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Summary. The paper considers the problem of hypothesis testing and confidence intervals in
high dimensional proportional hazards models. Motivated by a geometric projection principle,
we propose a unified likelihood ratio inferential framework, including score, Wald and partial
likelihood ratio statistics for hypothesis testing. Without assuming model selection consistency,
we derive the asymptotic distributions of these test statistics, establish their semiparametric op-
timality and conduct power analysis under Pitman alternatives.We also develop new procedures
to construct pointwise confidence intervals for the baseline hazard function and conditional haz-
ard function. Simulation studies show that all tests proposed perform well in controlling type I
errors. Moreover, the partial likelihood ratio test is empirically more powerful than the other tests.
The methods proposed are illustrated by an example of a gene expression data set.
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1. Introduction

The proportional hazards model (Cox, 1972) is one of the most important tools for analysing
time-to-event data. It finds wide applications in epidemiology, medicine, economics and soci-
ology (Kalbfleisch and Prentice, 2011). This model is semiparametric by treating the baseline
hazard function as a nuisance parameter. To infer the finite dimensional parameter of interest,
Cox (1972, 1975) proposed a partial likelihood approach which is invariant to the baseline hazard
function. In low dimensional settings, Tsiatis (1981) and Andersen and Gill (1982) have estab-
lished the consistency and asymptotic normality of the maximum partial likelihood estimator.

In high dimensional settings, when the number of covariates d is larger than the sample size
n, the maximum partial likelihood estimation is an ill-posed problem. To solve this problem,
we resort to regularized estimators (Tibshirani, 1996, 1997; Fan and Li, 2002; Antoniadis et al.,
2010). Other types of estimation procedures and their theoretical properties have been studied
by Cai et al. (2005), Zhang and Lu (2007), Wang et al. (2009) and Zhao and Li (2012). In
particular, under the ultrahigh dimensional regime that d =o{exp.s−1n/}, Bradic et al. (2011),
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Huang et al. (2013) and Kong and Nan (2014) have established the oracle properties and error
bounds of penalized maximum partial likelihood estimators, where s denotes the number of
non-zero parameters in the Cox model. We note that Bradic et al. (2011) also established the
limiting distribution of the oracle estimator. However, such an inferential result hinges on model
selection consistency, which ignores model selection uncertainty, and thus may not be a practical
inferential procedure in real applications.

Though significant progress has been made towards developing estimation theory, to the best
of our knowledge, how to perform statistical inference (e.g. to test hypotheses or to construct
confidence intervals) of high dimensional proportional hazard models remains an open prob-
lem. This paper aims to close this gap by developing valid inferential methods and theory for
high dimensional proportional hazards models. In particular, we test hypotheses and construct
confidence regions for a low dimensional component of a d-dimensional parameter vector.
The main challenge for developing valid inferential methods is due to the presence of a high
dimensional nuisance parameter, which makes the existing partial-likelihood-based inference
(e.g. partial score test and partial likelihood ratio test) infeasible.

In this paper, we develop a unified inferential framework by extending the classical score,
Wald and partial likelihood ratio tests to high dimensional proportional hazards models. To
handle the high dimensional nuisance parameter, we construct a decorrelated score function by
applying a high dimensional projection of the score function of the parameter of interest to the
nuisance space. The solution of the decorrelated score function or its one-step approximation
defines an estimator of the parameter of interest, which is parallel to the classical maximum
partial likelihood estimator and can be used to construct a Wald test statistic. Towards the
goal of performing likelihood-based inference, we further propose a new type of decorrelated
partial likelihood function which is used to construct the likelihood ratio test. Theoretically, we
establish the asymptotic distributions of score, Wald and partial likelihood ratio statistics under
both the null and the Pitman alternatives. Empirically, we find that the partial likelihood ratio
test is more powerful than the Wald and score tests, which shows the advantage of our likelihood
ratio inference in finite samples. Following a similar idea, we also construct pointwise confidence
intervals for the baseline hazard function and the conditional hazard function, and establish
their asymptotic properties. In comparison with oracle inference in Bradic et al. (2011), our
method does not require any type of irrepresentable condition or the minimal signal strength
condition. The method proposed is still applicable even if the model selection is incorrect and
thus is more practical in applications.

Various recent works (van de Geer et al., 2014; Belloni et al., 2016; Lockhart et al., 2014; Zhang
and Zhang, 2014; Ning and Liu, 2016; Zhong et al., 2015) have considered high dimensional
inference under the linear, generalized linear and additive hazard models. In what follows, we
highlight the main differences. Lockhart et al. (2014) considered conditional inference given
the event that a set of covariates is selected, whereas we consider unconditional inference;
see Section 7 for further details. Zhang and Zhang (2014) proposed a novel low dimensional
parameter method for inference in high dimensional linear models. However, their method
strongly relies on the linear structure of the model. For instance, their method is motivated
by the decomposition of a closed form expression of the univariate least squares estimator (i.e.
equation (4) in Zhang and Zhang (2014)). A similar idea was used by Zhong et al. (2015) to study
additive hazard models. However, it is unclear whether the low dimensional parameter method
can be easily extended to the proportional hazards model, because of the model’s non-linearity;
see also the discussion in Zhong et al. (2015). The method in van de Geer et al. (2014) is based
on inverting the Karush–Kuhn–Tucker condition of the lasso estimator in generalized linear
models. In comparison with van de Geer et al. (2014), which focused only on the lasso estimator,
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our methods and theory also apply to non-convex estimators such as smoothly clipped absolute
deviation (SCAD) and the minimax concave penalty. In addition, our inference allows the inverse
of the Fisher information matrix corresponding to the nuisance parameter to be non-sparse,
which is weaker than the assumption in van de Geer et al. (2014).

After this work, Ning and Liu (2016) further extended the decorrelated score test to the
general model with independently and identically distributed samples. The current paper is
different in the following two aspects. First, as a methodological development, we build on the
decorrelated score function and further propose a novel partial likelihood ratio test. The partial
likelihood ratio test proposed retains the well-known Wilks phenomenon and is empirically
more powerful. This agrees with the convention that, when all Wald, score and likelihood ratio
tests are available, the likelihood ratio test is generally recommended. Second, owing to the
presence of censored data, our technical development is quite different from Ning and Liu
(2016). To handle time-dependent covariates, we need to use the counting process formulation,
which is a unique challenge in survival analysis. This formulation

‘permits a regression analysis of the intensity of a recurrent event allowing for complicated censoring
patterns and time-dependent covariate’

(Andersen and Gill, 1982). More importantly, the log-partial-likelihood no longer has the sum
of independently and identically distributed samples structure, which is different from the set-up
in Ning and Liu (2016). To address this challenge, we

(a) develop refined concentration inequalities based on empirical process theory to control
the approximation error and

(b) fully utilize the curvature structure of the partial likelihood function to obtain sharp
theoretical results.

To be more specific, we illustrate the detailed technical challenges in the analysis of the propor-
tional hazards model in remark 1 in Section 4.

The rest of this paper is organized as follows. In Section 2, we provide some background
on the proportional hazards model. In Section 3, we propose methods for testing hypothe-
ses and constructing confidence intervals for a single component of regression parameters.
In Section 4, we provide theoretical analysis of the methods proposed. In the on-line sup-
plementary materials, we extend the procedures to conduct inference on a multi-dimensional
parameter of interest. Inferences on the baseline hazard and survival functions are studied
in Section 5. In Section 6, we investigate the empirical performance of these methods. Sec-
tion 7 contains a summary and discussions. Additional technical details, an extension to the
multivariate failure time model and more extensive simulation studies are presented in the
supplementary materials. The code that was used in the simulation can be downloaded from
http://www.personal.psu.edu/xxf13/Code/CoxHDInference.R.

2. Background

We start with an introduction of the notation. Let a = .a1, : : : , ad/T ∈ Rd be a d-dimensional
vector and A = .ajk/ ∈ Rd×d be a d × d matrix. Let supp.a/ = {j : aj ̸= 0}. For 0 < q < ∞,
we define l0, lq and l∞ vector norms as ∥a∥0 = card{supp.a/}, ∥a∥q = .Σd

j=1∥aj∥q/1=q and
∥a∥∞ =max1!j!d |aj|. We define the matrix l∞-norm as the elementwise sup-norm that ∥A∥∞ =
max1!j,k!d |ajk| and let ∥A∥0 =Σ1!j,k!d1.ajk ̸=0/ and ∥A∥1 =Σ1!j,k!d |ajk|. Let Id be the iden-
tity matrix in Rd×d . For a sequence of random variables {Xn}∞

n=1 and a random variable Y , we
denote Xn weakly converges to Y by Xn→dY . We denote .n/={1, : : : , n}.
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2.1. Cox’s proportional hazards model
We briefly review Cox’s proportional hazards model. Let Q be the time to event, R be the
censoring time and X.t/= .X1.t/, : : : , Xd.t//T be the d-dimensional time-dependent covariates
at time t. We consider the non-informative censoring setting that Q and R are conditionally
independent given X.t/. Let W = min{Q, R} and ∆ = 1.Q ! R/ denote the observed survival
time and censoring indicator, where 1.·/ denotes the indicator function. Let τ be the end-of-
study time. We observe n independent copies of {.X.t/, W , ∆/ : 0! t ! τ},

{.Xi.t/, Wi, ∆i/ : 0! t ! τ}i∈[n]:

We denote λ{t|X.t/} as the conditional hazard rate function at time t given the covariates
X.t/. Under the proportional hazards model, we assume that

λ{t|X.t/}=λ0.t/ exp{XT.t/βÅ},

where λ0.t/ is an unknown baseline hazard rate function, and βÅ ∈Rd is an unknown parameter.

2.2. Penalized estimation
Following Andersen and Gill (1982), we introduce some counting process notation. For each i,
let Ni.t/ :=1.Wi ! t, ∆i =1/ be the counting process, and Yi.t/ :=1.Wi " t/ be the at-risk process
for subject i. Assume that the process Yi.t/ is left continuous with its right-hand limits satisfying
P{Yi.t/=1, 0! t !τ}>Cτ for some positive constant Cτ . The negative log-partial-likelihood is

L.β/=−1
n

(
n∑

i=1

∫ τ

0
XT

i .u/βdNi.u/−
∫ τ

0
log

[
n∑

i=1
Yi.u/ exp{XT

i .u/β}
]
dN̄.u/

)
,

where N̄.t/=Σn
i=1Ni.t/.

When the dimension d is fixed and smaller than the sample size n, βÅ can be estimated
by the maximum partial likelihood estimator (Andersen and Gill, 1982). However, in high
dimensional settings with n < d, the maximum partial likelihood estimator is not well defined.
To solve this problem, Tibshirani (1997) and Fan and Li (2002) imposed the sparsity assumption
and proposed the following penalized estimator:

β̂ :=arg min
β∈Rd

{L.β/+Pλ.β/}, .2:1/

where Pλ.·/ is a sparsity inducing penalty function, and λ is a tuning parameter. Bradic et al.
(2011) and Huang et al. (2013) established the rates of convergence and oracle properties of
the penalized maximum partial likelihood estimators β̂ by using SCAD and lasso penalties.
For notational simplicity, we focus on the lasso estimator (Tibshirani, 1997) in this paper and
indicate that similar properties hold for the SCAD and other non-convex penalized estimators.
Existing works generally impose the following assumptions.

Assumption 1. The covariate is uniformly bounded:

sup
0!t!τ

max
1!i!n

max
1!j!d

|Xij.t/|!CX,

for some constant CX > 0.

Assumption 2. For any set S ⊂ {1, : : : , d} where |S|≍ s and any vector v belonging to the
cone C.ξ, S/={v ∈Rd :∥vSC∥1 ! ξ∥vS∥1}, there is a constant λmin such that
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κ{ξ, S;∇2L.βÅ/}= inf
0 ̸=v∈C.ξ,S/

s1=2{vT∇2L.βÅ/v}1=2

∥vS∥1
"λmin > 0:

Assumption 1 is the bounded covariate condition, which was imposed by both Bradic et al.
(2011) and Huang et al. (2013) and holds in most real applications. Assumption 2 is known as
the compatibility factor condition which was also used by Huang et al. (2013). This assumption
essentially bounds the minimal eigenvalue of the Hessian matrix ∇2L.βÅ/ from below for those
directions within the cone C.ξ, S/. In particular, the validity of this assumption has been verified
in theorem 4.1 of Huang et al. (2013). Under these assumptions, Huang et al. (2013) derived the
rate of convergence of the lasso estimator β̂ under the l1-norm. More specifically, they proved
that under assumptions 1 and 2, if ∥βÅ∥0 = s and λ≍√

{n−1 log.d/}, it holds that

∥β̂−βÅ∥1 =OP.sλ/, .2:2/

which establishes the estimation consistency in the high dimensional regime.
For theoretical development, we introduce some additional notation. For a vector u, we

denote by u⊗0 =1, u⊗1 =u and u⊗2 =uuT. Denote

S.r/.t, β/= 1
n

n∑
i=1

X⊗r
i .t/Yi.t/ exp{XT

i .t/β} for r =0, 1, 2,

Z̄.t, β/=S.1/.t, β/=S.0/.t, β/,

Vn.t, β/=
n∑

i=1

Yi.t/ exp{Xi.t/
Tβ}

nS.0/.t, β/
{Xi.t/− Z̄.t, β/}⊗2 = S.2/.t, β/

S.0/.t, β/
− Z̄.t, β/⊗2:

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.2:3/

The gradient of L.β/ is

∇L.β/= @L.β/

@β
=−1

n

n∑
i=1

∫ τ

0
{Xi.u/− Z̄.u, β/}dNi.u/, .2:4/

and the Hessian matrix of L.β/ is

∇2L.β/= 1
n

∫ τ

0
Vn.u, β/dN̄.u/= 1

n

∫ τ

0

{
S.2/.u, β/

S.0/.u, β/
− Z̄.u, β/⊗2

}
dN̄.u/: .2:5/

We denote the population versions of the above-defined quantities by

s.r/.t, β/=E[Y.t/X.t/⊗r exp{X.t/Tβ}] for r =0, 1, 2,
e.t, β/= s.1/.t, β/=s.0/.t, β/,

.2:6/

and

H.β/=E

[∫ τ

0

{
s.2/.t, β/

s.0/.t, β/
− e.t, β/⊗2

}
dN.t/

]
,

HÅ =H.βÅ/,
.2:7/

where HÅ is the Fisher information matrix based on the partial likelihood.

3. Hypothesis test and confidence interval

Whereas the estimation consistency has been established in high dimensions, it remains chal-
lenging to develop inferential procedures (e.g. valid confidence intervals and hypotheses testing)
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for the high dimensional proportional hazards model. In this section, we propose three novel
hypothesis testing procedures. The tests can be viewed as high dimensional counterparts of the
conventional score, Wald and partial likelihood ratio tests. Hereafter, for notational simplic-
ity, we partition the vector β as β = .α, θT/T, where α= β1 ∈ R is the parameter of interest;
θ = .β2, : : : ,βd/T ∈ Rd−1 is the vector of nuisance parameters and we denote L.β/ by L.α, θ/.
Let ∇2

ααL.β/, ∇2
αθL.β/ and ∇2

θθL.β/ be the corresponding partitions of ∇2L.β/. Let HÅ
αα, HÅ

αθ
and HÅ

θθ be the corresponding partitions of HÅ, where HÅ is defined in expression (2.7). For
instance, HÅ

θα=HÅ
2:d,1 ∈Rd−1 and ∇2

θθL.β/=∇2
2:d,2:dL.β/∈R.d−1/×.d−1/. In this section, with-

out loss of generality, we test the hypothesis H0: αÅ = 0 versus H1: αÅ ̸= 0 for some univariate
parameter of interest α. The extension to the multi-dimensional parameter of interest α∈Rd0 ,
where d0 is fixed, is provided in section G of the on-line supplementary materials.

3.1. Decorrelated score test
In the classical low dimensional setting, we exploit the profile partial score function

S.α/=∇αL.α, θ/|θ=θ̂.α/ .3:1/

to conduct tests, where θ̂.α/=arg minθL.α, θ/ is the maximum partial likelihood estimator for
θ with a fixed α. Under the null hypothesis that αÅ = 0, when d is fixed while n →∞ it holds
that

√
nS.0/→dN.0, Hα|θ/, where Hα|θ =HÅ

αα−HÅ
αθHÅ−1

θθ HÅ
θα. If nH−1

α|θS2.0/ is larger than the
.1 −η/th quantile of a χ2-distribution with 1 degree of freedom, we reject the null hypothesis.
Classical asymptotic theory shows that this procedure controls the type I error with significance
level η.

