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Abstract: In survival analysis, covariate measurements often contain missing ob-

servations; ignoring this feature can lead to invalid inference. We propose a class of

weighted estimating equations for right censored data with missing covariates under

semiparametric transformation models. Time-specific and subject-specific weights are

accommodated in the formulation of the weighted estimating equations. We estab-

lish unified results for estimating missingness probabilities that cover both parametric

and nonparametric modeling schemes. To improve estimation e�ciency, the weighted

estimating equations are augmented by a new set of unbiased estimating equations.

The resultant estimator has the so-called “double robustness” property and is optimal

within a class of consistent estimators.

Keywords and phrases: Augmented weighted estimating equations; Missing at ran-

dom; Right censoring; Survival data; Transformation models.

1. Introduction

Semiparametric transformation models provide a general but flexible framework for modeling

survival data (Dabrowska and Doksum, 1988). In particular, such models include propor-

tional hazards models (Cox, 1972) and proportional odds models (Bennett, 1983) as special

cases. Due to their flexibility, semiparametric transformation models have attracted increas-

ing attention (Cheng et al., 1995; Fine et al., 1998; Chen et al., 2002; Zeng and Lin, 2006,

2007; Chen, 2009; Chen et al., 2012; Kong et al., 2004). Although various methods have been

developed for survival data analysis under such models, research gaps still remain. Typically,
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existing methods are mostly developed for settings with complete observations for covariates.

However, in practice, covariate measurements are often incomplete.

In the proportional hazards model, several methods to accommodate missing covariates

have been proposed, including imputation (Paik and Tsai, 1997), regression calibration

(Wang et al., 2001), nonparametric maximum likelihood estimation (Chen, 2002; Herring

and Ibrahim, 2001; Chen and Little, 1999) and weighted estimating equations (Qi et al.,

2005; Luo et al., 2009; Xu et al., 2009; Wang and Chen, 2001).

Despite the popularity of the transformation model in survival analysis, only limited

discussion on the missing covariate problem is available. Chen and Little (2001) proposed a

pseudo-likelihood approach to estimate the regression coe�cients under certain parametric

assumptions on the distribution of missing covariates. However, the estimates can be biased

if the distribution of missing covariates is misspecified. In addition, their assumption of

independence between the censoring indicator and covariates is restrictive. Recently, Huang

and Wang (2010) proposed an inverse probability weighted estimator based on the estimating

equation method developed by Chen et al. (2002). The weighted estimator in Huang and

Wang (2010) su↵ers from e�ciency loss, as the estimator in Chen et al. (2002) is ine�cient.

To complement existing work on this problem, we propose a class of weighted estimating

equations for right-censored data with missing covariates, under the semiparametric trans-

formation model. Although the general theoretical framework for missing data problems has

been well developed (e.g., Robins et al. (1994); Tsiatis (2007)), the application of these gen-

eral results to the semiparametric transformation model is quite challenging and requires

further methodological and theoretical development.

First, Robins’ general framework starts from a class of full data influence functions. Be-

cause our model has a nonparametric component, it is unclear how to construct a flexible

class of full data influence functions. We propose a class of estimating equations, similar in

spirit to the profile score functions (Zeng and Lin, 2006), that incorporates the information

contained in a set of weighted residuals. This makes our approach more e�cient than those

in Huang and Wang (2010) and Chen et al. (2002). In addition, we propose a Breslow-type

estimator for the nonparametric component, which is di↵erent from the nonparametric max-

imum likelihood estimator in Zeng and Lin (2007) and Chen (2009). This hybrid approach

simplifies the adjustment for the missingness e↵ects and therefore makes our estimators easier
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to implement than the EM algorithm of Zeng and Lin (2006, 2007) with simpler expressions

for the variance estimates. The proposed estimating equation approach provides a better

trade-o↵ between estimation e�ciency and convenience in implementation.

Second, we further extend the scope of the classical inverse probability weighted estima-

tion methods by accommodating a class of time-specific and subject-specific weights into the

weighted estimating equations. We establish unified results on the consistency and asymp-

totic normality of estimators, which are derived under various modeling schemes for the

missingness probabilities. To cover a broad range of missing data scenarios, we explore both

parametric and nonparametric modeling schemes for the missing covariate process. Estima-

tion e�ciency is investigated together with a geometric explanation which sheds light on the

underlying di↵erences among the proposed estimators.

Finally, to improve estimation e�ciency, we propose fully augmented weighted estimat-

ing equations, which achieve the “double robustness” property (Robins et al., 1994) and

optimality within a class of unbiased estimating equations. Although a general projection

approach for doubly robust estimators has been well studied by Robins et al. (1994), the

construction of such an estimator in the context of transformation models is new. Specifi-

cally, we develop estimating equations which iteratively estimate the regression parameters

and nuisance functions. Thus, unlike the construction under the standard regression model

(Robins et al., 1994) and the proportional hazards model (Qi et al., 2005; Luo et al., 2009;

Xu et al., 2009; Wang and Chen, 2001), we need to introduce extra augmented estimating

equations for the nonparametric nuisance functions to achieve the double robustness prop-

erty. Due to the iterative augmentation between parametric and nonparametric components,

our theoretical justification of double robustness and optimality is technically more complex

than the existing work on the standard regression model and the proportional hazards model.

In Section 2 we present the notation and inference framework. In Section 3, we propose

a class of simple weighted estimating equations to account for missingness in covariates. In

Section 4, we establish unified results for estimators which are derived from various mod-

eling schemes for missingness probabilities. We further elaborate on both parametric and

nonparametric modeling schemes to feature the missing data process. The fully augmented

weighted estimating equations are described in Section 5. To illustrate the utility of the

proposed methods, in Section 6 we analyze a subcohort of data arising from the Action in
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Diabetes and Vascular disease: preterAx and diamicroN-modified release Controlled Eval-

uation (ADVANCE) clinical trial. In Section 7, we conduct extensive empirical studies to

assess the finite sample performance of our estimators. General discussion is included in the

last section.

2. Notation and Framework

For subject i = 1, ..., n, let T
i

and C
i

be the failure time and censoring time, respectively

and �
i

= I(T
i

 C
i

) be the censoring indicator. Define X
i

= min(T
i

, C
i

). Let Z
i

denote a

p-dimensional vector of covariates for subject i. For simplicity, we assume that Z
i

are time

independent and C
i

is independent of T
i

given Z
i

. Given the failure time T
i

and the covariates

Z
i

, consider the transformation model

logH(T
i

) = ��TZ
i

+ ✏
i

, (2.1)

where H(·) is an unknown increasing function with H(0) = 0, � is a p-dimensional parameter

and ✏
i

is a random variable with a known distribution. The model reduces to the proportional

hazards model (Cox, 1972) or the proportional odds model (Bennett, 1983; Pettitt, 1984), by

assuming that ✏
i

follows the extreme-value distribution or the standard logistic distribution,

respectively.

Using counting process notation, we write N
i

(t) = �
i

I(X
i

 t) and Y
i

(t) = I(X
i

� t) to

reflect information until time t for the counting process and the at risk process for subject i.

Let �(·) and ⇤(·) denote the known hazard and cumulative hazard functions of exp(✏
i

). For

a generic function f(t), let f(t0�) denote the left limit of f(t) with t ! t0. For the model

(2.1), the martingale process associated with N
i

(t) is given by

M
i

(t) = N
i

(t)�
Z

t

0

Y
i

(s) exp(�TZ
i

)�
i

(s�; �, H)dH(s),

where �
i

(t; �, H) = �{⇣
i

(t; �, H)} with ⇣
i

(t; �, H) =
R

t

0 Yi

(s) exp(�TZ
i

)dH(s). Let

k
i

(t; �, H) =

Z
⌧

t+

�
i

(s�; �, H)dM
i

(s) and w
i

(t; �, H) = 1� k
i

(t; �, H)/�
i

(t�; �, H),

where �
i

(t; �, H) = �̇{⇣
i

(t; �, H)}/�{⇣
i

(t; �, H)}, �̇(t) = d�(t)/dt and ⌧ is the end of study

time. It is noted that for the proportional hazards model, we have �
i

(t; �, H) = 1 and hence

w
i

(t; �, H) = 1.
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The unknown function H(·) is often considered to be an infinite dimensional nuisance

parameter. Denote by dH(t) the jump size of H at time t. By nonparametric maximum

likelihood theory, H(t) can be estimated by bH(t) =
R

t

0 d
bH(u), where d bH(u) is the calibrated

Breslow-type estimator (Chen, 2009) given by,

d bH(u) =

P
n

i=1 dNi

(u)
P

n

i=1 wi

(u; �, bH)Y
i

(u) exp(�TZ
i

)�
i

(u�; �, bH)
, (2.2)

which is asymptotically equivalent to the nonparametric maximum likelihood estimator

(Zeng and Lin, 2007).

The estimation of the parameter of interest � can be obtained by maximizing the profile

likelihood for �, which is constructed by replacing H(t) in the likelihood with bH(t). Equiva-

lently, � can be estimated by solving the profile score function U(�, Ĥ) = 0 (Chen, 2009, eq

8), where

U(�, Ĥ) =
1

n

nX

i=1

Z
⌧

0


Z

i

�
P

n

j=1 Yj

(t)Z
j

exp(�TZ
j

){�
j

(t�; �, bH)� k
j

(t�; �, bH)}
P

n

j=1 Yj

(t) exp(�TZ
j

){�
j

(t�; �, bH)� k
j

(t�; �, bH)}

�
dN

i

(t).

(2.3)

In practice, estimation of � and H(·) can be obtained by solving (2.3) and (2.2) iteratively,

where the set of jump sizes of H(·), (dH(X1), ..., dH(X
n

)), is treated as an n-dimensional

parameter. Zeng and Lin (2006) showed that the maximum likelihood estimator for � is

semiparametrically e�cient. However, the asymptotic variance for the estimator of � has no

analytical form, and it can only be estimated by inverting the observed information matrix,

which has dimension (n+ p)⇥ (n+ p) if the X
i

’s are all di↵erent (Zeng and Lin, 2006). The

computation is prohibitive for data with large sample sizes. In contrast, Chen et al. (2002)

developed an estimating equation approach by setting the weighted residuals k
i

(t; �, H) = 0

in (2.3) and (2.2). Compared to maximum likelihood estimation, the estimating equation

approach is easier to implement and has a simple variance formula for estimators. However,

this convenience is achieved at the price of losing e�ciency, as information about � contained

in the weighted residuals k
i

(t; �, H) is ignored.

3. Weighted Estimating Equations with Known Missingness Probabilities

3.1. Formulation of Weighted Estimating Equations

We consider settings when some covariates are missing. Let Zm

i

denote the covariates whose
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values may be missing, and Zc

i

denote the covariates that are always observable, so Z
i

=

(Zm

i

, Zc

i

). Let V
i

be the missingness indicator taking the value 1 if Zm

i

is observed and 0

otherwise. Assume that data are missing at random with P (V
i

= 1 | X
i

, Zc

i

, Zm

i

, �
i

) = P (V
i

=

1 | W
i

) = ⇡(W
i

), where W
i

= (X
i

, Zc

i

, �
i

). Assume that (X
i

, Zc

i

, Zm

i

, �
i

, V
i

), i = 1, ..., n are

independent and identically distributed.

For i = 1, ..., n, let D(t) = D(t, �) be a nonnegative deterministic function and B
i

(t) =

B
i

(t, �) be a nonnegative predictable random process with respect to the data filtration F
t�,

where F
t

is the �-field generated by {(N
i

(u), Y
i

(u)) : 0  u  t, i = 1, ..., n}. To balance

computational simplicity and estimation e�ciency, we propose a hybrid approach to estimate

� with missingness e↵ects properly accounted for. Specifically, we first estimate the nuisance

function H(t) by a weighted Breslow estimator, and then estimate � based on the weighted

profile score functions. The weighted Breslow estimator bH
W

(t) is given by

d bH
W

(t) =

P
n

i=1 �i

(t)dN
i

(t)
P

n

i=1 �i

(t)Y
i

(t) exp(�TZ
i

)�
i

(t�; �, bH
W

)
, (3.1)

where �
i

(t) = V
i

B
i

(t)/⇡(W
i

). The estimator (3.1) is di↵erent from (2.2) in the following two

aspects. First, the missingness probability ⇡(W
i

) is introduced as a weight to account for the

missing data e↵ects. Second, we specify w
i

(u; �, bH) = 1 in (2.2). At the price of losing some

information on estimating the nuisance function, our approach becomes easier to implement

with simpler expressions for the asymptotic variance; see Theorem 3.1. To estimate �, we

consider the following weighted profile estimating functions,

U
W

(�, bH
W

, ⇡;B,D) =
1

n

nX

i=1

Z
⌧

0

�
i

(t)D(t)


Z

i

�
P

n

j=1 �j

(t)Y
j

(t)Z
j

exp(�TZ
j

){�
j

(t�; �, bH
W

)� k
j

(t�; �, bH
W

)}
P

n

j=1 �j

(t)Y
j

(t) exp(�TZ
j

){�
j

(t�; �, bH
W

)� k
j

(t�; �, bH
W

)}

�
dN

i

(t). (3.2)

Our proposed weighted estimating equations accommodate existing methods with di↵er-

ent choices of subject-specific weight B
i

(·) and time-specific weight D(·). For instance, under
the proportional hazards model, we have �

i

(t; �, H) = 1 and k
i

(t; �, H) = 0. Therefore,

setting B
i

(t) = 1 and D(t) = 1 yields the inverse probability weighted estimator developed

by Qi et al. (2005); letting B
i

(t) = ⇡(t, Zc

i

, 1) and D(t) = 1 leads to the pseudo-partial

likelihood estimator proposed by Luo et al. (2009); and the risk set weighted estimator de-

scribed by Xu et al. (2009) is obtained by the choice of B
i

(t) = 1 and D(t) = ⇡⇤(t), where
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⇡⇤(t) is the risk set selection probability given by the limit of expression (1) in Xu et al.

(2009). For the transformation model, the inverse probability weighted estimator developed

by Huang and Wang (2010) corresponds to that obtained from (3.2) with B
i

(t) = D(t) = 1

and k
i

(t; �, H) = 0. Our estimation method not only extends that of Huang and Wang (2010)

and others, but more importantly, our method incorporates additional information about �

by using the weighted residuals k
i

(t; �, H) in (3.2); the e�ciency improvement is numerically

demonstrated in Section 6.

3.2. Asymptotic Results

To highlight the key idea, in this section we temporarily treat the missingness probabilities

⇡(W
i

) as known and focus on the estimation of �. This scenario also features the situation

where missingness is created by design. Let �̂
W

be the estimator of � obtained by solving

U
W

(�, bH
W

, ⇡;B,D) = 0. Under suitable regularity conditions, we can establish asymptotic

results for �̂
W

. These properties basically follow from the result that the estimating functions

U
W

(�, bH, ⇡;B,D) are approximately unbiased. The martingale arguments of Andersen and

Gill (1982) cannot be applied to show approximate unbiasedness of U
W

(�, bH, ⇡;B,D),

because the missingness probabilities involve the survival outcome (X
i

, �
i

), which makes

the estimating functions (3.2) non-adaptive to the given data filtration. To get around this

problem, we utilize empirical process theory (Kosorok, 2008).

Let �0 and H0(t) be the true values of � and H(t), respectively. For k = 0, 1, 2, define

s(k)(t; �) = E{B
i

(t)Y
i

(t)�
i

(t; �, H)Z⌦k

i

exp(�TZ
i

)},

v(k)(t; �) = E{B
i

(t)Y
i

(t)�̇
i

(t; �, H)Z⌦k

i

exp(2�TZ
i

)},

and

e(t, �) = exp

⇢Z
t

0

v(0)(u, �)

s(0)(u, �)
dH0(u)

�
,

where a⌦0 = 1, a⌦1 = a and a⌦2 = aaT . We write s(k)(t) = s(k)(t; �0), v(k)(t) = v(k)(t; �0)

and e(t) = e(t, �0). For k = 0, 1, we also define  (k)(t; �0) and Q(t) whose forms are quite

lengthy and are shown in the Supplementary Materials.

Theorem 3.1. Under the regularity conditions (A1) – (A5) and (B1) in the Supplementary

Materials, �̂
W

is consistent for the parameter �, and as n ! 1,

n1/2(�̂
W

� �0)
d! N(0, I�1

�

⌃
W

I�1
�

),
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where ⌃
W

= E(M⇤⌦2
i

/⇡(W
i

)) with

M⇤
i

=

Z
⌧

0

B
i

(t)


D(t)

⇢
Z

i

� s(1)(t)

s(0)(t)

�
+

Q(t)

s(0)(t)

�
dM

i

(t), (3.3)

and

I
�

=

Z
⌧

0

D(t)�(t; �0, H0)s
(0)(t)dH0(t)

with

�(t; �0, H0) =
s(2)(t) +  (1)(t; �0)

s(0)(t)
� s(1)(t){s(1)(t) +  (0)(t; �0)}T

{s(0)(t)}⌦2
.

This theorem generalizes the results by Huang and Wang (2010), who assume that B
i

(t) =

D(t) = 1 and k
i

(t; �, H) = 0. In particular, we note that setting k
i

(t; �, H) = 0 in (3.2) and

B
i

(t) = D(t) = 1 yields that ⌃
W

reduces to ⌃1 and I
�

reduces to A in equation (2.7) of Huang

and Wang (2010). As shown by the numerical studies in Section 6, our estimation method

is more e�cient than that of Huang and Wang (2010) for various types of hazard functions.

A detailed discussion of the choice of B
i

(t) and D(t) is provided in the Supplementary

Materials.

