühlmann (2006), Ravikumar et al.
(2011), and the semiparametric exponential family graphical model yield asymmetric estimates
of the edge set. To symmetrise the edge set, we consider both the intersection and union rules
described in Meinshausen & Bühlmann (2006), and report the best results for the competing305

proposals. We report our results using only the union rule.
Since the competing methods cannot accommodate replicates, we apply them to all nR ob-

servations, treating the replicates as independent samples. Our proposal, Friedman et al. (2008),
Meinshausen & Bühlmann (2006), Ravikumar et al. (2011), and the semiparametric exponential
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family graphical model each involves one tuning parameter. We applied a fine grid of tuning 310

parameter values to obtain the curves shown in Figs. 1–4. There are two tuning parameters for
Chandrasekaran et al. (2012). We set the second tuning parameter to equal ten times the first,
and consider a fine grid of the first. Similar results were obtained for different ratios of the two
tuning parameters.

4·2. Gaussian graphical models with latent variables 315

Let ⇥ = ⌃

�1 be the inverse covariance matrix of a Gaussian distribution, so that from Exam-
ple 1, �⇤jk = �⇥jk. We partition ⇥ and ⌃ into

⇥ =

✓

⇥O,O ⇥O,H

⇥H,O ⇥H,H

◆

, ⌃ =

✓

⌃O,O ⌃O,H

⌃H,O ⌃H,H

◆

,

where ⇥O,O, ⇥O,H , and ⇥H,H encode the conditional dependence relationships among the ob-
served variables, between the observed and latent variables, and among the latent variables. We
construct ⇥O,O by randomly setting 10% of the off-diagonal entries to 0·3. For ⇥O,H and ⇥H,H , 320

we randomly set 80% of the off-diagonal entries to 0·3. To ensure the positive definiteness of ⇥,
we set ⇥jj = |⇤

min

(⇥)|+0·2 for j = 1, . . . , p+ h. Finally, we set ⌃ = ⇥

�1.
We first generate the latent variables xiH for the n subjects from N(0,⌃H,H). We then

simulate the R replicates for each subject from the conditional distribution of the observed
variables N(⌃O,H⌃

�1

H,HxiH ,⌃O,O � ⌃O,H⌃

�1

H,H⌃H,O). The results for n = 100, p = 100, h = 325

{2, 5, 10}, and R = 10, averaged over 100 datasets, are presented in Fig. 1.
In general, our proposal outperforms Friedman et al. (2008), Meinshausen & Bühlmann

(2006), and the semiparametric exponential family graphical model, which do not model the
latent variables. As shown in Fig. 1(a), our proposal has performance similar to Chandrasekaran
et al. (2012), even though this is intended for the Gaussian setting which holds here, whereas 330

our approach is semiparametric. As we increase the number of latent variables, the low-rank as-
sumption of Chandrasekaran et al. (2012) is increasingly violated. Our proposal, which does not
rely on the low-rank assumption, outperforms Chandrasekaran et al. (2012) when h is large.

Next, we investigate the role of the number of latent variables h and replicates R in the per-
formance of our proposed method. We vary the ratio of R and h, while keeping n = 100 and 335

p = 100 fixed. In addition, to study the tradeoff between n and R, we keep p = 100 and h = 3

fixed, and vary n and R with nR = 600. The results, averaged over 100 datasets, are shown in
Fig. 2. From Figs. 2(a)–(b), we see that our proposal’s performance improves as we increase the
ratio R/h. From Fig. 2(c), we see that the performance of our method improves when R > 2.
This suggests that for a fixed experimental budget, that is, keeping nR fixed, it may be beneficial 340

to collect more than two replicates per sample.
Our proposal relies on Assumption 1, which states that the latent variables are constant

across replicates. We perform a sensitivity analysis by allowing the latent variables to vary
across replicates within each subject. Let zri be a h-vector with each element independently
drawn from a uniform distribution U [�✏, ✏]. We simulate the rth replicate for the ith obser- 345

vation from N{⌃O,H⌃

�1

H,H(xiH + zri ),⌃O,O � ⌃O,H⌃

�1

H,H⌃H,O}. We consider five values of
✏ = {0, 1, 1·5, 2, 2·5}. Results averaged over 100 datasets are in Fig. 3, which shows that our
proposal is robust to small perturbations of the latent variables.

We now perform the pairwise decorrelated score test described in Algorithm 1, in order to
test the null hypothesis H

0

: �⇤jk = 0. The pairwise decorrelated score test involves two tuning 350

parameters, � in (7) and �w in (10). We select � using 10-fold cross-validation, implemented in
the R package glmnet. We use the R package fastclime to solve (10). We set �w = 0·06, so that
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Fig. 1: Results for the simulation study for the Gaussian graphical model with n = 100, p = 100,
and R = 10. Panels (a), (b), and (c) correspond to h = {2, 5, 10} latent variables, respectively.
The different curves represent our proposal (long-dashed), Chandrasekaran et al. (2012) (dots),
Meinshausen & Bühlmann (2006) (grey long-dashed), Friedman et al. (2008) (grey dots), and
the semiparametric exponential family graphical model in Yang et al. (arXiv:1412.8697) (grey
dot-dashed).
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Fig. 2: Results of a simulation study investigating the relationship between h and R, and
the tradeoff between n and R. Panels (a) and (b) are the results for h = 8 with R =

{2, 4, 6, 8, 10, 12}, and R = 6 with h = {4, 5, 6, 8, 12, 24}, respectively, with n = 100 and
p = 100. The curves represent different ratios R/h: 0·25 (grey dot-dashed), 0·5 (grey dots),
0·75 (grey long-dashed), 1 (dot-dashed), 1·25 (dots), and 1·5 (long-dashed). Panel (c) contains
the results for p = 100 and h = 3, with different values of n and R such that nR = 600. The
curves represent n = 100 and R = 6 (long-dashed), n = 120 and R = 5 (dots), n = 150 and
R = 4 (grey long-dashed), and n = 300 and R = 2 (grey dots).

the estimates ŵjk and ŵkj contain a small number of non-zero entries. The results for p = 100,
R = 4, and h = 4, over a range of sample sizes, are reported in Table 1. We see that the pairwise
decorrelated score test is able to approximately control the type I error at level ↵ =0·05.355

4·3. Ising model with latent variables
We consider the Ising model with latent variables, as presented in Example 2. From Example 2,

�⇤jk = ⇥jk. We construct ⇥O,O, ⇥O,H , and ⇥H,H as in the previous section, but with nonzero
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Fig. 3: Sensitivity analysis with Unif[�✏, ✏] noise added to each replicate, with ✏ = {1, 1·5,
2, 2·5}. Results are for n = 100, p = 100, h = 4, and R = 6. The curves correspond to ✏ = 0

(solid), ✏ = 1 (long-dashed), ✏ =1·5 (dots), ✏ = 2 (grey long-dashed), and ✏ = 2·5 (grey dots).
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Fig. 4: Simulation results for the Ising model with n = 100, p = 50, h = 5, and R = 10, as
described in Section 4·3. The curves represent our proposal (long-dashed) and the proposal of
Ravikumar et al. (2011) (grey long-dashed).

entries drawn uniformly from [�0·5,�0·25] [ [0·25,0·5]. Furthermore, we do not require ⇥ to
be positive definite. To obtain samples from the joint density (3), we employ a Gibbs sampler as 360

described in Section 4 of Guo et al. (2015). The results for n = 100, p = 50, h = 5, and R = 10,
averaged over 100 data sets, are presented in Fig. 4. Our proposal outperforms that of Ravikumar
et al. (2011), which does not model the latent variables.

As in Section 4·2, we perform the pairwise decorrelated score test of the null hypothesis
H

0

: �⇤jk = 0. We set �w = 0·005 in (10), so that the estimates ŵjk and ŵkj are sparse. The 365

tuning parameter � in (7) is again chosen by cross-validation. The type I error and power for
p = 50, R = 10, and h = 5, over a range of sample sizes, are in Table 1. We see that the pairwise
decorrelated score test is able to approximately control the type I error rate at level ↵ = 0·05.

5. APPLICATION TO ADHD-200 DATA

We applied our method to the ADHD-200 data (Biswal et al., 2010). The data consist of 370

resting state functional magnetic resonance images on 197 subjects who have been diagnosed
with attention deficit hyperactivity disorder, and 491 control subjects. The number of images for
each subject ranges from 76 to 276. Covariates such as age, gender, site, and intelligence quotient
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Table 1: Type I error and power of the pairwise decorrelated score test at the 5% significance
level are calculated as the % of falsely rejected and correctly rejected null hypotheses, respec-
tively, over 2000 data sets. Data were generated under the Gaussian graphical model with latent
variables with p = 100, R = 4, and h = 4. Data were generated under the Ising model with
latent variables with p = 50, R = 10, and h = 5

n = 50 n = 100 n = 200 n = 300 n = 400

Gaussian Type I error 9 7 6 5 5
Power 18 27 45 59 70

Ising Type I error 7 5 5 5 5
Power 30 46 73 87 95

are also available. Similar to Power et al. (2011) and Qiu et al. (2016), we use 264 seed regions
of interest to define the nodes in the graphical model.375

We treat the images for each subject as replicates, and treat the covariates such as age and gen-
der as latent variables. However, certain covariates such as age and gender serve as confounders
that may alter the conditional dependence relationships among the variables. For instance, Qiu
et al. (2016) showed that the brain networks at ages 7, 12, and 22 years are quite different. Biswal
et al. (2010) showed that males and females have different brain connectivity networks. Thus,380

standard techniques for estimating graphical models that do not model the latent variables may
yield inaccurate network estimates.

After removing subjects with missing values, we consider 465 control subjects in the dataset.
For computational purposes, we choose R = 10 replicates randomly for each subject. Assump-
tion 2 may not hold, since the replicate brain images for a given subject are very likely to be385

dependent. We standardize each seed region to have mean zero and standard deviation one for
each subject. Our proposal (7) involves one tuning parameter �. For visualization, we set � = 0·2
so that the estimated network is sparse, but in practice, � can be chosen by cross-validation. We
then symmetrise our estimates using the intersection rule described in Section 4. This yields an
estimated network with 376 edges. Figs. 5(a)–(c) show coronal, sagittal, and transverse snapshots390

of the estimated brain connectivity network.
We compare our proposal to that of Friedman et al. (2008), which does not model the latent

variables. We perform their proposal by treating the replicates as independent observations. For
ease of comparison, the tuning parameter for Friedman et al. (2008) is chosen to yield 376 edges.
The coronal, sagittal, and transverse snapshots of the estimated brain connectivity network from395

Friedman et al. (2008) are plotted in Figs. 5(d)–(f).
The two estimated networks are somewhat different. For instance, we see from Figs. 5(b)

and 5(e) that the lower region of the brain connectivity network estimated by their proposal is
more densely connected than that of our proposal. This might be a consequence of marginalizing
over the latent variables, as discussed in Chandrasekaran et al. (2012). In contrast, edges in the400

network estimated by our proposal seem to be more spread throughout the network.