However, in high dimensions, the profile partial score function S.α/ with θ̂.α/ replaced by a
penalized estimator, say the corresponding components of β̂ in expression (2.1), does not yield a
tractable limiting distribution owing to the existence of a large number of nuisance parameters.
To address this problem, we construct a new score function for α that is asymptotically normal
even in high dimensions. The key component is a high dimensional decorrelation method, aiming
to handle the effect of the high dimensional nuisance vector.

More specifically, we propose a decorrelated score test for H0: αÅ = 0. We first estimate θÅ

by θ̂ using the l1-penalized estimator β̂ in expression (2.1). Next, we calculate a linear combi-
nation of the partial score function ∇θL.0, θ̂/ to approximate ∇αL.0, θ̂/ best. The population
version of the vector of coefficients in the best linear combination can be calculated as

wÅ =arg min
w∈Rd−1

E{∇αL.0, θÅ/−wT∇θL.0, θÅ/}2

=E{∇θL.0, θÅ/∇θL.0, θÅ/T}−1E{∇θL.0, θÅ/∇αL.0, θÅ/}=HÅ−1
θθ HÅ

θα, .3:2/

where the last equality holds by the second Bartlett identity (Tsiatis, 1981). In fact, wÅT∇θL.0, θÅ/
can be interpreted as the projection of ∇αL.0, θÅ/ onto the linear span of the partial score func-
tion ∇θL.0, θÅ/. In high dimensions, we cannot directly estimate wÅ by the corresponding
sample version since the problem is ill posed. Motivated by the definition of wÅ in equation
(3.2), we estimate it by the lasso-type estimator

ŵ =arg min
w∈Rd−1

{ 1
2 wT∇2

θθL.β̂/w −wT∇2
θαL.β̂/+λ′∥w∥1}, .3:3/

where λ′ is a tuning parameter. Similarly, other non-convex penalty functions such as SCAD or
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the minimax concave penalty can be applied. For simplicity, we focus on the lasso-type estimator
in equation (3.3). Given θ̂ and ŵ, we propose a decorrelated score function for α as

Û.α, θ̂/=∇αL.α, θ̂/− ŵT∇θL.α, θ̂/: .3:4/

The decorrelated score function in equation (3.4) can be rewritten as

Û.α, θ̂/=−1
n

n∑
i=1

∫ τ

0
[Xi1.u/− ŵTXi2:d.u/−{Z̄1.u,α, θ̂/− ŵTZ̄2:d.u,α, θ̂/}]dNi.u/:

Recall that the standard score function is given by equation (2.4). By the definition of Z̄.u, β/,
we find that Û.α, θ̂/ has the same structure as ∇L.β/ with Xi.u/ replaced by Xi1.u/− ŵTXi2:d.u/
and the risk set average Z̄.u, β/ of Xi.u/ replaced by the risk set average of Xi1.u/− ŵTXi2:d.u/.
Hence, the method proposed implicitly constructs a new covariate X̃i.u/ :=Xi1.u/− ŵTXi2:d.u/,
and the decorrelated score function Û.α, θ̂/ can be interpreted as the integrated difference
between the new covariate X̃i.u/ and its risk set average. The covariate X̃i.u/ is constructed,
such that the (weighted) correlation between X̃i.u/ and Xi2:d.u/ is reduced, where the weight
is introduced to account for the non-linearity of the Cox model. If the (weighted) correlation
is sufficiently weak, we can perform the marginal analysis to infer the regression coefficient of
X̃i.u/. This also explains why our method is called the decorrelation method.

Geometrically, the decorrelated score function is approximately orthogonal to any component
of the nuisance score function ∇θL.0, θÅ/. This orthogonality property, which does not hold
for the original score function ∇αL.α, θ̂/, reduces the variability that is caused by the nuisance
parameter estimation. A geometric illustration of the decorrelation-based methods is provided
in Fig. 1, which also incorporates an illustration of the decorrelated Wald and partial likelihood
ratio tests to be introduced in the following subsections. In contrast with the original score
function ∇αL.α, θ̂/, the proposed decorrelated score function Û.α, θ̂/ yields test statistics with
tractable limiting distributions. In the next section, we show that Û.0, θ̂/ converges weakly to
N.0, Hα|θ/ under the null hypothesis, where Hα|θ = HÅ

αα − HÅ
αθHÅ−1

θθ HÅ
θα. This result holds in

Fig. 1. Geometric illustration of the decorrelated score, Wald and partial likelihood ratio tests: the purple
surface corresponds to the log-partial-likelihood function; the orange plane is the tangent plane of the surface
at point .α, θ̂/; the two red arrows in the orange plane represent rαL and rθL; the decorrelated score function
in blue is the projection of rαL onto the space orthogonal to rθL; given the lasso estimator α̂, the decorrelated
Wald estimator is QαD α̂! δ, where δD {@Û.α̂, θ̂/=@α}!1Û.α̂, θ̂/; the decorrelated partial likelihood ratio test
compares the log-partial-likelihood function values at .α, θ̂/ and . Qα, θ̂ ! Qαŵ/
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the high dimensional setting. We also point out that, in the low dimensional setting, it can be
shown that the decorrelated score function Û.α, θ̂/ is asymptotically equivalent to the profile
partial score function S.α/ in equation (3.1).

To test the null hypothesisαÅ =0, we need to standardize Û.0, θ̂/ to construct the test statistic.
We estimate Hα|θ by

Ĥα|θ =∇2
ααL.α̂, θ̂/− ŵT∇2

θαL.α̂, θ̂/: .3:5/

Hence, we define the decorrelated score test statistic as

Ŝn =nĤ
−1
α|θÛ

2
.0, θ̂/, .3:6/

where Û.0, θ̂/ and Ĥα|θ are defined in equations (3.4) and (3.5). In the next section, we show that,
under the null hypothesis, Ŝn converges weakly to a χ2-distribution with 1 degree of freedom.
Given a significance level η∈ .0, 1/, the score test ψS.η/ is

ψS.η/=
{

0 if Ŝn !χ2
1.1−η/,

1 otherwise, .3:7/

whereχ2
1.1−η/ denotes the .1−η/th quantile of aχ2 random variable with 1 degree of freedom,

and the null hypothesis αÅ =0 is rejected if and only if ψS.η/=1.

3.2. Confidence intervals and decorrelated Wald test
The score test proposed does not directly provide a confidence interval forαÅ. In low dimensions,
by looking at the limiting distribution of the maximum partial likelihood estimator, we can
obtain a confidence interval forαÅ (Andersen and Gill, 1982), which is equivalent to the classical
Wald test. In this subsection, we extend the classical Wald test under the proportional hazards
model to high dimensional settings.

The key idea of performing a Wald test is to derive a regular estimator for αÅ. Our procedure
is based on the decorrelated score function Û.α, θ̂/ in equation (3.4). Since Û.α, θ̂/ serves as
an approximately unbiased estimating equation for α, the root of the equation Û.α, θ̂/=0 with
respect toαdefines an estimator forαÅ. However, searching for the root may be computationally
intensive, especially whenα is multi-dimensional as seen in the on-line supplementary materials,
section G. To reduce the computational cost, we exploit a closed form estimator α̃ obtained by
linearizing Û.α, θ̂/= 0 at the initial estimator α̂. More specifically, letting β̂ = .α̂, θ̂T/T be the
l1-penalized estimator in expression (2.1), we adopt the following one-step estimator:

α̃= α̂−
{

@Û.α̂, θ̂/

@α

}−1
Û.α̂, θ̂/, Û.α̂, θ̂/=∇αL.α̂, θ̂/− ŵT∇θL.α̂, θ̂/: .3:8/

In the next section, we prove that
√

n.α̃−αÅ/ converges weakly to N.0, H−1
α|θ/. Hence, let

Z1−η=2 be the .1−η=2/th quantile of N.0, 1/. We have that

[α̃−n−1=2Z1−η=2Ĥ
−1=2
α|θ , α̃+n−1=2Z1−η=2Ĥ

−1=2
α|θ ]

is a 100.1 − η/% confidence interval for αÅ. From the perspective of hypothesis testing, the
decorrelated Wald test statistic for H0: αÅ =0 versus H1: αÅ ̸=0 is

Ŵn =nĤα|θα̃
2, .3:9/
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where α̃ and Ĥα|θ are defined in equations (3.8) and (3.5) respectively. Consequently, the decor-
related Wald test with significance level η is

ψW.η/=
{

0 if Ŵn !χ2
1.1−η/,

1 otherwise, .3:10/

and the null hypothesis αÅ =0 is rejected if and only if ψW.η/=1.

3.3. Decorrelated partial likelihood ratio test
Under low dimensional settings, the likelihood ratio inference enjoys great success in the stat-
istical literature. Under the proportional hazards model, the partial likelihood ratio test
statistic is PLRT=2n[L{0, θ̂P.0/}−L.α̂P, θ̂P/], where θ̂P.0/=arg minθ L.0, θ/ and .α̂P, θ̂P/=
arg minα,θL.α, θ/ are the maximum partial likelihood estimators under the null and alternative
hypotheses. Hence, PLRT evaluates the validity of the null hypothesis by comparing the partial
likelihood under H0 with that under H1. Similarly to the partial score test, the partial likeli-
hood ratio test also fails in the high dimensional setting because of a large number of nuisance
parameters. In this section, we propose a new type of the partial likelihood ratio test which is
applicable in the high dimensional setting.

To handle the effect of high dimensional nuisance parameters, we define the (negative) decor-
related partial likelihood for α as Ldecor.α/ =L.α, θ̂ −αŵ/. The intuition of this decorrelated
partial likelihood is to approximate the likelihood of a submodel with the direction .1, −wÅ/,
which also corresponds to the least favourable direction for estimatingα. In the low dimensional
setting, the decorrelated partial likelihood Ldecor.α/ is asymptotically equivalent to the profile
partial likelihood L{α, θ̂.α/}. Hence, we view Ldecor.α/ as an extension of the classical profile
partial likelihood to high dimensions. The decorrelated partial likelihood ratio test statistic is
defined as

L̂n =2n{Ldecor.0/−Ldecor.α̃/}, Ldecor.α/=L.α, θ̂−αŵ/, .3:11/

and α̃ is given in expression (3.8). As discussed in the previous subsection, α̃ is a one-step
approximation of the global minimizer of Ldecor.α/. Hence, the log-likelihood ratio L̂n evaluates
the validity of the null hypothesis by comparing the decorrelated partial likelihood under H0
with that under H1.

In the next section, we show that L̂n converges weakly to a χ2-distribution with 1 degree of
freedom. Therefore, a decorrelated partial likelihood ratio test with significance level η is

ψL.η/=
{

0 if L̂n !χ2
1.1−η/,

1 otherwise, .3:12/

and ψL.η/=1 indicates a rejection of the null hypothesis.

4. Asymptotic properties

In this section, we derive the limiting distributions of the decorrelated test statistics under the
null hypothesis. The limiting distributions of the test statistics under the Pitman alternative
are shown in the on-line supplementary materials, section B. In our analysis, we assume the
following conditions.

Assumption 3. The true hazard is uniformly bounded, i.e.

sup
t∈[0,τ ]

max
i∈[n]

|XT
i .t/βÅ|=O.1/:
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Assumption 4. It holds that ∥wÅ∥0 = s′ ≍ s, and

sup
t∈[0,τ ]

max
i∈[n]

|XT
i,2:d.t/wÅ|=O.1/:

Assumption 5. The maximum and minimum eigenvalues of the Fisher information matrix
are bounded, Ch !Λmin.HÅ/!Λmax.HÅ/!1=Ch for some constant Ch > 0.

To connect these assumptions with existing literature, assumptions 3 and 4 extend assumption
(iv) of theorem 3.3 in van de Geer et al. (2014) to the proportional hazards model. In particular,
the sparsity of wÅ is assumed in order to establish the consistency of ŵ to wÅ. By the block
matrix inversion formula, the sparsity assumption of wÅ is equivalent to the corresponding row
or column of HÅ−1 being sparse. Assumption 5 is related to the Fisher information matrix,
which is essential even in low dimensional settings.

To derive the asymptotic property of our test statistics, a crucial step in our analysis is the
consistency of the estimator ŵ in equation (3.3). The following lemma provides a fast rate of
convergence of ŵ.

Lemma 1. Under assumptions 1–5, if λ′ ≍√
{n−1 log.d/}, we have

∥ŵ −wÅ∥1 =OP[.s′ + s/
√

{n−1 log.d/}, .4:1/

where wÅ and ŵ are defined in equations (3.2) and (3.3).

Consequently, the following result characterizes the asymptotic normality of the decorrelated
score function Û.0, θ̂/ in equation (3.4) under the null hypothesis.

Theorem 1. Suppose that assumptions 1–5 hold. If λ≍√
{n−1log.d/}, λ′ ≍√

{n−1log.d/}
and n−1=2s log.d/ = o.1/, under the null hypothesis αÅ = 0, the decorrelated score function
Û.0, θ̂/ defined in equation (3.4) satisfies

√
nÛ.0, θ̂/

d→Z, Z ∼N.0, Hα|θ/, .4:2/

and Hα|θ =HÅ
αα−HÅ

αθHÅ−1
θθ HÅ

θα.

We note that theorem 1 holds if .n, s, d/ satisfies n−1=2s log.d/ = o.1/, which agrees with the
assumption in the existing work for the linear model and the generalized linear model; see
van de Geer et al. (2014) and Ning and Liu (2016). In addition, our tuning parameters λ
and λ′ follow the conventional

√
{n−1log.d/}-rate for high dimensional estimation and infer-

ence.

Remark 1. In this remark, we emphasize the additional technical challenges in the analysis of
the Cox model compared with the existing works on the linear model and the generalized linear
model. First, since the log-partial likelihood does not have the independently and identically
distributed samples structure, our theoretical results are built on the concentration inequalities
for the score function and Hessian matrix via empirical process theory; see the technical lemmas
in section E of the on-line supplementary materials. The main theoretical tools are a refinement of
Talagrand’s inequality (Massart (2007), equation (5.50)) and maximal inequalities for empirical
processes. Second, it is technically more complicated to control the uncertainty of the score
function and Hessian matrix evaluated at θ̂ and ŵ. For instance, to attain the fast rate in lemma
1, we need to exploit the structure of the Hessian matrix fully and to separate the uncertainty
of the Hessian matrix from the plug-in error of β̂ carefully, since ŵ defined in equation (3.3)
depends on β̂. A direct analysis based on the local Lipschitz property of the Hessian matrix
on β yields a weaker result ∥ŵ −wÅ∥1 =OP[s′s

√
{n−1 log.d/}], which is slower than the rate in
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lemma 1. Thus, this slower rate leads to stronger assumptions than n−1=2s log.d/=o.1/ required
in theorem 1. Such challenges do not appear in the context of the linear model and the generalized
linear model.

As we have discussed, the limiting variance of the decorrelated score function can be estimated
by Ĥα|θ =∇2

ααL.α̂, θ̂/− ŵT∇2
θαL.α̂, θ̂/. The next lemma shows the consistency of Ĥα|θ.

Lemma 2. Suppose that assumptions 1–5 hold. Ifλ≍√
{n−1 log.d/} andλ′ ≍√

{n−1 log.d/},
we have

|Hα|θ − Ĥα|θ|=OP

[
s

√{
log.d/

n

}]
:

By theorem 1 and lemma 2, the following corollary shows that, under the null hypothesis,
the type I error of the decorrelated score test ψS.η/ in expression (3.7) converges asymptot-
ically to the significance level η. Let the associated p-value of the decorrelated score test be
PS = 2{1 −Φ.Ŝn/}, where Φ.·/ is the cumulative distribution function of the standard normal
random variable and Ŝn is the score test statistic defined in equation (3.6). The distribution of
PS converges to a uniform distribution asymptotically.

Corollary 1. Suppose that assumptions 1–5 hold, λ≍√
{n−1 log.d/}, λ′ ≍√

{n−1 log.d/} and
n−1=2s log.d/=o.1/. The decorrelated score test and the p-value satisfy

lim
n→∞

P{ψS.η/=1|αÅ =0}=η, and PS
d→Unif[0, 1], when αÅ =0,

where Unif[0, 1] denotes a random variable uniformly distributed in [0, 1].

We then analyse the Wald test under the null hypothesis. We derive the limiting distribution
of the one-step estimator α̃ defined in expression (3.8) in the next theorem.

Theorem 2. Suppose that assumptions 1–5 hold, and λ≍√
{n−1 log.d/}, λ′ ≍√

{n−1 log.d/}
and n−1=2s log.d/=o.1/. When the null hypothesis αÅ = 0 holds, the decorrelated estimator
α̃ satisfies

√
nα̃

d→Z, Z ∼N.0, H−1
α|θ/: .4:3/

Utilizing the asymptotic normality of α̃, we can establish the limiting type I error of ψW.η/
in equation (3.10), in the next corollary. It is straightforward to generalize the result to

√
n.α̃−

αÅ/→dZ, where Z ∼N.0, H−1
α|θ/ for any αÅ. This gives us a confidence interval of αÅ.