In contrast to the maximum likelihood estimator with complete covariate measurements,

one advantage of our estimator lies in the simplicity of the variance estimator. To see this,

let

cM⇤
i

=

Z
⌧

0

B
i

(t)


D(t)

⇢
Z

i

� S(1)
W

(t; �̂
W

, bH
W

, ⇡)

S(0)
W

(t; �̂
W

, bH
W

, ⇡)

�
+

bQ(t)

S(0)
W

(t; �̂
W

, bH
W

, ⇡)

�
dcM

i

(t), (3.4)

where

S(k)
W

(t; �, H, ⇡) =
1

n

nX

i=1

�
i

(t)Y
i

(t)�
i

(t; �, H)Z⌦k

i

exp(�TZ
i

),

cM
i

(t) = N
i

(t)�
Z

t

0

Y
i

(s) exp(�̂T

W

Z
i

)�
i

(s�; �̂
W

, bH
W

)d bH
W

(s),

and bQ(t) is obtained from Q(t) by replacing �0 with �̂
W

, H0(t) with bH
W

(t), and the ex-

pectation with the sample average, respectively. Then ⌃
W

can be consistently estimated by

b⌃
W

= n�1
P

n

i=1
cM⇤⌦2

i

/⇡(W
i

). Similarly, I
�

can be consistently estimated by

bI
�

=

Z
⌧

0

D(t)�(t; �̂
W

, bH
W

)S(0)
W

(t; �̂
W

, bH
W

)d bH
W

(t),

where �(t; �̂
W

, bH
W

) is obtained from �(t; �0, H0) by replacing �0 with �̂W , H0(t) with bH
W

(t),

and the expectation with the sample average, respectively. Hence, the asymptotic variance

of �̂
W

can be consistently estimated by n�1bI�1
�

b⌃
W

bI�1
�

.
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4. Weighted Estimating Equations with Estimated Missingness Probability

The assumption of known missingness probabilities ⇡(W
i

) made in Section 3.2 can be re-

strictive for practical applications; one often needs to estimate the missingness probabilities

⇡(W
i

). Such estimation, however, introduces additional complications. It not only requires

extra care in the estimation of ⇡(W
i

), but also makes the asymptotic results in Theorem 3.1

invalid. In this section, we address these issues. We first present unified results for estimators

of � that are derived under general modeling schemes for missing data processes, and then

direct our attention to two useful modeling scenarios for missing covariates.

4.1. General Results

Suppose that an estimator ⇡̃(·) for ⇡(·) is available. Replacing ⇡(W
i

) in (3.1) and (3.2) with

⇡̃(W
i

), we obtain the estimator of �, denoted by �̃, by solving the estimating equations

U
W

(�, eH, ⇡̃;B,D) = 0, (4.1)

where

d eH(t) =

P
n

i=1
e�

i

(t)dN
i

(t)
P

n

i=1
e�

i

(t)Y
i

(t) exp(�TZ
i

)�
i

(t�; �, eH)
,

and e�
i

(t) = V
i

B
i

(t)/⇡̃(W
i

). The following theorem establishes the asymptotic properties for

�̃, under conditions on the estimator of ⇡(W
i

).

Theorem 4.1. Suppose that the estimator ⇡̃(·) satisfies the following conditions:

(D1) sup
w

|⇡̃(w)� ⇡(w)| = O
p

(n�c) for some c 2 (1/4, 1/2],

(D2) there exists a p-dimensional function m(W
i

; �0, H0, ⇡) of Wi

, �0, H0 and ⇡, such that

(i)

1

n1/2

nX

i=1

V
i

⇡̃(W
i

)
M⇤

i

=
1

n1/2

nX

i=1

V
i

⇡(W
i

)
M⇤

i

+
1

n1/2

nX

i=1

✓
1� V

i

⇡(W
i

)

◆
m(W

i

; �0, H0, ⇡)+o
p

(1),

(4.2)

(ii) e⌃ = ⌃
W

+ I1 � 2I2 exists and is positive definite, where

I1 = E

⇢
1� ⇡(W

i

)

⇡(W
i

)
m(W

i

; �0, H0, ⇡)
⌦2

�
, I2 = E

⇢
1� ⇡(W

i

)

⇡(W
i

)
M⇤T

i

m(W
i

; �0, H0, ⇡)

�
,

and M⇤
i

is defined in (3.3).
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Assume that the regularity conditions (A1) – (A5) and (B1) in the Supplementary Materials

hold. Then (1) there exists a solution �̃ of (4.1), such that �̃ is a consistent estimator of �;

and (2)

n1/2(�̃ � �0)
d! N(0, I�1

�

e⌃I�1
�

), as n ! 1,

where I
�

is defined as in Theorem 3.1.

This theorem has important implications. It o↵ers an analogue to Theorem 3.1 but covers a

more realistic scenario with unknown missingness probabilities ⇡(W
i

). The asymptotic results

in Theorem 4.1 apply to a broad scope of missing data models. The associated conditions

(D1) and (D2) for an estimator ⇡̃(·) are generally standard and can be satisfied for practical

use. Condition (D1) says that the estimator ⇡̃(·) needs to converge uniformly to ⇡(·); the
convergence rate can be slower than n1/2. If a parametric model is assumed for ⇡, then the

convergence rate of ⇡̃ is usually n1/2, i.e., c = 1/2 in (D1). Such a case is discussed in Section

4.2 in detail. Moreover, Condition (D1) also allows ⇡̃ to be a nonparametric estimator, which

usually converges to ⇡ at a rate slower than n1/2. However, to control the uncertainty of ⇡̃,

we cannot allow ⇡̃ to converge slower than n1/4. In Section 4.3, we describe a nonparametric

method based on the kernel estimator that satisfies this condition. Condition (D2) o↵ers a

decomposition of the key structure, n1/2
P

n

i=1 Vi

/⇡̃(W
i

)M⇤
i

, which is used for establishing

asymptotic results for �̃, and it also ensures that the asymptotic covariance matrix exists

and is positive definite. This decomposition allows us to study the di↵erence between the

estimator ⇡̃ and ⇡. If ⇡ is modeled parametrically with a finite dimensional parameter,

then an explicit form for m(W
i

; �0, H0, ⇡) can be derived using the standard Taylor series

expansion. However, extra care is required to establish Condition (D2) if ⇡̃ is a nonparametric

estimator. Under suitable regularity conditions, we can establish Condition (D2) by following

the proof of Theorem 21.1 in Kosorok (2008). The validity of Condition (D2) is established in

Sections 4.2 and 4.3 for parametric estimators and kernel based nonparametric estimators,

respectively.

In Theorem 3.1 �̂
W

depends only on the complete observations. The second term on the

right hand side of the equation (4.2) incorporates the information from incomplete observa-

tions. This suggests the possibility of improving the e�ciency of �̂
W

by estimating ⇡(W
i

).

By the form of e⌃ in (D2), if I1 � 2I2 is negative definite, then ⌃
W

� e⌃ is positive definite,

suggesting that �̃ can be more e�cient than �̂
W

. A su�cient condition for this scenario is

10



included in the following corollary.

Corollary 4.1. If

E


1� ⇡(W

i

)

⇡(W
i

)
m(W

i

; �0, H0, ⇡){M⇤
i

�m(W
i

; �0, H0, ⇡)}T
�
= 0, (4.3)

then

e⌃ = ⌃
W

� E

⇢
1� ⇡(W

i

)

⇡(W
i

)
m(W

i

; �0, H0, ⇡)
⌦2

�
.

Therefore, �̃ is more e�cient than �̂
W

.

This result is immediate from Theorem 4.1. Intuitively, this result can be viewed from a

geometric point of view. Let

h1i(�0, H0, ⇡) = {V
i

/⇡(W
i

)}M⇤
i

. (4.4)

For a given function m̃(W
i

; �0, H0, ⇡) satisfying (D2) in Theorem 4.1, define

h2i(�0, H0, ⇡) = {1� V
i

/⇡(W
i

)}m̃(W
i

; �0, H0, ⇡). (4.5)

Corollary 4.1 says that if we choose a function m̃(W
i

; �0, H0, ⇡) such that the resulting

h2i(�0, H0, ⇡) is the projection of h1i(�0, H0, ⇡), then the estimator �̃ obtained from h2i(�0, H0, ⇡),

is more e�cient than �̂
W

which is obtained from h1i(�0, H0, ⇡). A random variable U1 is de-

fined to be the projection of random variable U2 if E{(U2 � U1)U1} = 0, i.e., U2 � U1 and

U1 are orthogonal.

4.2. Parametric Modeling of Missingness Probability

To estimate the missingness probability, we might specify a parametric model, ⇡(W
i

;↵) =

⇡
i

(↵), for the missing data process, where ↵ is a finite dimensional parameter vector. Let

`(↵) =
P

n

i=1 Vi

log ⇡
i

(↵) + (1 � V
i

) log{1 � ⇡
i

(↵)} denote the resulting log likelihood. Then

the score function for ↵ is U
↵

(↵) = n�1
P

n

i=1 U↵,i

(↵), where

U
↵,i

(↵) =
V
i

� ⇡
i

(↵)

⇡
i

(↵){1� ⇡
i

(↵)} ⇡̇i(↵), and ⇡̇
i

(↵) =
d⇡

i

(↵)

d↵
.

Let ↵̂ be the root of U
↵

(↵) = 0, and ↵0 be the true value of ↵. Define I↵ = E[{U
↵,i

(↵0)}⌦2],

and I
↵�

= E{M⇤
i

⇡̇
i

(↵0)/⇡i(↵0)}. An estimator of �, denoted by �̂
SW

, can be obtained by

solving the estimating equations

U
W

(�, bH
SW

, ⇡(↵̂);B,D) = 0,

11



where

d bH
SW

(t) =

P
n

i=1 �i

(t, ↵̂)dN
i

(t)
P

n

i=1 �i

(t, ↵̂)Y
i

(t) exp(�TZ
i

)�
i

(t�; �, bH
SW

)
,

and �
i

(t, ↵̂) = V
i

B
i

(t)/⇡
i

(↵̂). Asymptotic properties of �̂
SW

are established in the following

theorem.

Theorem 4.2. Under the regularity conditions (A1) – (A5) and (B1) in the Supplementary

Materials, �̂
SW

is consistent for the parameter �, and as n ! 1,

n1/2(�̂
SW

� �0)
d! N(0, I�1

�

⌃
SW

I�1
�

),

where ⌃
SW

= ⌃
W

� I�1
↵�

I
↵

I�1
↵�

.

To see the connection between Theorem 4.2 and Theorem 4.1, we note that using the Tay-

lor series expansion,m(W
i

; �0, H0, ⇡) in (4.2) is taken asm(W
i

; �0, H0, ⇡) = I�1
↵�

I
↵

⇡̇
i

(↵0)/{1�
⇡
i

(↵0)}. Thus, Theorem 4.2 is a special case of Theorem 4.1. Moreover, one can verify that

(4.3) in Corollary 4.1 holds in this case, suggesting that �̂
SW

is more e�cient than �̂
W

. The

phenomenon was also observed by Xu et al. (2009) for the proportional hazards model. In

general missing data problems, an interpretation of estimation e�ciency based on semipara-

metric theory is given by Robins et al. (1994); see also Tsiatis (2007).

Finally, we note that when applying Theorem 4.2 for inference, an asymptotic variance

estimate of �̂
SW

is given by
1

n
bI�1
�

{b⌃
W

� bI�1
↵�

bI
↵

bI�1
↵�

}bI�1
�

,

where bI
↵�

= n�1
P

n

i=1
cM⇤

i

⇡̇
i

(↵̂)/⇡
i

(↵̂), and bI
↵

= n�1
P

n

i=1{U↵,i

(↵̂)}⌦2.

4.3. Nonparametric Modeling of Missingness Probability

The validity of the weighted estimating equation approach relies on the correct specification

of the missingness probability. The estimator �̂
SW

can be inconsistent if the model ⇡(W
i

;↵) in

Section 4.2 is misspecified. To avoid possible model misspecification, we propose a nonpara-

metric approach to handle the missingness probability ⇡(W
i

). We write W
i

= (W (1)
i

,W (2)
i

),

so that W (1)
i

is a vector of continuous variables and W (2)
i

is a vector of discrete variables.

Then ⇡(W ) can be estimated by the kernel estimator

⇡̂(w) = ⇡̂(w(1), w(2)) =

P
n

i=1 Vi

I(W (2)
i

= w(2))K
h

(w(1) �W (1)
i

)
P

n

i=1 I(W
(2)
i

= w(2))K
h

(w(1) �W (1)
i

)
, (4.6)

12



where K
h

(·) = K(·/h), K(·) is a kernel function described in the Supplementary Materials

and h is a smoothing parameter. Such a nonparametric estimator ⇡̂(w(1), w(2)) is often feasible

for the case where W
i

is low dimensional.

Replacing ⇡(W
i

) in (3.1) and (3.2) with ⇡̂(W
i

), we obtain the estimator of �, denoted by

�̂
NW

, by solving the estimating equations U
W

(�, bH
NW

, ⇡̂;B,D) = 0, where

d bH
NW

(t) =

P
n

i=1
b�

i

(t)dN
i

(t)
P

n

i=1
b�

i

(t)Y
i

(t) exp(�TZ
i

)�
i

(t�; �, bH
NW

)
,

and b�
i

(t) = V
i

B
i

(t)/⇡̂(W
i

). Asymptotic properties of �̂
NW

are established in the following

theorem.

Theorem 4.3. Under the regularity conditions (A1) – (A5), (B1) – (B3) and (C1)–(C3) in

the Supplementary Materials, �̂
NW

is consistent for the parameter �, and as n ! 1,

n1/2(�̂
NW

� �0)
d! N


0, I�1

�

⇢
⌃

W

� E

✓
1� ⇡(W

i

)

⇡(W
i

)
M⇤o⌦2

i

◆�
I�1
�

�
,

where M⇤o
i

= E(M⇤
i

| W
i

).

The asymptotic covariance of n1/2(�̂
NW

��0) in Theorem 4.3 can be consistently estimated

by

bI�1
�

⇢
b⌃
W

� 1

n

nX

i=1

1� ⇡̂(W
i

)

⇡̂(W
i

)
cM⇤o⌦2

i

�
bI�1
�

,

where

cM⇤o
i

=

P
n

j=1
cM⇤

j

V
j

I(W (2)
j

= W (2)
i

)K
h

(W (1)
i

�W (1)
j

)
P

n

j=1 Vj

I(W (2)
j

= W (2)
i

)K
h

(W (1)
i

�W (1)
j

)
.

We comment that Theorem 4.3 is essentially a special case of Theorem 4.1. Under condi-

tions (B1) – (B3) and (C1)–(C3) in the Supplementary Materials, we have that sup
w

|⇡̂(w)�
⇡(w)| = O

p

(hr + (nhd)�1/2), where r and d are defined in condition (B2). To meet the

condition (C2), we choose a smoothing parameter h = O(n�1/a) for some integer a with

2d < a < 2r. Consequently, the resulting convergence rate for ⇡̂(w) is slower than n1/2, which

makes condition (D1) true. Equation (4.2) is satisfied with m(W
i

; �0, H0, ⇡) = E(M⇤
i

| W
i

),

as established in the Supplementary Materials. In addition, one can verify that (4.3) in Corol-

lary 4.1 holds in this case. Thus, similar to �̂
SW

, �̂
NW

is more e�cient than �̂
W

. Moreover,

for �̂
NW

we have the following optimality result.

13



Corollary 4.2. Let �̃ be an estimator obtained from any choice of ⇡̃(W
i

) in Theorem 4.1.

Then, under the regularity conditions of Theorem 4.3, we have

Avar(�̂
NW

)  Avar(�̃),

where Avar(�̃) represents the asymptotic variance of an estimator �̃, and the inequality 
is the Loewner order.

Corollary 4.2 implies that for any specified B
i

(t) and D(t), �̂
NW

is most e�cient within

the class of estimators which solve equation (4.1), where ⇡̃(W
i

) in (4.1) is any estimator of

⇡(W
i

) satisfying the conditions in Theorem 4.1. This optimality result does not imply that

�̂
NW

is most e�cient among all regular estimators. However, with the flexibility of B
i

(t) and

D(t) as well as the arbitrariness of an estimator of ⇡(·), the optimality result of Corollary

4.2 enables us to have a better understanding of the estimator �̂
NW

. In the Supplementary

Materials, we give a toy example to show several possibilities for constructing an estimator

of ⇡(·).
The optimality result of Corollary 4.2 can be visualized from a geometric point of view.

Consider estimating functions, h1i(�0, H0, ⇡) and h2i(�0, H0, ⇡) as defined by (4.4) and (4.5),

respectively. Define h3i(�0, H0, ⇡) = (1 � V
i

/⇡(W
i

))E(M⇤
i

| W
i

). Now we examine the rela-

tionship among those estimating functions.

Let S
u

(V
i

,W
i

) denote the class of all p-dimensional functions of � and data (V
i

,W
i

), which

are unbiased and have finite covariances. The class S
u

(V
i

,W
i

) can be viewed as a Hilbert

space (Small and McLeish, 2011). Consider the following subspaces of S
u

(V
i

,W
i

):

S
u2(Vi

,W
i

) = {a(1� V
i

/⇡(W
i

))m̃(W
i

; �0, H0, ⇡) : a 2 R},

and

S
u3(Vi

,W
i

) = {(1� V
i

/⇡(W
i

))g(W
i

; �0, H0, ⇡) : g(Wi

; �0, H0, ⇡) 2 S
u

(V
i

,W
i

),

and g(W
i

; �0, H0, ⇡) is free of V
i

}.

As shown in Corollary 4.1, h2i(�0, H0, ⇡) and h1i(�0, H0, ⇡) � h2i(�0, H0, ⇡) are orthog-

onal, indicating that h2i(�0, H0, ⇡) can be regarded as the projection of h1i(�0, H0, ⇡) onto

the space S
u2(Vi

,W
i

). By the proof of Corollary 4.2, we establish that h3i(�0, H0, ⇡) can

be treated as the projection of h1i(�0, H0, ⇡) onto the space S
u3(Vi

,W
i

). It is noted that
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Su3(Vi, Wi)

Su2(Vi, Wi)

h1i(β0, H0, π)

h2i(β0, H0, π)

h3i(β0, H0, π)

Fig 1. Illustration of geometric relationship among h1i(�0, H0,⇡), h2i(�0, H0,⇡), h3i(�0, H0,⇡), Su2(Vi,Wi)
and Su3(Vi,Wi).

S
u2(Vi

,W
i

) is a subspace of S
u3(Vi

,W
i

). Therefore, h3i(�0, H0, ⇡) has shorter “length” than

h2i(�0, H0, ⇡), as displayed in Figure 1. This suggests that h3i(�0, H0, ⇡) has the smallest vari-

ance (in the Loewner order) within the class of unbiased estimating functions h2i(�0, H0, ⇡)

with di↵erent choices of m̃(W
i

; �0, H0, ⇡). Following standard Taylor series expansion, the

optimality property of h3i(�0, H0, ⇡) can be transferred to the corresponding point estimator

�̂
NW

.

