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SUMMARY

Consider a semiparametric model indexed by a Euclidean parameter of interest and an
infinite-dimensional nuisance parameter. In many applications, pseudolikelihood provides a con-
venient way to infer the parameter of interest, where the nuisance parameter is replaced by
a consistent estimator. The purpose of this paper is to establish the asymptotic behaviour of
the pseudolikelihood ratio statistic under semiparametric models. In particular, we consider
testing the hypothesis that the parameter of interest lies on the boundary of its parame-
ter space. Under regularity conditions, we establish the equivalence between the asymptotic
distributions of the pseudolikelihood ratio statistic and a likelihood ratio statistic for a nor-
mal mean problem with a misspecified covariance matrix. This result holds when the nui-
sance parameter is estimated at a rate slower than the usual rate in parametric models. We
study three examples in which the asymptotic distributions are shown to be mixtures of
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chi-squared variables. We conduct simulation studies to examine the finite-sample performance
of the pseudolikelihood ratio test.

Some key words: Likelihood ratio test; Multivariate survival model; Pseudolikelihood; Semiparametric model.

1. INTRODUCTION

Consider a semiparametric model indexed by two parameters: a parameter of interest
θ ∈ " ⊂ Rd and a nuisance parameter φ lying in a Banach space H with a norm ∥ · ∥. Semi-
parametric models have been widely used in a variety of settings; see for example Gu & Zhang
(1993), Murphy (1995), Huang (1996) and Cheng (2009). Asymptotic theory for semiparametric
maximum likelihood estimation can be found in Bickel et al. (1993), van der Vaart (2000) and
Kosorok (2008). The consistency of the bootstrap for M-estimators was established by Dixon
et al. (2005) and Cheng & Huang (2010). Semiparametric likelihood ratio inference based on
the profile likelihood has been developed by Murphy & van der Vaart (1997, 2000) and Banerjee
(2005). Chen et al. (2014) studied the local identification of nonparametric and semiparametric
models.

Pseudolikelihood provides an approach to inference on θ in the presence of the nuisance
parameter φ (Gong & Samaniego, 1981). The key idea is that the inference for θ can be based on
L∗(θ) = L(θ , φ̂), where φ̂ is a consistent estimator of φ and L(θ , φ) is the loglikelihood. Unlike
the profile likelihood, which estimates the nuisance parameter φ by φ̂(θ) = arg maxφ∈H L(θ , φ),
the pseudolikelihood is constructed by substituting a consistent estimator φ̂ that is free of θ , so the
information equality does not hold (Gong & Samaniego, 1981). When the nuisance parameter
φ is of finite dimension, under certain regularity conditions Liang & Self (1996) derived the
asymptotic distribution of the pseudolikelihood ratio test for θ = θ0. One of the regularity
conditions is that θ0 must be an interior point of its parameter space, but in many applications
θ0 lies on the boundary of the parameter space. For parametric models, this boundary problem
has been studied by Chernoff (1954), Kudo (1963), Chant (1974), Shapiro (1985), Self & Liang
(1987) and Chen & Liang (2010). In particular, Chen & Liang (2010) derived the asymptotic
distribution of the pseudolikelihood ratio test statistic for boundary problems when the nuisance
parameter is of finite dimension. However, to the best of our knowledge, there is no systematic
theoretical study of the boundary problem under semiparametric models.

The primary purpose of this paper is to develop a general theory on pseudolikelihood ratio
inference for semiparametric models in cases where the parameter of interest may lie on the
boundary of the parameter space. In a similar spirit to that of the profile likelihood (Murphy
& van der Vaart, 2000), the theoretical justification for the pseudolikelihood in semiparametric
models is more difficult than in Gong & Samaniego (1981), Liang & Self (1996) and Chen &
Liang (2010), for the following reasons. First, the estimator of the nuisance parameter φ may
converge at a rate slower than the usual rate in parametric models. Second, unlike in parametric
models, standard Taylor expansions cannot be used to deal with the remainder terms in likelihood
expansions. To overcome these challenges, we establish our main results using empirical pro-
cesses. Under certain regularity conditions, our main results cover cases in which the nuisance
parameter is estimated with a rate slower than n1/2. In addition, the sensitivity of the likelihood
to the nuisance parameter is characterized by the Fréchet derivative (Bickel et al., 1993). We
establish a general theorem on the asymptotic distribution of the pseudolikelihood ratio test for
θ = θ0, which allows θ0 to lie on the boundary of its parameter space. The general theory is
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verified and illustrated by copula and nested copula models for survival data and by weighted
likelihoods for missing data. We show that the pseudolikelihood ratio test performs well in sim-
ulation studies, while the naive test that ignores the boundary problem has a conservative Type I
error rate and much lower power.

2. EXAMPLES AND MAIN RESULTS

2·1. Examples
Example 1. Suppose that Cθ is a distribution function with density cθ on [0, 1]2 for some θ in R.

Let (Ỹ1, Ỹ2) denote the paired failure times, and let (S1, S2) and (f1, f2) denote the corresponding
marginal survival functions and density functions, respectively. Assuming that (Ỹ1, Ỹ2) comes
from the Cθ copula, the joint survival function and density function of (Ỹ1, Ỹ2) are

Sθ ( y1, y2) = Cθ {S1( y1), S2( y2)},
fθ ( y1, y2) = cθ {S1( y1), S2( y2)}f1( y1)f2( y2) ( y1, y2 ! 0).

Let (C1, C2) denote paired censoring times. For i = 1, . . . , n, assume that (Ỹ1i, Ỹ2i) and (C1i, C2i)
are independent data. For each i, we observe Yji = Ỹji ∧ Cji and δji = I (Ỹji " Cji) for j = 1, 2.

For concreteness, we consider the Clayton copula model (Clayton, 1978), defined by

Cθ (u, v) = (u1−θ + v1−θ − 1)1/(1−θ)

for θ > 1 and Cθ (u, v) = uv for θ = 1. Given n paired data (Y1i, Y2i), . . . , (Yni, Yni), write
{S1(Y1i), S2(Y2i)} as (ui, vi) for notational simplicity. The loglikelihood function can be
written as

L(θ , S1, S2) =
n∑

i=1

[
δ1iδ2i log cθ (ui, vi) + δ1i(1 − δ2i) log

{
∂

∂u
Cθ (ui, vi)

}

+ (1 − δ1i)δ2i log
{

∂

∂v
Cθ (ui, vi)

}
+ (1 − δ1i)(1 − δ2i) log Cθ (ui, vi)

]
,

where

∂Cθ (u, v)
∂u

= u−θ (u1−θ + v1−θ − 1)1/(1−θ)−1,

∂Cθ (u, v)
∂v

= v−θ (u1−θ + v1−θ − 1)1/(1−θ)−1,

cθ (u, v) = θu−θv−θ (u1−θ + v1−θ − 1)1/(1−θ)−2, and θ characterizes the association between the
paired failure times (Ỹ1, Ỹ2).

In practice, the marginal survival functions S1 and S2 are unknown nuisance parameters. To
make inference on θ , Shih & Louis (1995) proposed a log-pseudolikelihood function L∗(θ) =
L(θ , Ŝ1, Ŝ2), where Ŝ1 and Ŝ2 are Kaplan–Meier estimators of S1 and S2. In association analysis
for bivariate survival times, a typical hypothesis of interest is H0 : θ = 1, i.e., no association
between two failure times. The null hypothesis θ = 1 lies on the boundary of the parameter
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space " = [1, ∞). However, this hypothesis testing problem with the boundary constraint is not
covered by the theory of Shih & Louis (1995).

Example 2. Bandeen-Roche & Liang (1996) proposed a class of models for failure time data
that accounts for multiple levels of clustering. For simplicity of notation, we consider a cluster of
two levels, such as households and villages. Here, for illustration, we assume that there are three
individual members and two households that are clustered as {1} and {2, 3}. When the Clayton
copula is used to model the failure times (Ỹ1, Ỹ2, Ỹ3), its joint survival function is

Sθ ( y1, y2, y3) =
[
S1( y1)

1−θ2 +
{
S2( y2)

1−θ1 + S3( y3)
1−θ1 − 1

}(θ2−1)/(θ1−1) − 1
]1/(1−θ2)

,

where ( y1, y2, y3) ∈ R3
+ with R+ = (0, ∞), S1( y1), S2( y2) and S3( y3) are the marginal survival

functions, θ1 characterizes the association within the same household, and θ2 characterizes the
association between two individuals from different households in the same village. To ensure
that Sθ ( y1, y2, y3) is nonnegative, Bandeen-Roche & Liang (1996) required that θ1 ! θ2 ! 1.

Let n denote the number of villages. For i = 1, . . . , n, we observe Yji = Ỹji ∧ Cji and δji =
I (Ỹji " Cji) (j = 1, 2, 3), where (C1, C2, C3) denote censoring times. Based on the observed
data, we can specify the likelihood function, the form of which is provided in the Supplementary
Material. Similar to Example 1, Bandeen-Roche & Liang (1996) proposed a pseudolikelihood
approach for inference on θ . One hypothesis of interest is H0 : θ1 = θ2 = 1, i.e., no association
among all failure times within the same village. In this example, H0 is on the boundary of the
parameter space " = {(θ1, θ2) ∈ R2 : θ1 ! θ2 ! 1}.

Example 3. Assume that a study involves the collection of independent and identically dis-
tributed observations (Yi, Xi) (i = 1, . . . , n), where Yi is the outcome and Xi is a d-dimensional
auxiliary covariate. Let f ( y; θ) denote the density function of Yi, which is indexed by a finite-
dimensional parameter θ . Let Vi denote a binary missing data indicator, with Vi = 1 if Yi is
observable and Vi = 0 if Yi is missing. Our goal is to estimate θ based on the observed data
(ViYi, Vi, Xi) (i = 1, . . . , n). Assume that Yi is independent of Vi given Xi, known in the literature
as missingness at random. Under this assumption, an inverse probability weighting estimator
for θ is derived by solving a set of weighted estimating equations (Robins et al., 1994; Scharf-
stein et al., 1999). Under the likelihood framework, an equivalent estimator can be obtained by
maximizing the weighted loglikelihood function

L(θ , π) =
n∑

i=1

Vi

π(Xi)
log f (Yi; θ),

where π(Xi) = pr(Vi = 1 | Xi) is the probability of observing Yi given covariates. The function
π(·) is often an unknown infinite-dimensional nuisance parameter and must be estimated.When Xi
is low-dimensional, one can estimate π by the Nadaraya–Watson estimator π̂ (Nadaraya, 1964;
Watson, 1964). The inference on θ can be based on the weighted pseudolikelihood function
L∗(θ) = L(θ , π̂). Suppose that θ is univariate and we are interested in the null hypothesis
H0 : θ = 0. If there is prior knowledge that θ ! 0, then θ = 0 is on the boundary of the
parameter space " = [0, ∞).