6. DISCUSSION

Our proposal can be generalised beyond estimating latent variable graphical models. For in-
stance, in the context of regression, unmeasured confounders may remain constant across repli-
cates. Without adjusting for these confounders, it can be shown that the estimated regression405

coefficients for the observed variables are biased. Using the ideas laid out in this paper, one can
estimate the parameter of interest accurately by treating the confounders as nuisance parameters.
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(a) Coronal, our proposal (b) Sagittal, our proposal (c) Transverse, our proposal

(d) Coronal, Friedman et al. (2008) (e) Sagittal, Friedman et al. (2008) (f) Transverse, Friedman et al. (2008)

Fig. 5: Coronal, sagittal, and transverse snapshots of the estimated brain connectivity networks
resulting from our proposal and Friedman et al. (2008). Panels (a)–(c) and panels (d)–(f) contain
the estimated networks from our proposal and Friedman et al. (2008), respectively.

Our model requires that the replicates are mutually conditionally independent given the latent
variables; this is laid out in Assumption 2. In future work, it would be interesting to study whether
that assumption can be relaxed. 410

An R package latentGraph will be made available on CRAN.
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Supplementary material available at Biometrika online includes proofs of the theoretical re-
sults and the scaling assumptions used in Theorem 3.
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S1. LIST OF NOTATION

In this section, we define some notation that will be used throughout this supplementary ma-
terial. Recall from § 3·2 in the main paper that �⇤

j,O\j is the vector of true parameter values of 20

interest, Sj is the support set of �⇤
j,O\j , and sj = |Sj |. Let s

max

= maxj2O sj . Let

Rrr0
ij (�j,O\j) = exp

��(xrij � xr
0

ij)�
T
j,O\j(x

r
i,O\j � x

r0
i,O\j)

 

.

The gradient of `j(�j,O\j) is

r`j(�j,O\j) = � 1

n

n
X

i=1

8

<

:

2

R(R� 1)

X

16r<r06R

Rrr0
ij (�j,O\j)(x

r
ij � xr

0
ij)(x

r
i,O\j � x

r0
i,O\j)

1 +Rrr0
ij (�j,O\j)

9

=

;

=

1

n

n
X

i=1

U j
i (�j,O\j) 2 Rp�1, (S1)

C� 2016 Biometrika Trust
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where U j
1

(�j,O\j), . . . , U
j
n(�j,O\j) are independent and identically distributed random variables.25

The Hessian of `j(�j,O\j) is

r2`j(�j,O\j) =
1

n

n
X

i=1

2

4

2

R(R� 1)

X

16r<r06R

Rrr0
ij (�j,O\j)(x

r
ij � xr

0
ij)

2

(x

r
i,O\j � x

r0
i,O\j)

⌦2

{1 +Rrr0
ij (�j,O\j)}2

3

5

2 R(p�1)⇥(p�1).

For notational convenience, we write

hrr
0

ij (�j,O\j) = �
Rrr0

ij (�j,O\j)(x
r
ij � xr

0
ij)(x

r
i,O\j � x

r0
i,O\j)

1 +Rrr0
ij (�j,O\j)

2 Rp�1 (S2)

and, for k 2 O \ j,30

hrr
0

ijk(�j,O\j) = �Rrr0
ij (�j,O\j)(x

r
ij � xr

0
ij)(x

r
ik � xr

0
ik)

1 +Rrr0
ij (�j,O\j)

2 R. (S3)

Similarly, we let

T rr0
ij (�j,O\j) =

Rrr0
ij (�j,O\j)(x

r
ij � xr

0
ij)

2

(x

r
i,O\j � x

r0
i,O\j)

⌦2

{1 +Rrr0
ij (�j,O\j)}2

2 R(p�1)⇥(p�1) (S4)

and, for k, l 2 O \ j,

T rr0
ijkl(�j,O\j) =

Rrr0
ij (�j,O\j)(x

r
ij � xr

0
ij)

2

(xrik � xr
0

ik)(x
r
il � xr

0
il )

{1 +Rrr0
ij (�j,O\j)}2

2 R. (S5)

Therefore, the gradient and Hessian of the loss function can also be written as

r`j(�j,O\j) =
1

n

n
X

i=1

8

<

:

2

R(R� 1)

X

16r<r06R

hrr
0

ij (�j,O\j)

9

=

;

2 Rp�1 (S6)

and

r2`j(�j,O\j) =
1

n

n
X

i=1

8

<

:

2

R(R� 1)

X

16r<r06R

T rr0
ij (�j,O\j)

9

=

;

2 R(p�1)⇥(p�1). (S7)

S2. SCALING ASSUMPTIONS IN THEOREM 335

We state two assumptions on the scaling of n and p and on the magnitude of the regularization
parameters � and �w in (7) and (10), respectively. The following assumption is needed to show
the asymptotic normality of (9).

Assumption S1. Let M be as defined in Theorem 1 and let w
0

= maxj,k2O kw⇤
jkk1. Fur-

thermore, let s0jk = kw⇤
jkk0 and s0

max

= maxj,k2O s0jk. Assume that Ms
max

�/2
min

= o(1),40

s0
max

�w = o(1),

�w = ⌦

⇢

w
0

✓

Ms
max

�

2
min

+ � log2 p

◆�

, lim

n!1
n1/2

✓

s
max

�w�

2
min

◆

= 0
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and

lim

n!1
n1/2s0

max

�w� = 0.

Next, we state an additional scaling assumption to guarantee that �̂jk in (12) is a consistent
estimator of its asymptotic variance.

Assumption S2. For any j, k 2 O, assume that 45

(1 + w
0

+ w2

0

)

✓

s
max

� log

6 p

2
min

◆

= o(1), w
0

s0
max

�w = o(1).

S3. PROOF OF THE RESULTS IN § 2·2
S3·1. Proof of Proposition 1

Under Assumption 1, we obtain

pr

�

Xr
ij = xrij , X

r0
ij = xr

0
ij

�

� xri,O\j , x
r0
i,O\j , xiH , x(r,r

0
)

ij

 

= pr(Xr
ij = xrij | xri,O\j , xiH) pr(Xr0

ij = xr
0

ij | xr
0

i,O\j , xiH)

.

50

n

pr(Xr
ij = xrij | xri,O\j , xiH) pr(Xr0

ij = xr
0

ij | xr
0

i,O\j , xiH)

+ pr(Xr
ij = xr

0
ij | xri,O\j , xiH) pr(Xr0

ij = xrij | xr
0

i,O\j , xiH)

o

=

(

1 +

pr(Xr
ij = xr

0
ij | xri,O\j , xiH) pr(Xr0

ij = xrij | xr
0

i,O\j , xiH)

pr(Xr
ij = xrij | xri,O\j , xiH) pr(Xr0

ij = xr
0

ij | xr0i,O\j , xiH)

)�1

=

h

1 + exp

��(xrij � xr
0

ij)�
T
j,O\j(x

r
i,O\j � xr

0

i,O\j)
 

i�1

,

where the first equality follows from Assumption 2, that the replicates are mutually independent 55

given the latent variables.

S3·2. Proof of Proposition 2
Recall from § 2·3 that x(r,r

0
)

ij = {min(xrij , x
r0
ij),max(xrij , x

r0
ij)} are the order statistics of a pair

of replicates for the ith subject. Let X (r,r0)
ij = {min(Xr

ij , X
r0
ij ), max(Xr

ij , X
r0
ij )}. For notational

convenience, we let Brr0
ij denote the event {X r

i,�j = xri,�j , X
r0
i,�j = xr

0
i,�j , X

(r,r0)
ij = x(r,r

0
)

ij }. By 60

Proposition 1, one can see that the conditional distribution of Xr
ij and Xr0

ij given Brr0
ij is binomial

with

pr

�

Xr
ij = xrij , X

r0
ij = xr

0
ij | Brr0

ij

�

=

1

1 + exp

��(xrij � xr
0

ij)�
T
j,O\j(x

r
i,O\j � xr

0
i,O\j)

 (S8)

and

pr

�

Xr
ij = xr

0
ij , X

r0
ij = xrij | Brr0

ij

�

=

exp

��(xrij � xr
0

ij)�
T
j,O\j(x

r
i,O\j � xr

0

i,O\j)
 

1 + exp

��(xrij � xr
0

ij)�
T
j,O\j(x

r
i,O\j � xr

0
i,O\j)

 . (S9)
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Recall from (S2) that

hrr
0

ij (�j,O\j) = �
Rrr0

ij (�j,O\j)(x
r
ij � xr

0
ij)(x

r
i,O\j � x

r0
i,O\j)

1 +Rrr0
ij (�j,O\j)

= �
exp

��(xrij � xr
0

ij)�
T
j,O\j(x

r
i,O\j � x

r0
i,O\j)

 

(xrij � xr
0

ij)(x
r
i,O\j � x

r0
i,O\j)

1 + exp

��(xrij � xr
0

ij)�
T
j,O\j(x

r
i,O\j � x

r0
i,O\j)

 .

The conditional expectation of hrr0ij (�⇤
j,O\j) given Brr0

ij takes the form65

E{hrr0
ij (�

⇤
j,O\j) | Brr0

ij }

= E

"
�
exp{�(X

r
ij �X

r0
ij )�

T
j,O\j(x

r
i,O\j � x

r0
i,O\j)}(Xr

ij �X

r0
ij )(x

r
i,O\j � x

r0
i,O\j)

1 + exp{�(X

r
ij �X

r0
ij )�

T
j,O\j(x

r
i,O\j � x

r0
i,O\j)}

���� B
rr0
ij

#

= �
exp{�(x

r
ij � x

r0
ij )�

T
j,O\j(x

r
i,O\j � x

r0
i,O\j)}(xr

ij � x

r0
ij )(x

r
i,O\j � x

r0
i,O\j)

1 + exp{�(x

r
ij � x

r0
ij )�

T
j,O\j(x

r
i,O\j � x

r0
i,O\j)}

pr(X

r
ij = x

r
ij , X

r0
ij = x

r0
ij | Brr0

ij )

�
exp{�(x

r0
ij � x

r
ij)�

T
j,O\j(x

r
i,O\j � x

r0
i,O\j)}(xr0

ij � x

r
ij)(x

r
i,O\j � x

r0
i,O\j)

1 + exp{�(x

r0
ij � x

r
ij)�

T
j,O\j(x

r
i,O\j � x

r0
i,O\j)}

pr(X

r
ij = x

r0
ij , X

r0
ij = x

r
ij | Brr0

ij )

= �
exp{�(x

r
ij � x

r0
ij )�

T
j,O\j(x

r
i,O\j � x

r0
i,O\j)}(xr

ij � x

r0
ij )(x

r
i,O\j � x

r0
i,O\j)

1 + exp{�(x

r
ij � x

r0
ij )�

T
j,O\j(x

r
i,O\j � x

r0
i,O\j)}

pr(X

r
ij = x

r
ij , X

r0
ij = x

r0
ij | Brr0

ij )70

+

(x

r
ij � x

r0
ij )(x

r
i,O\j � x

r0
i,O\j)

1 + exp{�(x

r
ij � x

r0
ij )�

T
j,O\j(x

r
i,O\j � x

r0
i,O\j)}

pr(X

r
ij = x

r0
ij , X

r0
ij = x

r
ij | Brr0

ij ).