5. Fully Augmented Weighted Estimating Equations

5.1. Formulation and Theory

The methods developed in Section 3 are easy to implement, but they may not necessarily

be very e�cient. On the other hand, while the estimator �̂
NW

of Section 4 enjoys a certain

optimality property, it may be numerically unstable when the sample size is small or W
i

is

high dimensional. To address these issues, we further develop augmented weighted estimating

equations, which can typically be applied for parametric modeling of ⇡(W
i

) for the case with

high dimensional W
i

. Following Robins et al. (1994), the key idea is to project the estimating

equations constructed in Section 3 onto the orthogonal complement of the tangent space for

the nuisance missing data process, and then construct new estimating equations by removing
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redundant information. However, the construction of the estimator under the transformation

model requires further augmentations of estimating equations which will be described as

follows. For k = 0, 1, 2, let

S(k)
A

(t; �, H, ⇡) =
1

n

nX

j=1


�

j

(t)Y
j

(t)Z⌦k

j

exp(�TZ
j

)�
j

(t�; �, H)

+

✓
1� V

j

⇡(W
j

)

◆
Y
j

(t)E{B
j

(t)Z⌦k

j

exp(�TZ
j

)�
j

(t�; �, H) | W
j

}
�
,

R(k)
A

(t; �, H, ⇡) =
1

n

nX

j=1


�

j

(t)Y
j

(t)Z⌦k

j

exp(�TZ
j

)k
j

(t�; �, H)

+

✓
1� V

j

⇡(W
j

)

◆
Y
j

(t)E{B
j

(t)Z⌦k

j

exp(�TZ
j

)k
j

(t�; �, H) | W
j

}
�
,

and let

AF

i

(�, H, ⇡;B,D) =

✓
1� V

i

⇡(W
i

)

◆Z
⌧

0


E{B

i

(t)D(t)Z
i

dN
i

(t) | W
i

}

� S(1)
A

(t; �, H, ⇡)�R(1)
A

(t; �, H, ⇡)

S(0)
A

(t; �, H, ⇡)�R(0)
A

(t; �, H, ⇡)
E{B

i

(t)D(t)dN
i

(t) | W
i

}
�
.

Then augmented weighted estimating equations for � are defined to be

U
FA

(�, H, ⇡;B,D) =
1

n

nX

i=1

Z
⌧

0

�
i

(t)D(t)

⇢
Z

i

� S(1)
A

(t; �, H, ⇡)�R(1)
A

(t; �, H, ⇡)

S(0)
A

(t; �, H, ⇡)�R(0)
A

(t; �, H, ⇡)

�
dN

i

(t)

+
1

n

nX

i=1

AF

i

(�, H, ⇡;B,D).

Due to the presence of H(·) in the above estimating equation, we further introduce a new

set of augmented estimators
R

t

0 d
bH
A

(u) for the nuisance function H(t), where

d bH
A

(t) =
1

n

P
n

i=1[�i

(t)dN
i

(t)� {V
i

/⇡(W
i

)� 1}E{B
i

(t)dN
i

(t) | W
i

}]
S(0)
A

(t; �, bH
A

, ⇡)
.

Let f(Zm

i

| W
i

) denote the conditional distribution of Zm

i

given W
i

= (X
i

, Zc

i

, �
i

). If ⇡(W
i

)

and f(Zm

i

| W
i

) are known, then solving U
FA

(�, bH
A

, ⇡;B,D) = 0 gives us the augmented

weighted estimator �̂
FA

. Asymptotic properties of estimator �̂
FA

are established in the fol-

lowing theorem.
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Theorem 5.1. Under the regularity conditions (A1) – (A6) and (B1) in the Supplementary

Materials, �̂
FA

is consistent for the parameter �, provided either ⇡(W
i

) or f(Zm

i

| W
i

) is

correctly specified. When both ⇡(W
i

) and f(Zm

i

| W
i

) are correctly specified, we have that as

n ! 1,

n1/2(�̂
FA

� �0)
d! N


0, I�1

�

⇢
⌃

W

� E

✓
1� ⇡(W

i

)

⇡(W
i

)
M⇤o⌦2

i

◆�
I�1
�

�
,

and Avar(�̂
FA

)  Avar(�̃), where �̃ is given in Theorem 4.1.

This theorem shows that �̂
FA

is more e�cient than the estimator �̂
W

when ⇡(W
i

) and

f(Zm

i

| W
i

) are correctly specified; it also says that the augmented estimator �̂
FA

has the

so-called “double robustness” property (Robins et al., 1994). That is, �̂
FA

is still consistent

even when one of the models for ⇡(W
i

) and f(Zm

i

| W
i

) is misspecified. Following Corollary

4.2, �̂
FA

has the same optimality as �̂
NW

, because �̂
FA

= �̂
NW

+ o
p

(n�1/2) as shown in the

online Supplementary Materials. Despite the asymptotic equivalence between �̂
FA

and �̂
NW

,

�̂
FA

is more suitable for the situation with high dimensional W
i

. On the other hand, �̂
NW

can be feasible for settings with fairly small dimension of the covariates.

When ⇡(W
i

) and f(Zm

i

| W
i

) are unknown, one may estimate them using parametric

models, say ⇡(W
i

;↵) and f(Zm

i

| W
i

;�), where ↵ and � are associated finite dimensional

parameters. We adopt the same parametric model for ⇡(W
i

;↵) = ⇡
i

(↵) as in Section 4, and

let ↵̂ be the root of U
↵

(↵) = 0, where

U
↵

(↵) =
1

n

nX

i=1

V
i

� ⇡
i

(↵)

⇡
i

(↵){1� ⇡
i

(↵)} ⇡̇i(↵).

Following Xu et al. (2009), � is estimated by �̂(↵), the root of U
�

(↵,�) = 0, where

U
�

(↵,�) =
1

n

nX

i=1


V
i

⇡
i

(↵)

@

@�
f(Zm

i

| W
i

;�)� V
i

� ⇡
i

(↵)

⇡
i

(↵)
E

⇢
@

@�
f(Zm

i

| W
i

;�) | W
i

;�

��
.

Denote �̂ = �̂(↵̂). By Taylor series expansion, it can be shown that �̂ is asymptotically

equivalent to the estimator �̂(↵) for which ↵ is assumed known. Let �̂
FA

(↵,�) denote the

root of U
FA

(�, bH
A

, ⇡(↵),�) = 0. The following theorem shows that estimation of ↵ and �

has no e↵ect on the asymptotic distribution of �̂
FA

(↵,�).

Theorem 5.2. Suppose the regularity conditions (A1) – (A6) and (B1) in the Supplemen-

tary Materials hold. Assume that ⇡(W
i

;↵) and f(Zm

i

| W
i

;�) are correctly specified. Then
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�̂
FA

(↵, �̂), �̂
FA

(↵̂,�) and �̂
FA

(↵̂, �̂) are all asymptotically equivalent to �̂
FA

(↵,�). That is

�̂
FA

(↵̂, �̂) = �̂
FA

(↵, �̂) + o
p

(n�1/2) = �̂
FA

(↵̂,�) + o
p

(n�1/2) = �̂
FA

(↵,�) + o
p

(n�1/2).

Augmented weighted estimating equations proposed here are developed for semiparamet-

ric transformation models, therefore, our methods extend those used by Xu et al. (2009),

Wang and Chen (2001), Qi et al. (2005), and Luo et al. (2009), which are addressed to the pro-

portional hazards model only. In contrast to the proportional hazards model, U
FA

(�, H, ⇡;B,D)

requires estimating the nuisance function H(t) in the transformation model. Hence, to at-

tain the double robustness property, the weighted Breslow estimator d bH
W

(t) needs to be

augmented as well, leading to the augmented Breslow estimator d bH
A

(t). Thus, one has to

account for the extra uncertainty of the augmented Breslow estimator, which makes our

theoretical analysis more challenging than the existing work on the proportional hazards

model.

5.2. Computational Algorithm

To implement the proposed methods, we develop an iterative reweighting algorithm. To be

specific, we describe the algorithm for calculating the estimator �̂
SW

; similar algorithms can

be applied to calculate the estimators �̂
W

, �̂
FA

and �̂
FA

(↵̂, �̂).

Step 1: Calculate ↵̂ = argmax
↵

`(↵), and obtain the fitted missingness probabilities, ⇡
i

(↵̂),

for i = 1, ..., n.

Step 2: Set d bH(0)
SW

(t⇤) = 1/n, where t⇤ is an observed failure time, �̂(0)
SW

= 0 and k = 0.

Step 3: Given d bH(k)
SW

and �̂(k)
SW

, we consider the estimator d bH
SW

given by

d bH(k+1)
SW

(t) =

P
n

i=1 �i

(t, ↵̂)dN
i

(t)
P

n

i=1 �i

(t, ↵̂)Y
i

(t) exp(�̂(k)T
SW

Z
i

)�
i

(t�; �̂(k)
SW

, bH(k)
SW

)
.

Step 4: Given d bH(k+1)
SW

and �̂(k)
SW

, the estimating equations U
W

(�, bH(k+1)
SW

, ⇡(↵̂);B,D) = 0 are

solved to obtain �̂(k+1)
SW

with fixed k
j

(t�; �̂(k)
SW

, bH(k)
SW

) in equation (3.2).

Step 5: Repeat steps 3 and 4 until convergence, and let (�̂
SW

, bH
SW

) denote the resulting

limits.

Our algorithm is similar to the iterative algorithm considered by Chen (2009) for calcu-

lating the maximum likelihood estimator under the transformation model without missing
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covariates. Thus, we expect the algorithm to be computationally more e�cient than the EM

algorithm of Zeng and Lin (2006), as argued by Chen (2009). To estimate the asymptotic

variance of estimators, the methods by Chen (2009) and Zeng and Lin (2006, 2007) may

require inversion of (n+ p)⇥ (n+ p) information matrices, which can be unstable for large

n or p. In contrast, our numerical experience suggests that our algorithm is computationally

e�cient and the estimated variance via the asymptotic variance formula is fairly stable.

6. Application to the ADVANCE Data

The Action in Diabetes and Vascular disease: preterAx and diamicroN-modified release

Controlled Evaluation (ADVANCE) trial is one of the largest clinical trials to investigate

diabetes-related diseases. One objective of this study is to compare intensive and standard

glycemic control, applied to over eleven thousand subjects in twenty countries. Survival time,

type of death, and various covariate information, such as glycated hemoglobin (HbA1c) and

urinary albumin creatinine ratio (ACR), are recorded. While HbA1c is observed for all in-

dividuals, ACR contains missing values. Discarding subjects with missing ACR, Zoungas

et al. (2012) fitted the proportional hazards model and showed that HbA1c and ACR are

important risk factors for various outcomes, including all-cause mortality. Here, we analyze

a subcohort which includes 146 observations for female smokers. Among those individuals,

23 (16%) have missing ACR values. In this subcohort, the mean follow-up time is 1697 days

and the all-cause mortality rate is 13%.

To study the e↵ect of HbA1c and ACR on all-cause mortality, we fit a sequence of trans-

formation models

logH(T
i

) = ��1HbA1ci � �2ACRi

+ ✏
i

, (6.1)

where the hazard function of ✏
i

at time t is specified as exp(t)/{1+ r exp(t)} with r = 1, 1.5

and 2.

In contrast to Huang and Wang (2010), who set B
i

(t) = D(t) = 1 and k
i

(t; �, H) = 0 in

equations (3.1) and (3.2), we conduct various analyses with di↵erent weighting schemes and

choices of k
i

(t; �, H). In particular, we consider the following four sets of weighting schemes:

(W1) B
i

(t) = D(t) = 1;

(W2) B
i

(t) = 1, D(t) = {
P

n

i=1 Vi

Y
i

(t)}/{
P

n

i=1 Yi

(t)};
(W3) B

i

(t) = ⇡(t, Zc

i

, 1), D(t) = 1;
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(W4) B
i

(t) = ⇡(t, Zc

i

, 1), D(t) = {
P

n

i=1 Vi

Y
i

(t)}/{
P

n

i=1 Yi

(t)}.

The weighting scheme (W1) corresponds to the inverse probability weighted estimating

equations, and the weighting scheme (W2) corresponds to the risk set selection probability

weighted estimating equations, because {
P

n

i=1 Vi

Y
i

(t)}/{
P

n

i=1 Yi

(t)} is a consistent estima-

tor of the selection probability given a risk set at time t (Xu et al., 2009). The weighting

scheme (W3) yields the pseudo-partial estimating equations in Luo et al. (2009), while the

weighting scheme (W4) can be regarded as a combination of (W2) and (W3).

In terms of the treatment of k
i

(t; �, H), we first consider a simplest method with k
i

(t; �, H) =

0 in equation (3.2) (Huang and Wang, 2010). We calculate two estimators: one based on the

complete-case only (Complete-A), and the other a weighted estimator with estimated miss-

ingness probabilities under a parametric model (WE-↵̂-A). Secondly, with the martingale

type residual k
i

(t; �, H) =
R

⌧

t+ �i

(s�; �, H)dM
i

(s) incorporated in (3.2), we compute esti-

mators respectively based on the complete-case only (Complete-B), the weighted estimator

with estimated missingness probabilities under a parametric model (WE-↵̂-B), the weighted

estimator with estimated missingness probabilities under a nonparametric model (WE-⇡̂-B)

and the fully augmented weighted estimator with estimated missingness probabilities under

a parametric model (FAW-↵̂-B). In particular, the logistic regression model logit(⇡
i

) = ↵TW
i

is used for WE-↵̂-A and WE-↵̂-B, and the kernel function K(u) = 3(1� u2)/4, |u|  1 with

the bandwidth h
n

= n�1/3 is employed for WE-⇡̂-B.

The results are presented in Table 1. All the methods indicate that HbA1c and ACR

are positively associated with mortality. The di↵erences between the complete data analyses

(Complete-A and Complete-B) and other weighted estimators (WE-↵̂-A, WE-↵̂-B, WE-⇡̂-B

and FAW-↵̂-B) suggest that the weighted estimators reduce the bias incurred by using only

complete cases. All the weighted estimation methods for HbA1c have similar point estimates

and standard errors. In contrast, for ACR, the estimated standard error of WE-↵̂-B which

has k
i

(t; �, H) 6= 0 and estimated missingness probability is as much as 34% smaller than that

of WE-↵̂-A which sets k
i

(t; �, H) = 0, suggesting that our proposed method is empirically

more e�cient than the counterpart of Huang and Wang (2010). The agreement between

WE-↵̂-A and WE-↵̂-B provides some support for the validity of the model assumption. In

addition, the transformation model (6.1) with r = 1 seems to fit the data better than the

models (6.1) with r = 1.5 and r = 2. When r = 1, the estimators with weight (W2) are most
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e�cient among the estimators based on using weights (W4), (W3) and (W1). In particular,

standard error of the estimators WE-↵̂-B, WE-⇡̂-B and FAW-↵̂-B for HbA1c with weight

(W2) can be smaller than those with other weights by 27%. This suggests that choosing a

proper weight other than the inverse missingness probability may help improve estimation

e�ciency. In order to investigate this, we turn to simulations.

7. Empirical Studies

7.1. Performance of the Proposed Methods

We conducted simulation studies to assess the finite sample performance of the proposed

methods. The number of simulation replications is 1000. The failure time T
i

is generated

according to the transformation model (2.1) with p = 2. We set �0 = (�01, �02) = (�0.5, 0.5),

H0(t) = t2 and the hazard function of ✏
i

at time t to be exp(t)/{1+ r exp(t)} with r = 1, 1.5

and 2. The censoring time C
i

is generated from the exponential distribution with density

�1 exp(��1t), where �1 is chosen to yield 15%, 18% and 22% censoring proportions cor-

responding to r = 1, 1.5 and 2 respectively. We consider the case with two independent

covariates, one observed covariate Zc

i

and one missing covariate Zm

i

, where Zc

i

is generated

from the Bernoulli distribution with success probability 0.5 and Zm

i

is generated from the

standard normal distribution. The missing data indicator V
i

is generated from a Bernoulli

distribution with probability ⇡
i

. We consider three scenarios for the missingness proba-

bility ⇡
i

. Under the first simulation scenario with r = 1, the missingness probability is

associated with the censoring indicator, i.e., ⇡
i

= 0.9�
i

+ 0.4(1 � �
i

), yielding about 17%

missingness proportion. Under the second simulation scenario with r = 1.5, the missing-

ness probability is generated to be ⇡
i

= exp(0.8X
i

)/(1 + exp(0.8X
i

)), yielding about 28%

missingness proportion, where X
i

= min(T
i

, C
i

). Under the third simulation scenario with

r = 2, the missingness probability is associated with the observed data (X
i

, �
i

, Zc

i

), i.e.,

⇡
i

= exp(3� 0.5X
i

� 0.5�
i

� 0.5Zc

i

)/{1+ exp(3� 0.5X
i

� 0.5�
i

� 0.5Zc

i

)} yielding about 23%

missingness proportion.

Various weighted estimators with di↵erent weighting schemes are examined. As in Sec-

tion 6, we consider four weighting schemes (W1), (W2), (W3) and (W4) and two methods

indexed by A and B for the treatment of k
i

(t; �, H). The weighting schemes (W1), (W2),

(W3) and (W4) are described in Section 6. In terms of the treatment of k
i

(t; �, H), we first
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Table 1
Analyses of the ADVANCE subcohort data under di↵erent transformation models (r = 1, 1.5, 2) and various

weighting schemes

model with r = 1 model with r = 1.5 model with r = 2

Weight Method HbA1c ACR HbA1c ACR HbA1c ACR

Est SE Est SE Est SE Est SE Est SE Est SE

(W1) Complete-A 0.71 0.24 0.42 0.31 0.69 0.19 0.44 0.34 0.64 0.25 0.47 0.38

WE-↵̂-A 0.77 0.27 0.41 0.31 0.73 0.23 0.40 0.35 0.68 0.26 0.43 0.40

Complete-B 0.73 0.27 0.34 0.22 0.80 0.20 0.32 0.21 0.89 0.24 0.32 0.25

WE-↵̂-B 0.78 0.29 0.39 0.24 0.76 0.24 0.35 0.23 0.80 0.26 0.33 0.30

WE-⇡̂-B 0.80 0.28 0.35 0.23 0.79 0.22 0.31 0.22 0.83 0.29 0.30 0.30

FAW-↵̂-B 0.77 0.32 0.37 0.27 0.76 0.25 0.35 0.23 0.81 0.28 0.34 0.32

(W2) Complete-A 0.71 0.24 0.42 0.32 0.67 0.21 0.46 0.35 0.59 0.28 0.47 0.38

WE-↵̂-A 0.77 0.28 0.41 0.32 0.72 0.26 0.44 0.35 0.64 0.26 0.43 0.40

Complete-B 0.75 0.23 0.35 0.24 0.78 0.24 0.33 0.20 0.84 0.30 0.33 0.32

WE-↵̂-B 0.79 0.24 0.37 0.24 0.74 0.26 0.36 0.23 0.78 0.28 0.35 0.23

WE-⇡̂-B 0.80 0.22 0.35 0.22 0.79 0.28 0.32 0.25 0.81 0.30 0.31 0.26

FAW-↵̂-B 0.77 0.24 0.38 0.24 0.75 0.27 0.36 0.23 0.78 0.31 0.34 0.24

(W3) Complete-A 0.72 0.25 0.40 0.31 0.71 0.22 0.45 0.36 0.68 0.27 0.50 0.41

WE-↵̂-A 0.79 0.28 0.39 0.33 0.77 0.26 0.42 0.38 0.69 0.29 0.46 0.45

Complete-B 0.73 0.29 0.32 0.24 0.83 0.23 0.32 0.23 0.86 0.25 0.34 0.27

WE-↵̂-B 0.77 0.27 0.39 0.22 0.77 0.25 0.37 0.25 0.85 0.26 0.32 0.32

WE-⇡̂-B 0.80 0.28 0.33 0.23 0.81 0.25 0.34 0.26 0.85 0.27 0.33 0.33

FAW-↵̂-B 0.77 0.29 0.35 0.24 0.79 0.24 0.36 0.24 0.87 0.27 0.35 0.33

(W4) Complete-A 0.78 0.25 0.46 0.35 0.72 0.23 0.47 0.37 0.66 0.30 0.49 0.39

WE-↵̂-A 0.84 0.31 0.43 0.38 0.75 0.29 0.43 0.39 0.68 0.28 0.47 0.43

Complete-B 0.81 0.26 0.36 0.28 0.81 0.27 0.33 0.24 0.85 0.29 0.33 0.35

WE-↵̂-B 0.85 0.25 0.41 0.26 0.79 0.27 0.36 0.25 0.80 0.29 0.38 0.25

WE-⇡̂-B 0.83 0.24 0.39 0.25 0.82 0.28 0.32 0.25 0.83 0.32 0.34 0.26

FAW-↵̂-B 0.79 0.26 0.41 0.25 0.82 0.27 0.36 0.25 0.82 0.34 0.38 0.24
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consider Huang and Wang’s type estimators (2010) with k
i

(t; �, H) = 0 in equation (3.2).