2·2. Main results
In the following theoretical development, we consider a general setting. Given independent

and identically distributed observations (O1, . . . , On), let L(θ , φ) = ∑n
i=1 m(θ , φ)(Oi) denote
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a generic objective function. For instance, L(θ , φ) reduces to the loglikelihood function if
m(θ , φ)(Oi) is the log probability density function of the data Oi; see Examples 1 and 2. The
term m(θ , φ)(Oi) can also be a weighted loglikelihood function; see Example 3. Let φ̂ denote an
estimator of the nuisance parameter φ in the Banach space H. Define L∗(θ) = L(θ , φ̂). We refer
to L∗(θ) as the pseudolikelihood, even though L(θ , φ) can be an objective function other than
the loglikelihood. The parameter space of θ is denoted by " ⊂ Rd . Let θ̂ = arg maxθ∈" L∗(θ)
denote the maximum pseudolikelihood estimator. The pseudolikelihood ratio statistic T for the
null hypothesis H0 : θ = θ0 versus the alternative hypothesis H1 : θ ∈ " − {θ0} is defined as

T = 2
{

sup
θ∈"

L∗(θ) − L∗(θ0)

}
.

To handle the nonparametric component φ, we introduce the following submodel notation
(Kosorok, 2008). For any fixed φ, let φt ∈ H be a smooth curve running through φ at t = 0. The
loglikelihood for the parametric submodel indexed by (θ , t) is L(θ , φt). Let a = (∂/∂t)φt|t=0 be
the direction vector in a tangent set for the nuisance parameter. Write

m1(θ , φ) = ∂

∂θ
m(θ , φ), m2(θ , φ)[a] = ∂

∂t
m(θ , φt)

∣∣∣
t=0

,

m11(θ , φ) = ∂2

∂θ∂θT
m(θ , φ), m12(θ , φ)[a] = ∂2

∂θ∂t
m(θ , φt)

∣∣∣
t=0

.

Given a measurable function g, we write Png = n−1∑n
i=1 g(Oi) and write Pg =

∫
g dP for the

expectation of g. We use | · | to denote the L2-norm in the Euclidean space, and ∥ · ∥ to denote
the norm in the Banach space H. Let φ0 denote the true value of φ. We assume the following
regularity conditions.

Condition 1. There exists some c1 > 0 such that

|θ̂ − θ0| = op(1), ∥φ̂ − φ0∥ = Op(n−c1).

Condition 2. For any δn → 0, any θ ∈ " and some D > 0,

sup
|θ−θ0|!δn, ∥φ−φ0∥!Dn−c1

∣∣n1/2(Pn − P){m1(θ , φ) − m1(θ0, φ0)}
∣∣ = op(1).

Condition 3. For some c2 > 1 satisfying c1c2 > 1/2 and any ∥φ − φ0∥ " Dn−c1 ,
∣∣∣P{m1(θ0, φ) − m1(θ0, φ0) − m12(θ0, φ0)(φ − φ0)}

∣∣∣ = O(∥φ − φ0∥c2).

Condition 4. As n → ∞, n1/2Pnm1(θ0, φ0) and Pm12(θ0, φ0){n1/2(φ̂ − φ0)} jointly converge
in distribution to N (0, '), where ' is a positive-definite matrix and can be partitioned as '11,
'12 and '22 accordingly.

Condition 5. The information and covariance matrices

I11 = −Pm11(θ0, φ0), I∗
11 = '11 + 2'12 + '22

are positive definite.
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Condition 6. For any δn → 0, any θ ∈ " and some D > 0,

sup
|θ−θ0|!δn, ∥φ−φ0∥!Dn−c1

∣∣Pnm11(θ , φ) − Pm11(θ0, φ0)
∣∣ = op(1).

A major difference between the above regularity conditions and those in the semiparametric
literature is that we do not require θ0 to be interior to its parameter space. Moreover, in contrast to
the efficient Fisher information matrix in profile likelihood estimation (Murphy & van der Vaart,
2000), for pseudolikelihood the information matrix I11 may not be identical to I∗

11, where I∗
11

is the covariance of the pseudo-score function n1/2Pnm1(θ0, φ0) + Pm12(θ0, φ0){n1/2(φ̂ − φ0)}.
This is also one of the major differences between the profile likelihood and the pseudolikelihood.

Our Conditions 1–6 are imposed on the model and the estimators instead of on the parameter
space. These conditions are similar to the regularity conditions in the literature; see, for example,
Cheng & Huang (2010). Specifically, Conditions 1–3 are similar to Conditions S1–S3 in Cheng &
Huang (2010) for studying M-estimators. The consistency of θ̂ in Condition 1 can be established
by the M-estimator theory in Kosorok (2008, § 14.2). The rate of convergence of φ̂ must be
established case by case. A sufficient condition for Condition 2 is that the class of functions
{m1(θ , φ) : |θ −θ0| " δ1, ∥φ−φ0∥ " δ2} is Donsker for some δ1, δ2 > 0 with a square-integrable
envelope function. Condition 3 essentially requires that m1(θ0, φ) be Fréchet differentiable at φ0
(Bickel et al., 1993, p. 455), and it holds with c2 = 2 if the second derivatives of m1(θ0, φ)
with respect to φ are bounded in a neighbourhood of φ0. In this case, our pseudolikelihood
estimation can accommodate a convergence rate of the nonparametric component that is slower
than n1/2, provided that c1 > 1/4. This extends the scope of the pseudolikelihood theory in
Gong & Samaniego (1981). Condition 4 usually holds automatically if φ̂ is n1/2-consistent,
but may need additional work for estimators with convergence rates slower than n1/2 (Wong &
Severini, 1991). A general strategy for verifying Condition 4 is to exploit the concrete form of
φ̂ and find the influence function of Pm12(θ0, φ0){n1/2(φ̂ − φ0)}. We illustrate such derivations
in Example 3; see the Supplementary Material for technical details. Condition 5 requires I11 and
I∗
11 to be positive definite. A similar sufficient condition for Condition 6 to hold is that the class

of functions {m11(θ , φ) : |θ − θ0| " δ1, ∥φ − φ0∥ " δ2} should be Glivenko–Cantelli with an
integrable envelope function.

Assume that " is a convex set, as in our examples. The following lemma provides a general
quadratic approximation of 2nPn{m(θ , φ̂) − m(θ0, φ̂)}.

LEMMA 1. Let W (θ) = −n1/2(θ − θ0) + I−1
11 U (θ0), where

U (θ0) = n1/2Pnm1(θ0, φ0) + Pm12(θ0, φ0){n1/2(φ̂ − φ0)}.

If Conditions 1–6 hold, then for any θ ∈ " such that θ − θ0 = o(1), as n → ∞ we have

2n Pn{m(θ , φ̂) − m(θ0, φ̂)} = −W (θ)TI11W (θ) + U (θ0)
TI−1

11 U (θ0) + op(1 + n1/2|θ − θ0|)2.

A proof is provided in the Appendix. To use this lemma to derive the asymptotic distribution
of the pseudolikelihood ratio test T , we need to characterize the geometry of ". To this end, we
introduce the definition of an approximating cone (Chernoff, 1954; Shapiro, 1985; Self & Liang,
1987). Recall that a cone C(θ0) with vertex at θ0 is a set of points such that if x ∈ C(θ0), then
a(x − θ0) + θ0 ∈ C(θ0) for any a ! 0.
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DEFINITION 1. The set " is approximated at θ0 by a cone with vertex at θ0, referred to as the
approximating cone C"(θ0), if

inf
x∈C"(θ0)

|x − y| = o(|y − θ0|), y ∈ ", inf
y∈"

|x − y| = o(|x − θ0|), x ∈ C"(θ0).

For instance, if " = [1, ∞) and θ0 = 1, then C"(θ0) = [1, ∞). Similarly, a sphere in R2 can be
approximated at a boundary point by a half-plane tangent to the sphere at that point. In addition,
if θ0 is an interior point of " ⊂ Rd , then C"(θ0) = Rd . See Chernoff (1954), Shapiro (1985)
and Self & Liang (1987) for more examples. Using Lemma 1, we derive the limiting distribution
of the pseudolikelihood ratio statistic T under the null hypothesis.

THEOREM 1. Assume that Conditions 1–6 hold and the parameter space " is approximated at
θ0 by a cone C"(θ0). Then the pseudolikelihood ratio statistic T converges weakly to

T (Z) = ZTI11Z − inf
h∈C"(0)

{(Z − h)TI11(Z − h)} (1)

as n → ∞, where Z ∼ N (0, I−1
11 I∗

11I−1
11 ) and C"(0) is a cone obtained by translating C"(θ0) so

that its vertex lies at the origin. There are two scenarios as follows.

(i) If θ0 is an interior point of ", then T (Z) reduces to T (Z) = ZTI11Z for Z ∼
N (0, I−1

11 I∗
11I−1

11 ), and T (Z) is distributed as a weighted sum of d independent χ2
1 variables

with weights the eigenvalues of I∗
11I−1

11 .
(ii) If θ0 is a boundary point of ", then the distribution of T (Z) depends on the shape of C"(0),

and is generally a mixture of distributions as described by Chen & Liang (2010, Lemma 2).

A proof is given in the Appendix. This theorem shows that the asymptotic distribution of T is
the same as that of the likelihood ratio statistic for a normal mean problem with a misspecified
covariance. To see why, consider a random variable Z from the distribution N (0, I−1

11 I∗
11I−1

11 ). If
we incorrectly assume that Z follows N (h, I−1

11 ) with known covariance matrix I−1
11 but unknown

mean vector h ∈ C"(0), the corresponding loglikelihood ratio test for testing h = 0 based on
only one observation of Z follows the same distribution as T (Z).