Substituting (S8) and (S9) into the last expression yields E{hrr0ij (�⇤
j,O\j) | Brr0

ij } = 0. By the
law of iterated expectation, we obtain E{hrr0ij (�⇤

j,O\j)} = 0.
To show E{r`j(�⇤

j,O\j)} = 0, we simply recall from (S6) that75

r`j(�
⇤
j,O\j) =

1

n

n
X

i=1

(

2

R(R� 1)

X

r<r0

hrr
0

ij (�⇤
j,O\j)

)

and use the fact that E{hrr0ij (�⇤
j,O\j)} = 0.

Next, we show that �⇤
j,O\j is a global minimizer of E{`j(�j,O\j)}. Each component of

hrr
0

ij (�j,O\j) is dominated by the corresponding one of |(xrij � xr
0

ij)(x
r
i,O\j � x

r0
i,O\j)|, and

the latter is integrable by Proposition S1 in § S4·1. Applying the dominated convergence
theorem, we can interchange the order of integration and differentiation. Thus, we obtain80

rE{`j(�j,O\j)}|�j,O\j=�⇤
j,O\j

= E{r`j(�⇤
j,O\j)} = 0. Hence �⇤

j,O\j is a stationary point of
E{`j(�j,O\j)}. Following a similar argument, we have

r2E{`j(�j,O\j)} = E

"

Rrr0
ij (�j,O\j)(X

r
ij �Xr0

ij )
2

(X

r
i,O\j � X

r0
i,O\j)

⌦2

{1 +Rrr0
ij (�j,O\j)}2

#

⌫ 0.

Therefore E{`j(�j,O\j)} is convex. It follows that �⇤
j,O\j is a global minimizer of E{`j(�j,O\j)}.
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S4. PROOF OF THEOREMS 1 AND 2
S4·1. Some technical lemmas 85

Assumption 3 allows us to control the tail behaviour of the random variables. Given Assump-
tion 3, we have the following proposition on the tail probability of the random variables.

PROPOSITION S1. Under Assumption 3, for any t > 0 and j 2 O we have

pr (|Xj | > t) 6 c
1

exp(�t),

where c
1

= 2 exp(m + h/2). Moreover, for two replicates of Xj (j 2 O), which we denote by
Xr

j and Xr0
j , we have 90

pr

�|Xr
j �Xr0

j | > t
�

6 2c
1

exp(�t/2).

Also,

E(X4

j ) =

Z

pr(X4

j > t) dt 6
Z

c
1

exp(�t1/4) dt = 24 c
1

and

E(X8

j ) =

Z

pr(X8

j > t) dt 6
Z

c
1

exp(�t1/8) dt = 40 320 c
1

.

The proof of Proposition S1 involves the standard Chernoff bounding technique (see Propo-
sition 3 in Yang et al., 2015). We now present a collection of lemmas that will be used to prove
Theorems 1 and 2. The proofs of Lemmas S1–S5 are provided in § S6. 95

Recall from (S1) that the gradient of the loss function can be written as the average of in-
dependent and identically distributed random variables r`j(�⇤

j,O\j) =
Pn

i=1

U j
i (�

⇤
j,O\j)/n, and

that

U j
ik(�

⇤
j,O\j) =

2

R(R� 1)

X

16r<r06R

hrr
0

ijk(�
⇤
j,O\j) 2 R. (S10)

The following lemma shows that U j
i (�

⇤
j,O\j) is a random variable with general exponential tail.

LEMMA S1. For j 2 O and k 2 O \ j, we have 100

pr

�

U j
ik(�

⇤
j,O\j) > t

 

6 4c
1

R2

exp(�0·5t1/2),
where c

1

is the constant in Assumption 3.

The following lemma establishes an upper bound for the gradient of the loss function
kr`j(�⇤

j,O\j)k1 with high probability.

LEMMA S2. Under Assumption 3, let

� =

(⇠ + 1)K

⇠ � 1

✓

log

5 p

n

◆

1/2

,

where K > 0 and ⇠ > 1. Then, for j 2 O, 105

�

�

�

r`j(�
⇤
j,O\j)

�

�

�

1
6 (⇠ � 1)�

⇠ + 1

with probability at least 1� p�1.
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Now, let D(

ˆ�j,O\j ,�j,O\j) = (

ˆ�j,O\j � �j,O\j)
T{r`j( ˆ�j,O\j)�r`j(�j,O\j)} be the sym-

metrized Bregman divergence of `j(�j,O\j). The next lemma allows us to control the variability
of the Bregman divergence and the Hessian matrix in a neighbourhood of �j,O\j .

LEMMA S3. Let � 2 Rp�1 and110

b = max

16i6n
max

16r<r06R

�

�

�

(xrij � xr
0

ij)�
T
(x

r
i,O\j � x

r0
i,O\j)

�

�

�

.

Then, for j 2 O,

exp(�b)r2`j(�j,O\j) 6 r2`j(�j,O\j +�) 6 exp(b)r2`j(�j,O\j)

and

exp(�b)�Tr2`j(�j,O\j)� 6 D(�j,O\j +�,�j,O\j) 6 exp(b)�Tr2`j(�j,O\j)�.

We omit the proof, but the result follows from arguments similar to those in Ning et al. (2016).
Given Lemma S3, we have the following inequality.

LEMMA S4. Let ˆ

�j =
ˆ�j,O\j � �⇤

j,O\j . Then, for j 2 O,115

D
�

ˆ�j,O\j ,�
⇤
j,O\j

�

+

�

�� �

�r`j(�
⇤
j,O\j)

�

�

1
 

�

� ˆ

�j,Sc
j

�

�

1

6
�

�+

�

�r`j(�
⇤
j,O\j)

�

�

1
 

�

� ˆ

�j,Sj

�

�

1

.

Moreover, for any ⇠ > 1, k ˆ�j,Sc
j
k
1

6 ⇠k ˆ�j,Sjk1, provided that kr`j(�⇤
j,O\j)k1 6 �(⇠ �

1)/(⇠ + 1).

Recall from § 2·4 that Hj
= E{r2`j(�⇤

j,O\j)}. We next present a lemma on the deviation
between the empirical Hessian matrix and the population Hessian matrix.

LEMMA S5. Under Assumption 3, for j 2 O there exists a constant K
1

> 0 such that120

�

�

�

r2`j(�
⇤
j,O\j)�Hj

�

�

�

1
6 K

1

�

log

9 p/n
�

1/2

with probability at least 1� p�1.

S4·2. Proof of Theorem 1
To obtain an upper bound for the estimation error, we state some conditions on the minimal

eigenvalues of the Hessian matrix of the loss function. Given the constant ⇠ > 1, for each j 2 O
we define the compatibility factor, restricted eigenvalue and weak cone invertibility factor as125

2
�r2`j(�

⇤
j,O\j), sj

 

= min

v

(

sjvTr2`j(�⇤
j,O\j)v

kvSjk2
1

: v 2 Rp�1, v 6= 0, kvSc
j
k
1

6 ⇠kvSjk1
)

,

(S11)

RE
�r2`j(�

⇤
j,O\j), sj

 

= min

v

(

vTr2`j(�⇤
j,O\j)v

kvk2
2

: v 2 Rp�1, v 6= 0, kvSc
j
k
1

6 ⇠kvSjk1
)

(S12)
and, for q > 1,

⇢q
�r2`j(�

⇤
j,O\j), sj

 

= min

v

8

<

:

s1/qj vTr2`j(�⇤
j,O\j)v

kvSjk1kvkq
: v 2 Rp�1, v 6= 0, kvSc

j
k
1

6 ⇠kvSjk1

9

=

;

.

(S13)
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These conditions have commonly been used to establish upper bounds for estimation
error in the context of `

1

-penalized regression (Bickel et al., 2009; van de Geer &
Bühlmann, 2009; Ye & Zhang, 2010). Define 2

min

= minj2O 2{r2`j(�⇤
j,O\j), sj}, RE

min

= 130

minj2O RE{r2`j(�⇤
j,O\j), sj} and ⇢q,min

= minj2O ⇢q{r2`j(�⇤
j,O\j), sj}. We now give the

proof of Theorem 1.

Proof of Theorem 1. The proof involves obtaining an upper bound on the gradient of the loss
function. By Lemma S2 we have that kr`j(�⇤

j,O\j)k1 6 �(⇠ � 1)/(⇠ + 1) with probability at
least 1� p�1. Throughout the proof, we conditioned on the event kr`j(�⇤

j,O\j)k1 6 �(⇠ � 135

1)/(⇠ + 1).
Let ˆ

�j =
ˆ�j,O\j � �⇤

j,O\j , a =

ˆ

�j/k ˆ�jk1 and k = k ˆ�jk1. Recall from Lemma S3 that

b = max

16i6n
max

16r<r06R

�

�

�

(xrij � xr
0

ij)
ˆ

�

T
j (x

r
i,O\j � x

r0
i,O\j)

�

�

�

.

Consider the quantity D(

ˆ�j,O\j ,�
⇤
j,O\j). By Lemma S3,

D
�

�⇤
j,O\j + ka,�⇤

j,O\j
�

> exp(�b)k2aTr2`j(�
⇤
j,O\j)a > k2 exp(�Mk)aTr2`j(�

⇤
j,O\j)a,

(S14)
since

b = max

16i6n
max

16r<r06R

�

�

�

(xrij � xr
0

ij)
ˆ

�

T
j (x

r
i,O\j � x

r0
i,O\j)

�

�

�

140

6 max

16i6n
max

16r<r06R

�

�

�

�

xrij � xr
0

ij

��

x

r
i,O\j � x

r0
i,O\j

�

�

�

�

1
k ˆ�jk1

6 Mk,

where the last inequality holds conditioning on the event

A =

⇢

max

16i6n
max

16r<r06R

�

�

�

�

xrij � xr
0

ij

��

x

r
i,O\j � x

r0
i,O\j

�

�

�

�

1
6 M

�

.

By the definition of the compatibility factor, (S11), we have

aTr2`j(�
⇤
j,O\j)a > 2{r2`j(�

⇤
j,O\j), sj}kaSjk21/sj .

Substituting this into (S14) gives 145

D
�

�⇤
j,O\j + ka,�⇤

j,O\j
�

> k2 exp(�Mk)2{r2`j(�
⇤
j,O\j), sj}kaSjk21/sj . (S15)

Next, we derive an upper bound for D(�⇤
j,O\j + ka,�⇤

j,O\j). By Lemma S4, conditioning on
the event kr`j(�⇤

j,O\j)k1 6 �(⇠ � 1)/(⇠ + 1), we have k ˆ�j,Sc
j
k 6 ⇠k ˆ�j,Sjk. Hence,

D
�

�⇤
j,O\j + ka,�⇤

j,O\j
�

6 {�+ kr`j(�
⇤
j,O\j)k1}k ˆ�j,Sjk1 � {�� kr`j(�

⇤
j,O\j)k1}k ˆ�j,Sc

j
k
1

= k{�+ kr`j(�
⇤
j,O\j)k1}kaSjk1 � k{�� kr`j(�

⇤
j,O\j)k1}kaSc

j
k
1

6 2k⇠�

⇠ + 1

kaSjk1 �
2k�

⇠ + 1

kaSc
j
k
1

+

2k�

⇠ + 1

kaSjk1 �
2k�

⇠ + 1

kaSjk1 150

= 2k�kaSjk1 �
2k�

⇠ + 1

6 k�(⇠ + 1)kaSjk21
2

, (S16)
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where the second equality follows from the fact that kak
1

= 1 by construction, and the last
inequality is obtained by using the fact that a2 + b2 > 2ab for a, b 2 R.