This leads to four estimators respectively based on the full cohort (Full-A), complete-case

only (Complete-A), the weighted estimator with true missingness probabilities (WE-A) and

the weighted estimator with estimated missingness probabilities under a parametric model

(WE-↵̂-A). Secondly, with the k
i

(t; �, H) terms incorporated in (3.2), we compute estima-

tors respectively based on the full cohort (Full-B), complete-case only (Complete-B), the

weighted estimator with true missingness probabilities (WE-B), the weighted estimator with

estimated missingness probabilities under a parametric model (WE-↵̂-B), the weighted es-

timator with estimated missingness probabilities under a nonparametric model (WE-⇡̂-B),

the fully augmented weighted estimator with true missingness probabilities (FAW-B) and the

fully augmented weighted estimator with estimated missingness probabilities under a para-

metric model (FAW-↵̂-B). As in Section 6, the same logistic model and the kernel function

are employed for WE-↵̂-B and WE-⇡̂-B.

The full cohort estimates (Full-A and Full-B), and the estimates with true missingness

probabilities (WE-A and WE-B) would not be available in practice, but serve as a bench-

mark for comparing the other methods. Tables 2 – 4 display the bias, empirical standard

error, model-based standard error and 95% coverage rate for various estimators with weights

(W1) and (W2). The simulation results with weights (W3) and (W4) are provided in the

Supplementary Materials. The complete case analyses (Complete-A and Complete-B) yield

biased estimates and inaccurate coverage probabilities, which agrees with the theory. The

performance of the proposed method depends on the specification of k
i

(t; �, H). The method

with a non-zero k
i

(t; �, H) may outperform the method with a zero k
i

(t; �, H), which is

evident from empirical standard errors reported for the methods of Full-A versus Full-B,

WE-A versus WE-B, and WE-↵̂-A versus WE-↵̂-B. This demonstrates that our proposed

estimators are more e�cient than the counterparts of Huang and Wang (2010). Among all

estimators based on method B, we find that the model-based standard error of WE-↵̂-B and

WE-⇡̂-B is smaller than that of WE-B, confirming our theoretical finding in Theorems 4.2

and 4.3. The augmented estimators FAW-B and FAW-↵̂-B are at least as e�cient as the

simple weighted estimators, and have more accurate coverage probabilities than WE-↵̂-B

and WE-⇡̂-B. This agrees with our theoretical findings that the augmented estimators are

optimal.
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Our simulation studies also reveal that the weighting scheme may have a non-ignorable

e↵ect on estimation of the regression parameters that are of primary interest. For instance,

the variance of the estimator for �2 obtained from the FAW-↵̂-B method is di↵erent under the

four weighting schemes (W1)–(W4). In particular, we find that the weighting schemes (W1)

and (W3) produce the most e�cient estimators in the first and second scenarios, respectively,

and (W1) and (W3) have similar performance in the third scenario. A similar phenomenon

holds for other types of estimators.

To further evaluate how the sample size may a↵ect the finite sample performance of

the proposed methods, we conduct simulation studies with two sample sizes: n = 100 and

n = 200. We report the results for n = 100 here but defer those for n = 200 to the Supple-

mentary Materials. The results for n = 200 confirm that the performance of the proposed

methods improves significantly as the sample size increases. Model-based standard errors

(MSE) are fairly close to the empirical standard errors (ESE) for the proposed estimators.

The 95% coverage rates for our estimators are all varying between 93% and 95% when the

missingness probability is known or estimated parametrically. As expected, the estimator

WE-⇡̂-B sometimes may be unstable due to nonparametric estimation of the missingness

probability. But its 95% coverage rates still vary within a reasonable range. These results

suggest that our variance estimators are fairly accurate, even for a moderate sample size.

In summary, the augmented estimator �̂
FA

(↵̂, �̂) (FAW-↵̂-B) described in Section 5 tends

to have the best finite sample performance in terms of the coverage probability. In addition,

the performance of the proposed methods depends on the selection of the weighting schemes.

Our numerical experience shows that the choice of the best weighting scheme, among (W1),

(W2), (W3) and (W4), depends on the data generating procedure. In practice, when the

selection probability is close to 0 for some subjects, the estimator with inverse probability

weighting scheme B
i

(t) = D(t) = 1 may be numerically unstable, leading to inflated standard

errors. If we find that many estimated selection probabilities are close to 0, then it is advisable

to use an alternative weighting scheme that can better compensate for the small selection

probability. One such weighting scheme is (W3) with B
i

(t) = ⇡(t, Zc

i

, 1) and D(t) = 1.
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Table 2
Simulation results for the first scenario with n = 100: Bias, empirical standard error (ESE), model-based

standard error (MSE) and 95% coverage rate (CR, in percent) of the proposed estimators using weights

(W1) and (W2)

�1 �2

Weight Method Bias ESE MSE CR Bias ESE MSE CR

(W1) Full-A -0.033 0.35 0.32 93 0.018 0.22 0.20 94

Complete-A -0.057 0.41 0.37 90 0.027 0.25 0.23 89

WE-A -0.049 0.44 0.39 92 0.021 0.29 0.25 93

WE-↵̂-A -0.041 0.43 0.38 91 0.023 0.27 0.23 91

Full-B -0.024 0.33 0.30 94 0.012 0.20 0.18 94

Complete-B -0.061 0.39 0.34 87 0.028 0.23 0.19 90

WE-B -0.037 0.40 0.37 93 0.015 0.24 0.22 93

WE-↵̂-B -0.030 0.39 0.35 91 0.014 0.23 0.20 90

WE-⇡̂-B -0.031 0.39 0.33 89 0.014 0.23 0.20 90

FAW-B -0.029 0.39 0.37 92 0.015 0.23 0.21 93

FAW-↵̂-B -0.030 0.40 0.37 94 0.017 0.24 0.21 92

(W2) Full-A -0.077 0.38 0.35 93 0.064 0.24 0.21 92

Complete-A -0.108 0.44 0.39 86 0.075 0.27 0.24 88

WE-A -0.092 0.48 0.45 92 0.065 0.32 0.29 93

WE-↵̂-A -0.084 0.47 0.43 89 0.068 0.30 0.26 90

Full-B -0.054 0.37 0.33 93 0.050 0.22 0.19 94

Complete-B -0.094 0.41 0.36 84 0.063 0.25 0.19 88

WE-B -0.071 0.43 0.41 93 0.050 0.27 0.25 92

WE-↵̂-B -0.064 0.43 0.38 90 0.051 0.26 0.22 90

WE-⇡̂-B -0.068 0.43 0.37 89 0.056 0.26 0.21 89

FAW-B -0.070 0.42 0.39 92 0.053 0.26 0.24 93

FAW-↵̂-B -0.072 0.43 0.39 93 0.051 0.27 0.25 95
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Table 3
Simulation results for the second scenario with n = 100: Bias, empirical standard error (ESE), model-based

standard error (MSE) and 95% coverage rate (CR, in percent) of proposed estimators using weights (W1)

and (W2)

�1 �2

Weight Method Bias ESE MSE CR Bias ESE MSE CR

(W1) Full-A -0.058 0.49 0.43 93 -0.004 0.24 0.20 92

Complete-A -0.074 0.59 0.50 87 -0.026 0.31 0.26 90

WE-A -0.052 0.57 0.52 92 0.018 0.30 0.24 91

WE-↵̂-A -0.049 0.55 0.49 92 0.016 0.28 0.23 92

Full-B -0.062 0.41 0.37 94 0.012 0.21 0.18 93

Complete-B -0.081 0.50 0.45 89 0.032 0.25 0.22 88

WE-B -0.043 0.52 0.49 94 0.011 0.27 0.25 93

WE-↵̂-B -0.032 0.48 0.42 91 0.022 0.26 0.22 92

WE-⇡̂-B -0.040 0.49 0.41 90 0.016 0.27 0.22 91

FAW-B -0.036 0.50 0.43 92 0.018 0.27 0.22 93

FAW-↵̂-B -0.034 0.48 0.43 93 0.016 0.26 0.22 92

(W2) Full-A -0.078 0.59 0.55 92 0.022 0.30 0.26 93

Complete-A -0.093 0.69 0.58 84 0.043 0.37 0.32 89

WE-A -0.064 0.68 0.63 92 0.031 0.35 0.29 90

WE-↵̂-A -0.058 0.64 0.60 92 0.030 0.35 0.30 91

Full-B -0.052 0.45 0.42 94 0.011 0.26 0.24 94

Complete-B -0.128 0.54 0.48 81 0.033 0.30 0.27 90

WE-B -0.057 0.58 0.54 92 0.025 0.32 0.27 91

WE-↵̂-B -0.050 0.55 0.50 91 0.029 0.31 0.26 91

WE-⇡̂-B -0.063 0.55 0.49 90 0.027 0.32 0.25 91

FAW-B -0.053 0.54 0.50 92 0.024 0.30 0.26 92

FAW-↵̂-B -0.061 0.53 0.50 93 0.023 0.30 0.26 92
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Table 4
Simulation results for the third scenario with n = 100: Bias, empirical standard error (ESE), model-based

standard error (MSE) and 95% coverage rate (CR, in percent) of the proposed estimators using weights

(W1) and (W2)

�1 �2

Weight Method Bias ESE MSE CR Bias ESE MSE CR

(W1) Full-A 0.017 0.55 0.49 94 0.045 0.29 0.25 93

Complete-A 0.080 0.62 0.52 86 0.066 0.35 0.27 88

WE-A 0.027 0.61 0.62 91 0.068 0.40 0.36 93

WE-↵̂-A 0.030 0.64 0.60 92 0.042 0.38 0.34 92

Full-B 0.020 0.41 0.37 93 0.050 0.23 0.21 93

Complete-B 0.079 0.50 0.44 88 0.048 0.31 0.25 90

WE-B 0.032 0.57 0.54 92 0.024 0.34 0.32 93

WE-↵̂-B 0.040 0.54 0.51 92 0.027 0.33 0.30 93

WE-⇡̂-B 0.028 0.53 0.48 91 0.030 0.33 0.28 91

FAW-B 0.031 0.54 0.51 92 0.026 0.32 0.30 93

FAW-↵̂-B 0.029 0.52 0.51 92 0.026 0.32 0.30 93

(W2) Full-A 0.031 0.58 0.53 93 0.040 0.31 0.27 93

Complete-A 0.099 0.67 0.58 86 0.064 0.41 0.37 85

WE-A 0.046 0.73 0.67 91 0.044 0.43 0.39 92

WE-↵̂-A 0.052 0.68 0.65 93 0.047 0.39 0.36 92

Full-B 0.047 0.42 0.40 94 0.062 0.26 0.23 93

Complete-B -0.113 0.50 0.37 82 0.089 0.37 0.28 85

WE-B 0.053 0.57 0.52 92 0.058 0.40 0.35 92

WE-↵̂-B 0.060 0.53 0.50 92 0.062 0.39 0.35 92

WE-⇡̂-B 0.071 0.53 0.48 89 0.066 0.37 0.33 90

FAW-B 0.067 0.55 0.51 93 0.061 0.37 0.34 92

FAW-↵̂-B 0.068 0.54 0.52 93 0.060 0.37 0.34 93
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Fig 2. E↵ects of misspecifying ⇡i(↵) on the proposed estimators for �1 and �2 under weights (W1) and

(W2). The left panel is the averaged relative bias for estimation of �1 and the right panel is for �2.

7.2. Sensitivity Analysis under Misspecification of ⇡i(↵)

To evaluate the finite sample performance of the estimator �̂
SW

(WE-↵̂-A and WE-↵̂-B)

when the missingness probabilities are incorrectly estimated, we consider the following sim-

ulation scenario. The failure time T
i

is generated according to the transformation model

(2.1) with p = 2, �0 = (�01, �02) = (�0.5, 0.5), H0(t) = t2 and the hazard function of ✏ at

time t being exp(t)/{1 + exp(t)}. The censoring time C
i

is generated from the exponential

distribution with density 0.1 exp(�0.1t). We use the same procedure to generate covariates.

The missingness probability is given by ⇡
i

= exp(3 � 0.5X
i

� 0.5�
i

� 0.5Zc

i

� ⌘�
i

Zc

i

)/{1 +
exp(3� 0.5X

i

� 0.5�
i

� 0.5Zc

i

� ⌘�
i

Zc

i

)}, where ⌘ ranges from �2 to 2. The sample size for

each simulated data is 100, and the number of simulation replications is 100.

When fitting the data, we use a misspecified logistic model logit(⇡
i

) = ↵TW
i

, which ignores

the interaction between �
i

and Zc

i

. Unless ⌘ = 0, the estimator �̂
SW

would be inconsistent.

Figure 2 shows the relative bias of estimators using weight (W1) (WE-↵̂-A-W1, WE-↵̂-

B-W1) and weight (W2) (WE-↵̂-A-W2, WE-↵̂-B-W2) averaged over 100 replications. The

relative bias is defined as the ratio of the bias of the estimates to the true parameter value.

All estimators have little bias when ⌘ is close to 0. As expected, the magnitude of the bias of

estimators increases as ⌘ further departs from 0. The estimators of �2 seem less sensitive with
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respect to the specification of ⇡
i

(↵) than those of �1. In particular, the estimator WE-↵̂-A-W2

for �2 shows largest bias among the estimators we consider. The comparison of the relative

bias of various estimators with weights (W3) and (W4) is included in the Supplementary

Materials. In general, we find that the estimators are quite robust to the misspecification.

8. Discussion

Missing covariates arise commonly in survival data analysis, and it is crucial to adjust for

the missingness e↵ects in order to conduct valid inference. In this paper, we propose a class

of weighted estimating equations to handle survival data with missing covariates under semi-

parametric transformation models. We consider weighted estimating equations, where both

parametric and nonparametric methods are used for modeling the missing covariate process.

We explore the doubly robust estimator derived by augmenting the weighted estimating

equations. The theoretical results for the proposed methods are rigorously established. The

numerical studies demonstrate satisfactory performance of our methods under various set-

tings.

Our methods have several advantages over the existing methods. For instance, in the

absence of missing covariates, our methods are easier to implement than the maximum like-

lihood approach proposed by Zeng and Lin (2006). On the other hand, compared to the

estimating equation approach by Chen et al. (2002), our approaches utilize the information

contained in the weighted residuals, and are potentially more e�cient. In addition, our meth-

ods accommodate time-specific and subject-specific weights. In contrast to Huang and Wang

(2010), our methods retain the information about � in the weighted residuals k
i

(t; �, H),

leading to more e�cient estimators. Recently, Zeng and Lin (2014) proposed a kernel based

maximum likelihood estimation of semiparametric transformation models in the case-cohort

study. However, such kernel based methods may not be applied when the observed covariate

is high dimensional.

One of our main contributions is to incorporate the time dependent weights B
i

(t) and

D(t) into the estimating equations. Theoretically speaking, optimal B
i

(t) and D(t) can be

derived by minimizing the asymptotic variance of the resulting estimator. However, this is

quite di�cult to implement due to the complexity of the asymptotic variance expression.

Some discussion of optimal weights is provided in the Supplementary Materials.
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Throughout the paper, we adopt the counting process notation in Zeng and Lin (2006).

As commented by Zeng and Lin (2006), our proposed methods and theory can be extended

to accommodate time-varying covariates and recurrent events. In our development here, we

assume that Zm

i

are either all observed or all missing, so that the missingness indicator V
i

is a scalar. When an arbitrary nonmonotonic missing pattern for Zm

i

exists, a missingness

indicator vector, say V
i

= (V
i1, ..., Vik

) is needed. Modeling of the missing covariate process

will be more notationally involved, while the same technique discussed in the paper can be

employed.

In this paper, we focus on the inference on the regression parameter � and treat the

function H(·) of little interest; this treatment is consistent with many existing methods on

this topic. To reflect di↵erent roles of � and H(·), we employ two separate stages to handle

H(·) and � di↵erently. In particular, given the missingness probabilities, we first estimate the

function H(t) by Ĥ
W

(t) =
R

t

0 dĤW

(u), where dĤ
W

(u) is defined by (3.1), and then estimate

the parameter � using the weighted profile estimating equations U
W

(�, Ĥ
W

, ⇡;B,D) = 0,

given by (3.2).