Corollary 2. Under assumptions 1–5, suppose that λ≍√
{n−1 log.d/}, λ′ ≍√

{n−1 log.d/}
and n−1=2s log.d/ = o.1/. The type I error of the decorrelated Wald test ψW.η/ and its cor-
responding p-value PW =2{1−Φ.Ŵn/} satisfy

lim
n→∞

P{ψW .η/=1|αÅ =0}=η, and PW
d→Unif[0, 1] when αÅ =0:

In addition, an asymptotic 100.1−η/% confidence interval of αÅ is
(
α̃− Φ−1.1−η=2/

√
.nĤα|θ/

, α̃+ Φ−1.1−η=2/
√

.nĤα|θ/

)
:

Finally, we present our main result on the limiting distribution of the decorrelated partial
likelihood ratio test statistic L̂n that was introduced in expression (3.11).
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Theorem 3. Suppose that assumptions 1–5 hold, λ≍√
{n−1 log.d/}, λ′ ≍√

{n−1 log.d/} and
n−1=2s log.d/=o.1/. If the null hypothesis αÅ =0 holds, the decorrelated likelihood ratio test
statistic L̂n in expression (3.11) satisfies

L̂n
d→Zχ, Zχ∼χ2

1: .4:4/

Theorem 3 illustrates the Wilks phenomenon of L̂n and justifies the decorrelated partial
likelihood ratio test ψL.η/ in equation (3.12). Also, let the p-value that is associated with the
decorrelated partial likelihood ratio test be PL =1−F.L̂n/, where F.·/ is the cumulative distri-
bution function of χ2

1. Similarly to corollaries 1 and 2, we characterize the type I error of the
test ψL.η/ in equation (3.12) and its corresponding p-value below.

Corollary 3. Suppose that assumptions 1–5 hold, λ≍√
{n−1 log.d/}, λ′ ≍√

{n−1 log.d/} and
n−1=2s log.d/=o.1/. The type I error of the decorrelated partial likelihood ratio test ψL.η/ with
significance level η and its associated p-value PL satisfy

lim
n→∞

P{ψL.η/=1|αÅ =0}=η, and PL
d→Unif[0, 1] when αÅ =0:

By corollaries 1–3, we see that the decorrelated score, Wald and partial likelihood ratio tests
are asymptotically equivalent since, under the same assumptions, it holds that

Ŝn = Ŵn +oP.1/= L̂n +oP.1/:

To summarize this section, corollaries 1–3 characterize the asymptotic distributions of the
proposed decorrelated test statistics under the null hypothesis. It is known that Hα|θ is the
semiparametric information lower bound for inferring α. Theorem 2 shows that α̃ achieves
the semiparametric information bound, which indicates the semiparametric efficiency of α̃. By
asymptotic equivalence, all our test statistics are semiparametrically efficient (van der Vaart,
2000). Although the three tests are asymptotically equivalent, our numerical results suggest
that the partial likelihood ratio test outperforms the remaining tests empirically.

5. Inference on the baseline hazard function

The baseline hazard function

Λ0.t/=
∫ t

0
λ0.u/du

is treated as a nuisance function in the log-partial-likelihood method. In practice, inferences
on the baseline hazard function can be of interest also. To the best of our knowledge, such
problems remain unexplored in high dimensional settings. In this section, we aim to construct
confidence intervals for the baseline hazard function and the survival function. In addition, we
extend the procedure to conduct inference on the conditional hazard function in the on-line
supplementary materials, section D.

We consider the following Breslow-type estimator for the baseline hazard function. Given
an l1-penalized estimator β̂ derived from equation (2.1), the plug-in estimator for the baseline
hazard function at time t is

Λ̂0.t, β̂/=
∫ t

0

n∑
i=1

dNi.u/

n∑
i=1

Yi.u/ exp{XT
i .u/β̂}

: .5:1/
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Since the plug-in estimator β̂ does not have a tractable distribution, inference based on the
estimator Λ̂0.t, β̂/ is difficult. To handle this problem, we adopt a bias correction procedure to
reduce the uncertainty that is caused by plugging β̂ into Λ̂0.t, β/. Specifically, we estimate Λ0.t/
by the sample version of Λ̂0.t, β̂/− .∇Λ0.t, βÅ//THÅ−1∇L.β̂/, where

Λ0.t, β/=E

{∫ t

0

dNi.u/

S.0/.u, β/

}
,

and the gradient ∇Λ0.t, βÅ/ is taken with respect to the corresponding β-component, and HÅ is
the Fisher information matrix defined in equation (2.7). We propose to estimate HÅ−1∇Λ0.t, βÅ/
by the Dantzig-type estimator

û.t/=arg min∥u.t/∥1, subject to ∥∇Λ̂0.t, β̂/−∇2L.β̂/u.t/∥∞ ! δ, .5:2/

where δ is a tuning parameter. It can be shown that the estimator û.t/ converges to uÅ.t/ =
HÅ−1∇Λ0.t, βÅ/ under the following regularity assumption.

Assumption 6. It holds that ∥uÅ.t/∥0 = s′ ≍ s for all 0! t ! τ , and

sup
t∈[0,τ ]

max
i∈[n]

|XT
i .t/uÅ.t/|=O.1/:

Assumption 6 plays the same role as assumption 4 in the previous section. Hence, the decor-
related baseline hazard function estimator at time t is

Λ̃0.t, β̂/= Λ̂0.t, β̂/− û.t/T∇L.β̂/, .5:3/

where û.t/ is defined in expression (5.2). On the basis of estimator (5.3), the survival function
S0.t/=exp{−Λ0.t/} is estimated by S̃.t, β̂/=exp{−Λ̃0.t, β̂/}. The main theorem of this section
characterizes the pointwise asymptotic normality of Λ̃0.t, β̂/ and S̃.t, β̂/ as follows.

Theorem 4. Suppose that assumptions 1–3, 5 and 6 hold, λ≍ √
{n−1 log.d/}, δ ≍ s′ ×√

{n−1 log.d/} and n−1=2s2 log.d/ = o.1/. We have that, for any t ∈ [0, τ ], the decorrelated
baseline hazard function estimator Λ̃0.t, β̂/ in equation (5.3) satisfies

√
n{Λ0.t/− Λ̃0.t, β̂/} d→Z, Z ∼N{0,σ2

1.t/+σ2
2.t/},

where

σ2
1.t/=

∫ t

0

λ0.u/du

E[exp{XT.u/βÅ}Y.u/]
,

σ2
2.t/=∇Λ0.t, βÅ/THÅ−1∇Λ0.t, βÅ/:

.5:4/

The estimated survival function S̃.t, β̂/ satisfies

√
n{S̃.t, β̂/−S0.t/} d→Z′, Z′ ∼N

[
0,
σ2

1.t/+σ2
2.t/

exp{2Λ0.t/}

]
:

As a final remark, the assumption n−1=2s2 log.d/= o.1/ in theorem 4 is stronger than those
in theorems 1 and 3. The main reason is that the estimand Λ0.t, β/ is a non-linear function of
β, which requires stronger technical assumptions to construct confidence intervals.

6. Numerical results

This section reports numerical results of our proposed methods by using both simulated and
real data.
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6.1. Simulated data
We first investigate empirical performances of the decorrelated score, Wald and partial likelihood
ratio tests on the parametric component βÅ as proposed in Section 3. In our simulation, we
let βÅ

1 = 0 and randomly select s out of the next d − 1 components to be non-zero, where the
rest of the entries are set to be 0. To estimate βÅ and wÅ, we choose the tuning parameters λ
by tenfold cross-validation and set λ′ =√

{n−1 log.d/}: We find that our simulation results are
insensitive to the choice of λ′. We conduct decorrelated score, Wald and partial likelihood ratio
tests for β1 which is set to be 0 under the null hypothesis H0: βÅ

1 = 0 versus the alternative Ha:
βÅ

1 ̸=0, where we set the level of significance to be η=0:05. In each setting, we simulate n=150
independent samples from a multivariate Gaussian distribution Xi ∼Nd.0,Σ/ for d =100, 200,
500, where Σ is a Toeplitz matrix with Σjk =ρ|j−k| and ρ=0:25, 0:4, 0:6, 0:75. The cardinality
of the active set s is either 2 or 3, and the regression coefficients in the active set are either all 1s
(Dirac) or drawn randomly from the uniform distribution Unif[0, 2]. We set the baseline hazard
rate function to be the identity. Thus, the ith survival time follows an exponential distribution
with mean exp.XT

i βÅ/. The ith censoring time is independently generated from an exponential

Table 1. Average type I error of the decorrelated tests with ηD5% where .n, s/D .150, 2/

Method d Results (%) for Results (%) for Results (%) for Results (%) for
ρ=0.25 ρ=0.4 ρ=0.6 ρ=0.75

Dirac Unif [0,2] Dirac Unif [0,2] Dirac Unif [0,2] Dirac Unif [0,2]

Score 100 5.2 5.1 4.8 4.7 5.3 5.2 5.1 5.0
200 5.3 4.9 4.7 5.0 5.2 5.3 5.1 4.8
500 6.2 6.3 5.9 5.2 4.5 4.8 4.2 3.8

Wald 100 5.5 5.2 5.1 5.3 4.9 4.7 5.1 5.3
200 5.5 5.3 5.4 5.1 4.8 4.7 4.4 4.5
500 6.5 6.2 5.7 5.6 5.7 4.4 4.6 3.7

PLRT 100 5.3 5.1 5.3 4.9 5.1 4.8 4.7 4.8
200 5.6 5.7 5.4 5.3 4.7 5.5 4.8 4.6
500 6.2 6.5 6.2 5.6 4.8 4.4 4.0 3.8

Table 2. Average type I error of the decorrelated tests with ηD5% where .n, s/D .150, 3/

Method d Results (%) for Results (%) for Results (%) for Results (%) for
ρ=0.25 ρ=0.4 ρ=0.6 ρ=0.75

Dirac Unif [0,2] Dirac Unif [0,2] Dirac Unif [0,2] Dirac Unif [0,2]

Score 100 5.4 5.3 4.9 5.4 5.2 4.7 5.4 5.3
200 5.3 5.1 4.8 5.4 5.3 5.7 4.6 4.4
500 6.2 6.3 6.0 4.5 4.7 4.8 3.5 3.7

Wald 100 5.3 5.1 5.5 5.2 4.9 5.0 5.2 4.8
200 4.9 4.8 4.7 5.2 5.3 5.5 4.3 4.5
500 6.6 6.7 6.2 6.1 5.3 4.8 4.1 3.8

PLRT 100 5.2 5.2 5.1 5.4 5.2 5.3 5.0 4.7
200 5.3 5.4 5.2 4.8 5.3 5.5 5.3 4.5
500 6.7 6.5 5.9 5.4 4.7 4.4 3.9 3.6
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distribution with mean U exp.XT
i βÅ/, where U ∼Unif[1, 3]. As discussed in Fan and Li (2002),

this censoring scheme results in about 30% censored samples.
The simulation is repeated 1000 times. The empirical type I errors of the decorrelated score,

Wald and partial likelihood ratio tests are summarized in Tables 1 and 2. We see that the empirical
type I errors of all three tests are close to the desired 5% level of significance, which supports
our theoretical results. This observation holds for the whole range of ρ, s and d specified in
the data-generating procedures. In addition, as expected, the empirical type I errors further
deviate from the level of significance as d increases for all three tests, illustrating the effects of
dimensionality d on finite sample performance.

We also investigate the empirical power of the tests proposed. Instead of setting β1 = 0, we
generate the data with β1 = 0:05, 0:1, 0:15, : : : , 0:55, following the same simulation scheme as
introduced above. We plot the rejection rates of the three decorrelated tests for testing H0 :β1 =0
with significance level 0.05 and ρ=0:25 in Fig. 2. We see that, when d =100, the three tests share
similar power. However, for larger d (e.g. d =500), the decorrelated partial likelihood ratio test
is the most powerful test. In addition, the Wald test is less effective for problems with higher
dimensionality. On the basis of our simulation results, we recommend the use of the decorrelated
partial likelihood ratio test for inference in high dimensional problems.

In the on-line supplementary materials, we conduct more thorough simulation studies to
examine the empirical performance of our proposed methods. Specifically, we consider the sim-
ulation scenarios with non-sparse βÅ (i.e. s = 10), different data-generating procedures for the
covariate Xi and some high censoring settings. In addition, we carefully examine the bias, stan-
dard deviation, estimated standard deviation and empirical coverage probability for both zero
components of βÅ and non-zero components. Finally, we investigate the empirical performance
of the proposed methods for inferring the baseline hazard function Λ0.t/ under a variety of sim-
ulation scenarios. All these numerical results illustrate that the methods proposed work well in
practice. For brevity, we refer the readers to the on-line supplementary materials for the detailed
results.

6.2. Analysing a gene expression data set
We apply the proposed testing procedures to analyse a genomic data set, which is collected from
a diffuse large B-cell lymphoma study analysed by Alizadeh et al. (2000). The data set can be
downloaded from http://llmpp.nih.gov/lymphoma/data.shtml. One of the goals
in this study is to investigate how different genes in B-cell malignancies are associated with the
survival time. The expression values for over 13412 genes in B-cell malignancies are measured
by microarray experiments. The data set contains 40 patients with diffuse large B-cell lymphoma
who are recruited and followed until death or the end of the study. A small proportion (about
5%) of the gene expression values were not well measured and were treated as missing values
by Alizadeh et al. (2000). For simplicity, we impute the missing values of each gene by the
median of the observed values of the same gene. The average survival time is 43.9 months and
the censoring rate is 55%.

We apply the proposed score, Wald and partial likelihood ratio tests to the data. The same
strategy for choosing the tuning parameters as that in the simulation studies is adopted. We
repeatedly apply the testing procedures for all parameters. To control the familywise error rate
due to the multiple testing, the p-values are adjusted by Bonferroni’s method. To be more
conservative, we report only the genes with adjusted p-values that are less than 0.05 by all of
the three methods in Table 3. Many of the genes which are significant in the hypothesis tests
are biologically related to lymphoma. For instance, the relationship between lymphoma and
genes FLT3 (Meierhoff et al., 1995), CDC10 (Di Gaetano et al., 2003), CHN2 (Nishiu et al.,
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Table 3. Genes with adjusted p-values less than 0.05
by using score, Wald and partial likelihood ratio tests for
the large B-cell lymphoma gene expression data set

Gene Results for the following tests:

Score Wald PLRT

SP1 5:38×10−6 2:17×10−5 6:53×10−6

PTMAP1 4:21×10−5 6:35×10−5 4:13×10−5

Emv11 6:13×10−5 1:81×10−4 4:49×10−5

CDC10 1:57×10−4 4:91×10−4 4:72×10−4

NR2E3 2:41×10−3 4:51×10−3 2:65×10−3

FLT3 1:75×10−3 3:72×10−4 2:52×10−4

GPD2 3:85×10−3 4:49×10−3 5:66×10−4

TAP2 4:39×10−3 1:63×10−2 6:97×10−3

CHN2 5:65×10−3 3:25×10−3 7:15×10−4

CD137 4:51×10−2 2:91×10−3 1:05×10−4

0 20 40 60 80
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0.5

0.75

1

Fig. 3. Estimation and 95% confidence interval of the baseline hazard function

2002), Emv11 (Hiai et al., 2003), CD137 (Alizadeh et al., 2011) and TAP2 (Nielsen et al.,
2015) have been experimentally confirmed. This provides evidence that our methods can be
used to discover findings in scientific applications involving high dimensional covariates. We
further plot the estimated baseline hazard function and its 95% confidence interval in Fig. 3 for
illustration.

7. Discussion

In this paper, we focus on Cox’s proportional hazards model for univariate survival data. In
practice, many biomedical studies involve multiple survival outcomes. For instance, in the
Framingham Heart Study (Dawber, 1980), both time to coronary heart disease and time to
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cerebrovascular accident are observed. We further extend the proposed procedures to analyse
jointly multivariate survival data in the high dimensional setting in section H of the on-line
supplementary materials.