The main difficulties when applying the general results in Theorem 1 are two-fold. First, for
boundary problems the approximating cone C"(θ0) has to be determined case by case. In § 2·3,
we give its form and the calculation of T (Z) for the examples of § 2·1. Further examples can
be found in Self & Liang (1987) and Chen & Liang (2010). Second, the calculation of I∗

11 is
more challenging than in Chen & Liang (2010) due to the presence of a nuisance parameter of
infinite dimension. To address this issue, the following corollary provides an explicit formula for
calculating I∗

11. In addition, this corollary deals with important special cases where the asymptotic
distribution of the pseudolikelihood ratio statistic T is simplified.

COROLLARY 1. Assume that the conditions of Theorem 1 hold and there exists a zero-mean
function α(θ0, φ0)(Oi) such that

Pm12(θ0, φ0){n1/2(φ̂ − φ0)} = n1/2Pnα(θ0, φ0) + op(1).

Then, as n → ∞, the asymptotic distribution of the pseudolikelihood ratio statistic T is the same
as the distribution of T (Z) defined in (1), where Z ∼ N (0, I−1

11 I∗
11I−1

11 ) with

I∗
11 = cov{m1(θ0, φ0)(Oi)} + 2 cov{m1(θ0, φ0)(Oi), α(θ0, φ0)(Oi)} + cov{α(θ0, φ0)(Oi)}.
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t1t0
t 2

R1
R2

region 1
region 2

region
3

~

CΩ(t0)

CΩ(t0)

(a) (b)

Fig. 1. The partitions of parameter space considered in Example 2:
(a) the parameter space for τ = (τ1, τ2), with the shaded region rep-
resenting admissible parameter values; (b) the transformed parameter
space, where the shaded region C̃"(τ0) represents admissible parame-
ter values. The asymptotic distribution of T is a mixture of χ2

2 , χ2
1 and

χ2
0 distributions, with mixing probabilities depending on the angles

in C̃"(τ0).

In addition, if P[{2m1(θ0, φ0) + α(θ0, φ0)}αT(θ0, φ0)] = 0 and P{m1(θ0, φ0)mT
1(θ0, φ0)} = I11,

we have I∗
11 = I11 and therefore Z ∼ N (0, I−1

11 ).

The proof follows directly from Theorem 1. When I∗
11 = I11, T has the same limiting distribu-

tion of the likelihood ratio statistic as it would have if the nuisance parameter were known, and
the naive test that ignores the boundary constraints by comparing the pseudolikelihood ratio test
statistic with χ2

d always leads to conservative Type I error rates and a loss of power.

2·3. Examples revisited
Example 1. Recall that the null hypothesis θ = 1 is on the boundary of the parameter space

" = [1, ∞). Then C"(0) = [0, ∞). Following the calculation in Shih & Louis (1995, p. 1389),
the conditions in Corollary 1 hold and we obtain I∗

11 = I11. Therefore, equation (1) reduces to

T (Z) = Z2I11 − Z2I (Z < 0)I11 = Z2I (Z > 0)I11,

where Z ∼ N (0, I−1
11 ). Thus, the asymptotic distribution of T is a mixture ofχ2

0 andχ2
1 with mixing

probabilities 0·5 and 0·5, where χ2
0 is a point mass at 0. Additional details on the verification of

Conditions 1–6 are given in the Supplementary Material.

Example 2. Denote the parameter value under the null hypothesis by θ0 = (1, 1)T. The approx-
imating cone in this case is C"(θ0) = {(t1, t2) : t1 ! t2 ! 0}. For ease of derivation, a simple
reparameterization from θ = (θ1, θ2)

T to τ = (τ1, τ2)
T, where τ1 = θ2 − 1 and τ2 = θ1 − θ2,

yields the approximating cone C"(τ0) = [0, ∞) × [0, ∞) with τ0 = (0, 0)T, which is illustrated
in Fig. 1(a).

By arguments similar to those in Shih & Louis (1995), equation (1) reduces to

T (Zτ ) = ZT
τ Iττ Zτ − inf

τ∈[0,∞)×[0,∞)
(Zτ − τ )TIττ (Zτ − τ ),

where Zτ ∼ N (0, I−1
ττ ) and Iττ = E{−∂2 log f (Oi; τ0, φ0)/∂τ 2}. Here φ0 = (S10, S20, S30) are

the true values of (S1, S2, S3), Oi = (Yi1, Yi2, Yi3), and f (·) is the density function of Oi. Let
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Iττ = RTR, where R is a 2 × 2 nonsingular matrix, and write C̃"(τ0) = {τ̃ : τ̃ = Rτ for any
τ ∈ C"(τ0)} and Z̃τ = RZτ . Then T (Zτ ) can be rewritten as

T (Z̃τ ) = |Z̃τ |2 − inf
τ̃∈C̃"(τ0)

∣∣Z̃τ − τ̃
∣∣2. (2)

The calculation of the second term in (2) depends on the location of Z̃τ relative to the boundary
of C̃"(τ0). Four different regions must be considered separately, as illustrated in Fig. 1(b): the
shaded region represents C̃"(τ0); the angle in the shaded area is less than 180◦, since the convexity
of C"(τ0) is preserved under the linear transformation τ → Rτ .

Denote the columns of R by R1 and R2, and denote the inner product of vectors a and b by
⟨a, b⟩ = aTb. Then (2), namely the asymptotic distribution of T , can be written as

T (Z̃τ ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|Z̃τ |2 ∼ χ2
2 , Z̃τ ∈ C̃"(τ0),(

⟨Z̃τ , R2⟩
|R2|

)2

∼ χ2
1 , Z̃τ ∈ region 1,

(
⟨Z̃τ , R1⟩

|R1|

)2

∼ χ2
1 , Z̃τ ∈ region 2,

0, Z̃τ ∈ region 3.

Since the distribution of Z̃τ is symmetric about the origin, the probabilities of Z̃τ being from
certain regions are completely determined by the angles of these regions (Chernoff, 1954). The
mixing probability for the shaded region is

ps = cos−1
[{

I (1,1)
ττ I (2,2)

ττ

}−1/2I (1,2)
ττ

]/
(2π), (3)

where I (i,j)
ττ is the (i, j) element of the 2 × 2 matrix Iττ . Therefore, under H0 : θ1 = θ2 = 1,

the asymptotic distribution of the pseudolikelihood ratio test T is a mixture of χ2
2 , χ2

1 and χ2
0

distributions with mixing probabilities ps, 0·5 and 0·5 − ps, respectively.

Example 3. We consider the cases " = [0, ∞) and " = R. In the former, the approximating
cone is C"(0) = [0, ∞). So (1) reduces to T (Z) = Z2I11 − Z2I (Z < 0)I11 = Z2I (Z > 0)I11,
where Z ∼ N (0, I−1

11 I∗
11I−1

11 ). The asymptotic distribution of T is a mixture of χ2
0 and I∗

11I−1
11 χ2

1
distributions with mixing probabilities 0·5 and 0·5. In the latter case, θ = 0 is an interior point
and C"(0) = R. Hence, the asymptotic distribution of T is weighted chi-squared, I∗

11I−1
11 χ2

1 .
Unlike the previous two examples, in which the nuisance parameter is estimated at an n1/2 rate,
the Nadaraya–Watson estimator π̂ in this example has a slower rate. The explicit forms of I∗

11
and I11 and details on verifying Conditions 1–6 are presented in the Supplementary Material.

3. SIMULATIONS

We conducted simulation studies in the settings of Examples 1 and 2. We first applied the
pseudolikelihood ratio test for the dependence between bivariate survival times in Example 1.
To generate the paired failure times, we used the rmvdc function in the R package copula (Yan,
2007; R Development Core Team, 2017). The marginal distributions of the failure times were



174 Y. CHEN ET AL.

Table 1. Empirical rejection rates (%) of the pseudolikelihood ratio test for testing association
between bivariate survival times in Example 1 over 5000 replications

Censoring % = 0% Censoring % = 15% Censoring % = 30%
n θ α = 5% α = 1% α = 5% α = 1% α = 5% α = 1%

Rejection Rejection Rejection Rejection Rejection Rejection

100 1·0 5·5 1·3 5·4 1·1 5·4 1·1
1·3 36·8 16·6 34·6 14·6 33·5 14·1
1·5 65·2 39·3 62·9 36·5 60·2 34·2
1·7 84·4 65·0 82·3 61·2 80·2 58·4
2·0 97·1 88·6 95·9 86·1 94·7 83·7

200 1·0 5·4 1·0 5·5 1·0 5·2 1·1
1·3 55·8 29·6 55·5 29·5 55·5 28·6
1·5 87·0 68·6 86·3 67·4 85·5 66·7
1·7 97·7 91·6 97·4 90·1 96·8 89·3
2·0 99·9 99·5 99·9 99·1 99·8 98·7

400 1·0 5·2 1·1 5·1 1·0 5·4 1·3
1·3 77·2 53·7 76·0 52·8 76·1 52·2
1·5 98·6 93·3 98·1 91·6 97·8 91·6
1·7 100·0 99·8 99·9 99·6 99·9 99·4
2·0 100·0 100·0 100·0 100·0 100·0 100·0

Weibull with shape parameter 2 and unit scale parameter. Independent censoring times were
generated from uniform distributions on (0, 5·4) and (0, 2·7), corresponding to 15% and 30%
censoring. To evaluate the size of the test, we drew bivariate failure times from a Clayton copula
with θ = 1, corresponding to an independence scenario. To evaluate the power of the tests, we
implemented a similar procedure but set θ to 1·3, 1·5, 1·7 and 2·0. We set the number of pairs
at 100, 200 or 400. For each generated dataset, we compared the pseudolikelihood ratio statistic
with the 0·5χ2

0 +0·5χ2
1 distribution. Table 1 shows the estimated levels of Type I error and power

from 5000 replications of the test. When the null hypothesis is true, the rejection rates of the
pseudolikelihood ratio test were all within 95% confidence intervals for the nominal levels, i.e.,
0·7–1·3% for nominal level 1% and 4·4–5·6% for nominal level 5%. A plot of the quantiles of
the test statistics against those of the asymptotic distribution indicates that the latter works well
at levels other than 5% and 1%; see the Supplementary Material. We also compared the test
statistics with a χ2

1 distribution as if the boundary constraint were ignored. This naive test was
too conservative under all scenarios considered; see the Supplementary Material. The power of
the pseudolikelihood ratio test increased with increasing values of the association parameter θ .
At the nominal level of 5%, the pseudolikelihood ratio test had about 80% power when θ was
1·7 at a sample size of 100, when θ was 1·5 at a sample size of 200, and when θ was 1·3 at a
sample size of 400. The power slightly decreased with increased censoring; thus censoring has a
relatively small effect on the power.