As a reviewer of an earlier draft noted, if prediction of survival time in model (2.1) is

of interest, then the function H(·) is not a nuisance. We can modify our development to

simultaneously estimate H(·) and �. Using the notation of Section 3.1, for any t 2 [0, ⌧ ], we

solve both
nX

i=1

�
i

(t){dN
i

(t)� Y
i

(t) exp(�TZ
i

)�
i

(t�; �, H)dH(t)} = 0, (8.1)

and U
W

(�, H, ⇡;B,D) = 0 in (3.2) to estimate � and dH(t) simultaneously. Then prediction

of the survival function S(t, z) = P (T  t|Z = z) with a given covariate Z = z can be

derived by plugging in the estimators of � and dH(t). Associated asymptotic properties may

be established along the lines of Eriksson et al. (2015); Martinussen and Scheike (2007) by

exploiting the conditional multiplier resampling method for the construction of confidence

bands for S(t, z). A rigorous development is, however, beyond the scope of this article though.

Finally, we note that (8.1) defines a recursive estimating equation for dH(t) which depends

on the unknown parameter � while estimating function U
W

(�, H, ⇡;B,D) for � involvesH(t).

Simultaneously solving (8.1) and (3.2) with a single step is impossible, and one has to use

iterations to obtain approximate solutions. Discussion on this algorithm can be found in

Gorfine et al. (2006); Martinussen et al. (2011), and Eriksson et al. (2015), among others.
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1. Expressions of Q(t) and  (k)(t;�0)

For k = 0, 1, let

⌘(k)1 (s, t) = E

⇢
Bi(t)Z

⌦k
i exp(3�T

0 Zi)Yi(s)
�̇2
i (s; �0, H0)

�i(s; �0, H0)

�
,

⌘(k)2 (s, t) = E{Bi(t)Z
⌦k
i exp(2�T

0 Zi)Yi(s)�̇i(s; �0, H0)},

⇠(k)1 (s, t) =

Z ⌧

s

⌘(k)1 (u, t)

e(u)
dH0(u), ⇠(k)2 (s, t) =

Z ⌧

s

⌘(k)2 (u, t)v(0)(u)

e(u)s(0)(u)
dH0(u),

q1(t) =

Z ⌧

t

D(u)
s(1)(u)v(0)(u)� v(1)(u)s(0)(u)

s(0)(u)e(u)
dH0(u),

q2(t) =

Z ⌧

t

D(u)s(1)(u)

s(0)(u)
{⇠(0)1 (u, u)� ⇠(0)2 (u, u)}dH0(u),

q3(t) =

Z t

0

D(u)s(1)(u)

s(0)(u)
⌘(0)2 (t, u)dH0(u),

q4(t) =

Z t

0

D(u)s(1)(u)

s(0)(u)
{⇠(0)1 (t, u)� ⇠(0)2 (t, u)}dH0(u),
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q5(t) =

Z ⌧

t

D(u){⇠(1)1 (u, u)� ⇠(1)2 (u, u)}dH0(u),

q6(t) =

Z t

0

D(u)⌘(1)2 (t, u)dH0(u),

q7(t) =

Z t

0

D(u){⇠(1)1 (t, u)� ⇠(1)2 (t, u)}dH0(u),

Q(t) = e(t){q1(t) + q2(t) + q4(t)� q5(t)� q7(t)}+ q3(t)� q6(t),

K(t) = � 1

e(t)

Z t

0

e(u){s(1)(u) + v(1)(u)H0(u)}
s(0)(u)

dH0(u),

and

 (k)(t; �0) = v(k+1)(t)H0(t) + v(k)(t)K(t)

�
Z ⌧

t

⌘(k)2 (u, t){s(1)(u) + v(1)(u)H0(u) + v(0)(u)K(u)}
s(0)(u)

dH0(u)

+

Z ⌧

t

⇢
⌘(k+1)
2 (u, t) + ⌘(k+1)

1 (u, t)H0(u) + ⌘(k)2 (u, t)K(u)

�
dH0(u).

2. Discussion on the Optimal Weights in Theorem 3.1

In this section, we discuss the optimal choice of time-varying weights in Theorem 3.1. In

particular, we consider a special transformation model: the proportional hazards model.

Under this model, the hazard function of failure time Ti given the covariates Zi satisfies

�(t) = �0(t) exp(�
TZi),

where �0(t) = dH(t)/dt. Recall that Xi = min(Ti, Ci) is the observed survival time, �i =

I(Ti  Ci) is the censoring indicator, D(t) = D(t, �) is a nonnegative deterministic function

and Bi(t) = Bi(t, �) is a nonnegative predictable random process with respect to the data

filtration Ft�, where Ft is the �-field generated by {(Ni(u), Yi(u)) : 0  u  t, i = 1, ..., n},
where Ni(t) = �iI(Xi  t) and Yi(t) = I(Xi � t). Note that under the proportional hazards

model, we can show that

�i(t�; �, H) = 1, and ki(t�; �, H) = 0,

for any i = 1, ..., n. Hence, the weighted Breslow estimator bHW (t) can be simplifies to

d bHW (t) =

Pn
i=1 �i(t)dNi(t)Pn

i=1 �i(t)Yi(t) exp(�TZi)
,
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where �i(t) = ViBi(t)/⇡(Wi) and ⇡(Wi) = P (Vi = 1 | Wi). As a result, the weighted

estimating equations for � are given by,

UW (�, bHW , ⇡;B,D) =
1

n

nX

i=1

Z ⌧

0

�i(t)D(t)


Zi �

Pn
j=1 �j(t)Yj(t)Zj exp(�TZj)Pn
j=1 �j(t)Yj(t) exp(�TZj)

�
dNi(t).

We find that the weighted estimating equations for � do not depend on bHW under the

proportional hazards model, which can be used to simplify the asymptotic variance formula

of �̂W in Theorem 3.1. Furthermore, denote

dMi(t) = dNi(t)� Yi(t) exp(�
TZi)dH(t), (2.1)

s(k)(t; �) = E{Bi(t)Yi(t)Z
⌦k
i exp(�TZi)}, k = 0, 1, 2

and

�(t; �0, H0) =
s(2)(t)

s(0)(t)
� {s(1)(t)}⌦2

{s(0)(t)}2 ,

where s(k)(t) = s(k)(t, �0) for k = 0, 1, 2. Theorem 3.1 leads to the result

p
n(�̂W � �0)

d! N(0, I�1
� ⌃W I�1

� ),

where ⌃W = E(M⇤⌦2
i /⇡(Wi)) with

M⇤
i =

Z ⌧

0

Bi(t)D(t)

⇢
Zi �

s(1)(t)

s(0)(t)

�
dMi(t), (2.2)

and

I� =

Z ⌧

0

D(t)�(t; �0, H0)s
(0)(t)dH0(t). (2.3)

When � is a scalar, one can choose D(t) and Bi(t) such that ⌃W/I2� is minimized. To

illustrate the usage of the time-varying weights, we assume that Bi(t) is identical for all

subjects. In this case, Bi(t)D(t) can be treated as a new time-varying weight function.

Without loss of generality, we assume that Bi(t) = 1. We now minimize the asymptotic

variance ⌃W/I2� with respect to D(t).

Define the following functionals

F1(D) =

Z ⌧

0

D(t)A1(t, Z)dM(t), where A1(t, Z) = Z � s(1)(t)

s(0)(t)
.
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and

F2(D) =

Z ⌧

0

D(t)A2(t)dH0(t), where A2(t) = �(t; �0, H0)s
(0)(t).

Let D↵(t) = D(t)+↵u(t) denote a curve passing through D(t) indexed by a scalar parameter

↵ with direction determined by a function u(t). Then, we take derivative of ⌃W/I2� with

respect to ↵ and evaluate it at ↵ = 0,

d

d↵

✓
⌃W/I2�

◆
=

d

d↵


E{F 2

1 (D↵)/⇡(W )}
F 2
2 (D↵)

�

=
2F3(D, u)F2(D)� 2F3(D,D)F2(u)

F 3
2 (D)

,

where

F3(D, u) = E

⇢
1

⇡(W )
F1(D)F1(u)

�
.

Hence, a necessary condition for the optimality of D(t) is that D(t) is the solution of the

following integral equation

F3(D, u)F2(D) = F3(D,D)F2(u), (2.4)

for any u(t).

However, the integral equation (2.4) does not have an explicit solution; even the existence

and uniqueness of the solution are not automatically guaranteed. To provide further insight

into the optimal weights, we consider the proportional hazards model with discrete time.

For simplicity, assume that failure and censoring are only observed at time t = 1 and t = 2.

Denote �H(t) = H(t)�H(t� 1), where t = 1, 2. Recall that H(0) = 0 by definition. Then

equations (2.2) and (2.3) reduce to

I� = D(1)J1 +D(2)J2, where Jt = A2(t)�H(t)

and

M⇤
i = D(1)A1(1, Zi)�Mi(1) +D(2)A1(2, Zi)�Mi(2),

where,

�Mi(t) = �Ni(t)� Yi(t) exp(�
TZi)�H(t),

and �Ni(t) = Ni(t)�Ni(t� 1). Therefore, ⌃W is given by

⌃W = E


1

⇡(Wi)
{D(1)A1(1, Zi)�Mi(1) +D(2)A1(2, Zi)�Mi(2)}2

�

= D(1)2C1 +D(2)2C2 + 2D(1)D(2)C12,
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where

Ct = E


1

⇡(Wi)
{A1(t, Zi)�Mi(t)}2

�
, t = 1, 2,

C12 = E


1

⇡(Wi)
A1(1, Zi)�Mi(1)A1(2, Zi)�Mi(2)

�
.

Our goal is to find D(1) and D(2) such that

⌃W

I2�
=

D(1)2C1 +D(2)2C2 + 2D(1)D(2)C12

(D(1)J1 +D(2)J2)2
, (2.5)

is minimized. Note that if we inflate D(1) and D(2) by the same positive constant, (2.5)

remains identical. Without loss of generality, assume that D(2) = 1. The optimal weight

D(1) is given by argminx�0 f(x), where

f(x) =
x2C1 + 2C12x+ C2

(J1x+ J2)2
.

Simple algebra shows that

f 0(x) =
2(C1J2 � C12J1)x� 2(C2J1 � C12J2)

(J1x+ J2)3
.

Hence, we consider the following five situations, according to the sign of C12J2 � C2J1 and

C1J2 � C12J1.

(1) If C1J2 � C12J1 > 0 and C2J1 � C12J2 � 0, then f 0(x) < 0 for 0 < x < C2J1�C12J2
C1J2�C12J1

and

f 0(x) > 0 for x > C2J1�C12J2
C1J2�C12J1

. Hence, f(x) has a unique minimizer at x = C2J1�C12J2
C1J2�C12J1

.

(2) If C1J2 � C12J1 < 0 and C2J1 � C12J2  0, then f 0(x) > 0 for 0 < x < C2J1�C12J2
C1J2�C12J1

and

f 0(x) < 0 for x > C2J1�C12J2
C1J2�C12J1

. Hence, the minimizer of f(x) is either x = 0 or x = +1.

(3) If C1J2 � C12J1 � 0 and C2J1 � C12J2 < 0, then f 0(x) > 0 for x � 0. Hence, the

minimizer of f(x) is x = 0.

(4) If C1J2 � C12J1  0 and C2J1 � C12J2 > 0, then f 0(x) < 0 for x � 0. Hence, the

minimizer of f(x) is x = +1.

(5) If C1J2 � C12J1 = 0 and C2J1 � C12J2 = 0, then f 0(x) = 0 for x � 0. Hence, f(x) is a

constant function.

For instance, in situation (1), the optimal weight given byD(1) = C2J1�C12J2
C1J2�C12J1

andD(2) = 1

exists and is unique. Note that, if the covariates are missing completely at random (MCAR),

the missingness probability ⇡(Wi) = ⇡ is a positive constant. By the property of the martin-

gale, we obtain C12 = 0, ⇡C1 = J1 and ⇡C2 = J2. From our derivation, the optimal weight
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under MCAR is given by D(1) = D(2) = 1. However, if the covariates are missing at random

(MAR), typically we have C2J1 � C12J2 6= C1J2 � C12J1, and therefore the optimal D(1) is

not 1. Recall that in this situation the inverse probability weighting scheme corresponds to

D(1) = 1. This suggests that the optimal time-varying weight is not the inverse probability

weight.

For the proportional hazards model with continuous failure time, in principle, the cu-

mulative hazard function can be approximated by a discrete function taking values at the

observed failure time. One may adopt the similar procedure to find the optimal weights

D(ti) at each time point ti, where i = 1, ..., n. However, the optimization with respect to

(D(t1), ..., D(tn)) may be computationally intractable for large n. In the simulation studies,

instead of deriving the optimal weights, we evaluate the e�ciency of the estimators under

many commonly used weight functions proposed in the literature.

3. Toy Example for Corollary 4.2

In this section, we present a toy example to illustrate how the estimation e�ciency may be

a↵ected by di↵erent estimators of ⇡(·). Assume that Wi is partitioned as (W1i, ...,WJi), and

the true missing data process ⇡i only depends on the first covariate of Wi, i.e., ⇡i = ⇡(W1i).

In this setting, there exist many possibilities for constructing the nonparametric estimator of

⇡i. For j = 1, ..., J , denote W ji = (W1i, ...,Wji) and assume that W ji = (W
(1)
ji ,W

(2)
ji ), where

W
(1)
ji is a vector of continuous variables and W

(2)
ji is a vector of discrete variables. Consider

the following kernel estimators based on W ji,

⇡̂j(w̄j) = ⇡̂j(w̄(1)
j , w̄(2)

j ) =

Pn
i=1 ViI(W

(2)
ji = w̄(2)

j )Kh(w̄
(1)
j �W

(1)
ji )

Pn
i=1 I(W

(2)
ji = w̄(2)

j )Kh(w̄
(1)
j �W

(1)
ji )

, (3.1)

where w̄j = (w1, ...wj). Then ⇡i can be estimated by a sequence of estimators ⇡̂j(W ji), for

j = 1, ..., J .

The resulting estimator of � with the kernel estimator ⇡̂j(W ji) is denoted by �̂(j)
NW . Note

that �̂(J)
NW corresponds to the estimator �̂NW in Theorem 4.3. We can show that for �̂(j)

NW ,

condition (D2) in Theorem 4.1 is satisfied with m(Wi; �0, H0, ⇡) = E(M⇤
i | W ji). Therefore,

as a corollary of Theorem 4.1, we have

p
n(�̂(j)

NW � �0)
d! N


0, I�1

�

⇢
⌃W � E

✓
1� ⇡i

⇡i

M⇤oj⌦2
i

◆�
I�1
�

�
,
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where M⇤oj
i = E(M⇤

i | W ji). Similar to Corollary 4.2, we have Avar(�̂(J)
NW )  Avar(�̂(J�1)

NW ) 
...  Avar(�̂(1)

NW ).

This property implies that the estimator of � may gain e�ciency by incorporating more

variables in the estimation of the missingness probability, even if these covariates are not

associated with the missing data process. Such a phenomenon is also observed by Qi et al.

(2005) for the proportional hazards model. This property also shows that �̂(J)
NW is optimal

among the class of estimators {�̂(j)
NW , j = 1, ..., J}.

4. Regularity Conditions

For the survival process, we require the following regularity conditions.

(A1) For i = 1, ..., n, P (Yi(⌧) = 1) > 0, and H0(⌧)  1.

(A2) For i = 1, ..., n, the covariates Zi are bounded.

(A3) For i = 1, ..., n, Bi(t) and D(t) are predictable processes with bounded variation and

Bi(t) > ✏2, for some ✏2 > 0.

(A4) The quantities s(k)(t; �), v(k)(t; �), ⌘(k)1 (s, t), and ⌘(k)2 (s, t) exist. The matrices I� and

⌃W are positive definite.

(A5) The matrices I↵�, I↵ and ⌃SW are positive definite.

(A6) The matrices var[Ri/⇡(Wi)M⇤
i �{Vi�⇡(Wi)}/⇡(Wi)E(M⇤

i | Wi)] and I� = E{ @2

@�2f(Zm
i |

Wi;�)} are positive definite.

For the missing data process, we assume the following regularity conditions.

(B1) There exists ✏1 > 0 such that the missingness probability satisfies infw ⇡(w) � ✏1.

(B2) There exists an integer r > d so that the missingness probability ⇡(w(1), w(2)) has rth

order continuous and bounded partial derivatives with respect to w(1) almost surely,

where d = dim(w(1)).

(B3) The probability density function f(w) of W has rth order continuous and bounded

partial derivatives with respect to w(1) almost surely, and 0 < infw f(w)  supw f(w) <

1.

For using the kernel smoothing method, we consider the following regularity conditions.

(C1) The kernel function K(·) is a rth order kernel function with bounded support.

(C2) nh2d ! 1 and nh2r ! 0, as n ! 1.
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(C3) The conditional expectation E(M⇤
i | Wi) has rth order continuous and bounded partial

derivatives with respect to W (1)
i .

Conditions (A1) and (A2) are common for survival models (Huang and Wang, 2010; Chen

et al., 2002; Andersen and Gill, 1982). Condition (A3) is used to show the consistency of the

estimate of H(t). Conditions (A4) – (A6) are assumed to guarantee the positive definiteness

of the asymptotic variances in Theorems 3.1 – 5.2. Condition (B1) is used to avoid the

situation that the denominator in the weighted estimating equations is 0. Conditions (B1)

– (B3) and (C1) – (C3) are typical for the kernel smoothing method in survival models.

Similar regularity conditions are adopted by Qi et al. (2005) for the proportional hazards

model and by Huang and Wang (2010) for the transformation model.

5. Proofs

Proof of Theorem 3.1

The proof consists of six parts which are sketched as follows. For simplicity, we assume Bi(t)

and D(t) are independent of �. The arguments as in Appendix A1 of Xu et al. (2009) can

be applied to show that the same asymptotic results still hold if Bi(t, �) and D(t, �) are

consistently estimated by Bi(t, �̂W ) and D(t, �̂W ), respectively.

Part 1: Consistency of

bHW

Define a metric for nondecreasing functions H1 and H2 on [0, ⌧ ] as

d(H1, H2) = sup
t2[0,⌧ ]

|H1(t)�H2(t)|.

Let �i(H) = �i(s�; �, H), ki(H) = ki(s�; �, H) and

A(H)(t) =
1

n

nX

i=1

Z t

0

�i(s){dNi(s)� Yi(s) exp(�
TZi)�i(s�; �, H)dH(s)}.