The methods proposed involve two tuning parameters λ and λ′. The presence of multiple
tuning parameters in inferential procedures has been encountered in many recent works (van de
Geer et al., 2014; Zhang and Zhang, 2014; Ning and Liu, 2016). Theoretically, we prove asymp-
totic normality of the test statistics when λ≍λ′ ≍√

{n−1 log.d/}. Empirically, our numerical
results suggest that cross-validation can be used to determine the value of λ. Together with the
choice of λ′ =√

{n−1log.d/}, we observe satisfactory type I errors in our numerical studies.
We comment that post-selection conditional inference (Lockhart et al., 2014) and the pro-

posed unconditional inference address different inferential problems. To be specific, consider
the linear regression model Yi = βTXi + ϵi .i = 1, : : : , n/. Post-selection conditional inference
aims to construct a 95% confidence interval of βP, where

βP =arg min
bP

E.Yi −XT
iMbP/2,

and XiM denotes the components of Xi in the set M ⊂ {1, : : : , d}. However, it is important to
note that in general βP ̸=βÅ

M , where βÅ
M are the components of the true value βÅ in set M. In

contrast, our unconditional inference constructs confidence intervals for the unknown value βÅ
j

for 1! j !d.
Whether conditional or unconditional inference is more appropriate depends on the context.

For instance, in our real data applications, the goal is to study how genes in B-cell malignancies
are associated with the survival time with all other genes adjusted. That means we are inter-
ested in constructing confidence intervals (or testing hypotheses) for the unknown true value
βÅ

j for all 1 ! j ! d. However, the conditional inference on βP does not directly address this
scientific question. Thus, our unconditional inference can be more appropriate in our real data
application.

In practice, the method proposed has the following two added values, compared with the
standard variable selection method. First, the p-values that are produced by our procedures
provide an indication on how likely a covariate is associated with the survival time with all
other covariates adjusted. The covariate with a smaller p-value means that it is statistically
more significant in the joint Cox model. In contrast, the standard variable selection method
(e.g. the lasso estimator) does not provide p-values. One cannot know how likely a covariate is
associated with the survival time on the basis of the magnitude of the point estimator, because
some covariates may have large coefficients as well as large standard deviations. Second, as seen
in our real data analysis, the p-values can be adjusted by the Bonferroni method to control
the familywise error rate at any given level (e.g. 0.05). This is a commonly used procedure in
the analysis of genomic data, because it provides the explicit confidence level (e.g. 0.05) on
quantifying the probability of false discoveries. However, such a measure of uncertainty is not
provided by the standard variable selection method.
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Appendix A: Proof of main theorems

In this appendix, we aim to prove our main result on the limiting distribution of the partial likelihood
ratio test in theorem 3. Since this theorem is built on theorem 1, we first provide the proof of theorem 1.

A.1. Proof of theorem 1
We first provide a key lemma which characterizes the asymptotic normality of ∇L.βÅ/. This lemma is
essential in our later proofs to derive the asymptotic distributions of the test statistics.

Lemma 3. Under assumptions 1, 4 and 5 for any vector v ∈Rd , if ∥v∥0 ! s′, ∥v∥2 =1,

supt∈[0,τ ]maxi∈[n]|XT
i .t/v|

is bounded and
√

{s′ log.d=n/}=o.1/, it holds that
√

nvT∇L.βÅ/
√

.vTHÅv/

d→N.0, 1/,

where HÅ is defined in equation (2.7).

Proof. Let Mi.t/=Ni.t/−
∫ t

0 Yi.u/λ0.u/du. By the definition of ∇L.βÅ/ in equation (2.4), we have

∇L.βÅ/=− 1
n

n∑
i=1

∫ τ

0
{Xi.u/− Z̄.u, βÅ/}dMi.u/

=− 1
n

n∑
i=1

∫ τ

0
{Xi.u/− e.u, βÅ/}dMi.u/− 1

n

n∑
i=1

∫ τ

0
{e.u, βÅ/− Z̄.u, βÅ/}dMi.u/:

Thus, by the identity HÅ =√
n var{∇L.βÅ/}, we have

√
nvT∇L.βÅ/
√

.vTHÅv/
=− 1

√
n

vT

√
.vTHÅv/

n∑
i=1

∫ τ

0
{Xi.u/− e.u, βÅ/}dMi.u/

︸ ︷︷ ︸
S

− 1
√

n

vT

√
.vTHÅv/

n∑
i=1

∫ τ

0
{e.u, βÅ/− Z̄.u, βÅ/}dMi.u/

︸ ︷︷ ︸
E

:

For the first term S, denote by

ξi =
vT

√
.vTHÅv/

∫ τ

0
{Xi.u/− e.u, βÅ/}dMi.u/:

We have E.ξi/=0, and var.n−1=2S/=1. Thus S is a sum of n independent random variables with mean 0.
To obtain the asymptotic distribution of n−1=2S, we verify the Lyapunov condition. Indeed,

1
n3=2

n∑
i=1

E

∣∣∣∣
vT

√
.vTHÅv/

∫ τ

0
{Xi.u/−e.u, βÅ/}dMi.u/

∣∣∣∣
3

! C

C
3=2
h n3=2

n∑
i=1

sup
u∈[0,τ ]

|vT{Xi.u/−e.u, βÅ/}|3 =O.n−1=2/,

where the inequality follows by assumption 5 for some constant C. Thus, the Lyapunov condition holds.
Applying the Lindeberg–Feller central limit theorem, we have n−1=2S →d N.0, 1/.

Next, we prove that the second term E=oP.1/. Since

E= 1
√

n

vT

√
.vTHÅv/

n∑
i=1

∫ τ

0
[{e.u, βÅ/− Z̄.u, βÅ/}1dMi.u/]

! 1
√

n

s′1=2

λmin
sup

u∈[0,τ ]
∥e.u, βÅ/− Z̄.u, βÅ/∥∞

∫ τ

0

∣∣∣
n∑

i=1
1dMi.u/

∣∣∣:

By lemma E.1 in the on-line supplementary materials, it holds that supu∈[0,τ ] ∥e.u, βÅ/ − Z̄.u, βÅ/∥∞ =
OP[

√
{n−1 log.d/}]. It holds that, for some constant C> 0,
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E! C
√

n

1
λmin

√{
s′ log.d/

n

}∫ τ

0

∣∣∣∣
n∑

i=1
1dMi.u/

∣∣∣∣:

It remains to bound the term
∫ τ

0 |Σn
i=11dMi.u/|. By theorem 2.11.9 and example 2.11.16 of van der Vaart

and Wellner (1996), Ḡ.t/ :=n−1=2Σn
i=1Mi.t/ converges weakly to a tight Gaussian process G.t/. Furthermore,

by the strong embedding theorem of Shorack and Wellner (2009), there is another probability space
such that .SÅ.0/.β, t/, SÅ.1/.β, t/, Ḡ

Å
.t// converges almost surely to .sÅ.0/.β, t/, sÅ.1/.β, t/, GÅ.t//, where ‘Å’

indicates the existences in a new probability space. This implies that
∫ τ

0 |dG.t/|=
∫ τ

0 |dGÅ.t/|+oP.1/. We
have, by our assumption that

√
{s′ log.d=n/}=oP.1/, the term E satisfies that

E=OP

[√{
s′ log.d/

n

}]
=oP.1/:

Together with the result that n−1=2S →dN.0, 1/, we conclude the proof. ⊓0

Before proving theorem 1, we need some technical lemmas to characterize several concentration results.
We present them here and defer the proofs to section F of the on-line supplementary materials.

Lemma 4. Under assumptions 1–5 there is a positive constant C, such that, with probability at least
1−O.d−3/,

∥∇L.βÅ/∥∞ !C

√{
log.d/

n

}
:

Lemma 5. Under assumptions 1–5, let β̂ be the estimator for βÅ estimated by expression (2.1) satisfying
the result in expression (2.2) that ∥β̂ −βÅ∥1 =OP.sλ/ with λ≍O[

√
{n−1 log.d/}]. Then, for any β̃ =

βÅ +u.β̂−βÅ/ with u∈ [0, 1], we have ∥∇2L.β̃/∥∞ =OP.1/,

∥∇2L.β̃/−HÅ∥∞ =OP

[
s

√{
log.d/

n

}]

and

∥{∇2
αθL.β̃/−HÅ

αθ}wÅ∥∞ =OP

[
s

√{
log.d/

n

}]
:

A.1.1. Proof of theorem 1
To derive the asymptotic distribution of

√
nÛ.0, θ̂/, we start with decomposing Û.0, θ̂/ into several terms:

Û.0, θ̂/=∇αL.0, θ̂/− ŵT∇θL.0, θ̂/

=∇αL.0, θÅ/+∇2
αθL.0, θ̄/.θ̂−θÅ/−{ŵT∇θL.0, θÅ/+ ŵT∇2

θθL.0, θ̃/.θ̂−θÅ/}
=∇αL.0, θÅ/−wÅT∇θL.0, θÅ/︸ ︷︷ ︸

S

+ .wÅ − ŵ/T∇θL.0, θÅ/︸ ︷︷ ︸
E1

+{∇2
αθL.0, θ̄/− ŵT∇2

θθL.0, θ̃/}.θ̂−θÅ/
︸ ︷︷ ︸

E2

,

.A.1/

where the second equality holds by the mean value theorem for some θ̄=θÅ +u.θ̂−θÅ/, θ̃=θÅ +u′.θ̂−θÅ/
and u, u′ ∈ [0, 1].

We consider the terms S, E1 and E2 separately. For the first term S, by lemma 3, taking v = .1, −wÅT/T,
we have

√
nS

d→Z, Z ∼N.0, Hα|θ/: .A.2/

For the term E1, we have,

E1 !∥ŵ −wÅ∥1∥∇θL.0, θÅ/∥∞ =OP[s′λ′√{n−1 log.d/}], .A.3/

where ∥ŵ −wÅ∥1 =OP.s′λ′/ by lemma 1, and ∥∇θL.0, θÅ/∥∞ =OP[
√

{n−1 log.d/}] by lemma 4.
For the term E2, we have
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E2 ={∇2
αθL.0, θ̄/−HÅ

αθHÅ−1
θθ ∇2

θθL.0, θ̃/}.θ̂−θÅ/
︸ ︷︷ ︸

E21

+ .wÅ − ŵ/T∇2
θθL.0, θ̃/.θ̂−θÅ/

︸ ︷︷ ︸
E22

: .A.4/

Considering the terms E21 and E22 separately, first, we have

E21 =∇2
αθL.0, θ̄/.θ̂−θÅ/−wÅT∇2

θθL.0, θ̃/.θ̂−θÅ/=OP{n−1s log.d/}, .A.5/

where the last equality holds by the proof of lemma 2 in the on-line supplementary materials.
For the second term E22 in equation (A.4), we have, by the Cauchy–Schwarz inequality,

|E22|! 1
2 .ŵ −wÅ/T∇2

θθL.0, θ̃/.ŵ −wÅ/+ 1
2 .θ̂−θÅ/T∇2

θθL.0, θ̃/.θ̂−θÅ/=OP{n−1s log.d/}, .A.6/

where the last equality follows by expression (A.5) in the supplementary materials. Plugging expressions
(A.5) and (A.6) into equation (A.4), we have E2 =OP{n−1s log.d/}. Combining with expression (A.3), we
have

|E1|+ |E2|=OP

{
s log.d/

n

}
=oP

(
1

√
n

)
, .A.7/

where the last equality holds by the assumption that n−1=2s log.d/ = o.1/. Combining expressions (A.7),
(A.2) and (A.1), our claim (4.2) holds as desired.

A.2. Proof of theorem 3
We have

L.α̃, θ̂− α̃ŵ/−L.0, θ̂/= α̃∇αL.0, θ̂/− α̃ŵT∇θL.0, θ̂/+ α̃2

2
∇2
ααL.ᾱ, θ̂/

+ α̃2

2
ŵT∇2

θθL.0, θ̄/ŵ − α̃2ŵT∇θL.ᾱ′, θ̂/

= α̃Û.0, θ̂/︸ ︷︷ ︸
T1

+ α̃2

2
{∇2

ααL.ᾱ, θ̂/+ ŵT∇2
θθL.0, θ̄/ŵ −2ŵT∇2

θαL.ᾱ′, θ̄
′
/}

︸ ︷︷ ︸
T2

, .A.8/

where the first equality follows by the mean value theorem with ᾱ= u1α̂, ᾱ′ = u2α̂, θ̄ =θÅ + u3.θ̂ −θÅ/
and θ̄

′ =θÅ +u4.θ̂−θÅ/ for some 0!u1, u2, u3, u4 !1.
We first look at the term T1. Under the null hypothesisαÅ =0,

√
nÛ.0, θ̂/→dZ and

√
nα̃=−H−1

α|θÛ.0, θ̂/+
oP.1/ by theorems 1 and 2, where Z ∼N.0, Hα|θ/. We have

2nT1 =−2Û
2
.0, θ̂/+oP.1/

d→−2Z2H−1
α|θ: .A.9/

Next, we look at the term T2,

T2 = α̃2

2
.HÅ

αα +HαθHÅ−1
θθ HÅ

θα −2HÅ
αθHÅ−1

θθ HÅ
θα/

︸ ︷︷ ︸
T21

+ α̃2

2
[∇2

ααL.ᾱ, θ̂/−HÅ
αα + ŵT∇2

θθL.0, θ̄/ŵ −wÅHÅ
θθwÅ −2{w̃T∇2

θαL.ᾱ′, θ̄
′
/−HÅ

αθwÅ}]
︸ ︷︷ ︸

T22

: .A.10/

It holds by theorem 2 that
√

nα̃→dH−1
αθ Z. Together with HÅ

α|θ =O.1/, we have

2nT21 =nα̃2Hα|θ
d→H−1

α|θZ2: .A.11/

Considering the term T22, we have
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T22 = α̃2

2
[∇2

ααL.ᾱ, θ̂/−HÅ
αα︸ ︷︷ ︸

R1

+ ŵT∇2
θθL.0, θ̄/ŵ −wÅHÅ

θθwÅ
︸ ︷︷ ︸

R2

−2{w̃T∇2
αθL.ᾱ′, θ̄

′
/−wÅTHÅ

αθ}︸ ︷︷ ︸
R3

]: .A.12/

For the first term |R1|, we have, by lemma 5, |R1|= |∇2
ααL.ᾱ, θ̂/−HÅ

αα|=OP.sλ/. For the second term,
we have

|R2|= |ŵT∇2
θθL.0, θ̄/ŵ −wÅHÅ

θθwÅ|=OP.sλ/, .A.13/

where the last equality follows by the same arguments as in the proof of lemma 1 in the supplementary
materials. For the third term |R3|, we can similarly show that

|R3|!2[|{∇2
αθL.ᾱ′, θ̄

′
/−HÅ

αθ}ŵ|+ |HÅ
αθ.ŵ −wÅ/|]=OP[s

√
{n−1 log.d/}], .A.14/

where the last equality follows by lemma E.4 in the supplementary materials and lemma 5. Combining the
results above, we have

T22 = α̃2

2
OP.sλ/=OP

{
s log.d/

n3=2

}
=oP.n−1/, .A.15/

where the second equality follows by theorem 2 that α̃=OP.n−1=2/ under the null hypothesis, and the last
equality follows by the assumption that n−1=2s log.d/=o.1/. Combining equations (A.11) and (A.15) with
equation (A.10) we have

2nT2
d→H−1

α|θZ2, Z ∼N.0, Hα|θ/: .A.16/

Plugging expressions (A.9) and (A.16) into equation (A.8), by theorem 1,

−2n{L.α̃, θ̂− α̃ŵ/−L.0, θ̂/} d→Z2
χ, Zχ ∼χ2

1,

which concludes the proof.
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van de Geer, S., Bühlmann, P., Ritov, Y. and Dezeure, R. (2014) On asymptotically optimal confidence regions
and tests for high-dimensional models. Ann. Statist., 42, 1166–1202.

Hiai, H., Tsuruyama, T. and Yamada, Y. (2003) Pre-B lymphomas in SL/Kh mice: a multifactorial disease model.
Cancer Sci., 94, 847–850.

Huang, J., Sun, T., Ying, Z., Yu, Y. and Zhang, C.-H. (2013) Oracle inequalities for the Lasso in the Cox model.
Ann. Statist., 41, 1142–1165.

Kalbfleisch, J. D. and Prentice, R. L. (2011) The Statistical Analysis of Failure Time Data. New York: Wiley.
Kong, S. and Nan, B. (2014) Non-asymptotic oracle inequalities for the high-dimensional Cox regression via

Lasso. Statist. Sin., 24, 25–42.
Lockhart, R., Taylor, J., Tibshirani, R. J. and Tibshirani, R. (2014) A significance test for the Lasso. Ann. Statist.,

42, 413–468.
Massart, P. (2007) Concentration Inequalities and Model Selection. New York: Springer.
Meierhoff, G., Dehmel, U., Gruss, H., Rosnet, O., Birnbaum, D., Quentmeier, H., Dirks, W. and Drexler, H.

(1995) Expression of FLT3 receptor and FLT3-ligand in human leukemia-lymphoma cell lines. Leukemia, 9,
1368–1372.