In the second simulation study, we tested for associations among all failure times within the
same village in the model of Example 2. To generate the multivariate failure times with the
hierarchical structure, we used the R package nacopula (Hofert & Mächler, 2011). The marginal
distributions of the failure times were chosen to be standard exponential. Independent censoring
times were generated from uniform distributions to have censoring percentages of 15% and
30%. For each generated dataset, we compared the pseudolikelihood ratio test statistic with
the (0·5 − p̂s)χ

2
0 + 0·5χ2

1 + p̂sχ
2
2 distribution, where p̂s can be estimated empirically by (3),

as described in § 2·3. Table 2 shows the estimated Type I error rates and power from 5000
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Table 2. Empirical rejection rates (%) of the pseudolikelihood ratio test for testing associations
in the model of Example 2 over 5000 replications

Censoring % = 0% Censoring % = 15% Censoring % = 30%
n (θ1, θ2) α = 5% α = 1% α = 5% α = 1% α = 5% α = 1%

Rejection Rejection Rejection Rejection Rejection Rejection

100 (1·0,1·0) 5·4 1·5 5·0 1·0 5·0 1·0
(1·1, 1·1) 32·5 15·0 27·1 12·3 25·1 10·1
(1·2, 1·1) 55·7 32·8 48·9 25·9 40·4 18·6
(1·3, 1·1) 74·1 52·6 67·8 44·7 57·1 32·4
(1·2, 1·2) 71·4 51·5 66·1 44·4 57·0 33·5
(1·3, 1·2) 84·4 68·1 78·1 59·7 70·1 45·3

200 (1·0, 1·0) 5·0 1·5 4·9 0·9 4·6 1·0
(1·1, 1·1) 53·7 32·3 45·7 25·2 37·7 18·5
(1·2, 1·1) 81·8 62·6 74·7 51·7 62·5 37·8
(1·3, 1·1) 95·1 86·1 90·6 76·0 82·4 61·6
(1·2, 1·2) 92·5 85·1 88·1 75·6 80·0 61·6
(1·3, 1·2) 98·5 95·4 96·5 90·3 91·8 79·5

400 (1·0, 1·0) 4·9 1·0 4·9 1·1 4·8 0·8
(1·1, 1·1) 78·5 61·1 69·7 49·4 57·4 35·9
(1·2, 1·1) 97·8 92·7 94·0 84·6 87·1 69·7
(1·3, 1·1) 100·0 99·4 99·5 97·6 97·6 91·3
(1·2, 1·2) 99·5 98·8 98·6 96·7 96·0 90·5
(1·3, 1·2) 100·0 99·9 100·0 99·8 99·5 98·2

simulations. Similar to our findings in Example 1, the proposed test had sizes close to nominal,
suggesting that the asymptotic approximation performs well. The naive test, which ignores the
boundary problem, led to conservative Type I error rates and substantial loss of power; see the
Supplementary Material.

4. DISCUSSION

If the maximizer of the log-pseudolikelihood L∗(θ) does not have a closed-form solution,
iterative algorithms are needed to maximize L∗(θ). Cheng (2013) provided a general algorithm
for maximizing the log profile likelihood and established its rate of convergence. Unlike the
algorithm in Cheng (2013), the pseudolikelihood approach does not require iterative updating of
the nuisance parameter estimate, since φ̂ is free of θ by definition. It is of interest to extend the
theoretical results on the algorithm in Cheng (2013) to pseudolikelihood estimation.

In regular statistical models, the likelihood ratio test is known to be asymptotically optimal,
whereas the pseudolikelihood ratio test may lose efficiency due to the use of a generic estimator
of the nuisance parameter. For a class of nonregular models in which the parameters are not
identifiable under the null hypothesis, Song et al. (2009) proposed optimal tests based on the
integrated profile likelihood. One future direction of research is to study the optimality of these
tests when the parameter of interest lies on the boundary of the parameter space.

This paper focuses on the pseudolikelihood, which relies on the availability of a consis-
tent estimator for the nuisance parameter that is free of the parameter of interest. In some
situations, such a consistent estimator may not be available. In such cases, likelihood ratio
inference can be considered. The theoretical results for the semiparametric likelihood ratio test
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(Murphy & van derVaart, 1997) with a boundary problem can be developed following an argument
similar to that given in the present paper. We leave this work for future investigation.
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APPENDIX

Proof of Lemma 1

We apply a second-order Taylor expansion to the pseudolikelihood ratio:

2nPn{m(θ , φ̂) − m(θ0, φ̂)}
= 2n1/2{n1/2(θ − θ0)}TPnm1(θ0, φ̂) + n1/2(θ − θ0)

TPnm11(θ̃ , φ̂)n1/2(θ − θ0), (A1)

where θ̃ = θ0 + t(θ − θ0) for some t ∈ [0, 1]. By the convexity of ", we have θ̃ ∈ ". By Condition 2,

n1/2(Pn − P)m1(θ0, φ̂) = n1/2(Pn − P)m1(θ0, φ0) + op(1).

Using Pm1(θ0, φ0) = 0 together with Condition 3, we obtain

n1/2Pnm1(θ0, φ̂) = n1/2Pm1(θ0, φ̂) + n1/2Pnm1(θ0, φ0) + op(1)

= n1/2Pnm1(θ0, φ0) + Pm12(θ0, φ0){n1/2(φ̂ − φ0)}
+ Op(n1/2∥φ̂ − φ0∥c2) + op(1). (A2)

Since ∥φ̂ − φ0∥ = Op(n−c1) and c1c2 > 1/2, we have n1/2∥φ̂ − φ0∥c2 = op(1). By Conditions 5 and 6,

Pnm11(θ̃ , φ̂) = −I11 + op(1). (A3)

Combining (A1), (A2) and (A3), we obtain the following quadratic expansion of the likelihood ratio statistic:

2nPn{m(θ , φ̂) − m(θ0, φ̂)} = 2{n1/2(θ − θ0)}Tn1/2Pnm1(θ0, φ0)

+ 2{n1/2(θ − θ0)}TPm12(θ0, φ0){n1/2(φ̂ − φ0)}
− n1/2(θ − θ0)

TI11n1/2(θ − θ0) + op(1 + n1/2|θ − θ0|)2, (A4)
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which is equivalent to

2nPn{m(θ , φ̂) − m(θ0, φ̂)} = −W (θ)TI11W (θ) + U (θ0)
TI−1

11 U (θ0) + op(1 + n1/2|θ − θ0|)2 (A5)

where W (θ) = −n1/2(θ − θ0) + I−1
11 U (θ0) and U (θ0) = n1/2Pnm1(θ0, φ0) + Pm12(θ0, φ0){n1/2(φ̂ − φ0)}.

This completes the proof.

Proof of Theorem 1

For notational simplicity, let ĥ = n1/2(θ̂ − θ0) and U = n1/2Pnm1(θ0, φ0) + Pm12(θ0, φ0){n1/2(φ̂ − φ0)}.
Replacing θ in (A4) by θ̂ , we have

2nPn{m(θ̂ , φ̂) − m(θ0, φ̂)} = 2ĥTU − ĥTI11ĥ + op(1 + |ĥ|)2.

Since Pn{m(θ̂ , φ̂) − m(θ0, φ̂)} ! 0, U is bounded in probability by Condition 4 and I11 is positive definite
by Condition 5, we have

0 " K |ĥ| − K ′|ĥ|2 + op(1 + |ĥ|)2

for some positive constants K and K ′. If |ĥ| = op(1), then |ĥ| = Op(1). Otherwise, 1 + |ĥ| is of the order
of |ĥ|, and we have K ′|ĥ|2 " K |ĥ| + op(|ĥ|2). This implies that |ĥ| = Op(1) and thus ĥ is uniformly tight.
Write Wh = −h + I−1

11 U . In the following, we shall prove that

2nPn{m(θ̂ , φ̂) − m(θ0, φ̂)} − sup
h∈C"(0)

(−W T
h I11Wh + U TI−1

11 U ) = op(1). (A6)

By Condition 5, we have that U converges weakly to N (0, I ∗
11). By (A6) and the continuous mapping

theorem,

sup
h∈C"(0)

(−W T
h I11Wh + U TI−1

11 U ) → sup
h∈C"(0)

{
−(Z − h)TI11(Z − h) + ZTI11Z

}

as n → ∞, where Z ∼ N (0, I−1
11 I ∗

11I−1
11 ). Hence, Slutsky’s theorem implies that the pseudolikelihood ratio

test 2nPn{m(θ̂ , φ̂) − m(θ0, φ̂)} converges weakly to suph∈C"(0){−(Z − h)TI11(Z − h) + ZTI11Z}.
It remains to show that (A6) holds. Since θ̂ is root-n consistent, (A5) gives

2nPn{m(θ̂ , φ̂) − m(θ0, φ̂)} − sup
h∈"n

(−W T
h I11Wh + U TI−1

11 U ) = op(1),

where "n = {n1/2(θ − θ0) : θ ∈ "}. Comparing with (A6), we only need to show that inf h∈"n W T
h I11Wh =

inf h∈C"(0) W T
h I11Wh +op(1). Similar to the proof of root-n convergence of θ̂ , we can show that the minimizer

of W T
h I11Wh in "n is bounded in probability. By the definition of "n, for any h ∈ "n with |h| = O(1),

there exists θ ∈ " such that h = n1/2(θ − θ0). By the definition of the approximating cone, there exists a
sequence θ̄ ∈ C"(θ0) such that |θ̄ − θ | = o(|θ − θ0|) = o(n−1/2). Let h̄ = n1/2(θ̄ − θ0). We have that h̄
belongs to the cone C"(0) and |h̄ − h| = o(1). Then

(I−1
11 U − h)I11(I−1

11 U − h) = (I−1
11 U − h̄ + h̄ − h)I11(I−1

11 U − h̄ + h̄ − h)

! (I−1
11 U − h̄)I11(I−1

11 U − h̄) − Op(|h̄ − h|) − Op(|h̄ − h|2)
= (I−1

11 U − h̄)I11(I−1
11 U − h̄) + op(1).
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Hence

inf
h∈"n

(I−1
11 U − h)I11(I−1

11 U − h) ! inf
h∈"n

(I−1
11 U − h̄)I11(I−1

11 U − h̄) + op(1)

= (I−1
11 U − h̄)I11(I−1

11 U − h̄) + op(1)

! inf
h̄∈C"(0)