For an arbitrary but fixed ✏ > 0, consider nondecreasing functions H1(t) and H2(t) with

H1(0) = H2(0) = 0 such that d(H1, H2) > ✏. Without loss of generality, there exists ⌧̃ > 0

such that H1(t) � H2(t) for any t 2 [0, ⌧̃ ], and for some t 2 [0, ⌧̃ ], H1(t) > H2(t). Since

H1(0) = H2(0), there must exist t̃ such that dH1(t) � dH2(t), for any t 2 [0, t̃], and ✏⇤ =

8



H1(t̃)�H2(t̃) > 0. By the regularity conditions (A1) – (A3), we have

sup
t2[0,⌧ ]

| A(H1)(t)� A(H2)(t) |

=
1

n
sup
t2[0,⌧ ]

�����

nX

i=1

Z t

0

�i(s)Yi(s) exp(�
TZi){�i(s�; �, H1)dH1(s)� �i(s�; �, H2)dH2(s)}

�����

� 1

n

�����

nX

i=1

Vi✏2
⇡(Wi)

Z t̃

0

Yi(s) exp(�
TZi){�i(s�; �, H1)dH1(s)� �i(s�; �, H2)dH2(s)}

�����

� 1

n

�����

nX

i=1

Vi✏2
⇡(Wi)

Z H1(t̃^Xi)

H2(t̃^Xi)

exp(�TZi)�{exp(�TZi)s}ds

�����

� 1

n

�����

nX

i=1

Vi✏2I(Xi = ⌧)

⇡(Wi)

Z H1(t̃)

H2(t̃)

exp(�TZi)�{exp(�TZi)s}ds

�����

� 1

n

nX

i=1

Vi✏2I(Xi = ⌧) exp(�TZi)

⇡(Wi)
inf

0<b<a<m,a�b=✏⇤

⇢Z a

b

�{exp(�TZi)s}ds
�
,

where m is some constant. Note that the hazard function �(t) is positive. By the Law of

Large Numbers, we obtain that there exists some ✏̃ > 0 such that,

sup
t2[0,⌧ ]

| A(H1)(t)� A(H2)(t) |� ✏̃. (5.1)

Now, we show that d( bHW , H0) = op(1). If this is not true, then there exists ✏ > 0 such that

d( bHW , H0) > ✏. By (5.1), we have

sup
t2[0,⌧ ]

| A( bHW )(t)� A(H0)(t) |= sup
t2[0,⌧ ]

| A(H0)(t) |� ✏̃. (5.2)

However, by the Glivenko-Cantelli theorem (Van der Vaart, 1998), A(H0)(t) = op(1) uni-

formly in t, implying that supt2[0,⌧ ] | A(H0)(t) |= op(1), which contradicts to (5.2). Thus,

d( bHW , H0) = op(1).

Part 2: Asymptotic expansions for

bHW

By definition,

d bHW (t)� dH0(t) =
1

n

Pn
i=1 �i(t)dNi(t)

S(0)
W (t; �, bHW , ⇡)

� dH0(t)

=

(
1

n

Pn
i=1 �i(t)dNi(t)

S(0)
W (t; �, H0, ⇡)

� dH0(t)

)

+
1

n

(Pn
i=1 �i(t)dNi(t)

S(0)
W (t; �, bHW , ⇡)

�
Pn

i=1 �i(t)dNi(t)

S(0)
W (t; �, H0, ⇡)

)

4
= I1 + I2.
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Note that, for k = 0, 1, 2,

S(k)
W (t; �, H, ⇡) =

1

n

nX

i=1

�i(t)Yi(t)�i(t; �, H)Z⌦k
i exp(�TZi),

and

s(k)(t; �) = E{Bi(t)Yi(t)�i(t; �, H)Z⌦k
i exp(�TZi)}, k = 0, 1, 2.

By the Glivenko-Cantelli theorem, S(k)
W (t; �, H, ⇡) converges uniformly over t and � to s(k)(t; �)

and R(t; �, H, ⇡) converges uniformly over t and � to 0. Therefore,

I1 =
1

n

Pn
i=1{�i(t)dNi(t)� S(0)

W (t; �, H0, ⇡)dH0(t)}
S(0)
W (t; �, H0, ⇡)

=
1

n

nX

i=1

�i(t)dMi(t)

s(0)(t; �)
+ op(n

�1/2).

Similarly, we can write

I2 = � 1

n

nX

i=1

�i(t)dNi(t)

{s(0)(t; �)}2{S
(0)
W (t; �, bHW , ⇡)� S(0)

W (t; �, H0, ⇡)}+ op(n
�1/2). (5.3)

Denote

v(k)(t; �) = E{Bi(t)Yi(t)�̇i(t; �, H)Z⌦k
i exp(2�TZi)}, k = 0, 1, 2.

By the consistency of bHW and the Taylor series expansion,

S(0)
W (t; �, bHW , ⇡)� S(0)

W (t; �, H0, ⇡) = v(0)(t; �){ bHW (t)�H0(t)}+ op(n
�1/2). (5.4)

Therefore, (5.3) and (5.4) yield that,

I2 = � 1

n

nX

i=1

�i(t)dNi(t)

{s(0)(t; �)}2v
(0)(t; �){ bHW (t)�H0(t)}+ op(n

�1/2)

= �v(0)(t, �)

s(0)(t, �)
{ bHW (t)�H0(t)}dH0(t) + op(n

�1/2).

Combining expansions for I1 and I2, we obtain

d bHW (t)� dH0(t) = �v(0)(t, �)

s(0)(t, �)
{ bHW (t)�H0(t)}dH0(t) +

1

n

nX

i=1

�i(t)dMi(t)

s(0)(t; �)
+ op(n

�1/2),

which defines a first order ordinary di↵erential equation for bHW (t) � H0(t). This equation

has an explicit solution, given by

bHW (t)�H0(t) =
1

ne(t, �)

nX

i=1

Z t

0

e(u, �)

s(0)(u, �)
�i(u)dMi(u) + op(n

�1/2),
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where

e(t, �) = exp

⇢Z t

0

v(0)(u, �)

s(0)(u, �)
dH0(u)

�
.

Part 3: Asymptotic normality of UW (�0, bHW , ⇡;B,D)

Let

R(k)
W (t; �, H, ⇡) =

1

n

nX

j=1

�j(t)Yj(t) exp(�
TZj)Z

⌦k
j kj(t�; �, H), k = 0, 1.

Denote S(k)(t) = S(k)
W (t; �0, H0, ⇡), R(k)(t) = R(k)

W (t; �0, H0, ⇡), bS(k)(t) = S(k)
W (t; �0, bHW , ⇡),

bR(k)(t) = R(k)
W (t; �0, bHW , ⇡), s(k)(t) = s(k)(t; �0), v(k)(t) = v(k)(t; �0) and e(t) = e(t; �0). Note

that �i(t�; �, bHW ) = �i(t; �, bHW ) + op(n�1) and ki(t�; �, bHW ) = ki(t; �, bHW ) + op(n�1).

Thus, replacing �i(t�; �, bHW ) and ki(t�; �, bHW ) respectively with �i(t; �, bHW ) and ki(t; �, bHW )

does not alter asymptotic results. Note that

UW (�0, bHW , ⇡;B,D) =
1

n

nX

i=1

Z ⌧

0

�i(t)D(t)


Zi

�
Pn

j=1 �j(t)Yj(t)Zj exp(�T
0 Zj){�j(t�; �0, bHW )� kj(t�; �0, bHW )}

Pn
j=1 �j(t)Yj(t) exp(�T

0 Zj){�j(t�; �0, bHW )� kj(t�; �0, bHW )}

�
dNi(t).

Then we derive

n1/2UW (�0, bHW , ⇡;B,D)

=
1p
n

nX

i=1

Z ⌧

0

�i(t)D(t)

⇢
Zi �

bS(1)(t)� bR(1)(t)
bS(0)(t)� bR(0)(t)

�
dNi(t)

=
1p
n

nX

i=1

Z ⌧

0

�i(t)D(t)

⇢
Zi �

bS(1)(t)� bR(1)(t)
bS(0)(t)� bR(0)(t)

�
{dMi(t) + Yi(t)�i(t; �0, H) exp(�T

0 Zi)dH0(t)}

=
1p
n

nX

i=1

Z ⌧

0

�i(t)D(t)

⇢
Zi �

bS(1)(t)� bR(1)(t)
bS(0)(t)� bR(0)(t)

�
dMi(t)

+ n1/2

Z ⌧

0

D(t)

⇢
S(1)(t)�

bS(1)(t)� bR(1)(t)
bS(0)(t)� bR(0)(t)

S(0)(t)

�
dH0(t)

4
= J1 + J2. (5.5)

Simple calculation shows that E(R(k)
W (t; �, H, ⇡)) = 0. By the consistency of bH(t) and the

Glivenko-Cantelli theorem, we have S(k)(t) = s(k)(t) + op(1), R(k)(t) = op(1), bS(k)(t) =

s(k)(t) + op(1) and bR(k)(t) = op(1) uniformly over t. Therefore,

J1 =
1p
n

nX

i=1

Z ⌧

0

�i(t)D(t)

⇢
Zi �

s(1)(t)

s(0)(t)

�
dMi(t) + op(1). (5.6)
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To closely examine J2, we consider expansions of bS(k)(t) and bR(k)(t), for k = 0, 1. By the

consistency of bH(t) and the Taylor series expansion, it is easy to show that

bS(k)(t) = S(k)(t) + v(k)(t){ bHW (t)�H0(t)}+ op(n
�1/2). (5.7)

Note that

⌘(k)1 (s, t) = E

⇢
Bi(t)Z

⌦k
i exp(3�T

0 Zi)Yi(s)
�̇2
i (s; �0, H0)

�i(s; �0, H0)

�
,

⌘(k)2 (s, t) = E{Bi(t)Z
⌦k
i exp(2�T

0 Zi)Yi(s)�̇i(s; �0, H0)}.

After some algebra, we therefore obtain that

bR(k)(t)�R(k)(t)

= �
Z ⌧

t+

⇢
1

n

nX

i=1

�i(t)Yi(s)Z
⌦k
i exp(3�T

0 Zi)
�̇2
i (s; �0, H0)

�i(s; �0, H0)

�
{ bHW (s)�H0(s)}dH0(s)

�
Z ⌧

t+

(
1

n

nX

i=1

�i(t)Yi(s)Z
⌦k
i exp(2�T

0 Zi)�̇i(s; �0, H0)

)
d{ bHW (s)�H0(s)}+ op(n

�1/2)

= �
Z ⌧

t+

⌘(k)1 (s, t){ bHW (s)�H0(s)}dH0(s)�
Z ⌧

t+

⌘(k)2 (s, t)d{ bHW (s)�H0(s)}+ op(n
�1/2)

= � 1

n

nX

i=1

Z ⌧

t+

⌘(k)1 (s, t)

e(s)

Z s

0

e(u)

s(0)(u)
�i(u)dMi(u)dH0(s)

+
1

n

nX

i=1

Z ⌧

t+

⌘(k)2 (s, t)v(0)(s)

s(0)(s)e(s)

Z s

0

e(u)

s(0)(u)
�i(u)dMi(u)dH0(s)

� 1

n

nX

i=1

Z ⌧

t+

⌘(k)2 (s, t)

s(0)(s)
�i(s)dMi(s) + op(n

�1/2).

Interchanging the order of integration leads to

bR(k)(t)�R(k)(t)

= � 1

n

nX

i=1

Z t

0

e(u)�i(u)

s(0)(u)
{⇠(k)1 (t, t)� ⇠(k)2 (t, t)}dMi(u)

� 1

n

nX

i=1

Z ⌧

t+


⌘(k)2 (s, t)

s(0)(s)
+

e(u)

s(0)(u)
{⇠(k)1 (u, t)� ⇠(k)2 (u, t)}

�
�i(u)dMi(u)

+ op(n
�1/2), (5.8)

where

⇠(k)1 (u, t) =

Z ⌧

u

⌘(k)1 (s, t)

e(s)
dH0(s), ⇠(k)2 (u, t) =

Z ⌧

u

⌘(k)2 (s, t)v(0)(s)

e(s)s(0)(s)
dH0(s).
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By definition of J2 in (5.5), we obtain

J2 = n1/2

Z ⌧

0

D(t)
bS(0)(t)S(1)(t)� bS(1)(t)S(0)(t)

bS(0)(t)� bR(0)(t)
dH0(t)

� n1/2

Z ⌧

0

D(t)
bR(0)(t)S(1)(t)� bR(1)(t)S(0)(t)

bS(0)(t)� bR(0)(t)
dH0(t)

4
= J21 � J22.

By (5.7),

J21 = n1/2

Z ⌧

0

D(t)
s(1)(t)v(0)(t)� v(1)(t)s(0)(t)

s(0)(t)
{ bHW (t)�H0(t)}dH0(t) + op(1)

=
1p
n

nX

i=1

Z ⌧

0

D(t)
s(1)(t)v(0)(t)� v(1)(t)s(0)(t)

s(0)(t)e(t)

Z t

0

e(u)

s(0)(u)
�i(u)dMi(u)dH0(t) + op(1)

=
1p
n

nX

i=1

Z ⌧

0

e(u)

s(0)(u)
�i(u)q1(u)dMi(u) + op(1),

where

q1(u) =

Z ⌧

u

D(t)
s(1)(t)v(0)(t)� v(1)(t)s(0)(t)

s(0)(t)e(t)
dH0(t).

Similarly, by (5.8), after some algebra, we derive

J22 = � 1p
n

nX

i=1

Z ⌧

0

D(t)s(1)(t)

s(0)(t)

✓Z t

0

e(u)�i(u)

s(0)(u)
{⇠(0)1 (t, t)� ⇠(0)2 (t, t)}dMi(u)

+

Z ⌧

t+


⌘(0)2 (u, t)

s(0)(u)
+

e(u)

s(0)(u)
{⇠(0)1 (u, t)� ⇠(0)2 (u, t)}

�
�i(u)dMi(u)

◆
dH0(t)

+
1p
n

nX

i=1

Z ⌧

0

D(t)

✓Z t

0

e(u)�i(u)

s(0)(u)
{⇠(1)1 (t, t)� ⇠(1)2 (t, t)}dMi(u)

+

Z ⌧

t+


⌘(1)2 (u, t)

s(0)(u)
+

e(u)

s(0)(u)
{⇠(1)1 (u, t)� ⇠(1)2 (u, t)}

�
�i(u)dMi(u)

◆
dH0(t) + op(1)

=
1p
n

nX

i=1

Z ⌧

0

�i(u)

s(0)(u)


e(u)

⇢
q5(u) + q7(u)� q2(u)� q4(u)

�
+ q6(u)� q3(u)

�
dMi(u),

where

q2(u) =

Z ⌧

u

D(t)s(1)(t)

s(0)(t)
{⇠(0)1 (t, t)� ⇠(0)2 (t, t)}dH0(t),

q3(u) =

Z u

0

D(t)s(1)(t)

s(0)(t)
⌘(0)2 (u, t)dH0(t),

13



q4(u) =

Z u

0

D(t)s(1)(t)

s(0)(t)
{⇠(0)1 (u, t)� ⇠(0)2 (u, t)}dH0(t),

q5(u) =

Z ⌧

u

D(t){⇠(1)1 (t, t)� ⇠(1)2 (t, t)}dH0(t),

q6(u) =

Z u

0

D(t)⌘(1)2 (u, t)dH0(t),

and

q7(u) =

Z u

0

D(t){⇠(1)1 (u, t)� ⇠(1)2 (u, t)}dH0(t).

As a result, we obtain that

J2 =
1p
n

nX

i=1

Z ⌧

0


e(u){q1(u) + q2(u) + q4(u)� q5(u)� q7(u)}

+ q3(u)� q6(u)

�
�i(u)

s(0)(u)
dMi(u) + op(1). (5.9)

Combining (5.6) and (5.9) gives us

n1/2UW (�0, bHW , ⇡;B,D)

=
1p
n

nX

i=1

Z ⌧

0


D(t)

⇢
Zi �

s(1)(t)

s(0)(t)

�
+

Q(t)

s(0)(t)

�
�i(t)dMi(t) + op(1) (5.10)

where

Q(t) = e(t){q1(t) + q2(t) + q4(t)� q5(t)� q7(t)}+ q3(t)� q6(t). (5.11)

This implies that n1/2UW (�0, bHW , ⇡;B,D) can be approximated by a sum of iid mean zero

random variables. Therefore, by the central limit theorem,

n1/2UW (�, bHW , ⇡;B,D)
d! N(0,⌃W ),

where ⌃W = E(M⇤⌦2
i /⇡), and

M⇤
i =

Z ⌧

0

Bi(t)


D(t)

⇢
Zi �

s(1)(t)

s(0)(t)

�
+

Q(t)

s(0)(t)

�
dM(t).

Part 4: Convergence of �(@/@�)UW (�0, bHW , ⇡;B,D)

Let

 (k)(t; �) =
1

n

nX

j=1

�j(t)Yj(t)Z
⌦k
j exp(�TZj)

⇢
@

@�
�j(t�; �, bHW )� @

@�
kj(t�; �, bHW )

�
, k = 0, 1.

14



It is easy to verify that

@

@�
�j(t�; �, bHW ) = �̇j(t�; �, bHW ) exp(�TZj)

⇢
Zj

bHW (t) +
@

@�
bHW (t)

�
.

After some algebra, we can show that

 (k)(t; �0) = v(k+1)(t)H0(t) + v(k)(t)
@

@�
bHW (t) +

Z ⌧

t

⌘(k)2 (u, t)d

⇢
@

@�
bHW (u)

�

+

Z ⌧

t

⇢
⌘(k+1)
2 (u, t) + ⌘(k+1)

1 (u, t)H0(u) + ⌘(k)2 (u, t)
@

@�
bHW (u)

�
dH0(u) + op(1).

Next, we derive the asymptotic limits for (@/@�) bHW and d(@/@�) bHW . Straightforward cal-

culation shows that

d

⇢
@

@�
bHW (t)

�
= � dH0(t)

s(0)(t; �)
{s(1)(t; �) + v(1)(t; �)H0(t) + v(0)(t; �)

@

@�
bHW (t)}+ op(1),

which again produces a first order ordinary di↵erential equation for (@/@�) bHW (t). Then

@

@�
bHW (t) = � 1

e(t; �)

Z t

0

e(u; �){s(1)(u; �) + v(1)(u; �)H0(u)}
s(0)(u; �)

dH0(u) + op(1).

Let

K(t) = � 1

e(t)

Z t

0

e(u){s(1)(u) + v(1)(u)H0(u)}
s(0)(u)

dH0(u),

 (k)(t; �0) = v(k+1)(t)H0(t) + v(k)(t)K(t)

�
Z ⌧

t

⌘(k)2 (u, t){s(1)(u) + v(1)(u)H0(u) + v(0)(u)K(u)}
s(0)(u)

dH0(u)

+

Z ⌧

t

⇢
⌘(k+1)
2 (u, t) + ⌘(k+1)

1 (u, t)H0(u) + ⌘(k)2 (u, t)K(u)

�
dH0(u),

�(t; �0) =
S(2)
W (t; �0) + (1)(t; �0)

S(0)
W (t; �0)

+
S(1)
W (t; �0){S(1)

W (t; �0) + (0)(t; �0)}T

{S(0)
W (t; �0)}⌦2

,

and

�(t; �0) =
s(2)(t; �0) +  (1)(t; �0)

s(0)(t; �0)
+

s(1)(t; �0){s(1)(t; �0) +  (0)(t; �0)}T

{s(0)(t; �0)}⌦2
.