Combining (S15) and (S16), we have155

k exp(�Mk) 6 ⇠ + 1

22{r2`j(�⇤
j,O\j), sj}

�sj .

Let ⌧ = M(⇠ + 1)�sj/[22{r2`j(�⇤
j,O\j), sj}]. Then we have Mk exp(�Mk) 6 ⌧ . Since ⌘

is the smallest solution of z exp(�z) = ⌧ by definition, and z exp(�z)� ⌧ is an increasing
function of z for z 6 1, this implies that Mk 6 ⌘. Therefore

kˆ�j,O\j � �⇤
j,O\jk1 = k ˆ�jk1 = k 6 ⌘

M
=

⌧ exp(⌘)

M
=

(⇠ + 1) exp(⌘)

22{r2`j(�⇤
j,O\j), sj}

�sj ,

which implies kˆ�j,O\j � �⇤
j,O\jk1 6 (⇠ + 1) exp(⌘)s

max

�/(22
min

), where 2
min

=

minj2O 2{r2`j(�⇤
j,O\j), sj}.160

To prove kˆ�j,O\j � �⇤
j,O\jk2 6 C 0

(s
max

)

1/2�/RE
min

, we recall that by the definition of the
restricted eigenvalue, (S12), aTr2`j(�⇤

j,O\j)a > RE{r2`j(�⇤
j,O\j), sj}kak22. Thus, by (S14),

D
�

�⇤
j,O\j + ka,�⇤

j,O\j
�

> k2 exp(�Mk) RE{r2`j(�
⇤
j,O\j), sj}kak22. (S17)

Similar to (S16), by an application of Lemma S4 it can be shown that

D
�

�⇤
j,O\j + ka,�⇤

j,O\j
�

6 2k⇠�

1 + ⇠
kaSjk1 6

2k⇠�

1 + ⇠
s1/2j kaSjk2 6

2k⇠�

1 + ⇠
s1/2j kak

2

. (S18)

Upon combining (S17) and (S18), we have

kˆ�j,O\j � �⇤
j,O\jk2 = kkak

2

6 2⇠ exp(⌘)

(⇠ + 1) RE{r2`j(�⇤
j,O\j), sj}

s1/2j � 6 2⇠ exp(⌘)

(⇠ + 1) RE
min

s1/2
max

�,

where the first inequality holds because Mk 6 ⌘ and RE
min

= minj2O RE{r2`j(�⇤
j,O\j), sj}.165

To prove kˆ�j,O\j � �⇤
j,O\jkq 6 C 0

(s
max

)

1/q�/⇢q,min

, recall that by the defini-
tion of the weak cone invertibility factor, (S13), we have aTr2`j(�⇤

j,O\j)a >
⇢q{r2`j(�⇤

j,O\j), sj}kaSjk1kakq/s1/qj . Hence, by (S14),

D
�

�⇤
j,O\j + ka,�⇤

j,O\j
�

> k2 exp(�Mk)⇢q{r2`j(�
⇤
j,O\j), sj}kaSjk1kakq/s1/qj . (S19)

Moreover, from (S18) we have

D
�

�⇤
j,O\j + ka,�⇤

j,O\j
�

6 2k⇠�

1 + ⇠
kaSjk1. (S20)

Combining (S19) and (S20) yields170

�

�

ˆ�j,O\j � �⇤
j,O\j

�

�

q
= kkakq 6 2⇠ exp(⌘)

(⇠ + 1)⇢q{r2`j(�⇤
j,O\j), sj}

s1/qj � 6 2⇠ exp(⌘)

(⇠ + 1)⇢q,min

s1/q
max

�,

where the first inequality follows from the facts that Mk 6 ⌘ and ⇢q,min

=

minj2O ⇢q{r2`j(�⇤
j,O\j), sj}. ⇤
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S4·3. Proof of Theorem 2
Let A = (v 2 Rp�1

: kvSc
j
k
1

6 ⇠kvSjk1). We first show that for any v 2 A, the quantity
vTE{r2`j(�⇤

j,O\j)}v can be bounded below by a positive constant. Using the fact that the de- 175

viation between the empirical and population Hessian matrices is arbitrarily small when n is
sufficiently large (see Lemma S5), we show that vTr2`j(�⇤

j,O\j)v is also bounded below by a
constant. Therefore the compatibility factor (S11), the restricted eigenvalue (S12), and the weak
cone invertibility factor (S13) can all be bounded below by positive constants.

Lower bound for vTE{r2`j(�⇤
j,O\j)}v. We show this via a truncation argument. For 180

�, S
1

, S
2

> 0 and j 2 O, we define the events

F rr0
ij =

�|xrij | 6 �
� \ �|xr0ij | 6 �

�

,

Gr
ij =

�

�

�

(�⇤
j,O\j)

T
x

r
i,O\j

�

� 6 S
1

 

, Gr0
ij =

�

�

�

(�⇤
j,O\j)

T
x

r0
i,O\j

�

� 6 S
1

 

,

Hr
ij =

�

�

�

(�⇤
j,�j)

T
x

r
i,�j

�

� 6 S
2

 

, Hr0
ij =

�

�

�

(�⇤
j,�j)

T
x

r0
i,�j

�

� 6 S
2

 

.

Since exp(�z)/{1 + exp(�z)}2 is a decreasing function of z for z > 0, the quan- 185

tity Rrr0
ij (�⇤

j,O\j)/{1 +Rrr0
ij (�⇤

j,O\j)}2 can be bounded below by C
1

= exp(�4S
1

�)/{1 +
exp(�4S

1

�)}2. Recall from (S4) and (S7) the definitions of T rr0
ij and r2`j(�⇤

j,O\j). We have

r2`j(�
⇤
j,O\j)

> 1

n

n
X

i=1

2

R(R� 1)

X

16r<r06R

T rr0
ij I(F rr0

ij )I(Gr
ij)I(G

r0
ij)

> 1

n

n
X

i=1

2

R(R� 1)

X

16r<r06R

C
1

(xrij � xr
0

ij)
2

(x

r
i,O\j � x

r0
i,O\j)

⌦2I(F rr0
ij )I(Gr

ij)I(G
r0
ij)

=

1

n

n
X

i=1

Wij .

Let

⌃ =

✓

⌃O,O ⌃O,H

⌃H,O ⌃H,H

◆

and let ⇥ = ⌃

�1. Assume that XiH ⇠ N(0,⌃H,H) and that X r
iO | XiH are independent and

identically distributed from N(⌃O,H⌃

�1

H,HXiH , ⌃O,O � ⌃O,H⌃

�1

H,H⌃H,O) for r = 1, . . . , R. 190

Then

p(xrij | x r
i,�j , H

r
ij) =

p(x r
i | Hr

ij)
R

p(x r
i | Hr

ij) dxij

=

p(x r
i )

p(Hr
ij)

R

p(x r
i )/p(Hr

ij) dxij

= p(xrij | xri,�j),

where we have used the facts that p(x r
i | Hr

ij) = p(x r
i )/p(Hr

ij) and p(Hr
ij) is a constant. Recall

from Example 1 that the conditional density of Xr
ij given X

r
i,�j is

p(xrij | xri,�j) = (⇥jj/2⇡)
1/2

exp

⇢

�⇥jj

2

(xrij)
2 � xrij⇥

T
j,�jx

r
i,�j �

1

2⇥jj

�

⇥

T
j,�jx

r
i,�j

�

2

�

,
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where �⇤
j,�j = �⇥j,�j . Since Xr

ij and Xr0
ij are conditionally independent and identically nor-

mally distributed random variables, we can bound the following conditional expectation from195

below:

E
�

(Xr
ij �Xr0

ij )
2I(F rr0

ij )

�

�

x

r
i,�j , x

r0
i,�j , H

r
ij , H

r0
ij

 

= ⇥jj/2⇡

Z �

��

Z �

��
(xrij � xr

0
ij)

2

exp

⇢

�⇥jj

2

(xrij)
2 � xrij⇥

T
j,�jx

r
i,�j �

1

2⇥jj

�

⇥

T
j,�jx

r
i,�j

�

2

�

⇥ exp

⇢

�⇥jj

2

(xr
0

ij)
2 � xr

0
ij⇥

T
j,�jx

r0
i,�j �

1

2⇥jj

⇣

⇥

T
j,�jx

r0
i,�j

⌘

2

�

dxrij dx
r0
ij

> ⇥jj/2⇡

Z �

��

Z �

��
(xrij � xr

0
ij)

2

⇥ exp



�⇥jj

2

n

(xrij)
2

+ (xr
0

ij)
2

o

� S
2

(xrij + xr
0

ij)�
S2

2

2⇥jj

�

dxrij dx
r0
ij ,

where the last inequality follows from the fact that conditioned on the events Hr
ij and Hr0

ij ,
|(�⇤

j,�j)
Txri,�j | 6 S

2

. For notational convenience, we denote the last expression by C
2

.
Therefore, by the law of iterated expectation, we obtain

vTE
�r2`j(�

⇤
j,O\j)

 

v > vTE

 

1

n

n
X

i=1

Wij

!

v

= vTE(Wij)v

= vTE
�

E(Wij | xri,�jx
r0
i,�j , H

r
ij , H

r0
ij 8 r < r0)

 

v

> C
1

C
2

E
h

�

(X

r
i,O\j � X

r0
i,O\j)

Tv
 

2

I(Gr
ij)I(G

r0
ij)

i

,

(S21)

where we have used the fact that the replicates are conditionally independent and identically200

distributed. We now establish a lower bound for (S21). By the Cauchy–Schwarz inequality, we
have

E
h

�

(X

r
i,O\j � X

r0
i,O\j)

Tv
 

2

�

1� I(Gr
ij)I(G

r0
ij)
 

i

6
⇣

E
h

�

(X

r
i,O\j � X

r0
i,O\j)

Tv
 

4

i⌘

1/2 h

pr

�

(Gr
ij)

c [ (Gr0
ij)

c

 

i

1/2
.