(I−1
11 U − h̄)I11(I−1

11 U − h̄) + op(1). (A7)

Similarly, we can show that the minimizer of W T
h I11Wh in C"(0) is bounded in probability. For any h̄ ∈ C"(0)

with |h̄| = O(1), there exists θ̄ ∈ C"(θ0) satisfying h̄ = n1/2(θ̄ −θ0). By the definition of the approximating
cone, there exists a sequence θ ∈ " such that |θ̄ − θ | = o(|θ̄ − θ0|) = o(n−1/2). Let h = n1/2(θ − θ0). It
can be seen that h ∈ "n and |h̄ − h| = o(1). Following arguments similar to those leading to (A7), we can
show that

inf
h̄∈C"(0)

(I−1
11 U − h̄)I11(I−1

11 U − h̄) ! inf
h∈"n

(I−1
11 U − h)I11(I−1

11 U − h) + op(1).

Together these results imply that

inf
h̄∈C"(0)

(I−1
11 U − h̄)I11(I−1

11 U − h̄) = inf
h∈"n

(I−1
11 U − h)I11(I−1

11 U − h) + op(1).

This completes the proof of (1). When θ0 is an interior point, (1) reduces to T (Z) = ZTI11Z upon taking
h = Z , which is a weighted sum of d independent χ 2

1 variables with the weights being the eigenvalues of
I ∗

11I−1
11 by Theorem 4.4.4 of Graybill (1976). When θ0 is a boundary point of ", (1) has the same form as

equation (2) in Chen & Liang (2010). Thus, the distribution of T (Z) follows from Lemma 2 of Chen &
Liang (2010).
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SUMMARY

The Supplementary Materials contain more technical details on Examples 1, 2 and 3, more
details on simulation studies, and a data example. It is organized as follows. The technical details
on Examples 1, 2 and 3 are shown in Sections A, B, C. In particular, the regularity conditions 20

C1–C6 for Examples 1 and 3 are verified in Sections A and C. Simulation results for the naive
test are shown in Section D, and some additional simulation results comparing the empirical
quantiles of the pseudolikelihood ratio test statistics and the theoretical quantiles are shown in
Section E. Section F contains the analysis of a real data set.

A. TECHNICAL DETAILS ON EXAMPLE 1 25

Recall that in Example 1, we have the log likelihood
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1/(1�✓)�2. After some tedious algebra, we can
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show that
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for ✓ > 1 and 1 + log u+ log v + log u log v for ✓ = 1,

@

@✓
log

⇢

@

@u
C

✓

(u, v)

�

= � log u+

1

(1� ✓)2
log(u1�✓

+ v1�✓ � 1) +

⇣

1� 1

1� ✓

⌘u1�✓

log u+ v1�✓

log v

u1�✓

+ v1�✓ � 1

,

for ✓ > 1 and log u log v for ✓ = 1,

@

@✓
log

⇢

@

@v
C

✓

(u, v)

�

= � log v +
1

(1� ✓)2
log(u1�✓

+ v1�✓ � 1) +

⇣

1� 1

1� ✓

⌘u1�✓

log u+ v1�✓

log v

u1�✓

+ v1�✓ � 1

,

for ✓ > 1 and log u log v for ✓ = 1, and finally

@

@✓
logC

✓

(u, v) =
1

(1� ✓)2
log(u1�✓

+ v1�✓ � 1)� 1

1� ✓

u1�✓

log u+ v1�✓

log v

u1�✓

+ v1�✓ � 1

,

for ✓ > 1 and log u log v for ✓ = 1. Putting all pieces together, we can find the explicit form of
m(✓, S1, S2) and m1(✓, S1, S2), which are defined in Section 2.2 with � = (S1, S2). In the following,
we now check conditions C1–C6 under some mild regularity conditions. Assume that ✓0 is the unique
maximizer of PL(✓, S10, S20), where S10, S20 are the true values of S1 and S2. This is a standard identi-30

fiability condition in the literature. We also assume that the end of study time is ⌧ and there exists a small
constant � > 0 such that S10(⌧) � � and S20(⌧) � �. This is mainly for some technical reason, because in
the log likelihood function we have logS1(y) and logS2(y), which diverge to infinity if S1(y) and S2(y)
are close to 0. The norm for the nuisance function is taken as kS1 � S0

1k = sup

t2[0,⌧ ] |S1(t)� S0
1(t)|.

In addition, to apply the technique in empirical processes, we assume ⌦ is compact. For simplicity, we35

consider ⌦ = [1, D], for some large constant D. Assume G10(⌧) > 0 and G20(⌧) > 0, where G10(·) and
G20(·) are the true survival functions of the censoring times C1 and C2. This assumption is used to show
the consistency of the Kaplan–Meier estimator.

To check the consistency of ˆ✓, Theorem 2.12 in Kosorok (2008) can be applied if

sup

✓2⌦,kS1�S10k⌘n,kS1�S10k⌘n

|P
n

m(✓, S1, S2)� Pm(✓, S10, S20)| = o
p

(1), (A1)

for some ⌘
n

converging to 0. This is because the Kaplan–Meier estimator is consistent for S10 and S20.
Then (A1) holds, if

sup

✓2⌦,kS1�S10k⌘n,kS1�S10k⌘n

|Pm(✓, S1, S2)� Pm(✓, S10, S20)| = o
p

(1),

and F
m

= {m(✓, S1, S2) : ✓ 2 ⌦, kS1 � S10k  ⌘, kS1 � S10k  ⌘} for some ⌘ > 0 is Glivenko–40

Cantelli. The first condition holds by applying the dominated convergence theorem, because we can easily
check that | log c

✓

(u, v)|, | log @C
✓

(u, v)/@u|, | log @C
✓

(u, v)/@v| and | logC
✓

(u, v)| for any ✓ 2 ⌦ and
�/2  u, v  1 are bounded above by a constant. Define F1 = {logS1 : kS1 � S10k  ⌘}. We know that
the set of all survival functions is Vapnik–Chervonenkis-major (van der Vaart & Wellner, 1996). Since S1

belongs to a subset of all survival functions, {S1 : kS1 � S10k  ⌘} is also Vapnik–Chervonenkis-major45

and so is F1 by the definition of Vapnik–Chervonenkis-major. Then, we can apply Theorem 2.6.14 in
van der Vaart & Wellner (1996) to conclude that F1 is a Donsker class. It remains to check that their in-
tegrability condition in Theorem 2.6.14 holds, that is

R

{pr(F > x)}1/2dx < 1, where F is the envelop
function. This is true, because for any t 2 [0, ⌧ ], | logS1(t)|  | log(� � ⌘)|, provided ⌘ is small enough.
Then, we can take the envelope function to be F = | log(� � ⌘)|. The integrability condition holds. Thus,50

F1 is a Donsker class. In the following, define

F⇤
2 = {log(S1�✓

1 + S1�✓

2 � 1)/(1� ✓) : kS1 � S10k  ⌘, kS2 � S20k  ⌘, 1 < c  ✓  D}, (A2)
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and we check F⇤
2 is also a Donsker class. This is because {S1 : kS1 � S10k  ⌘}, {S2 : kS2 � S20k  ⌘}

and {1 < c  ✓  D} are all Donsker. If the function g(x1, x2, x3) = log(x1�x1
2 + x1�x1

3 � 1)/(1� x1)

is Lipschitz, then Theorem 2.10.6 in van der Vaart & Wellner (1996) implies F⇤
2 is a Donsker class. It is

easily seen that

@

@x1
g(x1, x2, x3) =

1

(1� x1)
2
log(x1�x1

2 + x1�x1
3 � 1)� 1

1� x1

x1�x1
2 log x2 + x1�x1

3 log x3

x1�x1
2 + x1�x1

3 � 1

.

Since x1 2 [c,D], x2, x3 2 [� � ⌘, 1], this partial derivative is bounded above by a constant uniformly
over x1, x2, x3. Similarly, the partial derivatives of g(x1, x2, x3) with respect to x2 and x3 are also
bounded. This verifies the Lipschitz condition in Theorem 2.10.6 of van der Vaart & Wellner (1996).
Consider F2 := {log(S1�✓

1 + S1�✓

2 � 1)/(1� ✓) : kS1 � S10k  ⌘, kS2 � S20k  ⌘, ✓ 2 ⌦}. Follow- 55

ing the proof of Theorem 2.10.2 in van der Vaart & Wellner (1996), F2 is also a Donsker class. Similarly,
define F3 = {log(S1�✓

1 + S1�✓

2 � 1) : kS1 � S10k  ⌘, kS2 � S20k  ⌘, ✓ 2 ⌦}, and we can verify that
F3 is also a Donsker class. It is easy to check that m(✓, S1, S2) is obtained by adding or multiplying func-
tions in F1, F2, F3 and {✓ : ✓ 2 ⌦}. By the permanence of Donsker property, F

m

is Donsker and there-
fore Glivenko–Cantelli. This verifies the consistency of ˆ✓. In addition, we have k ˆS1 � S10k = O

p

(n�1/2
) 60

and k ˆS2 � S20k = O
p

(n�1/2
) for the Kaplan–Meier estimator; see Section 2.2.5 of Kosorok (2008). This

justifies Condition C1.
To check Condition C2, we only need to prove that F

m1 = {m1(✓, S1, S2) : ✓ 2 ⌦, kS1 � S10k 
⌘, kS1 � S10k  ⌘} for some ⌘ > 0 is a Donsker class with a square integrable envelope function. The
proof is very similar to the previous one. We omit the details. 65

In the following, we verify Condition (C3). In fact, because ˆS1 and ˆS2 have the root-n rate, it suffices
to show the following weaker version of Condition (C3): for any kS1 � S10k = O(n�1/2

) and kS2 �
S20k = O(n�1/2

), it remains to show that
�

�

�

P {m1(✓0, S1, S2)�m1(✓0, S10, S20)�m12(✓0, S10, S20)[S � S0]}
�

�

�

= o(n�1/2
), (A3)

where S = (S1, S2) and S0 = (S10, S20). By Proposition 1 of Bickel et al. (1993), (A3) holds if for some
✏ > 0, 70

sup

n

�

�

�

@

@t
Pm1(✓0, S10 + ts1, S20 + ts2)

�

�

�

: ks1k+ ks2k  1, |t| < ✏
o

< 1. (A4)

It is easy to see that

@

@t
Pm1(✓0, S10 + ts1, S2 + ts2)

=

@

@t

Z Z

h

�1�2{1 + log(S10 + ts1) + log(S20 + ts2)}+ log(S10 + ts1) log(S20 + ts2)
i

dP.