By the Glivenko-Cantelli theorem,  (k)(t; �) =  (k)(t; �)+op(1) and hence, �(t; �) = �(t; �)+

15



op(1) uniformly in � and t. After some algebra, we obtain

� @

@�
UW (�0, bHW , ⇡;B,D) =

1

n

nX

i=1

Z ⌧

0

�i(t)D(t)�(t; �0)dNi(t) + op(1)

=
1

n

nX

i=1

Z ⌧

0

�i(t)D(t)�(t; �0)dNi(t) + op(1)

=

Z ⌧

0

D(t)�(t; �0)s
(0)(t)dH0(t) + op(1)

4
= I� + op(1),

where the op(1) terms are uniformly in �.

Part 5: Consistency of �̂W

In Part 3, we obtain that UW (�, bHW , ⇡;B,D) ! 0 in probability. By assumption (A4),

⌃W is positive definite. Then following the same arguments for the proof of Theorem 2 of

Foutz (1977), we can show that �̂W exists and is unique in a compact neighborhood of �0

with probability converging to 1 as n ! 1, and �̂W is consistent for �0.

Part 6: Asymptotic normality of n1/2(�̂W � �0)

By definition and the mean value theorem,

0 = UW (�̂W , bHW , ⇡;B,D)

= UW (�0, bHW , ⇡;B,D) + {UW (�̂W , bHW , ⇡;B,D)� UW (�0, bHW , ⇡;B,D)}

= UW (�0, bHW , ⇡;B,D) +
@

@�
UW (�⇤, bHW , ⇡;B,D)(�̂W � �0),

where �⇤ is between �0 and �̂W . Then

n1/2(�̂W � �0) = �
⇢

@

@�
UW (�⇤, bHW , ⇡;B,D)

��1 ⇢
n1/2UW (�0, bHW , ⇡;B,D)

�

By the results in Parts 3-5, we obtain that n1/2(�̂W��0) converges weakly toN(0, I�1
� ⌃W I�1

� ).

5.1. Proof of Theorem 4.1

Lemma 5.1. Let gi(�, t) = g(Xi, �i, Zi, �, t) be a real-valued function satisfying E|gi(�, t)| 
1. Then under conditions (B1) and (D1), we have

1

n

nX

i=1

Vi

⇡̃(Wi)
gi(�, t) =

1

n

nX

i=1

Vi

⇡(Wi)
gi(�, t) + op(1).
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Proof:. We assume that Wi is continuous. For notational simplicity, let gi = gi(�, t). Noting

that
1

n

nX

i=1

Vi

⇡̃(Wi)
gi =

1

n

nX

i=1

Vi

⇡(Wi)
gi �

1

n

nX

i=1

Vi(⇡̃(Wi)� ⇡(Wi))

⇡̃(Wi)⇡(Wi)
gi , I1 + I2,

it su�ces to show that I2 = op(1). Indeed,

|I2|  sup
w

|⇡̃(w)� ⇡(w)|
⇢
1

n

nX

i=1

Vi|gi|
⇡̃(Wi)⇡(Wi)

I(⇡̃(Wi) � ⇡(Wi)/2)

+
1

n

nX

i=1

Vi|gi|
⇡̃(Wi)⇡(Wi)

I(⇡̃(Wi) < ⇡(Wi)/2)

�
.

Clearly, by condition (B1),

1

n

nX

i=1

Vi|gi|
⇡̃(Wi)⇡(Wi)

I{⇡̃(Wi) � ⇡(Wi)/2}  2

n

nX

i=1

Vi|gi|
⇡2(Wi)

= Op(1).

For any ✏ > 0, by conditions (B1) and (D1), we have,

P


1

n

nX

i=1

Vi|gi|
⇡̃(Wi)⇡(Wi)

I{⇡̃(Wi) < ⇡(Wi)/2} > ✏

�

 P

✓ n[

i=1

{I(⇡̃(Wi) < ⇡(Wi)/2) = 1}
◆

 P

✓ n[

i=1

{|⇡̃(Wi)� ⇡(Wi)| > inf
w

⇡(w)/2}
◆

 P

✓
sup
w

|⇡̃(w)� ⇡(w)| > inf
w

⇡(w)/2

◆

 P

✓
sup
w

|⇡̃(w)� ⇡(w)| > ✏1/2

◆
! 0, as n ! 1.

By conditions (D1), we have I2 = Op(n�c) = op(1), which completes the proof.

Proof of Theorem 4.1. Theorem 4.1 is obtained by modifying the proof of Theorem 3.1. We

first show that eH is consistent. To this end, one needs to show (8.1) holds. Using the same

notations and arguments as in Part 1 of Appendix B, we have,

sup
t2[0,⌧ ]

| A(H1)(t)� A(H2)(t) |

� 1

n

nX

i=1

Vi✏2I(Xi = ⌧) exp(�TZi)

⇡̃(Wi)
inf

0<b<a<m,a�b=✏⇤

⇢Z a

b

�{exp(�TZi)s}ds
�

=
1

n

nX

i=1

Vi✏2I(Xi = ⌧) exp(�TZi)

⇡(Wi)
inf

0<b<a<m,a�b=✏⇤

⇢Z a

b

�{exp(�TZi)s}ds
�
+ op(1),
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where the last step follows from Lemma 5.1. This implies that (8.1) still holds. Thus, we can

show that eH is consistent.

Following the similar arguments to those in Part 2 of Appendix B, we obtain

eH(t)�H0(t) =
1

ne(t, �)

nX

i=1

Z t

0

e(u, �)

s(0)(u, �)
e�i(u)dMi(u) + op(n

�1/2),

where e�i(u) = ViBi(u)/⇡̃(Wi). Similar arguments to those in Part 3 of Appendix B yield

that

n1/2UW (�0, eH, ⇡̃;B,D)

=
1p
n

nX

i=1

Vi

⇡̃(Wi)
M⇤

i + op(1)

=
1p
n

nX

i=1

Vi

⇡(Wi)
M⇤

i +
1p
n

nX

i=1

✓
1� Vi

⇡(Wi)

◆
m(Wi; �0, H0, ⇡) + op(1)

, Fn + op(1),

where the second equality follows from Condition (D2). It is easy to show that var(Fn) = e⌃.
Finally, similar arguments to those in Part 4 of Appendix B yield that

� @

@�
UW (�0, eH, ⇡̃;B,D) =

1

n

nX

i=1

Z ⌧

0

�̃i(t)D(t)�(t; �0)dNi(t) + op(1)

=
1

n

nX

i=1

Z ⌧

0

�i(t)D(t)�(t; �0)dNi(t) + op(1)

=

Z ⌧

0

D(t)�(t; �0)s
(0)(t)dH0(t) + op(1),

where the second equality follows from Lemma 5.1, and the third equality follows from the

Weak Law of Large Numbers.

By analogy with Parts 5 and 6 in Appendix B, we can show the consistency of �̃ and

establish that
p
n(�̃ � �0)

d! N(0, I�1
�

e⌃I�1
� ),

where I� =
R ⌧

0 D(t)�(t; �0)s(0)(t)dH0(t). This completes the proof of Theorem 4.1.
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5.2. Proof of Theorem 4.2

The asymptotic arguments in Appendix B can be applied to obtain an asymptotic expansion

for UW (�0, bHW , ⇡(↵0);B,D). By (8.10), we can write

n1/2UW (�0, bHW , ⇡(↵0);B,D) = n�1/2
nX

i=1

U�,i(↵0, �0) + op(1),

where

U�,i(↵0, �0) =

Z ⌧

0


D(t)

⇢
Zi �

s(1)(t)

s(0)(t)

�
+

Q(t)

s(0)(t)

�
�i(t)dMi(t),

and Q(t) is defined in (8.11). Note that the score function for ↵ is given by U↵(↵) =

n�1
Pn

i=1 U↵,i(↵), where

U↵,i(↵) =
Vi � ⇡i(↵)

⇡i(↵){1� ⇡i(↵)}
⇡̇i(↵).

Thus, n1/2{UT
W (�0, bHW , ⇡(↵0);B,D), UT

↵ (↵0)} can be asymptotically written as a sum of n

iid random vectors. By the multivariate central limit theorem,

n1/2{UT
W (�0, bHW , ⇡(↵0);B,D), UT

↵ (↵0)}
d! N(0,⌃SWF )

where ⌃SWF is
0

B@
⌃W E{U�,i(↵0, �0)UT

↵,i(↵0)}

E{U↵,i(↵0)UT
�,i(↵0, �0)} I↵

1

CA .

Note that

E{U�,i(↵0, �0)U
T
↵,i(↵0)} = E

⇢
M⇤

i

Vi

⇡i(↵0)

Vi � ⇡i(↵0)

⇡i(↵0){1� ⇡i(↵0)}
@⇡i(↵)

@↵

�

= E

⇢
M⇤

i

⇡̇i(↵0)

⇡i(↵0)

�
= I↵�,

and I↵ = E{U↵,i(↵0)}⌦2. We have �(@/@↵)U↵(↵) = I↵ + op(1) uniformly over ↵. Since

UW (�̂SW , bHW , ⇡(↵̂);B,D) = 0, the Taylor series expansion yields,

n1/2(�̂SW � �0) = I�1
�


1p
n

nX

i=1

U�,i(↵0, �0)

+

⇢
@

@↵
UW (�0, bHW , ⇡(↵);B,D)

�
n1/2(↵̂� ↵0)

�
+ op(1)

= I�1
�


1p
n

nX

i=1

U�,i(↵0, �0)

+

⇢
@

@↵
UW (�0, bHW , ⇡(↵);B,D)

�
I�1
↵

1p
n

nX

i=1

U↵,i(↵0)

�
+ op(1).
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Applying the same arguments as that in Part 2 in Appendix B, we can show that

d

⇢
@

@↵
bHW (t)

�
= � 1

n

nX

i=1

1

s(0)(t; �)

Vi⇡̇i(↵)

⇡2
i (↵)

dMi(t)�
v(0)(t; �)

s(0)(t; �)

@

@↵
bHW (t)dH0(t) + op(1),

which again produces a first order ordinary di↵erential equation for (@/@↵) bHW (t). Therefore,

@

@↵
bHW (t) = � 1

ne(t; �)

nX

i=1

Z t

0

e(u; �)

s(0)(u; �)

Vi⇡̇i(↵)

⇡2
i (↵)

dMi(t) + op(1)

= �E

⇢
⇡̇i(↵)

⇡i(↵)

1

e(t; �)

Z t

0

e(u; �)

s(0)(u; �)
dMi(t)

�
+ op(1).

For k = 0, 1, 2, let

⇢(k)(t) = E

⇢
⇡̇i(↵)

⇡i(↵)
Bi(t)Yi(t)�̇i(t; �, H)Z⌦

i exp(2�TZi)

�
.

By di↵erentiating bS(k)(t) with respect to ↵, after some algebra, we obtain,

@

@↵
bS(k)(t) = �⇢(k)(t) +

v(1)(t; �)

e(t; �)
E

⇢
⇡̇i(↵)

⇡i(↵)

Z t

0

e(u; �)

s(0)(u; �)
dMi(t)

�
+ op(1).

Thus,

� @

@↵
UW (�0, bHW , ⇡(↵);B,D) =

1

n

nX

i=1

⇡̇i(↵)

⇡i(↵)

Z ⌧

0

�i(t)D(t)

⇢
Zi �

bS(1)(t)� bR(1)(t)
bS(0)(t)� bR(0)(t)

�
dNi(t)

� 1

n

nX

i=1

Z ⌧

0

�i(t)D(t)
@

@↵

⇢ bS(1)(t)� bR(1)(t)
bS(0)(t)� bR(0)(t)

�
dNi(t)

= E

⇢
⇡̇i(↵0)

⇡i(↵0)

Z ⌧

0

Bi(t)


D(t)

⇢
Zi �

s(1)(t)

s(0)(t)

��
dMi(t)

�

+ E

⇢
⇡̇i(↵0)

⇡i(↵0)

Z ⌧

0

Bi(t)
Q(t)

s(0)(t)
dMi(t)

�
+ op(1)

= I↵� + op(1).

Therefore, n1/2(�̂SW � �0)
d! N{I�1

� (⌃W � I�1
↵� I↵I

�1
↵� )I

�1
� }, as n ! 1.

5.3. Proof of Theorem 4.3

Lemma 5.2. Under conditions (B1) – (B3) and (C1) – (C3), we have

1p
n

nX

i=1

Vi

⇡̂(Wi)
M⇤

i =
1p
n

nX

i=1

Vi

⇡(Wi)
M⇤

i +
1p
n

nX

i=1

✓
1� Vi

⇡(Wi)

◆
E(M⇤

i | Wi) + op(1).
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Proof of Lemma 5.2. Lemma 5.2 can be established along the same lines as for Lemma A3

of Huang and Wang (2010). Therefore, we omit the details.

Proof of Theorem 4.3. Note that the kernel estimator ⇡̂(w) satisfies supw |⇡̂(w) � ⇡(w)| =
Op(hr + (nhd)�1/2) (Van der Vaart, 1998). Therefore, condition (D1) holds. By Lemma 5.2,

Condition (D2) holds with m(Wi; �0, H0, ⇡) = E(M⇤
i | Wi). As a result, Theorem 4.3 follows

directly from Theorem 4.1.

5.4. Proof of Corollary 4.2

To show Corollary 4.2, it su�ces to show that

E

✓
1� ⇡(Wi)

⇡(Wi)
m(Wi; �0, H0, ⇡)m

T (Wi; �0, H0, ⇡)

◆
� E

✓
1� ⇡(Wi)

⇡(Wi)
M⇤T

i m(Wi; �0, H0, ⇡)

◆

+E

✓
1� ⇡(Wi)

⇡(Wi)
M⇤o⌦2

i

◆
(5.12)

is semi-positive definite for any function m(Wi; �0, H0, ⇡). Indeed, it is easily seen that (5.12)

is equivalent to

E

✓
1� ⇡(Wi)

⇡(Wi)
(M⇤o

i �m(Wi; �0, H0, ⇡))
⌦2

◆
+ 2E

✓
1� ⇡(Wi)

⇡(Wi)
(M⇤o

i �M⇤
i )

◆

, J1 + J2.

Note that

J2 = 2E

⇢
E

✓
1� ⇡(Wi)

⇡(Wi)
(M⇤o

i �M⇤
i )|Wi

◆�
= 0,

and J1 is semi-positive definite. Therefore, (5.12) is semi-positive definite, which completes

the proof.

5.5. Proof of Theorem 5.1

The proof of Theorem 5.1 is the extension of that of Theorem 3.1. Here, we only sketch

the key steps. By the Glivenko-Cantelli theorem, we have S(k)
A (t; �, H, ⇡) and R(k)

A (t; �, H, ⇡)

converge uniformly in t and � to s(k)(t; �) and 0, respectively. Similar arguments as in Part

2 of Appendix B can be used to show

bHA(t)�H0(t) =
1

ne(t, �)

nX

i=1

Z t

0

e(u, �)

s(0)(u, �)


�i(u)dMi(u)

�
✓

Vi

⇡(Wi)
� 1

◆
E{Bi(u)dMi(u) | Wi}

�
+ op(n

�1/2).
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Similar arguments as in Part 3 of Appendix B can be used to show

n1/2UFA(�0, bHA, ⇡;B,D)

=
1p
n

nX

i=1

⇢
Vi

⇡(Wi)
M⇤

i � Vi � ⇡(Wi)

⇡(Wi)
E(M⇤

i | Wi)

�
+ op(1). (5.13)

It is easily verified that UFA(�, bHA, ⇡;B,D) ! 0 in probability, provided either ⇡(Wi) or

f(Zm
i | Wi) is correctly specified. By the regularity condition (A6) and similar arguments in

Part 5 of Appendix B, �̂FA is consistent, if either ⇡(Wi) or f(Zm
i | Wi) is correctly specified.

When f(Zm
i | Wi) and ⇡(Wi) are both correct, then the central limit theorem implies,

n1/2UFA(�0, bHA, ⇡;B,D)
d! N

⇢
0,⌃W � E

✓
1� ⇡(Wi)

⇡(Wi)
M⇤o⌦2

i

◆�
,

where M⇤o
i = E(M⇤

i | Wi). By definition and the fact that E(Vi | Wi) = ⇡(Wi), we can show

that
@

@�
S(k)
A (t; �, bHA, ⇡) =

@

@�
S(k)(t; �, bHA, ⇡) + op(1),

@

@�
R(k)

A (t; �, bHA, ⇡) =
@

@�
R(k)(t; �, bHA, ⇡) + op(1),

and (@/@�) bHA(t) = (@/@�) bHW (t) + op(1). As a result, we obtain

� @

@�
UFA(�, bHA, ⇡;B,D)

=
1

n

nX

i=1

Z ⌧

0

�i(t)D(t)
@

@�

⇢
S(1)
A (t; �, bHA, ⇡) +R(1)

A (t; �, bHA, ⇡)

S(0)
A (t; �, bHA, ⇡) +R(0)

A (t; �, bHA, ⇡)

�
dNi(t)

+
1

n

nX

i=1

✓
1� Vi

⇡(Wi)

◆Z ⌧

0

@

@�

⇢
S(1)
A (t; �, bHA, ⇡) +R(1)

A (t; �, bHA, ⇡)

S(0)
A (t; �, bHA, ⇡) +R(0)

A (t; �, bHA, ⇡)
E{Bi(t)D(t)dNi(t) | Wi}

�

= I� + op(1),

where the last equality follows from Part 4 of Appendix B. The asymptotic normality of �̂FA

can then be established as in Part 6 of Appendix B.