Nielsen, K. R., Steffensen, R., Bendtsen, M. D., Rodrigo-Domingo, M., Baech, J., Haunstrup, T. M., Bergkvist,
K. S., Schmitz, A., Boedker, J. S., Johansen, P., Dybkaeær, K., Boeøgsted, M. and Johnsen, H. E. (2015)
Inherited inflammatory response genes are associated with B-cell non-Hodgkins lymphoma risk and survival.
PLOS ONE, 10, article e0139329.

Ning, Y. and Liu, H. (2016) A general theory of hypothesis tests and confidence regions for sparse high dimensional
models. Ann. Statist., to be published.

Nishiu, M., Yanagawa, R., Nakatsuka, S.-I., Yao, M., Tsunoda, T., Nakamura, Y. and Aozasa, K. (2002) Mi-
croarray analysis of gene-expression profiles in diffuse large b-cell lymphoma: identification of genes related to
disease progression. Cancer Sci., 93, 894–901.

Shorack, G. R. and Wellner, J. A. (2009) Empirical Processes with Applications to Statistics. Philadelphia: Society
for Industrial and Applied Mathematics.

Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B, 58, 267–288.
Tibshirani, R. (1997) The Lasso method for variable selection in the Cox model. Statist. Med., 16, 385–395.
Tsiatis, A. A. (1981) A large sample study of Cox’s regression model. Ann. Statist., 9, 93–108.
van der Vaart, A. W. (2000) Asymptotic Statistics. New York: Cambridge University Press.
van der Vaart, A. W. and Wellner, J. A. (1996) Weak Convergence and Empirical Processes. New York: Springer.
Wang, S., Nan, B., Zhu, N. and Zhu, J. (2009) Hierarchically penalized Cox regression with grouped variables.

Biometrika, 96, 307–322.
Zhang, H. H. and Lu, W. (2007) Adaptive Lasso for Cox’s proportional hazards model. Biometrika, 94, 691–703.
Zhang, C.-H. and Zhang, S. S. (2014) Confidence intervals for low dimensional parameters in high dimensional

linear models. J. R. Statist. Soc. B, 76, 217–242.
Zhao, S. D. and Li, Y. (2012) Principled sure independence screening for Cox models with ultra-high-dimensional

covariates. J. Multiv. Anal., 105, 397–411.
Zhong, P.-S., Hu, T. and Li, J. (2015) Tests for coefficients in high-dimensional additive hazard models. Scand. J.

Statist., 42, 649–664.

Supporting information
Additional ‘supporting information’ may be found in the on-line version of this article:

‘Supplementary materials to “Testing and confidence intervals for high dimensional proportional hazards models”’.



Supplementary Materials to

“Testing and Confidence Intervals for High Dimensional

Proportional Hazards Model”

Ethan X. Fang⇤ Yang Ning† Han Liu‡

A Proofs in Section 4

In this section, we provide the detailed proofs in Section 4.

Proof of Lemma 4.4. Let M(w) = 1

2

wTr2

✓✓L(b�)w �wTr2

✓↵L(b�) + �0kwk
1

. By the optimality of

bw, we have M(bw)  M(w⇤). Letting b� = bw �w⇤, we have

1

2
b�Tr2

✓✓L(b�) b�  b�T (r2

✓↵L(b�)�r2

✓✓L(b�)w⇤) + �0kw⇤k
1

� �0kbwk
1

= b�T (r2

✓↵L(�⇤)�r2

✓✓L(�⇤)w⇤)
| {z }

I1

+�0kw⇤k
1

� �0kbwk
1

| {z }

I2

+ b�T
h

(r2

✓↵L(b�)�r2

✓↵L(�⇤))� (r2

✓✓L(b�)�r2

✓✓L(�⇤))w⇤
i

| {z }

I3

. (A.1)

where b� = bw �w⇤. For the first term I
1

, we have

|I
1

|  k b�k
1

· kr2

✓↵L(�⇤)�r2

✓✓L(�⇤)w⇤k1  C

r

log d

n
k b�k

1

,

where the last step follows from Lemma E.3, and C is some positive constant.
For I

2

, denoting by S the support of w⇤, by the triangle inequality, it is seen that

I
2

= �0kw⇤
Sk1 � �0kbwSk1 � �0kbwSck

1

 �0k b�Sk1 � �0k b�Sck
1

,
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where we use the fact that kw⇤
Sck

1

= 0.
Finally, we consider I

3

. Let ai = �T
1

�

Xi(t) � Z(t,�⇤)
 

, where �
1

= b� � �⇤. Let wi =
Yi(t) exp

�

�⇤TXi(t)
 

. It is not di�cult to verify that

r2L(�⇤) =
1

n

Z ⌧

0

P

i,j wiwj
�

Xi(t)�Xj(t)
 ⌦2

P

i,j 2wiwj
dN(t),

r2L(b�) = 1

n

Z ⌧

0

P

i,j wiwj
�

Xi(t)�Xj(t)
 ⌦2

exp(ai + aj)
P

i,j 2wiwj exp(ai + aj)
dN(t).

For notational simplicity, let Xi = (Xi↵,XT
i✓)

T , hij = b�T
�

Xi✓(t) � Xj✓(t)
 

, gij = �T
1

�

Xi(t) �
Xj(t)

 

and bij = Xi↵ �Xj↵. We now focus on b�T
�r2

✓↵L(b�)�r2

✓↵L(�⇤)
 

, which is equal to

1

n

Z ⌧

0

n

P

i,j wiwjhijbij exp(ai + aj)
P

i,j 2wiwj exp(ai + aj)
�
P

i,j wiwjhijbij
P

i,j 2wiwj

o

dN(t)

=
1

n

Z ⌧

0

P

i,j wiwjhijbij [exp(ai + aj)� 1]
P

i,j 2wiwj
dN(t)

| {z }

I31

+
1

n

Z ⌧

0

h

X

i,j

wiwjhijbij exp(ai + aj)
ih 1
P

i,j 2wiwj exp(ai + aj)
� 1
P

i,j 2wiwj

i

dN(t)

| {z }

I32

.

For the term I
31

, by Cauchy-Schwarz inequality,

P

i,j wiwjhijbij [exp(ai + aj)� 1]
P

i,j 2wiwj

s

P

i,j wiwjh2ijb
2

ij
P

i,j 2wiwj

s

P

i,j wiwj [exp(ai + aj)� 1]2
P

i,j 2wiwj

.
s

P

i,j wiwjh2ijb
2

ij
P

i,j 2wiwj

s

P

i,j wiwj(ai + aj)2
P

i,j 2wiwj
=

s

P

i,j wiwjh2ijb
2

ij
P

i,j 2wiwj

s

P

i,j wiwjg2ij
P

i,j 2wiwj
,

where the second step follows from the proof of Lemma 3.2 in Huang et al. (2013) and exp(x)�1 . x

for x = o(1), and the last step follows from
P

i aiwi = 0. Thus, applying Cauchy-Schwarz inequality
again, we obtain

|I
31

| .
q

b�Tr2

✓✓L(�⇤) b�
q

b�T
1

r2L(�⇤) b�
1

.
r

s log d

n

q

b�Tr2

✓✓L(�⇤) b�,

where the last step follows from the proof of Theorem 3.1 in Huang et al. (2013). We now consider
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the term I
32

. By similar arguments, we can show that

|I
32

| . 1

n

Z ⌧

0

P

i,j wiwjhijbij exp(ai + aj)
P

i,j 2wiwj exp(ai + aj)

s

P

i,j 2wiwjg2ij
P

i,j 2wiwj
dN(t)

 1

n

Z ⌧

0

s

P

i,j wiwjh2ijb
2

ij exp(ai + aj)
P

i,j 2wiwj exp(ai + aj)

s

P

i,j wiwj exp(ai + aj)
P

i,j 2wiwj exp(ai + aj)

s

P

i,j 2wiwjg2ij
P

i,j 2wiwj
dN(t)

.
s

1

n

Z ⌧

0

P

i,j wiwjh2ijb
2

ij exp(ai + aj)
P

i,j 2wiwj exp(ai + aj)
dN(t)

s

1

n

Z ⌧

0

P

i,j 2wiwjg2ij
P

i,j 2wiwj
dN(t)

.
q

b�Tr2

✓✓L(b�) b�
q

b�T
1

r2L(�⇤) b�
1

.
r

s log d

n

q

b�Tr2

✓✓L(�⇤) b�,

where in the last step we use the fact that

�

�

�

b�T
n

r2

✓✓L(b�)�r2

✓✓L(�⇤)
o

b�
�

�

�

. s

r

log d

n
| b�Tr2

✓✓L(�⇤) b�|,

which further implies

| b�Tr2

✓✓L(�⇤) b�| . | b�Tr2

✓✓L(b�) b�| . | b�Tr2

✓✓L(�⇤) b�|,
given s

p

log d/n = o(1). Combining the bounds for I
31

and I
32

, we have that

|I
3

|  C 00
r

s log d

n

q

b�Tr2

✓✓L(�⇤) b�.

Choosing �0 = 2C
p

log d/n in (A.1) and by the previous arguments, we obtain

1

2
b�Tr2

✓✓L(�⇤) b�  C 00
r

s log d

n
·
q

b�Tr2

✓✓L(�⇤) b�

+ 3C

r

log d

n
· k b�Sk1 � C

r

log d

n
· k b�Sck

1

. (A.2)

If [ b�Tr2

✓✓L(�⇤) b�]1/2 > 2C 00ps log d/n, (A.2) implies k b�Sck
1

 3k b�Sk1. By Lemma E.5, it holds
that

b�Tr2

✓✓L(b�) b� � 1

2
2(1, s0;r2L(�⇤))k b�Sk2

2

,

which implies that

b�Tr2

✓✓L(b�) b� � 1

2
2(1, s0;r2L(�⇤))s0�1k b�Sk2

1

.

By plugging into (A.2), we have

[ b�Tr2

✓✓L(�⇤) b�]1/2 .
r

(s+ s0) log d

n
. (A.3)

If 6k b�Sk1 � k b�Sck
1

, by the same argument, we have

k b�k
1

 7k b�Sk1 .
p
s0 · [� b�Tr2

✓✓L(�⇤) b�]1/2 . (s+ s0)

r

log d

n
.
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On the other hand, if 6k b�Sk1  k b�Sck
1

, (A.2) implies

0  1

2
b�Tr2

✓✓L(�⇤) b�  C 00
r

s log d

n
·
q

b�Tr2

✓✓L(�⇤) b�� C

2

r

log d

n
· k b�Sck

1

. (A.4)

Combining (A.3) and (A.4),

k b�k
1

 7

6
k b�Sck

1

.
p
s · [ b�Tr2

✓✓L(�⇤) b�]1/2 . (s+ s0)

r

log d

n
. (A.5)

Thus, in both cases, we have k b�k
1

. (s+ s0)
p

log d/n.

Proof of Lemma 4.7. By the definition of H↵|✓ and bH↵|✓, we have

|H↵|✓ � bH↵|✓|  |H⇤
↵↵ �r2

↵↵L(b↵, b✓)|
| {z }

E1

+ |H⇤
↵✓H

⇤�1

✓✓ H⇤
✓↵ � bwTr2

✓↵L(b↵, b✓)|
| {z }

E2

. (A.6)

We consider the two terms separately. For the first term E
1

, we have by Lemma I.3, E
1

= OP(s�).
For the second term E

2

, we have,

E
2

= |H⇤
↵✓H

⇤�1

✓✓ H⇤
✓↵ � bwTr2

✓↵L(b↵, b✓)| = |H⇤
↵✓H

⇤�1

✓✓ H⇤
✓↵ � bwTH⇤

✓↵ + bwTH⇤
✓↵ � bwTr2

✓↵L(b↵, b✓)|
 |H⇤

↵✓H
⇤�1

✓✓ H⇤
✓↵ � bwTH⇤

✓↵|
| {z }

E21

+ |bwTH⇤
✓↵ � bwTr2

✓↵L(b↵, b✓)|
| {z }

E22

.

For the term E
21

, we have, by Hölder’s inequality,

E
21

 kH⇤
↵✓H

⇤�1

✓✓ � bwT k
1

kH⇤
✓↵k1 = OP(s

0�0), (A.7)

where the last inequality holds by the fact that kH⇤
↵✓H

⇤�1

✓✓ � bwT k
1

= OP(s0�0), and kH⇤
✓↵k1 = O(1)

by Assumption 4.3.
For the second term E

22

, we have, by Hölder’s inequality,

E
22

 �

�

bwTH⇤
✓↵ �w⇤TH⇤

✓↵

�

�+
�

�w⇤TH⇤
✓↵ � bwTr2

✓↵L(b↵, b✓)
�

� = OP(s
0�0) (A.8)

where the last equality holds by the result kbw �w⇤k
1

= OP(s0�0) by (4.1) and by Lemma I.3 that
kw⇤TH⇤ � bwTr2L(b↵, b✓)k1 = OP

�

(s+ s0)�
�

.
Combining (A.7) and (A.8), we have, E

2

 E
21

+E
22

= OP(s0�0). Together with the result that
E

1

= OP(s�), the claim holds as desired.

Proof of Corollary 4.8. The claim follows immediately from Theorem 4.5 and Lemma 4.7.

Proof of Theorem 4.9. Based on our construction of e↵ in (3.8), we have

e↵ = b↵�
n@ bU(b↵, b✓)

@↵

o�1

bU(b↵, b✓) = b↵�H�1

↵|✓
bU(b↵, b✓) + bU(b↵, b✓)

h

H�1

↵|✓ �
n@ bU(b↵, b✓)

@↵

o�1

i

| {z }

R1

= b↵�H�1

↵|✓

n

bU(0, b✓) +
(b↵� 0)@ bU(↵̄, b✓)

@↵

o

+R
1

(A.9)

= b↵�H�1

↵|✓
bU(0, b✓)� b↵H�1

↵|✓H↵|✓ + b↵H�1

↵|✓

n

H↵|✓ � @ bU(↵̄, b✓)

@↵

o

| {z }

R2

+R
1

= �H�1

↵|✓
bU(0, b✓) +R

1

+R
2

,
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where (A.9) holds by the mean value theorem for some ↵̄ = ub↵ and u 2 [0, 1]. For both terms R
1

and R
2

, we have that they are of the order O(n�1s log d) by similar arguments as in the proof of
Lemma 4.4. Consequently, it holds that,

p
ne↵

d! Z, where Z ⇠ N(0, H�1

↵|✓),

which follows by Theorem 4.5 and our the assumption that n�1/2s log d = o(1). The claim follows
as desired.

Proof of Corollary 4.10. The claim follows from the argument Theorem 4.9 by replacing 0 by ↵⇤.

Proof of Corollary 4.12. The claim follows from Theorem 4.11 directly.

B Limiting Distributions under the Alternative

Statistical power under the alternative hypothesis is one of the most important criteria to compare
di↵erent tests. Due to the root n convergence of the estimator e↵ in (3.8) as illustrated in Theorem
4.9, it is of interest to examine the corresponding tests under the alternative where ↵⇤ shrinks to
the null in a suitable rate.

This subsection investigates the power of the decorrelated score, Wald and partial likelihood
ratio tests under a sequence of local alternatives, named as Pitman alternatives. In particular,
denote by Hn

a : ↵
⇤ = n�1/2c the alternative hypothesis, where c is a nonzero constant. Under Hn

a ,
as n goes to infinity, ↵⇤ approaches to 0 as specified in the null hypothesis. We first derive the
asymptotic distribution of the decorrelated score function bU(0, b✓) in (3.4) under Pitman alternatives.

Theorem B.1. Suppose that Assumptions 2.1, 2.2, 4.1, 4.2 and 4.3 hold, � ⇣
p

n�1 log d, �0 ⇣
p

n�1 log d and n�1/2s log d = o(1). Under the alternative Hn
a : ↵

⇤ = n�1/2c, the decorrelated score
function bU(0, b✓) in (3.4) satisfies

p
nbU(0, b✓)

d! Z 0, where Z 0 ⇠ N(�cH↵|✓, H↵|✓).