By the assumption that S10(⌧) � � and S20(⌧) � � for some constant � > 0, |@ log{S10(y) +
ts1(t)}/@t| = |s1(y)/{S10(y) + ts1(y)}|  1/{S10(y)� t}  2/� for ✏ small enough. This implies that
the derivative of log{S10(y) + ts1(y)} is uniformly bounded by a constant. Similarly, we can check that
the derivative of the above integrand is uniformly bounded and therefore integrable, because �1�2 has 75

finite expectation. By the dominated convergence theorem, we can interchange the order of derivative and
integral. This leads to

�

�

�

@

@t
Pm1(✓0, S10 + ts1, S2 + ts2)

�

�

�

=

�

�

�

Z Z

n

�1�2

⇣

1 +

s1
S10 + ts1

+

s2
S20 + ts2

⌘

+

s1
S10 + ts1

log(S20 + ts2) +
s2

S20 + ts2
log(S10 + ts1)

o

dP
�

�

�


Z Z

n

�1�2

⇣

1 +

�

�

�

s1
S10 + ts1

�

�

�

+

�

�

�

s2
S20 + ts2

�

�

�

⌘

+

�

�

�

s1
S10 + ts1

log(S20 + ts2)
�

�

�

+

�

�

�

s2
S20 + ts2

log(S10 + ts1)
�

�

�

o

dP.
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As seen above, |s1(y)/{S10(y) + ts1(y)}|  2/�, and similarly | log{S10(y) + ts1(y)}|  � log(�/2)
for ✏ small enough. Then there exists a constant C > 0 such that

�

�

�

@

@t
Pm1(✓0, S10 + ts1, S2 + ts2)

�

�

�

 C

Z Z

�1�2dP  C

Z

�1dP < 1.

This verifies (A4) and the smoothness condition of Condition C3.
The joint asymptotic normality in Condition C4 and the existence of information and variance matrices

in Condition C5 can be verified following the proof of Theorem 2 in Shih & Louis (1995).80

Finally, we shall verify Condition C6. As an illustration, we focus on @2
log c

✓

(u, v)/@✓2. That is

@2

@✓2
log c

✓

(u, v) = � 1

✓2
� 2

(✓ � 1)

3
log(u1�✓

+ v1�✓ � 1)� 2

(✓ � 1)

2

u1�✓

log u+ v1�✓

log v

u1�✓

+ v1�✓ � 1

�
⇣

2� 1

1� ✓

⌘{u1�✓

(log u)2 + v1�✓

(log v)2}(u1�✓

+ v1�✓ � 1)

(u1�✓

+ v1�✓ � 1)

2

+

⇣

2� 1

1� ✓

⌘{u1�✓

log u+ v1�✓

log v}2

(u1�✓

+ v1�✓ � 1)

2
, (✓ > 1)

and �1 + 4 log u log v for ✓ = 1. To prove F
m11 = {m11(✓, S1, S2) : ✓ 2 ⌦, kS1 � S10k  ⌘, kS1 �

S10k  ⌘} for some ⌘ > 0 is Glivenko–Cantelli, we basically follow the similar step to the proof of
Condition (C1) by checking equation (A2) is a Donsker class. In fact, it suffices to show that each piece
of @2

log c
✓

(u, v)/@✓2 is a Donsker class and apply the permanence of Donsker property. The detailed85

verification is very tedious and is omitted.

B. LIKELIHOOD FUNCTION ON EXAMPLE 2
Let n denote the number of villages. For i = 1, . . . , n, write u

i

= (u1i, u2i, u3i)
T for

(S1(Y1i), S2(Y2i), S3(Y3i))
T, and let �

i

= (�1i, �2i, �3i) be the censoring indicators. Then given u
i

and
�
i

, i = 1, . . . , n, the likelihood of ✓ = (✓1, ✓2) and � = (S1, S2, S3) is proportional to90

exp{L(✓,�)}

=

n

Y

i=1

 



✓2u
�✓2
1i (u2iu3i)

�✓1

⇢

(✓1 � ✓2)A
✓2�2✓1+1

✓1�1

i

B
2✓2�1
1�✓2
i

+ (2✓2 � 1)A
2(✓2�✓1)

✓1�1

i

B
3✓2�2
1�✓2
i

��

Q3
q=1 �qi

⇥
✓

u�✓2
1i B

✓2
1�✓2
i

◆

�1i(1��2i)(1��3i) 3
Y

j=2

✓

u�✓1
ji

A
✓2�✓1
✓1�1

i

B
✓2

1�✓2
i

◆

Q3

q=1
(1��qi)�ji

1��ji

⇥
3
Y

l=2

✓

✓2u
�✓2
1i u�✓1

li

A
✓2�✓1
✓1�1

i

B
2✓2�1
1�✓2
i

◆

�1i

Q3

q=2
(1��qi)�li

1��li

"

(u2iu3i)
�✓1

n

✓2A
2(✓2�✓1)

✓1�1

i

B
2✓2�1
1�✓2
i

+(✓1 � ✓2)A
✓2�2✓1+1

✓1�1

i

B
✓2

1�✓2
i

o

#(1��1i)�2i�3i ✓

B
1

1�✓2
i

◆

Q3
q=1(1��qi)

!

where A
i

= u1�✓1
2i + u1�✓1

3i � 1 and B
i

= u1�✓2
1i + (u1�✓1

2i + u1�✓1
3i � 1)

(✓2�1)/(✓1�1) � 1. In principle,
one can follow the similar steps to verify Conditions C1–C6. However, due to the more complex structure
of the log likelihood in this example, the score function and information matrix are much more involved.
We leave the detailed verification of regularity conditions for future investigations.
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C. TECHNICAL DETAILS ON EXAMPLE 3 95

Recall that the weighted log likelihood function is

L(✓,⇡) =

n

X

i=1

V
i

⇡(X
i

)

log f(Y
i

; ✓).

In this example, ⇡ is the nuisance parameter, which is comparable to � as defined in Section 2.2. This
yields

m(✓,⇡) =
V

⇡(X)

log f(Y ; ✓), m1(✓,⇡) =
V

⇡(X)

@

@✓
{log f(Y ; ✓)}.

In the following, we check conditions C1–C6 under some mild regularity conditions. Assume that ✓0 is
the unique maximizer of P log f(Y ; ✓). This is a standard identifiability condition in the literature. For
simplicity, we assume X is a continuous univariate covariate within [0, 1]. If X is discrete, one can use
the sample average estimator to estimate ⇡(·), which has the parametric root-n rate. To illustrate our
method for nonparametric estimators, we focus on the continuous case. We also assume that there ex- 100

ists a small constant � > 0 such that ⇡0(x) � � for any x 2 [0, 1], where we let ⇡0 denote the true value
of ⇡. This assumption is standard in the missing data literature; see Robins et al. (1994) and Scharf-
stein et al. (1999). Let F denote the class of functions f on [0, 1] such that sup

x2[0,1] |f(x)|  1 and
any rth derivative is uniformly bounded for 1  r  k for some integer k > 0. Assume that ⇡0 2 F
and p 2 F , where p(x) is the density function of X . Also assume 0 < �  p(x) < 1/�. The norm for 105

the nuisance function is taken as k⇡ � ⇡0k = sup

x2[0,1] |⇡(x)� ⇡0
(x)|. We assume ⌦ is compact. For

simplicity, we take ⌦ = [A1, A2] for some constants A1 and A2. Assume sup

✓2⌦ | log f(Y ; ✓)|  g(Y ),
sup

✓2⌦ |@ log f(Y ; ✓)/@✓|  g(Y ), and sup

✓2⌦ |@2
log f(Y ; ✓)/@✓2|  g(Y ) for some integrable func-

tion g(Y ). In addition, suppose @2
log f(Y ; ✓)/@✓2 is a continuous function of ✓. Assume the information

matrix and covariance matrix 110

I11 = �P
h @2

@✓2
{log f(Y ; ✓)}

i

, I⇤11 = P
nS2

(Y ; ✓0)

⇡0(X)

o

� P
h{1� ⇡0(X)}E2{S(Y ; ✓0) | X}

⇡0(X)

i

(C1)

are positive definite, where S(Y ; ✓) = @ log f(Y ; ✓)/@✓.
Recall that the Nadaraya–Watson estimator of ⇡(x) is defined as

⇡̂(x) =

P

n

i=1 Vi

K
h

(x�X
i

)

P

n

i=1 Kh

(x�X
i

)

,

where K
h

(·) = K(·/h) and K(·) is a kernel function of order k and h is the bandwidth parameter. By
van der Vaart (2000), the estimator ⇡̂ satisfies k⇡̂ � ⇡0k = O

P

{(nh)�1/2
+ hk}. Assume that h = n�a

for some a > 0. In the following, we can show that we need 1/(2k) < a < 1/2 to check some of con-
ditions. We also comment that the optimal bandwidth is taken as a = 1/(2k + 1), which is smaller than 115

1/(2k). In other words, we need to choose a smaller h to under-smooth the curve.
To verify Condition C1, we first check the consistency of ˆ✓. In the following, we always assume ⇡ 2 F

without stated explicitly. Similar to Example 1, Theorem 2.12 in Kosorok (2008) can be applied if

sup

✓2⌦,k⇡�⇡0k⌘n

|P
n

m(✓,⇡)� Pm(✓,⇡0)| = o
p

(1), (C2)

for some ⌘
n

converging to 0. To show (C2), we first consider

lim

k⇡�⇡0k!0
sup

✓2⌦
|Pm(✓,⇡)� Pm(✓,⇡0)|  lim

k⇡�⇡0k!0

Z

sup

✓2⌦
|m(✓,⇡)�m(✓,⇡0)|dP

 lim

k⇡�⇡0k!0

Z

g(Y )|⇡�1
(X)� ⇡�1

0 (X)|dP = o
p

(1),

where the last step follows from the dominated convergence theorem to interchange the limit with integral 120

and the fact that g(Y ) is integrable. Next we need to show that F
m

= {m(✓,⇡) : ✓ 2 ⌦, k⇡ � ⇡0k  ⌘}
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for some ⌘ > 0 is Glivenko–Cantelli. By Example 19.10 in van der Vaart (2000), F is Donsker. Since
⇡(x) � � � ⌘ > 0 for ⌘ sufficiently small, {1/⇡ : k⇡ � ⇡0k  ⌘} is also Donsker by Example 19.20 in
van der Vaart (2000). In addition, our assumptions ensure that log f(Y ; ✓) is Lipschitz in ✓. Hence, the
class of functions {log f(Y ; ✓) : ✓ 2 ⌦} is Donsker by Example 19.7 in van der Vaart (2000). By the125

permanence of Donsker property, F
m

is Donsker and therefore Glivenko–Cantelli. This verifies the con-
sistency of ˆ✓. This justifies Condition C1.