(S22)

Recall that X

r
iO | XiH are independent and identically distributed from

N(⌃O,H⌃

�1

H,HXiH , ⌃O,O � ⌃O,H⌃

�1

H,H⌃H,O). For notational convenience, we write
⌃

0
= ⌃O,O � ⌃O,H⌃

�1

H,H⌃H,O. Since X

r
i,O\j | XiH ⇠ N(⌃O\j,H⌃

�1

H,HXiH , ⌃0
O\j,O\j),205

we have that (X r
i,O\j � X

r0
i,O\j)

Tv | XiH ⇠ N(0, 2vT
⌃

0
O\j,O\jv). Therefore, the kurtosis of a

normal distribution is

E
h

�

(X

r
i,O\j � X

r0
i,O\j)

Tv
 

4

i

= E
⇣

E
h

�

(X

r
i,O\j � X

r0
i,O\j)

Tv
 

4 | XiH

i⌘

= 3(2vT
⌃

0
O\j,O\jv)

2

6 12kvk4
2

⇤

2

max

(⌃),

where ⇤

max

(⌃) is the largest eigenvalue of ⌃. The last inequality is obtained from the fact that
⇤

max

(⌃

0
) 6 ⇤

max

(⌃).
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Recall that Xr
i,O\j ⇠ N(0,⌃O\j,O\j). Therefore (�⇤

j,O\j)
T
X

r
i,O\j ⇠ N(0,�2

1

), where �2

1

= 210

(�⇤
j,O\j)

T
⌃O\j,O\j�

⇤
j,O\j . By the Gaussian tail inequality in Lemma S13, we have

pr

�

(Gr
ij)

c [ (Gr0
ij)

c

 

6 2 pr{(Gr
ij)

c} = 2pr

�

�

�

(�⇤
j,O\j)

T
X

r
i,O\j

�

� > S
1

 

6 4�
1

S
1

exp(�S2

1

/2�2

1

).

We write the last expression as C
3

(S
1

), indicating its dependence on S
1

. Therefore, by (S22) and
picking a sufficiently large S

1

such that (12)1/2⇤
max

(⌃){C
3

(S
1

)}1/2 = ⇤

min

(⌃), we obtain

E
h

�

(X

r
i,O\j � X

r0
i,O\j)

Tv
 

2

�

1� I(Gr
ij)I(G

r0
ij)
 

i

6 (12)

1/2kvk2
2

⇤

max

(⌃){C
3

(S
1

)}1/2 = kvk2
2

⇤

min

(⌃).
(S23)

In addition, by Hölder’s inequality, we have

E
h

�

(X

r
i,O\j � X

r0
i,O\j)

Tv
 

2

i

= E
⇣

E
h

�

(X

r
i,O\j � X

r0
i,O\j)

Tv
 

2

�

�

�

XiH

i⌘

= 2vT
⌃

0
O\j,O\jv

> 2kvk2
2

⇤

min

(⌃).

(S24)

Combining (S23) and (S24), we obtain 215

2kvk2
2

⇤

min

(⌃) 6 kvk2
2

⇤

min

(⌃) + E
h

�

(X

r
i,O\j � X

r0
i,O\j)

Tv
 

2

I(Gr
ij)I(G

r0
ij)

i

,

implying

E
h

�

(X

r
i,O\j � X

r0
i,O\j)

Tv
 

2

I(Gr
ij)I(G

r0
ij)

i

> kvk2
2

⇤

min

(⌃). (S25)

By (S21) and (S25), we conclude that

vTE{r2`j(�
⇤
j,O\j)}v > C

1

C
2

kvk2
2

⇤

min

(⌃). (S26)

Lower bound for vTr2`j(�⇤
j,O\j)v. Gaussian random variables satisfy Assumption 3 (see

Yang et al., 2015). Also, recall that Hj
= E{r2`j(�⇤

j,O\j)}. Therefore, by Lemma S5,
�

�

�

r2`j(�
⇤
j,O\j)�Hj

�

�

�

1
6 K

1

(log

9 p/n)1/2

with probability 1� p�1. Let � = Hj �r2`j(�⇤
j,O\j). By Hölder’s inequality, 220

vTHjv � vTr2`j(�
⇤
j,O\j)v 6 vT

�v 6 kvk2
1

k�k1 6 kvk2
1

K
1

(log

9 p/n)1/2. (S27)

Note that kvSjk1 6 s1/2j kvSjk2 6 s1/2j kvk
2

and that for any v 2 A, kvSc
j
k
1

6 ⇠kvSjk1. By
combining (S26) and (S27) and using the above facts, we obtain

C
1

C
2

kvk2
2

⇤

min

(⌃) 6 kvk2
1

K
1

(log

9 p/n)1/2 + vTr2`j(�
⇤
j,O\j)v

6 (1 + ⇠)2kvSjk21K1

(log

9 p/n)1/2 + vTr2`j(�
⇤
j,O\j)v

6 (1 + ⇠)2kvk2
2

K
1

sj(log
9 p/n)1/2 + vTr2`j(�

⇤
j,O\j)v.

By the assumption limn!1 s
max

(log

9 p/n)1/2 = 0, for sufficiently large n we have

(1 + ⇠)2K
1

sj(log
9 p/n)1/2 6 1

2

C
1

C
2

⇤

min

(⌃).
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Hence
vTr2`j(�⇤

j,O\j)v

kvk2
2

> 1

2

C
1

C
2

⇤

min

(⌃). (S28)

Compatibility factor. By the definition of the compatibility factor, (S11), together with (S28),225

we have

2
�r2`j(�

⇤
j,O\j), sj

 

= min

v2A

sjvTr2`j(�⇤
j,O\j)v

kvSjk2
1

> min

v2A

vTr2`j(�⇤
j,O\j)v

kvk2
2

> 1

2

C
1

C
2

⇤

min

(⌃),

where we have used the fact that kvSjk1 6 s1/2j kvSjk2 6 s1/2j kvk
2

.

Restricted eigenvalue. By the definition of the restricted eigenvalue, (S12), together with230

(S28), we have

RE
�r2`j(�

⇤
j,O\j), sj

 

= min

v2A

vTr2`j(�⇤
j,O\j)v

kvk2
2

> 1

2

C
1

C
2

⇤

min

(⌃).

Weak cone invertibility factor. By the definition of the weak cone invertibility factor, (S13),
together with (S28), we have

⇢q
�r2`j(�

⇤
j,O\j), sj

 

= min

v2A

s1/qj vTr2`j(�⇤
j,O\j)v

kvSjk1kvkq
235

> min

v2A

sjvTr2`j(�⇤
j,O\j)v

kvSjk2
1

> 1

2

C
1

C
2

⇤

min

(⌃),

where the first inequality follows from Hölder’s inequality, i.e., kvSjk1 6 s1�1/q
j kvkq.

S5. PROOF OF THEOREM 3
We start by presenting some lemmas that will be used to prove Theorem 3. The proofs of these

lemmas are provided in § S7. Recall from (9) that the pairwise decorrelated score function for240

�jk is defined as

Sjk(�j_k) = rk`j(�j,O\j) +rj`k(�k,O\k)� (w⇤
jk)

Tr�k`j(�j,O\j)� (w⇤
kj)

Tr�j`k(�k,O\k).

The estimated pairwise decorrelated score function defined in (11) is

ˆSjk = rk`j(0, ˆ�j,O\{j,k}) +rj`k(0, ˆ�k,O\{j,k})

� ŵT
jkr�k`j(0, ˆ�j,O\{j,k})� ŵT

kjr�j`k(0, ˆ�k,O\{j,k}).

The following lemma establishes the asymptotic normality of Sjk(�j_k).

LEMMA S6. Under Assumptions 3–5, for j, k 2 O we have that n1/2Sjk(�⇤
j_k) converges in

distribution to N(0,�2

jk), where245

�2

jk = ⌃

jk
jk,jk � 2⌃

jk
jk,j\kw

⇤
jk � 2⌃

jk
jk,k\jw

⇤
kj + (w⇤

jk)
T
⌃

jk
j\k,j\kw

⇤
jk + (w⇤

kj)
T
⌃

jk
k\j,k\jw

⇤
kj .
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Lemma S6 shows that the pairwise decorrelated score function converges to a univariate
Gaussian distribution. To derive the asymptotic distribution of ˆSjk, we show that n1/2{ ˆSjk �
Sjk(�⇤

j_k)} = oP(1). We then use Lemma S6 to establish the asymptotic normality of ˆSjk. To
this end, we need some additional assumptions on the scaling of n and p and on the magnitude of
the regularization parameters � and �w in (7) and (10), respectively, as stated in Assumption S1. 250

We also need the following technical lemmas.

LEMMA S7. Under Assumptions 3 and 4, for j 2 O we have

�

�

�

r2`j( ˆ�j,O\j)�Hj
�

�

�

1
= OP

(

Ms
max

�

2
min

+

✓

log

9 p

n

◆

1/2
)

,

where M is a constant from Theorem 1.

LEMMA S8. Let w
0

= maxj,k2O kw⇤
jkk1, and let

�w > C

"

w
0

(

Ms
max

�

2
min

+

✓

log

9 p

n

◆

1/2
)#

,

where M is as defined in Theorem 1 and C > 0 is a sufficiently large constant. Under Assump- 255

tions 3 and 4, for j, k 2 O,
�

�

�

r2

k,�k`j( ˆ�j,O\j)� (w⇤
jk)

Tr2

�k,�k`j( ˆ�j,O\j)
�

�

�

1
6 �w

with probability converging to 1.

LEMMA S9. Let s0jk = kw⇤
jkk0 and let s0

max

= maxj,k2O s0jk. Under Assumptions 3, 4 and
S1, kŵjk � w⇤

jkk1 = OP(s0
max

�w) holds for all j, k 2 O.

With Lemmas S6–S9, we establish the asymptotic normality of the estimated pairwise decor- 260

related score function (11).

LEMMA S10. Under Assumptions 3–5 and S1 and under the null hypothesis H
0

: �⇤
jk =

�⇤
kj = 0 for j, k 2 O, we have that n1/2

ˆSjk = n1/2Sjk(�⇤
j_k) + oP(1) converges in distribution

to N(0,�2

jk), where

�2

jk = ⌃

jk
jk,jk � 2⌃

jk
jk,j\kw

⇤
jk � 2⌃

jk
jk,k\jw

⇤
kj + (w⇤

jk)
T
⌃

jk
j\k,j\kw

⇤
jk + (w⇤

kj)
T
⌃

jk
k\j,k\jw

⇤
kj .
(S29)

However, �2

jk depends on the unknown quantity ⌃

jk. Recall from (16) that we estimate ⌃

jk
265

as

ˆ

⌃

jk
(0, ˆ�j,O\{j,k}, ˆ�k,O\{j,k}) =

1

n

n
X

i=1

n

gjki (0, ˆ�j,O\{j,k}, ˆ�k,O\{j,k})
o⌦2

,

and that we write ˆ

⌃

jk to indicate ˆ

⌃

jk
(0, ˆ�j,O\{j,k}, ˆ�k,O\{j,k}). The next lemma asserts that ˆ⌃jk

is a consistent estimator of ⌃jk.
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LEMMA S11. Let ˆ�0
j_k = (0, ˆ�T

j,O\{j,k},
ˆ�T
k,O\{j,k})

T. Under Assumptions 3, 4 and S1 and the
null hypothesis H

0

: �⇤
jk = �⇤

kj = 0,270

ˆ

⌃

jk
(

ˆ�0
j_k) =

1

n

n
X

i=1

�

gjki (

ˆ�0
j_k)

 ⌦2

is a consistent estimator of ⌃jk
= E[{gjki (�⇤

j_k)}⌦2

] as defined in (15). In particular,

�

�

�

ˆ

⌃

jk
(

ˆ�0
j_k)� ⌃

jk
�

�

�

1
= OP

(

s
max

2
min

� log6 p+

✓

log

9 p

n

◆

1/2
)

.

With Lemma S11, we establish that �̂2

jk in (S29) is a consistent estimator of �2

jk.