5.6. Proof of Theorem 5.2

Let U(✓) = {UT
FA(�, bHA, ⇡;B,D), UT

� (↵,�), U
T
↵ (↵)}T . First, we calculate (�@/@✓)U(✓). Ap-

parently,

(�@/@�)U�(↵,�) = 0 and (�@/@�)U↵(↵) = 0. (5.14)
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In addition,

� @

@↵
U�(↵,�) =

1

n

nX

i=1


Vi⇡̇i(↵)

⇡2
i (↵)

@

@�
f(Zm

i | Wi;�)�
Vi⇡̇i(↵)

⇡2
i (↵)

E

⇢
@

@�
f(Zm

i | Wi;�) | Wi;�

��
,

and

� @

@�
U�(↵,�) =

1

n

nX

i=1


Vi

⇡i(↵)

@2

@�2
f(Zm

i | Wi;�)�
Vi � ⇡i(↵)

⇡i(↵)

@

@�
E

⇢
@

@�
f(Zm

i | Wi;�) | Wi;�

��
.

By the Law of Large Numbers, if f(Zm | W ;�) is correctly specified,

� @

@↵
U�(↵,�) = op(1) and � @

@�
U�(↵,�) = I� + op(1), (5.15)

where I� = E{(@2/@�2)f(Zm
i | Wi;�)}. It is easily shown that, (�@/@↵)U↵(↵) = I↵ + op(1).

As shown in Appendix B,

(�@/@�)UFA(�, bHA, ⇡;B,D) = I� + op(1). (5.16)

By definition, it is easy to show that (@/@�) bHA(t) = op(1). We then have

@

@�
S(k)
A (t; �, bHA, ⇡)

=
1

n

nX

j=1

✓
1� Vj

⇡(Wj)

◆
Yj(t)

@

@�
E{Bj(t)Z

⌦k
j exp(�TZj)�j(t�; �, bHA) | Wj}+ op(1)

= op(1), (5.17)

where the last step follows from E(Vj | Wj) = ⇡(Wj). Similarly, we obtain

@

@�
R(k)

A (t; �, bHA, ⇡) = op(1). (5.18)

Therefore, by (5.18) and (5.17), we obtain that

� @

@�
UFA(�, bHA, ⇡;B,D)

=
1

n

nX

i=1

Z ⌧

0

�i(t)D(t)
@

@�

⇢
S(1)
A (t; �, bHA, ⇡) +R(1)

A (t; �, bHA, ⇡)

S(0)
A (t; �, bHA, ⇡) +R(0)

A (t; �, bHA, ⇡)

�
dNi(t)

+
1

n

nX

i=1

✓
1� Vi

⇡(Wi)

◆Z ⌧

0

@

@�

⇢
S(1)
A (t; �, bHA, ⇡) +R(1)

A (t; �, bHA, ⇡)

S(0)
A (t; �, bHA, ⇡) +R(0)

A (t; �, bHA, ⇡)

⇥ E{Bi(t)D(t)dNi(t) | Wi}
�
+ op(1)

= op(1).
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Similarly, we can show that (@/@↵) bHA(t) = op(1), and

� @

@↵
S(k)
A (t; �, bHA, ⇡)

=
1

n

nX

j=1

Vi⇡̇i(↵)

⇡2
i (↵)

Yj(t)Z
⌦k
j exp(�TZj)�j(t�; �, H)

� 1

n

nX

j=1

Vi⇡̇i(↵)

⇡2
i (↵)

Yj(t)E{Bi(t)Z
⌦k
j exp(�TZj)�j(t�; �, H) | Wi}+ op(1)

= op(1), (5.19)

under the assumption that the model f(Zm
i | Wi;�) is correct. Similarly,

� @

@↵
R(k)

A (t; �, bHA, ⇡)

=
1

n

nX

j=1

Vi⇡̇i(↵)

⇡2
i (↵)

Yj(t)Z
⌦k
j exp(�TZj)kj(t�; �, H)

� 1

n

nX

j=1

Vi⇡̇i(↵)

⇡2
i (↵)

Yj(t)E{Bi(t)Z
⌦k
j exp(�TZj)kj(t�; �, H) | Wi}+ op(1)

= op(1). (5.20)

As a result, we obtain that

� @

@↵
UFA(�, bHA, ⇡;B,D)

=
1

n

nX

i=1

Vi⇡̇i(↵)

⇡2
i (↵)

Z ⌧

0

Bi(t)D(t){Zi � T (t; �, bHA, ⇡)}dNi(t)

� 1

n

nX
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Vi⇡̇i(↵)

⇡2
i (↵)

Z ⌧

0


E{Bi(t)D(t)ZidNi(t) | Wi}� T (t; �, bHA, ⇡)E{Bi(t)D(t)dNi(t) | Wi}
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+
1

n

nX

i=1

Vi
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Z ⌧
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Bi(t)D(t)
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@↵
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+
1

n

nX

i=1

⇡i(↵)� Vi

⇡i(↵)

Z ⌧

0

@

@↵


T (t; �, bHA, ⇡)E{Bi(t)D(t)dNi(t) | Wi}

�

4
= I1 � I2 + I3 + I4,

where T (t; �, H, ⇡) = {S(1)
A (t; �, H, ⇡) � R(1)

A (t; �, H, ⇡)}/{S(0)
A (t; �, H, ⇡) � R(0)

A (t; �, H, ⇡)}.
Note that I1 � I2 = op(1), if the model f(Zm

i | Wi;�) is correctly specified. Since E(Vi |
Wi) = ⇡i(↵), we know that I4 = op(1). By (5.19) and (5.20), (@/@↵)T (t; �, bHA, ⇡) = op(1),
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implying that I3 = op(1). Therefore,

(@/@↵)UFA(�, bHA, ⇡;B,D) = op(1). (5.21)

Combining (5.14), (5.15), (5.16), (5.21), we have

(�@/@✓)U(✓) = IFA + op(1), (5.22)

where IFA = diag(I�, I�, I↵). By the Glivenko-Cantelli theorem, the convergence could be

strengthened to the uniform convergence over ✓.

Let I��, I�� and I�↵ be the corresponding partitions of (IFA)�1. By the block matrix

inverse formula, we have I�� = (I�)�1, I�� = 0 and I�↵ = 0. The standard asymptotic

expansion yields

n1/2(�̂FA(↵̂, �̂)� �0) = n1/2I��UFA(�0, bHA, ⇡;B,D) + n1/2I��U� + n1/2I�↵U↵ + op(1)

= n1/2I�1
� UFA(�0, bHA, ⇡;B,D) + op(1).

Following the same arguments, n1/2(�̂FA(↵,�)��0), n1/2(�̂FA(↵̂,�)��0) and n1/2(�̂FA(↵, �̂)�
�0) can be shown to have the same asymptotic expansions, suggesting that �̂FA(↵,�),

�̂FA(↵̂,�) and �̂FA(↵, �̂) are asymptotically equivalent to �̂FA(↵̂, �̂). The proof of Theorem

5.2 is complete.

6. Further Empirical Studies

6.1. Performance of the Proposed Methods

We adopt the same simulation designs as in Section 7 in the main draft. Two weighting

schemes (W1) and (W2) are considered in the main draft. In this supplementary material,

we consider another two weighting schemes (W3), Bi(t) = ⇡(t, Zc
i , 1), D(t) = 1, and (W4),

Bi(t) = ⇡(t, Zc
i , 1), D(t) = {

Pn
i=1 ViYi(t)}/{

Pn
i=1 Yi(t)}.

In terms of the treatment of ki(t; �, H), we first consider Huang and Wang’s type es-

timators (2010) with ki(t; �, H) = 0. We calculate four estimators respectively based on

the full cohort (Full-A), complete-case only (Complete-A), the weighted estimator with

true missingness probabilities (WE-A) and the weighted estimator with estimated miss-

ingness probabilities under a parametric model (WE-↵̂-A). Second, based on our estimation
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method, we compute estimators respectively based on the full cohort (Full-B), complete-

case only (Complete-B), the weighted estimator with true missingness probabilities (WE-B),

the weighted estimator with estimated missingness probabilities under a parametric model

(WE-↵̂-B), the weighted estimator with estimated missingness probabilities under a non-

parametric model (WE-⇡̂-B), the fully augmented weighted estimator with true missingness

probabilities (FAW-B) and the fully augmented weighted estimator with estimated missing-

ness probabilities under a parametric model (FAW-↵̂-B). As in Section 6 of the main draft,

the same logistic model and the kernel function are employed for WE-↵̂-B and WE-⇡̂-B.

Tables 1-3 show the bias, empirical standard error, model-based standard error and 95%

coverage rate for various estimators, with the sample size n = 100.

Table 4 shows the bias, empirical standard error, model-based standard error and 95%

coverage rate for various estimators, under the first simulation scenario with n = 200. In

this setting, the model-based standard error (MSE) is very close to the empirical standard

error (ESE), with a percentage bias of less than 10%, except for the complete case analysis.

Moreover, the 95% coverage rate for our estimator is all between 93%-95% when the miss-

ingness probability is known or estimated parametrically. The estimator WE-⇡̂-B sometimes

may be unstable, due to the nonparametric estimation of the missingness probability. But

its 95% coverage rate is still reasonable (between 91%-93%). This suggests that our variance

estimator is accurate, for moderate sample sizes.

6.2. Sensitivity Analysis under Misspecification of ⇡i(↵)

We consider the same simulation scenario as in Section 7.2 of the main draft to evaluate the

sensitivity of various estimators under misspecification of ⇡i(↵).

Figure 1 shows the relative bias of estimators using weight (W3) (WE-↵̂-A-W3, WE-↵̂-

B-W3) and weight (W4) (WE-↵̂-A-W4, WE-↵̂-B-W4) averaged over 100 replications. All

estimators have little bias when ⌘ is close to 0. As expected, the magnitude of the bias of

estimators increases as ⌘ further departs from 0. The estimators of �2 seem less sensitive

with respect to the specification of ⇡i(↵) than those of �1. In particular, the estimator WE-

↵̂-A-W4 shows largest bias for estimating �1 and �2 among the estimators we consider.
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Fig 1. E↵ects of misspecifying ⇡i(↵) on the proposed estimators for �1 and �2 under weights (W3) and

(W4). The left panel is the averaged relative bias for estimation of �1 and the right panel is for �2.

28



Table 1
Simulation results for the first scenario with n = 100: Bias, empirical standard error (ESE), model-based

standard error (MSE) and 95% coverage rate (CR, in percent) of the proposed estimators using weights

(W3) and (W4)

�1 �2

Weight Method Bias ESE MSE CR Bias ESE MSE CR

(W3) Full-A -0.048 0.38 0.35 92 0.032 0.25 0.22 93

Complete-A -0.085 0.46 0.42 88 0.048 0.28 0.25 90

WE-A -0.059 0.52 0.48 91 0.034 0.32 0.28 92

WE-↵̂-A -0.052 0.50 0.48 93 0.035 0.29 0.26 92

Full-B -0.039 0.37 0.34 93 0.035 0.22 0.19 94

Complete-B -0.071 0.43 0.38 87 0.052 0.26 0.23 88

WE-B -0.052 0.44 0.41 92 0.031 0.28 0.25 93

WE-↵̂-B -0.043 0.42 0.40 92 0.028 0.26 0.24 92

WE-⇡̂-B -0.048 0.42 0.38 91 0.034 0.25 0.24 92

FAW-B -0.039 0.41 0.39 93 0.030 0.25 0.23 92

FAW-↵̂-B -0.042 0.42 0.39 93 0.032 0.25 0.22 92

(W4) Full-A -0.056 0.38 0.36 94 0.054 0.26 0.23 93

Complete-A -0.088 0.46 0.37 74 0.075 0.31 0.25 84

WE-A -0.067 0.49 0.46 92 0.052 0.35 0.31 92

WE-↵̂-A -0.061 0.49 0.45 91 0.057 0.32 0.28 91

Full-B -0.042 0.38 0.35 94 0.041 0.23 0.20 94

Complete-B -0.074 0.43 0.35 88 0.053 0.27 0.22 85

WE-B -0.052 0.45 0.42 92 0.040 0.29 0.26 92

WE-↵̂-B -0.050 0.43 0.40 92 0.042 0.27 0.24 92

WE-⇡̂-B -0.051 0.44 0.38 91 0.044 0.29 0.23 90

FAW-B -0.050 0.43 0.41 94 0.043 0.26 0.23 94

FAW-↵̂-B -0.053 0.42 0.39 93 0.041 0.27 0.25 95
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Table 2
Simulation results for the second scenario with n = 100: Bias, empirical standard error (ESE), model-based

standard error (MSE) and 95% coverage rate (CR, in percent) of proposed estimators using weights (W3)

and (W4)

�1 �2

Weight Method Bias ESE MSE CR Bias ESE MSE CR

(W3) Full-A -0.065 0.53 0.49 92 -0.024 0.28 0.26 94

Complete-A -0.090 0.64 0.55 81 -0.043 0.35 0.29 90

WE-A -0.058 0.57 0.53 92 0.027 0.31 0.27 92

WE-↵̂-A -0.055 0.56 0.52 93 0.030 0.27 0.24 93

Full-B -0.065 0.44 0.41 94 0.021 0.22 0.21 95

Complete-B -0.088 0.55 0.48 88 0.050 0.29 0.24 84

WE-B -0.052 0.51 0.48 93 0.018 0.26 0.25 94

WE-↵̂-B -0.045 0.49 0.48 94 0.020 0.24 0.22 93

WE-⇡̂-B -0.042 0.50 0.45 91 0.026 0.25 0.22 92

FAW-B -0.046 0.48 0.45 94 0.022 0.24 0.21 95

FAW-↵̂-B -0.042 0.48 0.47 95 0.023 0.23 0.23 94

(W4) Full-A -0.067 0.56 0.52 91 0.034 0.33 0.31 94

Complete-A -0.088 0.68 0.59 83 0.056 0.42 0.30 84

WE-A -0.051 0.59 0.55 92 0.026 0.36 0.33 93

WE-↵̂-A -0.053 0.56 0.54 94 0.034 0.32 0.30 93

Full-B -0.055 0.43 0.42 95 0.027 0.25 0.23 94

Complete-B -0.078 0.58 0.53 90 0.062 0.35 0.30 88

WE-B -0.043 0.52 0.50 94 0.028 0.29 0.26 92

WE-↵̂-B -0.038 0.49 0.48 95 0.025 0.26 0.23 93

WE-⇡̂-B -0.040 0.50 0.46 92 0.024 0.25 0.23 93

FAW-B -0.041 0.48 0.47 95 0.025 0.24 0.22 94

FAW-↵̂-B -0.037 0.48 0.45 93 0.026 0.24 0.23 95
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Table 3
Simulation results for the third scenario with n = 100: Bias, empirical standard error (ESE), model-based

standard error (MSE) and 95% coverage rate (CR, in percent) of the proposed estimators using weights

(W3) and (W4)

�1 �2

Weight Method Bias ESE MSE CR Bias ESE MSE CR

(W3) Full-A 0.023 0.56 0.52 94 0.038 0.29 0.26 94

Complete-A 0.091 0.65 0.59 79 0.058 0.32 0.25 85

WE-A 0.029 0.64 0.62 92 0.053 0.42 0.39 93

WE-↵̂-A 0.031 0.60 0.56 92 0.035 0.37 0.35 93

Full-B 0.025 0.44 0.40 92 0.044 0.22 0.21 94

Complete-B 0.086 0.52 0.47 86 0.068 0.33 0.27 88

WE-B 0.038 0.58 0.56 93 0.034 0.32 0.28 92

WE-↵̂-B 0.036 0.54 0.52 93 0.035 0.30 0.27 93

WE-⇡̂-B 0.032 0.53 0.50 92 0.032 0.32 0.28 91

FAW-B 0.035 0.53 0.51 93 0.036 0.31 0.30 94

FAW-↵̂-B 0.034 0.52 0.51 95 0.034 0.32 0.29 93

(W4) Full-A 0.027 0.57 0.53 93 0.034 0.29 0.27 94

Complete-A 0.061 0.58 0.52 88 0.060 0.36 0.31 87

WE-A 0.032 0.68 0.63 91 0.038 0.40 0.36 92

WE-↵̂-A 0.036 0.62 0.59 92 0.040 0.37 0.36 94

Full-B 0.039 0.40 0.38 94 0.047 0.24 0.22 93

Complete-B 0.068 0.46 0.39 85 0.078 0.34 0.26 87

WE-B 0.036 0.56 0.53 93 0.048 0.38 0.35 93

WE-↵̂-B 0.045 0.51 0.48 93 0.048 0.35 0.33 93

WE-⇡̂-B 0.038 0.50 0.44 90 0.052 0.34 0.30 91

FAW-B 0.043 0.52 0.49 93 0.046 0.34 0.32 93

FAW-↵̂-B 0.042 0.52 0.50 93 0.050 0.34 0.33 94
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Table 4
Simulation results for the first scenario with n = 200: Bias, empirical standard error (ESE), model-based

standard error (MSE) and 95% coverage rate (CR, in percent) of the proposed estimators using weights

(W1) and (W2)

�1 �2

Weight Method Bias ESE MSE CR Bias ESE MSE CR

(W1) Full-A -0.023 0.31 0.30 94 0.014 0.20 0.19 94

Complete-A -0.048 0.43 0.39 90 0.037 0.24 0.20 88

WE-A -0.031 0.37 0.35 93 0.020 0.26 0.24 93

WE-↵̂-A -0.024 0.35 0.36 93 0.023 0.24 0.22 92

Full-B -0.020 0.26 0.25 94 0.018 0.18 0.17 95

Complete-B -0.055 0.35 0.30 89 0.041 0.28 0.22 86

WE-B -0.025 0.33 0.32 94 0.019 0.22 0.23 93

WE-↵̂-B -0.028 0.30 0.28 93 0.017 0.21 0.20 93

WE-⇡̂-B -0.032 0.32 0.29 91 0.021 0.20 0.22 92

FAW-B -0.025 0.31 0.29 94 0.016 0.20 0.21 94

FAW-↵̂-B -0.028 0.31 0.30 94 0.018 0.19 0.20 94

(W2) Full-A -0.032 0.35 0.33 93 0.041 0.21 0.20 94

Complete-A -0.088 0.41 0.37 88 0.063 0.23 0.20 90

WE-A -0.043 0.44 0.41 92 0.029 0.29 0.27 93

WE-↵̂-A -0.035 0.41 0.39 93 0.032 0.27 0.25 93

Full-B -0.041 0.31 0.32 94 0.038 0.19 0.18 94

Complete-B -0.084 0.36 0.32 89 0.067 0.23 0.19 85

WE-B -0.035 0.39 0.37 93 0.035 0.24 0.23 94

WE-↵̂-B -0.034 0.36 0.36 95 0.039 0.21 0.20 94

WE-⇡̂-B -0.038 0.37 0.34 92 0.041 0.21 0.19 93

FAW-B -0.034 0.37 0.36 94 0.035 0.21 0.21 94

FAW-↵̂-B -0.032 0.36 0.35 94 0.036 0.21 0.20 94
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