To show Condition C2, we only need to prove that F
m1 = {m1(✓,⇡) : ✓ 2 ⌦, k⇡ � ⇡0k  ⌘} for some

⌘ > 0 is a Donsker class. The proof is the same as that of F
m

.
In the following, we verify Condition C3. In fact, we will show that Condition C3 holds with c2 = 2.

Since by Condition C1, we have c1 = min{(1� a)/2, ak}. Hence, c1c2 = min{(1� a), 2ak} > 1/2
holds as long as a < 1/2 and ak > 1/4. Consider the following parametric submodel ⇡

t

= ⇡0 + (⇡ �
⇡0)t. It has @⇡

t

/@t|
t=0 = ⇡ � ⇡0. Then, by definition

m12(✓0,⇡0)[⇡ � ⇡0] =
@2

@✓@t
m(✓0,�t

)

�

�

�

�

t=0

= �V (⇡ � ⇡0)

⇡2
0

@

@✓
{log f(Y ; ✓)}.

Then, we have that130

�

�

�

P {m1(✓0,�)�m1(✓0,�0)�m12(✓0,�0)[�� �0]}
�

�

�

=

�

�

�

Z

V
@

@✓
{log f(Y ; ✓)}

⇣

1

⇡
� 1

⇡0
+

⇡ � ⇡0

⇡2
0

⌘

dP
�

�

�


Z

�

�

�

@

@✓
{log f(Y ; ✓)}

�

�

�

(⇡ � ⇡0)
2

⇡⇡2
0

dP

 k⇡ � ⇡0k22/�3
Z

g(Y )dP = O(k⇡ � ⇡0k2),

where ⇡ is sufficiently close to ⇡0. Thus, Condition C3 holds with c2 = 2.
Next, we check Condition C4. The key part is to find the influence function of Pm12(✓0,⇡0)[n

1/2
(⇡̂ �

⇡0)]. Denote the kernel estimator of density of X by

p̂(x) =
1

nh

n

X

i=1

K
h

(x�X
i

).

Let S(Y ; ✓) = @ log f(Y ; ✓)/@✓ denote the score function of Y . Simple algebra shows that

�Pm12(✓0,⇡0)[n
1/2

(⇡̂ � ⇡0)] =

Z

n1/2{⇡̂(x)� ⇡0(x)}
⇡0(x)

@

@✓
{log f(y; ✓0)}dP

=

1

n1/2

n

X

i=1

Z

S(y; ✓0)

⇡0(x)p̂(x)
{V

i

� ⇡0(Xi

)} 1
h
K

h

(x�X
i

)dP

+

1

n1/2

n

X

i=1

Z

S(y; ✓0)

⇡0(x)p̂(x)
{⇡0(Xi

)� ⇡0(x)}
1

h
K

h

(x�X
i

)dP.(C3)

Denote I1 and I2 for the two terms of equation (C3), respectively. Since 0 < �  p(x) < 1/�, we have
sup

x2[0,1] |p(x)/p̂(x)� 1| = o
p

(1), where p(x) is the density of X . Thus,

I1 =

1

n1/2

n

X

i=1

Z

S(y; ✓0)

⇡0(x)
{V

i

� ⇡0(Xi

)} 1
h
K

h

(x�X
i

)p(y | x)dydx+ o
p

(1) 135

=

1

n1/2

n

X

i=1

Z

S(y; ✓0)

⇡0(Xi

+ uh)
{V

i

� ⇡0(Xi

)}K(u)p(y | X
i

+ uh)dydu+ o
p

(1)

=

1

n1/2

n

X

i=1

{V
i

� ⇡0(Xi

)}
Z

E{S(Y ; ✓0) | Xi

+ uh}
⇡0(Xi

+ uh)
K(u)du+ o

p

(1),
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where the second equation follows from the change of variable by introducing u = (x�X
i

)/h. Follow-
ing the arguments in page 2087 of Huang & Wang (2010), we can show that

I1 =

1

n1/2

n

X

i=1

{V
i

� ⇡0(Xi

)}E{S(Y ; ✓0) | Xi

}
⇡0(Xi

)

+ o
p

(1).

Applying the Taylor expansion of ⇡0(Xi

)� ⇡0(x), we can show that

I2 = � 1

n1/2

n

X

i=1

Z

S(y; ✓0)

⇡0(x)
{⇡0(x)� ⇡0(Xi

)} 1
h
K

h

(x�X
i

)p(y | x)dydx+ o
p

(1)

= � 1

n1/2

n

X

i=1

Z

S(y; ✓0)

⇡0(x)

n

k�1
X

j=1

A
ij

(x�X
i

)

j

+R
i

(x�X
i

)

k

o

1

h
K

h

(x�X
i

)p(y | x)dydx+ o
p

(1), 140

where A
ij

= ⇡
(j)
0 (X

i

)/j!, R
i

= ⇡
(k)
0 (

˜X
i

)/k! and ˜X
i

lies between X
i

and x. Similarly, letting u = (x�
X

i

)/h, we have

I2 = � 1

n1/2

n

X

i=1

Z

S(y; ✓0)

⇡0(Xi

+ uh)

n

k�1
X

j=1

A
ij

(uh)j +R
i

(uh)k
o

K(u)p(y | X
i

+ uh)dydu+ o
p

(1)

= � 1

n1/2

n

X

i=1

Z

E{S(Y ; ✓0) | Xi

+ uh}
⇡0(Xi

+ uh)

n

k�1
X

j=1

A
ij

(uh)j +R
i

(uh)k
o

K(u)du+ o
p

(1).

By the definition of the kernel function, we have
R

ujK(u)du = 0 for j = 1, ..., k � 1. Then, the argu-
ments in Wang et al. (2002); Huang & Wang (2010) yield that

|I2| 
hk

n1/2

n

X

i=1

|E{S(Y ; ✓0) | Xi

}|
⇡0(Xi

)

Z

|R
i

||u|kK(u)du+ o
p

(1) = O
P

(hkn1/2
).

Since h = n�a, we have |I2| = o
p

(1) provided a > 1/(2k). Combining the asymptotic expansions of I1
and I2, we prove that

Pm12(✓0,⇡0)[n
1/2

(⇡̂ � ⇡0)] = � 1

n1/2

n

X

i=1

{V
i

� ⇡0(Xi

)}E{S(Y ; ✓0) | Xi

}
⇡0(Xi

)

+ o
p

(1).

Applying the multivariate central limit theorem and Slutsky’s theorem, we show that n1/2P
n

m1(✓0,�0)

and Pm12(✓0,�0)[n
1/2

(

ˆ�� �0)] jointly converge in distribution to N(0,⌃), where

⌃11 = P
nS2

(Y ; ✓0)

⇡0(X)

o

, ⌃12 = �P
h{1� ⇡0(X)}E2{S(Y ; ✓0) | X}

⇡0(X)

i

,

and

⌃22 = P
h{1� ⇡0(X)}E2{S(Y ; ✓0) | X}

⇡0(X)

i

.

To check Condition C5, it is easily seen that the information matrix has the form of I11 in (C1) by 145

applying the double expectation rule and the assumption that E{V w(Y ) | X} = E(V | X)E{w(Y ) |
X} = ⇡0(X)E{w(Y ) | X} for any function w. By our assumption, I11 is positive definite. Similarly, I⇤11
has the desired form in (C1) and is also positive definite by assumption.

To show Condition C6, we need to show the following two parts. First,

lim

k⇡�⇡0k!0
lim

✓!✓0

|Pm11(✓,⇡)� Pm11(✓0,⇡0)| = o
p

(1), where m11(✓,⇡) =
V

⇡(X)

@2

@✓2
log f(Y ; ✓).

Similar to the proof of Condition C1, we can show that |m11(✓,⇡)�m11(✓0,⇡0)| is upper bounded
by an integrable function, such that the dominated convergence theorem can be applied to interchange150
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the limit with integral. Second, we need to show F
m11 = {m11(✓,⇡) : ✓ 2 ⌦, k⇡ � ⇡0k  ⌘} for some

⌘ > 0 is Glivenko–Cantelli. The key is to apply Example 19.8 of van der Vaart (2000) to conclude that
{@2

log f(Y ; ✓)/@✓2 : ✓ 2 ⌦} is Glivenko–Cantelli. By the Glivenko–Cantelli preservation theory in The-
orem 9.26 of Kosorok (2008), F

m11 is Glivenko–Cantelli. Then the verification of Condition C6 is com-
plete.155

D. SIMULATION

We conducted three simulation studies under the settings of Examples 1 and 2. We compared the Type
I errors and power of the proposed test and the naive test in which the boundary problem is ignored and
the associated p-value is derived from chi-squared distributions. We first applied the pseudolikelihood
ratio test to test for the dependence between bivariate survival times as we described in Example 1. The160

same data generating procedures are used. For each generated dataset, we compared the pseudolikelihood
ratio test statistic with the distribution of 0.5�2

0 + 0.5�2
1, denoted as the proposed test, and also with �2

1,
denoted as the naive test. Table 1 shows the estimated Type I errors and power from 5000 replications of
the tests. The nominal level for the type I error was set to 0.05 and 0.01. When the null hypothesis is true,
the Type I errors of the proposed test were all within 95% confidence intervals for the nominal levels,165

i.e., 0.007–0.013 for the nominal level of 0.01 and 0.044–0.056 for the nominal level of 0.05 under all
scenarios considered. This suggests that the asymptotic approximation for the pseudolikelihood ratio test
is adequate for moderate sample sizes. In contrast, the naive test was too conservative under all scenarios
considered: range of Type I errors is [0.027, 0.030] at the nominal level of 0.05 and [0.005, 0.008] at the
nominal level of 0.01. As expected, the powers of the two tests increased with the increasing values of the170

association parameter ✓. At the nominal level of 0.05, the proposed test had about 80% power when ✓ was
1.7 at a sample size of 100, and when ✓ was 1.5 at a sample size of 200, and when ✓ was 1.3 at a sample
size of 400. The power slightly decreased with the increase in the degree of censoring, indicating that the
censoring percentage has a relatively small impact on the power. In a power comparison, the proposed
test exhibited a superior level of power compared to the naive test: at nominal levels of 0.05 and 0.01, the175

naive test resulted in power losses of up to 32.2% and 55.1%, respectively.
In the second simulation study, we applied the pseudolikelihood ratio test to test for associations be-

tween all failure times within the same village in the model described in Example 2. Again, the same
data generating procedures are used. For each generated dataset, we compared the pseudolikelihood ratio
test statistic with the distribution of (0.5� p̂

s

)�2
0 + 0.5�2

1 + p̂
s

�2
2, denoted as the proposed test, and also180

with the distribution of �2
2, denoted as the naive test. Table 2 shows the estimated Type I errors and pow-

ers from 5000 simulations. Similar to our findings in Example 1, the proposed test had sizes close to the
nominal levels, suggesting the asymptotic approximation for the test performs well. In contrast, the naive
test, which ignores the boundary problem, led to conservative Type I errors and substantial loss of power.