LEMMA S12. Let

�̂2

jk =

ˆ

⌃

jk
jk,jk � 2

ˆ

⌃

jk
jk,j\kŵjk � 2

ˆ

⌃

jk
jk,k\jŵkj + ŵT

jk
ˆ

⌃

jk
j\k,j\kŵjk + ŵT

kj
ˆ

⌃

jk
k\j,k\jŵkj .

Under Assumptions 3–5, S1 and S2, |�̂2

jk � �2

jk| = oP(1).

Proof of Theorem 3. By Lemma S12, �̂2

jk = �2

jk + oP(1). The results follow from an applica-275

tion of Slutsky’s theorem to (S29) in Lemma S10. ⇤

S6. PROOF OF THE LEMMAS IN § S4
S6·1. Proof of Lemma S1

Proof. Recall from (S3) that

hrr
0

ijk(�
⇤
j,O\j) = �

Rrr0
ij (�⇤

j,O\j)(x
r
ij � xr

0
ij)(x

r
ik � xr

0
ik)

1 +Rrr0
ij (�⇤

j,O\j)
.

By Proposition S1, for any t > 0 we have pr(|Xr
ij �Xr0

ij | > t) 6 2c
1

exp(�t/2). Note that280

Rrr0
ij (�⇤

j,O\j) > 0 and therefore Rrr0
ij (�⇤

j,O\j)/{1 +Rrr0
ij (�⇤

j,O\j)} < 1. Hence, by the union
bound, we have that for any t > 0,

pr

n

hrr
0

ijk(�
⇤
j,O\j) > t

o

6 pr

n

|(Xr
ij �Xr0

ij )(X
r
ik �Xr0

ik)| > t
o

6 pr

⇣

|Xr
ij �Xr0

ij | > t1/2
⌘

+ pr

⇣

|Xr
ik �Xr0

ik| > t1/2
⌘

6 4c
1

exp(�t1/2/2).

Then, by another application of the union bound,

pr

8

<

:

2

R(R� 1)

X

16r<r06R

hrr
0

ijk(�
⇤
j,O\j) > t

9

=

;

= pr

8

<

:

X

16r<r06R

hrr
0

ijk(�
⇤
j,O\j) > tR(R� 1)/2

9

=

;

6
X

16r<r06R

pr

n

hrr
0

ijk(�
⇤
j,O\j) > t

o

6 4R2c
1

exp(�t1/2/2).
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S6·2. Proof of Lemma S2
From (S1) and Lemma S1, we see that the gradient of the loss function is the average of 285

independent random variables with general exponential tail. To prove Lemma S2, we use a gen-
eralization of Bernstein’s inequality for independent random variables with general exponential
tail given in Lemma S14.

Recall from (S10) that U j
ik(�

⇤
j,O\j) = 2

P

r<r0 h
rr0
ijk(�

⇤
j,O\j)/{R(R� 1)}. By an application

of Proposition 2, E{U j
ik(�

⇤
j,O\j)} = 0. In addition, by Lemma S1, 290

pr{U j
ik(�

⇤
j,O\j) > t} 6 4c

1

R2

exp(�0·5t1/2).
Since U j

1k(�
⇤
j,O\j), . . . , U

j
nk(�

⇤
j,O\j) are independent and identically distributed random vari-

ables with mean zero, by an application of Lemma S14 with L
1

= 4R2c
1

, L
2

= 1/2 and
q = 1/2, we have

pr

n

�

�

�

rk`j(�
⇤
j,O\j)

�

�

�

> t
o

= pr

(

�

�

�

�

�

1

n

n
X

i=1

U j
ik(�

⇤
j,O\j)

�

�

�

�

�

> t

)

6 4 exp

✓

�1

8

n1/5t2/5
◆

+ 16nR2c
1

exp

��n1/5t2/5/(23/2)
 

.

Therefore, by the union bound, we obtain

pr

�kr`j(�
⇤
j,O\j)k1 > t

 

6 4p exp

✓

�1

8

n1/5t2/5
◆

+ 16npR2c
1

exp

��n1/5t2/5/(23/2)
 

.

Note that Lemma S14 holds only if t > (8E[{U j
ik(�

⇤
j,O\j)}2]/n)1/2 for k 2 O \ j. By Proposi- 295

tion S1, E[{U j
ik(�

⇤
j,O\j)}2] is bounded since E(X4

j ) is bounded. We take t = K(log

5 p/n)1/2

for sufficiently large K > 0 such that the inequality t > (8E[{U j
ik(�

⇤
j,O\j)}2]/n)1/2 holds for

all k 2 O \ j. Then, for sufficiently large K, we have

pr

(

�

�

�

r`j(�
⇤
j,O\j)

�

�

�

1
> K

✓

log

5 p

n

◆

1/2
)

6 p�1.

We conclude that kr`j(�⇤
j,O\j)k1 6 K(log

5 p/n)1/2 with probability at least 1� p�1.

S6·3. Proof of Lemma S4 300

Recall that Sj is the support set of �⇤
j,O\j and that

D
⇣

ˆ�j,O\j ,�j,O\j

⌘

=

⇣

ˆ�j,O\j � �j,O\j

⌘T nr`j( ˆ�j,O\j)�r`j(�j,O\j)
o

is the symmetrized Bregman divergence of `j(�j,O\j). Also, recall that ˆ

�j =
ˆ�j,O\j � �⇤

j,O\j .
Observe that

D
⇣

ˆ�j,O\j ,�
⇤
j,O\j

⌘

=

ˆ

�

T
j

n

r`j(�
⇤
j,O\j +

ˆ

�j)�r`j(�
⇤
j,O\j)

o

=

X

k2Sc
j

ˆ�jkrk`j(�
⇤
j,O\j +

ˆ

�j) +
X

k2Sj

ˆ

�jkrk`j(�
⇤
j,O\j +

ˆ

�j)� ˆ

�

T
jr`j(�

⇤
j,O\j).
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By the Karush–Kuhn–Tucker conditions of (7), ˆ�j,O\j is a solution to (7) if and only if
(

rk`j( ˆ�j,O\j) = �� sign( ˆ�jk) if

ˆ�jk 6= 0,
�

�rk`j( ˆ�j,O\j)
�

� 6 � if

ˆ�jk = 0.

Note that k 2 Sc

j does not imply ˆ�jk = 0, since Sj is the support set of �⇤
j,O\j .305

Nonetheless, by the Karush–Kuhn–Tucker conditions,
P

k2Sc
j

ˆ�jkrk`j(�⇤
j,O\j +

ˆ

�j) =

��
P

k2Sc
j

ˆ�jk sign( ˆ�jk) and
P

k2Sj
ˆ

�jkrk`j(�⇤
j,O\j +

ˆ

�j) 6 �
P

k2Sj
| ˆ�jk|. Therefore

D
⇣

ˆ�j,O\j ,�
⇤
j,O\j

⌘

6 ��
X

k2Sc
j

ˆ�jk sign( ˆ�jk) + �
X

k2Sj

| ˆ�jk|� ˆ

�

T
jr`j(�

⇤
j,O\j)

6 ��k ˆ�j,Sc
j
k
1

+ �k ˆ�j,Sjk1 + k ˆ�jk1kr`j(�
⇤
j,O\j)k1

6 ��k ˆ�j,Sc
j
k
1

+ �k ˆ�j,Sjk1 + (k ˆ�j,Sjk1 + k ˆ�j,Sc
j
k
1

)kr`j(�
⇤
j,O\j)k1

=

�

�+ kr`j(�
⇤
j,O\j)k1

 k ˆ�j,Sjk1 �
�

�� kr`j(�
⇤
j,O\j)k1

 k ˆ�j,Sc
j
k
1

.

(S30)

The inequality is obtained by rearranging the terms in the last expression. To show that
k ˆ�j,Sc

j
k
1

6 ⇠k ˆ�j,Sjk1, we use the fact that D(

ˆ�j,O\j ,�
⇤
j,O\j) > 0 since the loss function `j(·) is

a convex function. The inequality is obtained by substituting kr`j(�⇤
j,O\j)k1 6 �(⇠ � 1)/(⇠ +310

1) into (S30) and rearranging the terms.

S6·4. Proof of Lemma S5
Recall the definitions of T rr0

ij (�⇤
j,O\j), T

rr0
ijkl(�

⇤
j,O\j) and r2`j(�⇤

j,O\j) from (S4), (S5) and
(S7), respectively. We first show that kE{T rr0

ij (�⇤
j,O\j)}k1 is bounded. By Proposition S1, for a

sufficiently large constant C,315

�

�E{T rr0
ij (�⇤

j,O\j)}
�

�

1 6 C max

i,j,r
E|Xr

ij |4 6 24Cc
1

.

Hence, by the union bound, for any t > 2kE{T rr0
ij (�⇤

j,O\j)}k1,

pr

h

�

�

�

T rr0
ijkl(�

⇤
j,O\j)� E{T rr0

ijkl(�
⇤
j,O\j)}

�

�

�

> t
i

6 pr

h

�

�

�

T rr0
ijkl(�

⇤
j,O\j)

�

�

�

> t�
�

�

�

E{T rr0
ijkl(�

⇤
j,O\j)}

�

�

�

i

6 pr

n

�

�

�

T rr0
ijkl(�

⇤
j,O\j)

�

�

�

> t/2
o

6 pr

n

�

�

�

(Xr
ij �Xr0

ij )
2

(Xr
ik �Xr0

ik)(X
r
il �Xr0

il )

�

�

�

> t/2
o

6 pr

n

�

�

�

Xr
ij �Xr0

ij

�

�

�

> (t/2)1/4
o

+ pr

n

�

�

�

Xr
ik �Xr0

ik

�

�

�

> (t/2)1/4
o

+ pr

n

�

�

�

Xr
il �Xr0

il

�

�

�

> (t/2)1/4
o

6 6c
1

exp

��t1/42�5/4
�

,

where the last inequality follows from Proposition S1.
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Choosing CH = max[6c
1

, exp{(1.5c
1

C)

1/4}], we have that for any t > 0,

pr

h

�

�

�

T rr0
ijkl(�

⇤
j,O\j)� E{T rr0

ijkl(�
⇤
j,O\j)}

�

�

�

> t
i

6 CH exp

��t1/42�5/4
�

.

Let

Vikl =
2

R(R� 1)

X

16r<r06R

h

T rr0
ijkl(�

⇤
j,O\j)� E{T rr0

ijkl(�
⇤
j,O\j)}

i

.

Then, by the union bound, 320

pr (Vikl > t) 6
X

16r<r06R

pr

h

�

�

�

T rr0
ijkl(�

⇤
j,O\j)� E{T rr0

ijkl(�
⇤
j,O\j)}

�

�

�

> t
i

6 CHR2

exp

��t1/42�5/4
�

.

By the definition of Vikl, we have E(Vikl) = 0. Since V
1kl, . . . , Vnkl are independent and iden-

tically distributed random variables with mean zero, by an application of Lemma S14 with
L
1

= CHR2, L
2

= 2

�5/4 and q = 1/4, we have that for any t > {E(V 2

ijk)/n}1/2,

pr

n

�

�

�

r2

kl`j(�
⇤
j,O\j)�Hj

kl

�

�

�

> t
o

= pr

 

�

�

�

�

�

1

n

n
X

i=1

Vikl

�

�

�

�

�

> t

!