Proof of Theorem B.1. Under the alternative hypothesis that ↵⇤ = n�1/2c, we look at the decorre-
lated score function bU(0, b✓). By the same derivation as in (I.1) and mean value theorem, it holds
that

bU(0, b✓) = r↵L(0,✓⇤)�w⇤Tr✓L(0,✓⇤)
| {z }

S

+(w⇤ � bw)Tr✓L(0,✓⇤)
| {z }

E1

+
�r2

↵✓L(0, ✓̄)� bwTr2

✓✓L(0, e✓)
 

(b✓ � ✓⇤)
| {z }

E2

,

where ✓̄ = ✓⇤ + u
1

(b✓ � ✓⇤) and e✓ = ✓⇤ + u
2

(b✓ � ✓⇤) for some 0  u
1

, u
2

 1.
The proof of Theorem 4.5 cannot be directly applied to characterize the asymptotic distribution

of the first term S. This is because the vector (0,✓⇤T )T 6= �⇤ under the alternative hypothesis, and
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thus Lemma I.1 cannot be applied. To derive the asymptotic distribution of S, we have

S = r↵L(0,✓⇤)�w⇤Tr✓L(0,✓⇤)

= r↵L(↵⇤,✓⇤)�w⇤Tr✓L(↵⇤,✓⇤)
| {z }

S1

+↵⇤w⇤Tr2

✓↵L(↵̄0,✓⇤)� ↵⇤r2

↵↵L(↵̄,✓⇤)
| {z }

R

,

where the second equality holds by mean value theorem for some ↵̄ = v
1

↵⇤, ↵̄0 = v
2

↵⇤ and 0 
v
1

, v
2

 1.
By Lemma I.1, taking v = (1,�w⇤T )T , under the alternative hypothesis, it holds that the first

term
S
1

d! Z, where Z ⇠ N(0, H↵|✓). (B.1)

For the second term R, we have

R = �↵⇤(H⇤
↵↵ �w⇤TH⇤

✓↵) + ↵⇤{H⇤
↵↵ �r2

↵↵L(↵̄,✓⇤)}
| {z }

R1

+↵⇤w⇤T {r2

✓↵L(↵̄0,✓⇤)�H⇤
✓↵}

| {z }

R2

. (B.2)

For the term R
1

, we have, under the alternative hypothesis ↵⇤ = n�1/2c,

|R
1

| = ↵⇤|H⇤
↵↵ �r2

↵↵L(↵̄,✓⇤)|  cn�1/2kH⇤ �r2L(↵̄,✓⇤)k1 = OP(n
�1

p

log d), (B.3)

where the last equality holds by Lemma I.3.
Next, we look at the term R

2

. It holds that

|R
2

|  |↵⇤|�w⇤T �r2

✓↵L(↵̄0,✓⇤)�H⇤
✓↵

� 

= OP(n
�1s

p

log d), (B.4)

where the equality holds by Lemma I.3.
Plugging (B.3) and (B.4) into (B.2), and by the identity H↵|✓ = H⇤

↵↵ � w⇤TH⇤
✓↵, we have

R = �↵⇤H↵|✓ +OP(n�1s
p
log d). Combining this result with (B.1), we have, S

d! Z � ↵⇤H↵|✓.

Meanwhile, by the similar argument as in the proof of Theorem 4.5, it is not di�cult to get
that the two latter terms E

1

= oP(n�1/2) and E
2

= oP(n�1/2).
To summarize, under the alternative hypothesis that ↵⇤ = cn�1/2, the decorrelated score func-

tion satisfies p
nbU(0, b✓)

d! Z 0, where Z 0 ⇠ N(�cH↵|✓, H↵|✓),

which concludes the proof.

By Theorem B.1, we have the power of the decorrelated score test under the alternative, Hn
a :

↵⇤ = n�1/2c, is defined as

P
�

 S(⌘) = 1
�

�↵⇤ = n�1/2c
�

= P
�

bSn > �2

1

(1� ⌘)
�

�↵⇤ = n�1/2c
�

,

where bSn is defined in (3.6), and �2

1

(1�⌘) is the (1�⌘)-th quantile of a chi-squared distribution with
one degree of freedom. Denote by NC�1(⇠) the noncentral chi-squared distribution with one degree

of freedom and noncentrality parameter ⇠. By Theorem B.1, it follows that bSn
d! NC�1(c

2H↵|✓).
The following corollary of Theorem B.1 provides the power of the decorrelated score test  S(⌘) in
(3.7) at a significance level ⌘.
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Corollary B.2. Suppose Assumptions 2.1, 2.2, 4.1, 4.2 and 4.3 hold, � ⇣
p

n�1 log d, �0 ⇣
p

n�1 log d and n�1/2s log d = o(1). Under Pitman alternative hypothesis Hn
a : ↵

⇤ = n�1/2c, the
power of the decorrelated score test  S(⌘) at a significance level ⌘ is

lim
n!1

P
�

 S(⌘) = 1|↵⇤ = n�1/2c
�

= P
�

NC�1(c
2H↵|✓) > �2

1

(1� ⌘)
�

.

This corollary implies the intuitive fact that the decorrelated score test is asymptotically more
powerful when the null and alternative hypotheses become further separated (i.e., |c| increases).

The next theorem provides the limiting distribution of the decorrelated Wald statistic e↵ in (3.8)
and partial likelihood ratio test statistic bLn in (3.12) under Pitman alternative Hn

a : ↵
⇤ = n�1/2c.

We also obtain the asymptotic power of these two tests.

Theorem B.3. Assume that Assumptions 2.1, 2.2, 4.1, 4.2 and 4.3 hold, � ⇣
p

n�1 log d, �0 ⇣
p

n�1 log d and n�1/2s log d = o(1). Suppose that the alternative Hn
a : ↵

⇤ = n�1/2c holds. We have:

(a) The one-step estimator e↵ in (3.8) satisfies

p
ne↵

d! Z 0, where Z 0 ⇠ N(c,H�1

↵|✓).

The decorrelated Wald test  W (⌘) in (3.10) with a significance level ⌘ has asymptotic power

lim
n!1

P
�

 W (⌘) = 1
�

�↵⇤ = n�1/2c
�

= P
�

NC�1(c
2H↵|✓) > �2

1

(1� ⌘)
�

.

(b) The decorrelated partial likelihood ratio statistic bLn satisfies

bLn
d! Z 0

�, where Z 0
� ⇠ NC�1(c

2H↵|✓).

The power of the decorrelated partial likelihood ratio test at a significance level ⌘ satisfies

lim
n!1

P
�

 L(⌘) = 1
�

�↵⇤ = n�1/2c
�

= P
�

NC�1(c
2H↵|✓) > �2

1

(1� ⌘)
�

.

Proof of Theorem B.3. (a). By the definition of e↵ in (3.8), we have

e↵ = �H�1

↵|✓
bU(0, b✓) + bU(b↵, b✓)

h

H�1

↵|✓ �
n@ bU(b↵, b✓)

@↵

o�1

i

| {z }

R1

+ b↵H�1

↵|✓

n

H↵|✓ � @ bU(↵̄, b✓)

@↵

o

| {z }

R2

.

By Theorem B.1, we have

�p
nH�1

↵|✓
bU(0, b✓)

d! Z, where Z ⇠ N(↵⇤, H�1

↵|✓).

In addition, by the similar argument as in Theorem 4.9, we have R
1

= oP(n�1/2) and R
2

=
oP(n�1/2). Under the null hypothesis ↵⇤ = n�1/2c, we have

p
ne↵

d! Z 0, where Z 0 ⇠ N(c,H�1

↵|✓),

and our claim holds as desired.
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(b). By the definition of the test statistic of the decorrelated partial likelihood ratio test (3.11),
we have

L(e↵, b✓ � e↵bw)� L(0, b✓) = e↵bU(0, b✓)
| {z }

T1

+
e↵2

2

n

r2

↵↵L(↵̄, b✓) + bwTr2

✓✓L(0, ✓̄)bw � 2ewTr2

✓↵L(↵̄0, ✓̄0)
o

| {z }

T2

,

where the equality holds by mean value theorem with ↵̄ = b↵ + u
1

(0� b↵), ↵̄0 = b↵ + u
2

(0� b↵) and
✓̄ = b✓ + u

3

(✓⇤ � b✓) for some 0  u
1

, u
2

, u
3

 1.
By Theorem B.1 and B.3, we have T

1

= ��bU(0, b✓)
 

2

H�1

↵|✓+oP(n�1). In addition, by the similar

argument as in Theorem 4.11, we have T
2

= 1

2

{bU(0, b✓)}2H�1

↵|✓ + oP(n�1).

Consequently, the test statistic bLn in (3.11) satisfies

2n
�L(0, b✓)� L(e↵, b✓ � e↵bw)

 

= nbU(0, b✓)2H�1

↵|✓ + oP(1)
d! Z 0

� + oP(1),

where Z 0
� ⇠ NC�1(c

2H↵|✓) by Theorem B.1. Our claim follows as desired.

In summary, Corollary B.2 and Theorem B.3 imply that the decorrelated score, Wald and partial
likelihood ratio tests have the same local asymptotic power. This observation coincides with the
conventional asymptotic equivalence among these tests.

C Proofs in Section 5

In this section, we provide detailed proofs in Section 5.

Lemma C.1. Under Assumptions 2.1, 2.2, 4.2, 4.3 and 5.1, krb⇤
0

(t, b�)�r⇤
0

(t,�⇤)k1 = OP(s
p

n�1 log d).

Proof. By the definition of b⇤
0

(t, b�) in (5.1), we have,

krb⇤
0

(t, b�)�r⇤
0

(t,�⇤)k1 =
�

�

�

1

n

Z t

0

S(1)(u, b�)dN(u)

{S(0)(u, b�)}2
�E

Z t

0

s(1)(u,�⇤)dN(u)

{s(0)(u,�⇤)}2
�

�

�

1
= OP

⇣

s

r

log d

n

⌘

,

where the last inequality follows by the same argument in Lemma I.3.

A corollary of Lemma C.1 and Lemma 4.4 follows immediately which characterizes the rate of
convergence of bu(t).

Corollary C.2. Under Assumptions 2.1, 2.2, 4.2, 4.3 and 5.1, if � ⇣ s0
p

n�1 log d we have,

kbu(t)� u⇤(t)k
1

= OP
⇣

ss0
r

log d

n

⌘

, (bu(t)� u⇤(t))Tr2L(�⇤)(bu(t)� u⇤(t)) = OP
⇣

ss0
log d

n

⌘

.

Now, we are ready to prove Theorem 5.2.

Proof of Theorem 5.2. We first decompose
p
n
�

⇤
0

(t)� e⇤
0

(t, b�)
 

into two terms that

p
n
�

⇤
0

(t)� e⇤
0

(t, b�)
 

=
p
n
�

⇤
0

(t)� b⇤
0

(t,�⇤)
 

| {z }

I1(t)

+
p
n
�

b⇤
0

(t,�⇤)� e⇤
0

(t, b�)
 

| {z }

I2(t)

.
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Let Mi(t) = Ni(t)�
R t
0

Yi(u)�0(u)du. For the first term
p
nI

1

(t), we have

p
nI

1

(t) =

Z t

0

p
n
Pn

i=1

dMi(u)
Pn

i=1

Yi(u) exp{XT
i (u)�

⇤} .

Since Mi(t) is a martingale,
p
nI

1

(t) becomes a sum of martingale residuals. By Andersen and Gill

(1982), we have, as n ! 1,
p
nI

1

(t)
d! N

�

0,�2
1

(t)
�

, where

�2
1

(t) =

Z t

0

�
0

(u)du

E
⇥

exp{XT (u)�⇤}Y (u)
⇤ .

For the second term I
2

(t), we have, by mean value theorem, for some e� = �⇤ + t(b� � �⇤), e�0 =
�⇤ + t0(b� � �⇤) and 0  t, t0  1,

I
2

(t) = b⇤
0

(t,�⇤)� b⇤
0

(t, b�) + {bu(t)}TrL(b�)
= (�⇤ � b�)Trb⇤

0

(t, e�) + {bu(t)}T {rL(�⇤) +r2L(e�0)(b� � �⇤)}
= {u⇤(t)}TrL(�⇤) + (�⇤ � b�)Trb⇤

0

(t, e�) + {u⇤(t)}Tr2L(e�0)(b� � �⇤)
| {z }

R1

+ {bu(t)� u⇤(t)}T {rL(�⇤) +r2L(e�0)(b� � �⇤)}
| {z }

R2

.

Next, we consider the two terms R
1

and R
2

. For the term R
1

, we have

R
1

= (�⇤ � b�)Trb⇤
0

(t, e�) + {u⇤(t)}Tr2L(e�0)(b� � �⇤)

= (�⇤ � b�)T
⇥

H⇤H⇤�1rb⇤
0

(t, e�)�r2L(e�0)H⇤�1r⇤
0

(t,�⇤)
⇤

= (�⇤ � b�)T {rb⇤
0

(t, e�)�r⇤
0

(t,�⇤)}
| {z }

R11

+(�⇤ � b�)T
⇥

H⇤ �r2L(e�0)
⇤

H⇤�1r⇤
0

(t,�⇤)
| {z }

R12

.

It holds that |R
11

|  k�⇤ � b�k
1

kr⇤
0

(t, e�)�rb⇤
0

(t,�⇤)k1 = OP(s2n�1 log d) by (2.2) and Lemma
C.1, and |R

12

|  k�⇤ � b�k
1

k(H⇤ � r2L(e�0))u⇤(t)k1 = OP(s2n�1 log d). Summing them up, by
triangle inequality, we have |R

1

| = OP(s2n�1 log d).
For the term R

2

, we have

|R
2

|  kbu(t)� u⇤(t)k
1

krL(�⇤)k1 + |(bu(t)� u⇤(t))Tr2L(e�0)(b� � �⇤)|
 kbu(t)� u⇤(t)k

1

krL(�⇤)k1 + |(bu(t)� u⇤(t))Tr2L(e�0)(bu(t)� u⇤(t))|1/2
⇥ |(b� � �⇤)Tr2L(e�0)(b� � �⇤)|1/2

= OP(s
0sn�1 log d) +OP(

p
s0sn�1 log d),

where the last inequality holds by Lemma I.2 and I.3 and Corollary C.2.

Meanwhile, by Lemma I.1, taking v = u⇤(t), we have the term
p
nu⇤T (t)rL(�⇤)

d! N(0,�2
2

(t)),
where �2

2

(t) = r⇤
0

(t,�⇤)TH⇤�1r⇤
0

(t,�⇤). Thus, we have,

p
nI

2

(t)
d! Z, where Z ⇠ N(0,�2

2

(t)),

and �2
2

(t) = r⇤
0

(t,�⇤)TH⇤�1r⇤
0

(t,�⇤).
Following the standard martingale theory, the covariance between I

1

(t) and I
2

(t) is 0. Our
claim holds as desired.
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D Extension to Conditional Hazard Function Inference

In this section, we extend the procedure proposed in Section 5 to conduct conditional hazard
function inference given the covariate. For ease of presentation, we assume that the covariates are
fixed through time t. Given the i-th sample’s covariate Xi, the conditional hazard rate function
and the cumulative conditional hazard function at time t are

�
0

(t,Xi) = �
0

(t) exp(XT
i �

⇤), and ⇤
0

(t,Xi) =

Z t

0

�
0

(u,Xi)du =

Z t

0

�
0

(u)du · exp(XT
i �

⇤).

Similar to Section 5, we adopt a Breslow-type estimator for the conditional hazard function.
Given the initial penalized estimator b�, we use the direct plug-in estimator for the conditional
hazard function at time t as

b⇤
0

(t,Xi) =

Z t

0

dNi(u) · exp
�

XT
i
b�
�

Pn
i0=1

exp
�

XT
i0
b�
�

Yi0(u)
.

Due to the intractable distribution of b�, we cannot directly conduct inference based on b⇤
0

(t,Xi).
Using the decorrelation approach, we propose to estimate the conditional hazard function by the
sample version of b⇤

0

(t,Xi) �
�r⇤

0

(t,Xi)
 

H⇤�1rL(b�), where the gradient r⇤
0

(t,Xi) is taken
with respect to � at �⇤. Similar to (5.2), we directly estimate the product H⇤�1r⇤

0

(t,Xi,�⇤) by
the following Dantzig type estimator

bu(t) = argmin ku(t)k
1

, subject to krb⇤
0

(t,Xi)�r2L(b�)u(t)k1  �, (D.1)

where � is a tuning parameter. By the following assumption, which is analogous to Assumption 5.1
bu(t) converges to u⇤(t) = H⇤�1r⇤

0

(t,Xi) at a fast rate.

Assumption D.1. It holds that ku⇤(t)k
0

= s0 ⇣ s for all 0  t  ⌧ .

Hence, the decorrelated conditional hazard function estimator at time t is

e⇤
0

(t,Xi) = b⇤
0

(t,Xi)� bu(t)TrL(b�), where bu(t) is defined in (D.1). (D.2)

Consequently, the conditional survival function can be estimated by eS(t,Xi) = exp{�e⇤
0

(t,Xi)}.
The next theorem characterizes the asymptotic normality of e⇤

0

(t,Xi) and eS(t,Xi). The proof is
analogous to the proof to Theorem 5.2, which we omit here to avoid repetitions.