In summary, simulation studies under two different models suggest that the semiparametric pseudo-185

likelihood ratio test performs well in moderate sample size settings, and that the naive test that ignores the
boundary problem gives conservative Type I errors and much lower power.

E. ADDITIONAL SIMULATION RESULTS

We also created two quantile-quantile plots from Examples 1 and 2. Figures 1 and 2 show results
from 5000 simulations under the null hypothesis with sample size of 200. The left panel of each figure190

shows the quantiles of the pseudolikelihood ratio test statistics from 5000 simulations plotted against the
corresponding quantiles of chi-square distribution, i.e., the naive approach. The right panel of each Figure
shows the quantiles of the pseudolikelihood ratio test statistics from 5000 simulations plotted against the
quantile of the asymptotic distribution, i.e., the proposed approach. The quantile-quantile plots suggest
that the theoretical approximation works well at levels in addition to 5% and 1%.195
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Table 1. Empirical rejection rates (%) for the pseudolikelihood ratio test for testing association
between bivariate survival time in Example 1 in 5000 simulations. Upper entry: naive method
by comparing pseudolikelihood ratio test statistics with �2

1 distribution; lower entry: proposed
test by comparing pseudolikelihood ratio test statistics with the correct limiting distribution.

censoring % = 0% censoring % = 15% censoring % = 30%

n ✓ ↵ = 5% ↵ = 1% ↵ = 5% ↵ = 1% ↵ = 5% ↵ = 1%

Rejection (%) Rejection Rejection Rejection Rejection Rejection
100 1.0 3.0 0.7 2.9 0.5 2.9 0.6

5.5 1.3 5.4 1.1 5.4 1.1
1.3 26.3 10.7 24.5 10.0 22.7 9.8

36.8 16.6 34.6 14.6 33.5 14.1
1.5 55.4 30.4 51.4 27.4 48.0 25.8

65.2 39.3 62.9 36.5 60.2 34.2
1.7 76.3 55.4 73.6 51.6 70.9 48.4

84.4 65.0 82.3 61.2 80.2 58.4
2.0 94.3 88.3 92.5 80.0 90.5 76.4

97.1 88.6 95.9 86.1 94.7 83.7
200 1.0 2.9 0.5 2.7 0.6 2.5 0.6

5.4 1.0 5.5 1.0 5.2 1.1
1.3 43.1 22.1 43.5 21.0 43.0 21.4

55.8 29.6 55.5 29.5 55.5 28.6
1.5 79.9 59.9 78.6 58.9 77.5 57.3

87.0 68.6 86.3 67.4 85.5 66.7
1.7 95.8 87.1 95.3 85.1 94.1 83.9

97.7 91.6 97.4 90.1 96.8 89.3
2.0 99.8 99.0 99.6 98.4 99.4 97.7

99.9 99.5 99.9 99.1 99.8 98.7
400 1.0 2.7 0.5 2.7 0.5 2.9 0.8

5.2 1.1 5.1 1.0 5.4 1.3
1.3 67.6 44.0 65.2 42.6 66.3 42.8

77.2 53.7 76.0 52.8 76.1 52.2
1.5 97.0 89.6 95.9 87.6 95.7 87.1

98.6 93.3 98.1 91.6 97.8 91.6
1.7 99.9 99.4 99.8 99.1 99.7 98.8

100.0 99.8 99.9 99.6 99.9 99.4
2.0 100.0 100.0 100.0 100.0 100.0 100.0

100.0 100.0 100.0 100.0 100.0 100.0

F. A DATA EXAMPLE

Dementia is a progressive degenerative medical condition and is one of the leading causes of death in
the United States and Canada. There is evidence that dementia aggregates in families (Hendrie, 1998).
We applied the proposed pseudolikelihood ratio test to check the aggregation of dementia in families who
participated in the Cache County Study on Memory, Health, and Aging (Breitner et al., 1999). Information 200

on the age at onset of dementia or censoring age was recorded for mothers and children of families who
participated in the study.
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Table 2. Empirical rejection rates (%) for the pseudolikelihood ratio test for testing associa-
tions in model described in Example 2 in 5, 000 simulations. Upper entry: naive method by
comparing pseudolikelihood ratio test statistics with �2

2 distribution; lower entry: proposed test
by comparing pseudolikelihood ratio test statistics with the correct limiting distribution.

censoring % = 0% censoring % = 15% censoring % = 30%

n (✓1, ✓2) ↵ = 5% ↵ = 1% ↵ = 5% ↵ = 1% ↵ = 5% ↵ = 1%

Rejection (%) Rejection Rejection Rejection Rejection Rejection
100 (1.0,1.0) 2.3 0.8 1.5 0.3 1.5 0.3

5.4 1.5 5.0 1.0 5.0 1.0
(1.1,1.1) 18.1 7.4 14.4 5.8 12.3 4.0

32.5 15.0 27.1 12.3 25.1 10.1
(1.2,1.1) 35.6 18.7 29.4 13.3 22.1 9.2

55.7 32.8 48.9 25.9 40.4 18.6
(1.3,1.1) 56.1 34.9 48.8 25.7 36.7 18.4

74.1 52.6 67.8 44.7 57.1 32.4
(1.2,1.2) 56.7 34.9 49.3 28.6 37.4 18.7

71.4 51.5 66.1 44.4 57.0 33.5
(1.3,1.2) 72.0 51.1 64.3 42.9 50.0 28.7

84.4 68.1 78.1 59.7 70.1 45.3
200 (1.0,1.0) 1.9 0.8 1.4 0.3 1.5 0.4

5.0 1.5 4.9 0.9 4.6 1.0
(1.1,1.1) 35.4 19.0 28.9 13.7 21.6 8.6

53.7 32.3 45.7 25.2 37.7 18.5
(1.2,1.1) 66.5 45.7 57.1 34.6 43.9 22.8

81.8 62.6 74.7 51.7 62.5 37.8
(1.3,1.1) 88.2 74.3 79.2 61.0 66.4 44.0

95.1 86.1 90.6 76.0 82.4 61.6
(1.2,1.2) 86.6 75.5 79.4 62.7 67.1 45.8

92.5 85.1 88.1 75.6 80.0 61.6
(1.3,1.2) 96.1 90.1 92.4 81.8 83.3 65.2

98.5 95.4 96.5 90.3 91.8 79.5
400 (1.0,1.0) 1.3 0.3 1.2 0.1 1.6 0.4

4.9 1.0 4.9 1.1 4.8 0.8
(1.1,1.1) 65.2 47.3 54.4 35.0 40.7 22.2

78.5 61.1 69.7 49.4 57.4 35.9
(1.2,1.1) 94.4 84.9 87.0 72.4 74.3 53.7

97.8 92.7 94.0 84.6 87.1 69.7
(1.3,1.1) 99.6 98.4 98.1 93.9 93.3 82.4

100.0 99.4 99.5 97.6 97.6 91.3
(1.2,1.2) 99.1 97.8 97.3 94.3 92.0 83.8

99.5 98.8 98.6 96.7 96.0 90.5
(1.3,1.2) 99.9 99.7 99.9 99.1 98.4 95.4

100.0 99.9 100.0 99.8 99.5 98.2
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Fig. 1. Left panel: quantile-quantile plot of pseudolikeli-
hood ratio test statistics in Example 1 against quantile of
�2
1 distribution. Right panel: quantile-quantile plot of pseu-

dolikelihood ratio test statistics against quantile of the dis-
tribution 0.5�2

0 + 0.5�2
1.
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Fig. 2. Left panel: quantile-quantile plot of pseudolikeli-
hood ratio test statistics in Example 2 against quantile of
�2
2 distribution. Right panel: quantile-quantile plot of pseu-

dolikelihood ratio test statistics against quantile of the dis-
tribution (0.5� ps)�

2
0 + 0.5�2

1 + ps�
2
2.

Following Bandeen-Roche & Liang (2002), we analyzed pairs that comprised the mother and the old-
est child to study the association of dementia in families. We excluded pairs for which a member had
been diagnosed with dementia or had died before age 55. After excluding pairs with missing data, we 205

had 3,635 pairs available. Among the 3,635 pairs, there were 40 pairs in which both members had de-
mentia, 158 pairs in which the child had dementia and the mother’s outcome was censored, 419 pairs
in which the child’s outcome was censored and the mother had dementia, and 3,018 pairs in which both
members’ outcomes were censored. In the analysis, the observed data for the ith family are recorded as



12 Y. CHEN, J. NING, Y. NING, K.-Y. LIANG AND K. BANDEEN-ROCHE

(y
i1, yi2, �i1, �i2), where y

i1 is the observed time of the oldest child, y
i2 is the observed time of the mother, 210

and �
ij

is the censoring indicator corresponding to y
ij

.
We assumed a Clayton copular model for the paired observations. The marginal survival functions of

the children’s dementia onsets and the mother’s dementia onset were respectively estimated by using the
Kaplan–Meier method. Applying the two-stage estimation procedure as we described in Example 1, we
obtained the estimator of ✓ to be 2.44. This estimate implies that the cross ratio between dementia onsets215

of children and those of their mothers within families is 3.44 with standard error of 0.96, suggesting that
the multiplicative increase in the risk of dementia onset for children whose mothers have dementia, versus
those whose mothers are without dementia is 3.44. The small value of the p-value (p < 0.001) from the
proposed pseudolikelihood ratio test strongly indicates that there is a high positive correlation between
the onset of dementia in children and the onset of dementia in their mother.220
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