6 4 exp

✓

�1

8

n1/9t2/9
◆

+ 4nCHR2

exp

��n1/9t2/9/(23/2)
 

.

Therefore, by the union bound, we obtain

pr

n

�

�

�

r2`j(�
⇤
j,O\j)�Hj

�

�

�

1
> t

o

6 4p2 exp

✓

�1

8

n1/9t2/9
◆

+ 4np2CHR2

exp

��n1/9t2/9/(23/2)
 

.
(S31)

Note that (S31) holds only if t > {E(V 2

ijk)/n}1/2. It can be verified that E(V 2

ijk) is bounded 325

since E(X8

j ) is bounded by Proposition S1. Therefore, taking t = K
1

(log

9 p/n)1/2 for suffi-
ciently large K

1

, we obtain

pr

⇣

�

�

�

r2`j(�
⇤
j,O\j)�Hj

�

�

�

1
> t

⌘

6 p�1.

We conclude that kr2`j(�⇤
j,O\j)�Hjk1 6 K

1

(log

9 p/n)1/2 with probability at least 1� p�1.

S7. PROOF OF THE LEMMAS IN § S5
S7·1. Proof of Lemma S6 330

Recall from § 2·4 that the parameters associated with the jth and kth nodes are �j_k =

(�jk,�T
j,O\{j,k},�

T
k,O\{j,k})

T 2 R2p�3. Let Ljk(�j_k) = `j(�j,O\j) + `k(�k,O\k). The gradient
of Ljk(�j_k) evaluated at �j_k is

rjkLjk(�j_k) =
@Ljk(�j_k)

@�jk
= rk`j(�j,O\j) +rj`k(�k,O\k) 2 R,

rj,�kLjk(�j_k) =
@Ljk(�j_k)

@�j,O\{j,k}
= r�k`j(�j,O\j) 2 Rp�2, (S32) 335
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rk,�jLjk(�j_k) =
@Ljk(�j_k)

@�k,O\{j,k}
= r�j`k(�k,O\k) 2 Rp�2.

From (S32) and the definition of Sjk(�j_k) in (9), we see that Sjk(�j_k) is a linear transforma-
tion of rLjk(�j_k) 2 R2p�3. Let b = {1, (�w⇤

jk)
T, (�w⇤

kj)
T}T 2 R2p�3. Then it can be veri-

fied that

n1/2Sjk(�
⇤
j_k) = n1/2bTrLjk(�

⇤
j_k) =

1

n1/2

n
X

i=1

bTgjki (�⇤
j_k),

where gjki (�⇤
j_k) is as defined in (14). By Proposition 2, gjk

1

(�⇤
j_k), . . . , g

jk
n (�⇤

j_k) are indepen-340

dent and identically distributed random variables with mean zero and var{gjki (�⇤
j_k)} = ⌃

jk,
where ⌃

jk is as defined in (15). By an application of the central limit theorem, we have that
n1/2Sjk(�⇤

j_k) converges in distribution to N(0,�2

jk), where

�2

jk = ⌃

jk
jk,jk � 2⌃

jk
jk,j\kw

⇤
jk � 2⌃

jk
jk,k\jw

⇤
kj + (w⇤

jk)
T
⌃

jk
j\k,j\kw

⇤
jk + (w⇤

kj)
T
⌃

jk
k\j,k\jw

⇤
kj .

S7·2. Proof of Lemma S7
Recall from § 2·4 that Hj

= E{r2`j(�⇤
j,O\j)}. By the triangle inequality,345

�

�

�

r2`j( ˆ�j,O\j)�Hj
�

�

�

1
6

�

�

�

r2`j( ˆ�j,O\j)�r2`j(�
⇤
j,O\j)

�

�

�

1
+

�

�

�

r2`j(�
⇤
j,O\j)�Hj

�

�

�

1
= I

1

+ I
2

.

By Lemma S5, we have I
2

= OP{(log9 p/n)1/2} = oP(1). By Lemma S3,

r2`j( ˆ�j,O\j)�r2`j(�
⇤
j,O\j) 6 {exp(b)� 1}r2`j(�

⇤
j,O\j),

where

b = max

16i6n
max

16r<r06R

�

�

�

(xrij � xr
0

ij)(
ˆ�j,O\j � �⇤

j,O\j)
T
(x

r
i,O\j � x

r0
i,O\j)

�

�

�

6 Mkˆ�j,O\j � �⇤
j,O\jk1,

with M as defined in Theorem 1. By Assumption 4, kHjk1 = O(1). Therefore, we obtain350

I
1

6 | exp(b)� 1|kr2`j(�
⇤
j,O\j)k1

6 | exp(b)� 1| �I
2

+ kHjk1
�

= OP(|b|){oP(1) +O(1)}
= OP(Ms

max

�/2
min

),

where the first inequality follows from Hölder’s inequality, the second inequality follows from
an application of the triangle inequality, and the last equality is obtained from an application of
Theorem 1.

S7·3. Proof of Lemma S8
Recall from § 2·4 that (w⇤

jk)
T
= (Hj

k,�k)
T
(Hj

�k,�k)
�1. By the triangle inequality and the def-355

inition of w⇤
jk, we obtain

�

�

�

r2

k,�k`j( ˆ�j,O\j)� (w⇤
jk)

Tr2

�k,�k`j( ˆ�j,O\j)
�

�

�

1
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6
�

�

�

r2

k,�k`j( ˆ�j,O\j)�Hj
k,�k

�

�

�

1
+

�

�

�

(w⇤
jk)

Tr2

�k,�k`j( ˆ�j,O\j)�Hj
k,�k

�

�

�

1

=

�

�

�

r2

k,�k`j( ˆ�j,O\j)�Hj
k,�k

�

�

�

1
+

�

�

�

(w⇤
jk)

T
�r2

�k,�k`j( ˆ�j,O\j)�Hj
�k,�k

 

�

�

�

1
= I

1

+ I
2

. 360

By Lemma S7, we have I
1

= OP{Ms
max

�/2
min

+ (log

9 p/n)1/2}. Similarly, by Hölder’s in-
equality and Lemma S7, we have I

2

= OP[w0

{Ms
max

�/2
min

+ (log

9 p/n)1/2}]. Therefore,
�

�

�

r2

k,�k`j( ˆ�j,O\j)� (w⇤
jk)

Tr2

�k,�k`j( ˆ�j,O\j)
�

�

�

1

= OP
h

w
0

�

Ms
max

�/2
min

+ (log

9 p/n)1/2
 

i

.

Picking �w > Cw
0

{Ms
max

�/2
min

+ (log

9 p/n)1/2} for some sufficiently large C, we have
�

�

�

r2

k,�k`j( ˆ�j,O\j)� (w⇤
jk)

Tr2

�k,�k`j( ˆ�j,O\j)
�

�

�

1
6 �w.

S7·4. Proof of Lemma S9
By Lemma S8, for �w > Cw

0

{Ms
max

�/2
min

+ (log

9 p/n)1/2}, w⇤
jk is in the feasible region 365

of the Dantzig selector problem (10); that is,
�

�

�

r2

k,�k`j(0, ˆ�j,O\{j,k})� (w⇤
jk)

Tr2

�k,�k`j(0, ˆ�j,O\{j,k})
�

�

�

1
6 �w (S33)

with high probability. For notational convenience, we let ˆ

� = ŵjk � w⇤
jk. By the triangle in-

equality,
�

�

�

ˆ

�

Tr2

�k,�k`j(0, ˆ�j,O\{j,k})
�

�

�

1
6
�

�

�

r2

k,�k`j(0, ˆ�j,O\{j,k})� ŵT
jkr2

�k,�k`j(0, ˆ�j,O\{j,k})
�

�

�

1

+

�

�

�

r2

k,�k`j(0, ˆ�j,O\{j,k})� (w⇤
jk)

Tr2

�k,�k`j(0, ˆ�j,O\{j,k})
�

�

�

1
6 2�w,

(S34)

where the last inequality follows from (S33) and the constraint in (10). By Hölder’s inequality
and (S34), 370

ˆ

�

Tr2

�k,�k`j(0, ˆ�j,O\{j,k}) ˆ� 6 k ˆ�k
1

k ˆ�Tr2

�k,�k`j(0, ˆ�j,O\{j,k})k1 6 2�wk ˆ�k
1

. (S35)

Let Bjk be the support set of w⇤
jk, i.e., Bjk = {l : (w⇤

jk)l 6= 0}. Also, let s0jk = |Bjk| be the
cardinality of Bjk. By the definition of the Dantzig selector, (10), kŵjkk1 6 kw⇤

jkk1, implying
X

l2Bjk

|(w⇤
jk)l| >

X

l2Bjk

|(ŵjk)l|+
X

l2Bc
jk

|(ŵjk)l|. (S36)

By the triangle inequality,
X

l2Bjk

|(ŵjk)l � (w⇤
jk)l| >

X

l2Bjk

|(w⇤
jk)l|�

X

l2Bjk

|(ŵjk)l|. (S37)

Upon adding (S36) and (S37) and rearranging the terms, we obtain k ˆ�Bc
jk
k
1

6 k ˆ�Bjk
k
1

, which
implies 375

k ˆ�k
1

6 2k ˆ�Bjk
k
1

. (S38)
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Substituting (S38) into (S35) gives
ˆ

�

Tr2

�k,�k`j(0, ˆ�j,O\{j,k}) ˆ� 6 4�wk ˆ�Bjk
k
1

. (S39)

We now derive a lower bound for ˆ

�

Tr2

�k,�k`j(0,
ˆ�j,O\{j,k}) ˆ�. Let A = (v 2 Rp�2

:

kvBc
jk
k
1

6 kvBjk
k
1

). We first show that for sufficiently large n, the quantity

inf

v2A

s0jk
�

vTr2

�k,�k`j(0,
ˆ�j,O\{j,k})v

 

kvBjk
k2
1

can be bounded below by a positive constant. By an application of Lemma S3, we obtain

s0jk
�

vTr2

�k,�k`j(0,
ˆ�j,O\{j,k})v

 

kvBjk
k2
1

>
s0jk

�

vTr2

�k,�k`j(0,�
⇤
j,O\{j,k})v

 

kvBjk
k2
1

exp(�b), (S40)

where380

b = max

16i6n
max

16r<r06R

�

�

�

(xrij � xr
0

ij)(0, ˆ�j,O\{j,k} � �⇤
j,O\{j,k})

T
(x

r
i,O\j � x

r0
i,O\j)

�

�

�

.