Theorem D.2. Suppose Assumptions 2.1, 2.2, 4.1, 4.3 and D.1 hold, � ⇣
p

n�1 log d, � ⇣
s0
p

n�1 log d and n�1/2s2 log d = o(1). We have that for any t 2 [0, ⌧ ], the decorrelated condi-
tional hazard function estimator e⇤

0

(t,Xi) in (D.2) satisfies

p
n
�

⇤
0

(t,Xi)� e⇤
0

(t,Xi)
 d! Z, where Z ⇠ N

�

0,�2
1

(t) + �2
2

(t)
�

,

where

�2
1

(t) =

Z t

0

�
0

(u,Xi)du · exp(XT
i �

⇤)

E
�

exp(XT�⇤)Y (u)
 , and �2

2

(t) = r⇤
0

(t,Xi)
TH⇤�1r⇤

0

(t,Xi). (D.3)

The estimated survival function eS(t,Xi) satisfies

p
n
�

eS(t,Xi)� S
0

(t,Xi)
 d! Z 0, where Z 0 ⇠ N

✓

0,
�2
1

(t) + �2
2

(t)

exp
�

2⇤
0

(t,Xi)
 

◆

.
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Note that, the limiting variance can be estimated by plug-in estimators that

b�2
1

(t) =

Z t

0

db⇤
0

(u,Xi)

n�1

Pn
i0=1

exp
�

XT
i0
b�
�

Yi0(u)
and b�2

2

(t) =
�rb⇤

0

(t,Xi)
 T

bu(t).

To conclude, based on above Theorem D.2, we can conduct valid inference and construct con-
fidence intervals for the conditional hazard function and survival function.

E Technical Lemmas

In this section, we prove some concentration results of the sample gradient rL(�⇤) and sample
Hessian matrix r2L(�⇤). The mathematical tools we use are mainly from empirical process theory.

We start from introducing the following notations. Let k · kP,r denote the Lr(P)-norm. For
any given ✏ > 0 and the function class F , let N

[ ]

�

✏,F , Lr(P)
�

and N
�

✏,F , L
2

(Q)
�

denote the
bracketing number and the covering number, respectively. The quantifies logN

[ ]

�

✏,F , Lr(P)
�

and
logN

�

✏,F , L
2

(Q)
�

are called entropy with bracketing and entropy. In addition, let F be an envelope
of F where |f |  F for all f 2 F . The bracketing integral and uniform entropy integral are defined
as

J
[ ]

�

�,F , Lr(P)
�

=

Z �

0

q

logN
[ ]

�

✏,F , Lr(P)
�

d✏,

and

J
�

�,F , L
2

�

=

Z �

0

r

log sup
Q

N
�

✏kFkQ,2,F , L
2

(Q)
�

d✏,

respectively, where the supremum is taken over all probability measures Q with kFkQ,2 > 0.
Denote the empirical process by Gn(f) = n1/2(Pn � P)(f), where Pn(f) = n�1

Pn
i=1

f(Xi) and
P(f) = E(f(Xi)). The following three Lemmas characterize the bounds for the expected maximal
empirical processes and the concentration of the maximal empirical processes.

Lemma E.1. Under Assumptions 2.1, 2.2, 4.1, 4.2 and 4.3, there exist some constant C > 0, such
that, for r = 0, 1, 2, with probability at least 1�O(d�3),

sup
t2[0,⌧ ]

ks(r)(t,�⇤)� S(r)(t,�⇤)k1  C

r

log d

n
,

where s(r)(t,�⇤) and S(r)(t,�⇤) are defined in (2.6) and (2.3).

Proof. We will only prove the case for r = 1, and the cases for r = 0 and 2 follow by the similar
argument. For j = 1, ..., d, let

Ej = sup
t2[0,⌧ ]

|S(1)

j (t,�⇤)� s
(1)

j (t,�⇤)|,

where S
(1)

j (t,�⇤) and s
(1)

j (t,�⇤) denote the j-th component of S(1)(t,�⇤) and s(1)(t,�⇤), respec-
tively. We will prove a concentration result of Ej .

First, we show the class of functions {Xj(t)Y (t) exp
�

XT (t)�⇤� : t 2 [0, ⌧ ]} has bounded
uniform entropy integral. By Lemma 9.10 of Kosorok (2007), the class F = {Xj(t) : t 2 [0, ⌧ ]} is
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a VC-hull class associated with a VC class of index 2. By Corollary 2.6.12 of van der Vaart and
Wellner (1996), the entropy of the class F satisfies logN(✏kFkQ,2,F , L

2

(Q))  C 0(1/✏) for some
constant C 0 > 0, and hence F has the uniform entropy integral J(1,F , L

2

)  R

1

0

p

K(1/✏)d✏ < 1.
By the same argument, we have that

�

exp{X(t)T�⇤} : t 2 [0, ⌧ ]
 

also has a uniform entropy
integral. Meanwhile, by example 19.16 of van der Vaart and Wellner (1996), {Y (t) : t 2 [0, ⌧ ]} is
a VC class and hence has bounded uniform entropy integral. Thus, by Theorem 9.15 of Kosorok
(2007), we have

�

Xj(t)Y (t) exp{X(t)T�⇤} : t 2 [0, ⌧ ]
 

has bounded uniform entropy integral.
Next, taking the envelop F as supt2[0,⌧ ] |Xj(t)Y (t) exp{XT (t)�⇤}|, by Lemma 19.38 of van der

Vaart (2000),
E(Ej)  C

1

n�1/2J(1,F , L
2

)kFkP,2  Cn�1/2,

for some positive constants C
1

and C. By the Talagrand’s inequality (Massart, 2007, Equation
(5.50)), we have, for any � > 0,

P
�

Ej � Cn�1/2(1 +�)
�  P

�

Ej � E(Ej) + n�1/2C�
�  exp(�C

2

�2L�2),

for some positive constant C
2

and L, and the desired result follows by taking � =
p

n�1 log d a
union bound over j = 1, ..., d.

Lemma E.2. Suppose the Assumptions 2.1, 2.2, 4.1, 4.2 and 4.3 hold, and � ⇣
p

n�1 log d. We
have, for r = 0, 1, 2 and t 2 [0, ⌧ ],

kS(r)(t, b�)� S(r)(t,�⇤)k1 = OP
⇣

s

r

log d

n

⌘

.

Proof. Similar to the previous Lemma, we only prove the case for r = 1, and the other two cases
follow by the similar argument. For the case r = 1, we have

kS(1)(t, b�)� S(1)(t,�⇤)k1 =
�

�

�

1

n

n
X

i=1

Yi(t)
⇥

exp{XT
i (t)b�}� exp{XT

i (t)�
⇤}⇤Xi(t)

�

�

�

1

 max
i

�

Yi(t)kXi(t)k1
�

� exp{XT
i (t)b�}� exp{XT

i (t)�
⇤}�� 

 CX ·max
i

�

� exp{XT
i (t)�

⇤}⇥ exp{XT
i (t)(b� � �⇤)}� 1

⇤

�

� (E.1)

 CX · C
1

·max
i

kXi(t)k1kb� � �⇤k
1

(E.2)

= OP
⇣

s

r

log d

n

⌘

,

where (E.1) holds by the Assumption 2.1 for some constant CX > 0; (E.2) holds by Assumption
4.1 that XT

i (t)�
⇤ = O(1) and exp(|x|)  1+2|x| for any |x| su�ciently small, and the last equality

holds by (2.2). Our claim holds as desired.

Lemma E.3. Under Assumptions 2.1, 2.2, 4.1, 4.2 and 4.3, for any 1  j, k  d, there exists a
positive constant C, such that with probability at least 1�O(d�1),

max
j,k=1,...,d

�

�r2

jkL(�⇤)�H⇤
jk

�

�  C

r

log d

n
. (E.3)
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and

max
j=1,...,d�1

�

�

�r2

✓✓L(�⇤)w⇤ 
j
�r2

✓↵L(�⇤)
 

j

�

�  C

r

log d

n
.

Proof. We prove the first claim, and the second claim follows by similar arguments. By the defini-
tions of r2L(�⇤) and H⇤ in (2.5) and (2.7), we have

r2L(�⇤)�H⇤ =
1

n

Z ⌧

0

⇢

S(2)(t,�⇤)

S(0)(t,�⇤)
� s(2)(t,�⇤)

s(0)(t,�⇤)

�

dN(t)

| {z }

T1

+
1

n

Z ⌧

0

s(2)(t,�⇤)

s(0)(t,�⇤)
dN(t)� E

h

Z ⌧

0

s(2)(t,�⇤)

s(0)(t,�⇤)
dN(t)

i

| {z }

T2

+
1

n

Z ⌧

0

⇢

e(t,�⇤)⌦2 �Z(t,�⇤)⌦2

�

dN(t)

| {z }

T3

+ E
h

Z ⌧

0

e(t,�⇤)⌦2dN(t)
i

� 1

n

Z ⌧

0

e(t,�⇤)⌦2dN(t)
| {z }

T4

.

For the term T
1

, we have, with probability at least 1�O(d�1),

kT
1

k1  sup
t2[0,⌧ ]

�

�

�

S(2)(t,�⇤)

S(0)(t,�⇤)
� s(2)(t,�⇤)

s(0)(t,�⇤)

�

�

�

1
· 1
n

Z ⌧

0

dN(t)  C
1

r

log d

n
,

where the last inequality follows by Lemma E.1. Next, by Assumption 2.1, we have

�

�

�

s(2)(t,�⇤)

s(0)(t,�⇤)

�

�

�

1
< 1.

Consequently, T
2

becomes an i.i.d. sum of mean 0 bounded random variables. Hoe↵ding’s inequality
gives that with probability at least 1�O(d�1), kT

2

k1  C
2

p

n�1 log d. Meanwhile, the terms T
3

and T
4

can be bounded similarly. Our claim holds as desired.

Lemma E.4. Under Assumptions 2.1, 2.2 4.1, 4.2 and 4.3, it holds that

kr2

↵✓L(b�)�w⇤Tr2

✓✓L(b�)k1 = OP
⇣

s

r

log d

n

⌘

,

and

kr2

↵✓L(b�)� bwTr2

✓✓L(b�)k1 = OP
⇣

(s+ s0)

r

log d

n

⌘

.

Proof. We prove the first claim, and the second claim follows by similar arguments. By triangle
inequality, we have

kr2

↵✓L(b�)�w⇤Tr✓✓L(b�)k1
 kH⇤

↵✓ �w⇤TH⇤
✓✓k1

| {z }

E1

++ kr2

✓↵L(b�)�H⇤
✓↵k1

| {z }

E2

+ kw⇤T�H⇤
✓✓ �r2

✓✓L(b�)
 k1

| {z }

E3

.
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It is seen that E
1

= 0 by the definition ofw⇤ = H⇤�1

✓✓ H⇤
✓↵ in (3.2). In addition, E

2

= OP(s
p

n�1 log d)
by Lemma I.3. For the term E

3

, we have

E
3

 kw⇤T�r2

✓✓L(b�)�r2

✓✓L(�⇤)
 k1

| {z }

E31

+ kw⇤T�r2

✓✓L(�⇤)�H⇤
✓✓

 k1
| {z }

E32

.

For the term E
31

, by the definition of r2L(·) in (2.5), we have

w⇤T�r2

✓✓L(b�)�r2

✓✓L(�⇤)
�

=w⇤T
n 1

n

n
X

i=1

Z ⌧

0

S(2)

�

t, b�
�

S(0)

�

t, b�
�

� S(2)

�

t,�⇤�

S(0)

�

t,�⇤
�dNi(t)

o

✓✓

| {z }

T1

+w⇤T
n 1

n

n
X

i=1

Z ⌧

0

Z
�

t, b�
�⌦2 �Z

�

t,�⇤�⌦2

o

✓✓

| {z }

T2

.

For the term T
1

, we have

T
1

=
1

n

n
X

i=1

Z ⌧

0

S(0)

�

t,�⇤�w⇤TS
(2)

✓✓

�

t, b�
�� S(0)

�

t, b�
�

w⇤TS
(2)

✓✓

�

t,�⇤�

S(0)

�

t, b�
�

S(0)

�

t,�⇤
�

For ease of notation, in the rest of the proof, let bS(r)(t) := S(r)
�

t, b�
�

and S⇤(r)(t) := S(r)
�

t,�⇤�

for r = 0, 1, 2. We have, for the k-th component of T
1

,

T
1,k =

1

n

n
X

i=1

Z ⌧

0

S⇤(0)(t) 1n
Pn

i0=1

yi0(t) exp{XT
i0 (t)

b�}w⇤TXi0,✓(t)Xi0,k(t)

bS(0)(t)S⇤(0)(t)
dNi(t)

� 1

n

n
X

i=1

Z ⌧

0

bS(0)(t)
Pn

i0=1

yi0(t) exp{XT
i0 (t)�

⇤}w⇤TXi0,✓(t)Xi0,k(t)
bS(0)(t)S⇤(0)(t)

dNi(t).

Consequently, it holds that

|T
1,k|


�

�

�

1

n

n
X

i=1

Z ⌧

0

�

S⇤(0)(t)� bS(0)(t)
 

1

n

Pn
i0=1

Yi0(t) exp{XT
i0 (t)

b�}w⇤TXi0,✓(t)Xi0,k(t)

bS(0)(t)S⇤(0)(t)
dNi(t)

�

�

�

+
�

�

�

1

n

n
X

i=1

Z ⌧

0

bS(0)(t) 1n
Pn

i0=1

Yi0(t)
⇥

exp{XT
i0 (t)

b�}� exp{XT
i0 (t)�

⇤}⇤w⇤TXi0,✓(t)Xi0,k(t)

bS(0)(t)S⇤(0)(t)
dNi(t)

�

�

�

 sup
t2[0,⌧ ]

�

�

�

1

n

n
X

i=1

�

S⇤(0)(t)� bS(0)(t)
 ⇥

1

n

Pn
i0=1

Yi0(t) exp{XT
i0 (t)�

⇤}w⇤TXi0,✓(t)Xi0,k(t)
⇤

bS(0)(t)S⇤(0)(t)

�

�

�

· ⌧

+
�

�

�

1

n

n
X

i=1

�

S⇤(0)(t)� bS(0)(t)
 

h

1

n

Pn
i0=1

Yi0(t)
⇥

exp{XT
i0 (t)

b�}� exp{XT
i0 (t)�

⇤}⇤w⇤TXi0,✓(t)Xi0,k(t)
i

bS(0)(t)S⇤(0)(t)

�

�

�

· ⌧

+
1

n

n
X

i=1

bS(0)(t) 1n
Pn

i0=1

Yi0(t)
⇥

exp{XT
i0 (t)

b�}� exp{XT
i0 (t)�

⇤}⇤w⇤TXi0,✓(t)Xi0,k(t)

bS(0)(t)S⇤(0)(t)
· ⌧

= OP(s
p

n�1 log d),
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where the last equality holds by Assumptions 2.1 and 4.1 that XT
i (t)�

⇤ is bounded, S⇤(0)(t) is
bounded away from 0, and by Lemma E.2 that |bS(r)(t)� S⇤(r)(t)| = OP(s

p

n�1 log d).
The term T

2

can be bounded by the similar argument, and our claim holds as desired.

Lemma E.5. Under Assumptions 2.1 and 2.2, and if n�1/2s3 log d = o(1), the RE condition holds
for the sample Hessian matrix r2L(b�). Specifically, for the vectors in the cone C = {v|kvSk1 
⇠kvSCk

1

}, we have
vTr2L(b�)v

kvk2
2

� 1

2
2
�

⇠, |S|;r2L(�⇤)
�

, for all v 2 C.

Proof. By Lemma 3.2 of Huang et al. (2013), we have exp(�2⇠b)r2L(�) � r2L(� + b), where
⇠b = maxu�0

maxi,i0,k,k0 |bT {Xik(u) � Xi0k0(u)}|. Let b = b� � �⇤. By Assumption 2.1 that
k{Xik(u) � Xi0k0(u)}k1  CX , we have ⇠b = OP(s

p

n�1 log d) by (2.2), we have kb� � �⇤k
1

=
OP(s�). By the scaling assumption that n�1/2s3 log d = o(1), we have ⇠b  1

2

log 2. Consequently,

exp(�2⇠b) � 1/2. We have r2L(b�) ⌫ 1

2

·r2L(�⇤). Since the cone C is a subset of Rd, our claim
follows as desired.