By Theorem 1 and Assumption S1,

b 6 M
�

�

ˆ�j,O\{j,k} � �⇤
j,O\{j,k}

�

�

1

6 M exp(⌘)(⇠ + 1)

22
min

s
max

� 6 log 2 (S41)

for sufficiently large n.
By (S40), (S41) and Assumption 4 that ⇤

min

(Hj
) > ⇤

H
lower

> 0, we have

s0jk
�

vTr2

�k,�k`j(0,
ˆ�j,O\{j,k})v

 

kvBjk
k2
1

> 1

2

s0jk
�

vTr2

�k,�k`j(0,�
⇤
j,O\{j,k})v

 

kvBjk
k2
1

=

s0jkv
T
�

Hj
�k,�k �Hj

�k,�k +r2

�k,�k`j(0,�
⇤
j,O\{j,k})

 

v

2kvBjk
k2
1

>
s0jkkvk22⇤H

lower

� s0jkkHj
�k,�k �r2

�k,�k`j(0,�
⇤
j,O\{j,k})k1kvk2

1

2kvBjk
k2
1

,

(S42)

where the last expression follows by an application of Hölder’s inequality. Noting that kvBjk
k
1

6
(s0jk)

1/2kvBjk
k
2

6 (s0jk)
1/2kvk

2

and kvk2
1

6 4kvBjk
k2
1

for any v 2 A, we obtain385

s0jkkvk22⇤H
lower

� s0jkkHj
�k,�k �r2

�k,�k`j(0,�
⇤
j,O\{j,k})k1kvk2

1

2kvBjk
k2
1

> 1

2

⇤

H
lower

� 2s0jkkHj
�k,�k �r2

�k,�k`j(0,�
⇤
j,O\{j,k})k1

> 1

2

⇤

H
lower

� 2K
1

s0jk(log
9 p/n)1/2

=

1

2

⇤

H
lower

+ oP(1),

(S43)
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where the last inequality is obtained by applying Lemma S7 and the last equality follows from
Assumption S1.

Upon setting v =

ˆ

� and combining (S42) and (S43), we obtain

ˆ

�

Tr2

�k,�k`j(0, ˆ�j,O\{j,k}) ˆ� > 1

2

⇤

H
lower

(s0jk)
�1k ˆ�Bjk

k2
1

. (S44)

Finally, combining (S39) and (S44) yields

k ˆ�Bjk
k
1

6 8s0jk�w/⇤
H
lower

,

which implies 390

kŵjk � w⇤
jkk1 = k ˆ�k

1

6 2k ˆ�Bjk
k
1

6 16s0jk�w/⇤
H
lower

= OP(s
0
max

�w),

where the first inequality is obtained from (S38).

S7·5. Proof of Lemma S10
The proof consists of two parts. We first show that under the null hypothesis H

0

: �⇤
jk = �⇤

kj =

0 in (8), n1/2
ˆSjk = n1/2Sjk(�⇤

j_k) + oP(1). Then, by an application of Lemma S6, we show that
n1/2

ˆSjk is asymptotically normal. 395

Recall the definitions of Sjk(�⇤
j_k) and ˆSjk from (9) and (11), respectively. With some abuse

of notation, throughout this proof we write ˆ�j,�k = (0, ˆ�j,O\{j,k}) and �⇤
j,�k = (0,�⇤

j,O\{j,k}).
Under the null hypothesis H

0

: �⇤
jk = �⇤

kj = 0, we have that ˆSjk � Sjk(�⇤
j_k) = I

1j + I
2j +

I
1k + I

2k, where I
1j and I

2j are defined as

I
1j = rk`j( ˆ�j,�k)�rk`j(�

⇤
j,�k)� ŵT

jk

�r�k`j( ˆ�j,�k)�r�k`j(�
⇤
j,�k)

 

, 400

I
2j = (w⇤

jk � ŵjk)
Tr�k`j(�

⇤
j,�k).

The terms I
1k and I

2k are defined similarly by interchanging the subscripts j and k in I
1j and

I
2j . The goal is to show that each of the four terms is oP(n�1/2

).

Upper bound for I
1j . Let ˆ

�j,�k =

ˆ�j,�k � �⇤
j,�k. By an application of the mean value theo-

rem, there exists ˜�j,�k 2 Rp�1 on the line segment between ˆ�j,�k and �⇤
j,�k such that 405

I
1j =

�r2

k,�k`j( ˜�j,�k)� ŵT
jkr2

�k,�k`j( ˜�j,�k)
 

ˆ

�j,�k.

By the triangle inequality and Hölder’s inequality, we have

|I
1j | 6

�

�

�

r2

k,�k`j( ˆ�j,�k)� ŵT
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�
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1
k ˆ�j,�kk1

+

�

�

�

r2

k,�k`j( ˆ�j,�k)�r2

k,�k`j( ˜�j,�k)

�

�

�

1
k ˆ�j,�kk1

+

�

�

�

ŵT
jk

�r2

�k,�k`j( ˆ�j,�k)�r2

�k,�k`j( ˜�j,�k)
 

�

�

�

1
k ˆ�j,�kk1

= I
1j1 + I

1j2 + I
1j3.

We now obtain an upper bound for each of the three terms separately.
By Theorem 1, the definition (10) of a Dantzig selector-type estimator, and Assumption S1,

we have

I
1j1 = OP

✓

s
max

��w

2
min

◆

= oP(n
�1/2

).
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By the triangle inequality,410

I
1j2 =

�

�

�

r2

k,�k`j( ˆ�j,�k)�r2

k,�k`j( ˜�j,�k)

�

�
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1
k ˆ�j,�kk1

6
�

�

�
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⇤
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�
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1
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= OP

✓
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�

2
min

◆
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✓

s
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�

2
min

◆

,

where the last equality follows from the proof of Lemma S7 and Theorem 1. We can write the last
expression as Iij2 = OP(smax

��w/2
min

) = oP(n�1/2
), since �w = ⌦{w

0

(Ms
max

�/2
min

+

� log

2 p)} by Assumption S1.
By the definition (10) of the Dantzig selector-type estimator, kŵjkk1 6 kw⇤

jkk1. Therefore, by
the triangle inequality and Hölder’s inequality, we obtain415

I
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ŵT
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),420

where the equalities hold by Assumption S1.

Upper bound for I
2j . By Lemmas S2–S9 and an application of the Hölder’s inequality, we

obtain

|I
2j | 6 kw⇤

jk � ŵjkk1kr�k`j(�
⇤
j,�k)k1 = OP(s

0
max

�w)OP(�) = oP(n
�1/2

),

where the last equality holds by Assumption S1.
Combining the upper bounds for I

1j and I
2j , we obtain I

1j + I
2j = oP(n�1/2

). Simi-425

larly, I
1k + I

2k = oP(n�1/2
). Thus, n1/2{ ˆSjk � Sjk(�⇤

j_k)} = oP(1). Asymptotic normality of
n1/2

ˆSjk is established by an application of Lemma S6.

S7·6. Proof of Lemma S11
Recall from (14) and (15) the definitions of gjki (�j_k) and ⌃

jk, respectively. Also, recall
from (16) that430
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For notational convenience, we write ˆ�0
j_k = (0, ˆ�j,O\{j,k}, ˆ�k,O\{j,k}).

By the triangle inequality, we obtain
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We now obtain an upper bound for each term separately.

Upper bound for I
1

. For notational simplicity, throughout the proof we suppress the su-
perscript jk and write g⇤i to indicate gjki (�⇤

j_k). We also write U j
ik for U j

ik(�
⇤
j,O\j), where 435
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(S45)
We see from (S45) that each term in (g⇤i )

⌦2 � E{(g⇤i )⌦2} involves the quantity

U j
ilU

k
im � E(U j

ilU
k
im) (S46)

for j 6= l, k 6= m, and j, k, l,m 2 O.
We now show that (S46) is bounded with high probability. First, note that kE(U j

i U
k
i )k1 6 Cu 440

for some sufficiently large constant Cu, since E(X4

j ) is bounded by Proposition S1. Hence, by
the union bound, for any t > 2kE(U j
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where the last inequality is obtained by an application of Lemma S1. Note that the above in-
equality holds only if t > 2Cu. Choosing CH = max{8R2c
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u )}, we have
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for all t > 0. Therefore, for any j 6= l, k 6= m and j, k, l,m 2 O, we have 445
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where the first inequality is obtained by an application of the union bound and the last inequality
is obtained by an application of Lemma S14 with L

1

= CH , L
2

= 2

�5/4 and q = 1/4. Hence,
by the union bound, we obtain
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The above inequality holds only if t > [E{U j
ilU

k
im � E(U j

ilU
k
im)}2/n]1/2. By Proposition S1,

the numerator is bounded since E(X8

j ) is bounded. Taking t = K
2

(log

9 p/n)1/2 for sufficiently
large K

2

> 0, we have pr{kˆ⌃jk
(�⇤

j_k)� ⌃
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.

Upper bound for I
2

. For notational convenience, we let Gi
(�j_k) = {gjki (�j_k)}⌦2 2

R(2p�3)⇥(2p�3). From (S45), we see that for any (a, b), (c, d) 2 {(p, q) : p, q 2 O, p 6= q},455
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Since maxi,j,r Xr
ij = OP(log p) by Proposition S1, there exists a constant Cv such that
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6 p

for all j, k 2 O with j 6= k and for any (a, b), (c, d) 2 {(p, q) : p, q 2 O, p 6= q}, with high prob-
ability. By the mean value theorem, there exists a ˜�j_k on the line segment between ˆ�j_k and460
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where the last equality holds by an application of Theorem 1. Thus,465
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The result is obtained by combining the upper bounds for I
1

and I
2

.

S7·7. Proof of Lemma S12
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To show that |�̂2
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jk| = oP(1), we use the results from Lemmas S9 and S11 and the fact470

that k⌃jkk1 = O(1) since E(X4

j ) is bounded by Proposition S1. For notational simplicity, we
suppress the superscripts in ˆ

⌃
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jk in the following proof.
By the triangle inequality,
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⌃k\j,k\jŵkj � (w⇤
kj)

T
⌃k\j,k\jw

⇤
kj

�

�

�



Latent variable graphical models 25

= I
1

+ I
2j + I

2k + I
3j + I

3k.

Upper bound for I
1

. By Lemma S11, we obtain
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Upper bound for I
2j . By the triangle inequality,
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By Hölder’s inequality and Lemmas S9 and S11, we have 480
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By Hölder’s inequality, Lemma S9, and the fact that k⌃k1 = O(1), we obtain
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Combining the upper bounds, we obtain
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where we have used the fact that s0
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�w = o(1) by Assumption S1.

Upper bound for I
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. By the triangle inequality,
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By the triangle inequality,
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jk)
�

�
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where the last two equalities are obtained by an application of Lemma S9, the fact that k⌃k1 =

O(1), and Assumption S1. Similar upper bounds can be obtained for I
2k and I

3k.
Upon combining the upper bounds, we have
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where the last expression holds by Assumption S2.495

S8. TAIL INEQUALITIES

In this section, we state some results that are frequently used in our proofs.

LEMMA S13 (GAUSSIAN TAIL INEQUALITY). Let X ⇠ N(0,�2

). Then, for x > 0,

pr(|X| > x) 6 2�

x
exp(�x2/2�2

).

LEMMA S14 (LEMMA H.3 IN NING & LIU, 2016). Let X
1

, . . . , Xn be independent and
identically distributed random variables with E(Xi) = 0. Let ¯Xn =

Pn
i=1

Xi/n. If there exist500

constants L
1
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2

and q such that for x > 0,

pr(|Xi| > x) 6 L
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exp(�L
2

xq),

then for x > {8E(X2

i )/n}1/2,
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nq/(2+q)x2q/(2+q)

�

+ 4nL
1

exp

(

�L
2

nq/(2+q)x2q/(2+q)

2

q

)

.
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