F Proof of Lemmas in Appendix I

Proof of Lemma I.2. By definition, we have, for all j = 1, ..., d,

rjL(�⇤) = � 1

n

n
X

i=1

Z ⌧

0

�

Xij(u,�
⇤)� Zj(u,�

⇤)
 

dMi(u)

=
1

n

n
X

i=1

Z ⌧

0

Zj(u,�
⇤)dMi(u)� 1

n

n
X

i=1

Z ⌧

0

Xij(u,�
⇤)dMi(u). (F.1)

For the first term, we have for all t 2 [0, ⌧ ],

Zj(t,�
⇤)� ej(t,�

⇤) =
S
(1)

j (t,�⇤)� s
(1)

j (t,�⇤)

S(0)(t,�⇤)
� s

(1)

j (t,�⇤)
�

S(0)(t,�⇤)� s(0)(t,�⇤)
 

S(0)(t,�⇤)s(0)(t,�⇤)
. (F.2)

By Assumption 2.1 and the fact that P(y(⌧) > 0) > 0, we have that supt2[0,⌧ ] |Zj(t,�⇤)�ej(t)|  C
1

for some constant C
1

> 0. In addition,

1

n

n
X

i=1

Z ⌧

0

Zj(u,�
⇤)dMi(u)  sup

f2Fj

1

n

n
X

i=1

Z ⌧

0

f(u)dMi(u),

where Fj denotes the class of functions f : [0, ⌧ ] ! R which have uniformly bounded variation
and satisfy supt2[0,⌧ ] |f(t)� ej(t)|  �

1

for some �
1

. By constructing `1 balls centered at piecewise
constant functions on a regular grid, one can show that the covering number of the class Fj satisfies
N(✏,Fj , `1)  (C

2

✏�1)C3✏�1
for some positive constants C

2

, C
3

. Let Gj = {R1
0

f(t)dM(t) : f 2 Fj}.
Note that for any two f

1

, f
2

2 Fj ,

�

�

�

Z ⌧

0

f
1

(t)� f
2

(t)dM(t)
�

�

�

 sup
u2[0,⌧ ]

|f
1

(u)� f
2

(u)|
Z ⌧

0

|dM(t)|.
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By Theorem 2.7.11 of van der Vaart and Wellner (1996), the bracketing number of the class Gj

satisfies N
[ ]

�

2✏kFkP,2,Gj , `2(P)
�  N(✏,Fj , k · k1)  (C

2

✏�1)C3✏�1
, where F =

R ⌧
0

|dM(t)|. Hence,
Gj has bounded bracketing integral. An application of Corollary 19.35 of van der Vaart (2000)
yields that

E
✓

sup
f2Fj

1

n

n
X

i=1

Z ⌧

0

f(u)dMi(u)

◆

 n�1/2C
4

for some constant C
4

> 0. Then, by Talagrand’s inequality, for any c > 0

P
✓

1

n

n
X

i=1

Z ⌧

0

Zj(u,�
⇤)dMi(u) > c

◆

 P
✓

sup
f2Fj

1

n

n
X

i=1

Z ⌧

0

f(u)dMi(u) > c

◆

 exp

✓

� nc2

C
5

◆

,

for some constant C
5

. Following by the union bound, we have with probability at least 1�O(d�3),
�

�

�

�

1

n

n
X

i=1

Z ⌧

0

Zj(u,�
⇤)dMi(u)

�

�

�

�

1
 C

r

log d

n
.

Note that the second term of (F.1) is a sum of i.i.d. mean-zero bounded random variables. Following
by the Hoe↵ding inequality and the union bound, we have with probability at least 1�O(d�3),

�

�

�

�

1

n

n
X

i=1

Z 1

0

Xij(u,�
⇤)dMi(u)

�

�

�

�

1
 C

r

log d

n
,

for some constant C. The claim follows as desired.

Proof of Lemma I.3. Let ⇠ = maxu�0

maxi,i0 |�T {Xi(u)�Xi0(u)}|, where � = e���⇤. By Lemma
3.2 of Huang et al. (2013), it holds that,

exp(�2⇠)r2L(�⇤) � r2L(e�) � exp(2⇠)r2L(�⇤), (F.3)

where A � B means that the matrix B�A is a positive semidefinite matrix.
Note that the diagonal elements of a positive semidefinite matrix can only be nonnegative. In

addition, for a positive semidefinite matrix A 2 Rd⇥d, it is easy to see that kAk1 = maxj{ajj}dj=1

.
We have,

exp(�2⇠)kr2L(�⇤)k1  kr2L(e�)k1  exp(2⇠)kr2L(�⇤)k1.

By (2.2) that kb� � �⇤k
1

= OP(s�), which implies that ke� � �⇤k
1

= O(s�) as e� is on the line
segment connecting �⇤ and b�. Hence, ⇠ = OP(s�). By triangle inequality,

kr2L(e�)�H⇤k1  kr2L(e�)�r2L(�⇤)k1
| {z }

E1

+ kr2L(�⇤)�H⇤k1
| {z }

E2

.

We consider the two terms separately, for the first term E
1

, we have, by (F.3) and taking the
Taylor’s expansion of exp(2⇠),

kr2L(e�)�r2L(�⇤)k1  2 k⇠r2L(�⇤)k1 + oP(⇠).

Since ⇠ = OP(s�), and by Assumption 4.3, we have,

kr2L(e�)�r2L(�⇤)k1 = OP(s�),

and E
1

= OP(s
p

n�1 log d) as � ⇣
p

n�1 log d. In addition, E
2

= OP(
p

n�1 log d) by Lemma
E.3. It further implies that kr2L(e�)k1 = OP(1). The proof of the last result is similar and is
omitted.
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G Extension to Multi-dimensional Parameter

In this section, we extend our procedures and asymptotic results to the case when the parameter of
interest is of dimension d

0

> 1, i.e., ↵ = (�
1

, ...,�d0)
T 2 Rd0 . We assume that d

0

is a fixed constant
and does not increase with s, n or d. The null hypothesis of interest is H

0

: ↵⇤ = 0.
We first consider the decorrelated score test. Similar to the univariate case, we first estimate

the nuisance parameter ✓⇤ by b✓ using the Lasso estimator. Then, we define a matrix

w⇤ = E{r✓L(0,✓⇤)r✓L(0,✓⇤)T }�1E
�r✓L(0,✓⇤)r↵L(0,✓⇤)T

 

= H⇤�1

✓✓ H✓↵ 2 R(d�d0)⇥d0 .

Similar to (3.3), we estimate w⇤ by bw = (bw
1

, ..., bwd0), where

bwj = argmin
w2Rd�d0

n1

2
wTr2

✓✓L(b�)w �wTr2

✓↵j
L(b�) + �0kwk

1

o

, (G.1)

where �0 is a tuning parameter. To guarantee that bw converges to w⇤ at a fast rate of convergence,
we impose the following sparsity assumption on w⇤ to replace Assumption 4.2.

Assumption G.1. It holds that kw⇤k
0

= s0 ⇣ s, and sup
t2[0,⌧ ]

max
i2[n]

kXT
i,(d0+1):d(t)w

⇤k1 = O(1).

We then define a d
0

dimensional decorrelated score function for ↵ as

bU(↵, b✓) = r↵L(↵, b✓)� bwTr✓L(↵, b✓). (G.2)

The next theorem characterizes the asymptotic distribution of bU(↵, b✓). The proof is similar
to the proof of Theorem 4.5. We provide the proof for completeness and omit proofs for the
decorrelated Wald and partial likelihood ratio tests to avoid repetitions.

Theorem G.2. Suppose that Assumptions 2.1, 2.2, 4.1, 4.3 and G.1 hold, � ⇣
p

n�1 log d, �0 ⇣
p

n�1 log d and n�1/2s log d = o(1). Under the null hypothesis that ↵⇤ = 0, the decorrelated score
function bU(0, b✓) in (G.2) satisfies

p
nbU(0, b✓)

d! Z, where Z ⇠ N(0,H↵|✓),

and H↵|✓ = H⇤
↵↵ �H⇤

↵✓H
⇤�1

✓✓ H⇤
✓↵ 2 Rd0⇥d0 .

Proof. We first note that by similar arguments, we have the following multi-dimensional version of
Lemma I.1, where we omit the details to avoid repetition.

Lemma G.3. Under Assumptions 2.1, 4.2 and 4.3, for any v = (v
1

, ...,vd0) 2 Rd⇥d0 , if kvjk0  s0

for all j 2 [d
0

] and n�1/2
p
s0 log d = o(1), it holds that

�

vTH⇤v
��1/2p

nvTrL(�⇤)
d! N(0, Id0), where H⇤ is defined in (2.7).
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Let w⇤ = (w⇤
1

,w⇤
2

, ...,w⇤
d0
), bw = (bw

1

, bw⇤
2

, ..., bwd0), where w⇤
j , bwj 2 Rd�d0 for j 2 [d

0

], and let

↵ = (↵
1

, ...,↵d0)
T 2 Rd0 . By decomposing bU(0, b✓) in (G.2), we have

bU(0, b✓) = r↵L(0, b✓)� bwTr✓L(0, b✓)

=r↵L(0,✓⇤)� bwTr✓L(0,✓⇤) +

0

B

B

@

r2
↵1✓

L(0, ✓̄1)(b✓ � ✓⇤)
...

r2
↵d0✓

L(0, ✓̄d0)(b✓ � ✓⇤)

1

C

C

A

�

0

B

@

bwT
1 r2

✓✓L(0, e✓1)(b✓ � ✓⇤)
...

bwT
d0
r2

✓✓L(0, e✓d0)(b✓ � ✓⇤)

1

C

A

=r↵L(0,✓⇤)�w⇤Tr✓L(0,✓⇤)
| {z }

S

+(w⇤ � bw)Tr✓L(0,✓⇤)
| {z }

E1

�

0

B

B

@

�r2
↵1✓

L(0, ✓̄1)� bwT
1 r2

✓✓L(0, e✓1)
 

(b✓ � ✓⇤)
...

�r2
↵d0✓

L(0, ✓̄1)� bwT
d0
r2

✓✓L(00, e✓d0)
 

(b✓ � ✓⇤)

1

C

C

A

| {z }

E2

,

where the second equality holds by applying mean-value theorem componentwisely, where each
✓̄j = ✓⇤ + uj(b✓ � ✓⇤), e✓j = ✓⇤ + u0j(

b✓ � ✓⇤) and uj , u
0
j 2 [0, 1] for all j 2 [d

0

].
We consider the terms S, E

1

and E
2

separately. For the first term S, by Lemma G.3, we have

p
nS

d! Z, where Z ⇠ N(0,H↵|✓).

For the term E
1

, we have

kE
1

k
1

 kbw �w⇤k
1

kr✓L(0,✓⇤)k1 = OP(s
0�0
p

n�1 log d),

where kbw�w⇤k
1

= OP(s0�0) holds by Lemma 4.4 that each kbwj �w⇤
jk1 = OP(s0�0) for all j 2 [d

0

],

and kr✓L(0,✓⇤)k1 = OP
�

p

n�1 log d
�

by Lemma I.2.
For the term E

2

, we have

kE
2

k
1

=
d0
X

j=1

�

�

�r2

↵j✓L(0, ✓̄j)� bwT
1

r2

✓✓L(0, e✓j)
 

(b✓ � ✓⇤)
�

�. (G.3)

For each j, we have that
�

�

�r2

↵j✓
L(0, ✓̄j)� bwT

1

r2

✓✓L(0, e✓j)
 

(b✓� ✓⇤)
�

� = OP(n�1s log d) by the same

arguments in Theorem 4.5. Thus, we have that kE
2

k
1

= OP(n�1s log d) as d
0

is a constant.
Combining the results above, our claim follows as desired.

To standardize bU(0, b✓), we estimate H↵|✓ by

bH↵|✓ = r2

↵↵L(b↵, b✓)� bwTr2

✓↵L(b↵, b✓). (G.4)

Hence, the decorrelated score test statistic for multi-dimensional ↵ is defined as

bSn = nbUT (0, b✓) bH↵|✓ bU(0, b✓), where bU(0, b✓) and bH↵|✓ are defined in (G.2) and (G.4),

and its associated test at significance level ⌘ is

 S(⌘) =

(

0 if bSn  �2

d0
(1� ⌘),

1 otherwise,
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where �2

d0
(1� ⌘) denotes the (1� ⌘)-th quantile of the chi-squared distribution with d

0

degrees of
freedom, and the null hypothesis ↵⇤ = 0 is rejected if and only if  S(⌘) = 1. By Theorem G.2, it
follows immediately that the test  S(⌘) satisfies

lim
n!1

P
�

 S(⌘) = 1|↵⇤ = 0
�

= ⌘.

Next, we extend the Wald test to the multi-dimensional case. Let
n

@ bU(

b↵,b✓)
@↵

o�1

= b� =

[b�
1

, ..., b�d0 ] 2 Rd0⇥d0 , where each b�j 2 Rd0 . Similar to (3.8), we construct an one-step estima-
tor e↵ = (e↵

1

, ..., e↵d0) 2 Rd0 , where for each j 2 [d
0

],

e↵j = b↵j � b�T
j
bU(b↵, b✓), and bU(b↵, b✓) = r↵L(b↵, b✓)� bwTr✓L(b↵, b✓). (G.5)

By similar arguments in Theorem 4.9, we have that
p
n(e↵�↵⇤) converges weakly to N(0,H�1

↵|✓).
Thus, the confidence region for ↵ can be obtained. Meanwhile, the deccorelated Wald test statistic
and the associated test for H

0

: ↵⇤ = 0 are

cWn = ne↵T
bH↵|✓ e↵, and  W (⌘) =

(

0 if cWn  �2

d0
(1� ⌘),

1 otherwise.

In addition, based on the asymptotic distribution of e↵, we can conduct inference on a linear
combination of ↵⇤. Specifically, consider the null hypothesis H

0

: vT↵⇤ = 0, for some v 2 Rd0 . The
decorrelated test statistic and the associated test are

cWL
n = n

�

vT
bH↵|✓v

��1

(vT
e↵)2, and  L

W (⌘) =

(

0 if cWL
n  �2(1� ⌘),

1 otherwise.

Finally, we extend the partial likelihood ratio test to the multi-dimensional case. Similar to
Section 3.3, define the (negative) decorrelated partial likelihood for ↵ as L

decor

(↵) = L(↵, b✓� bw↵).
Consequently, the decorrelated partial likelihood test statistic and the test are defined as

bLn = 2n
�L

decor

(0)� L
decor

(e↵)
 

, and  L(⌘) =

(

0 if bLn  �2

d0
(1� ⌘),

1 otherwise.

H Extensions to Multivariate Failure Time Data

In real applications, it is also of interest to study multivariate failure time outcomes. For example,
Cai et al. (2005) consider the time to coronary heart disease and time to cerebrovascular accident.
In their study, the primary sampling unit is the family. Using multivariate model, it takes the
advantage to incorporate the assumption that the failure times for subjects within a family are
likely to be correlated. In this section, we extend our method to conduct inference in the high
dimensional multivariate failure time setting.

To be more specific about the model, assume there are n independent clusters (families). Each
cluster i contains Mi subjects, and for each subject, there are K types of failure may occur. Thus,
it is reasonable to assume that the number K is fixed that does not increase with dimensionality
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d and sample size n. For example, K = 2 in the real example of Cai et al. (2005). Denote the
d-dimensional covariates of the kth failure type of subject m in cluster i at time t by Xikm(t). The
marginal hazards model is taken as

⇤ikm{t|Xikm(t)} = ⇤
0k(t) exp{XT

ikm(t)�},

where the baseline hazard functions ⇤
0k(t)’s are treated as nuisance parameters, and the model is

known as mixed baseline hazards model. Using this model, our inference procedures are conducted
based on the pseudo-partial likelihood approach, since the working model does not assume any
correlation for the di↵erent failure times within each cluster. The log pseudo-partial likelihood loss
function is

L(�) =� 1

n

h

K
X

k=1

n
X

i=1

Mi
X

m=1

Z ⌧

0

XT
ikm(u)�dNikm(u)�

K
X

k=1

Z ⌧

0

log
h

n
X

i=1

Mi
X

m=1

Yikm(u) exp
�

XT
ikm(u)�

 

i

dNk(u)
i

,

where Yikm(t) and Nikm(t) denote the at risk indicator and the number of observed failure event
at time t of the kth type on subject m in cluster i, and Nk =

Pn
i=1

PMi
m=1

Nikm for each k. The
penalized maximum pseudo likelihood estimator is

b� = argmin
�2Rd

L(�) + P�(�). (H.1)

To connect the multivariate failure time model with Cox’s proportional hazards model, first, we
observe that we can drop the index m. This is by the fact that, for each (i,m) where i 2 {1, ...n}
and m 2 {1, ...,Mi}, we can map (i,m) to i0 =

Pi�1

j=1

Mj +m, and we define
P

0

j=1

Mj = 0. It is
not di�cult to see the mapping is a bijection. After the mapping, the penalized estimator remains
the same. Thus, without loss of generality, we assume Mi = 1 for all i, and we drop the index m.
Next, we observe that the loss function L(�) is decomposable that

L(�) =
K
X

k=1

L(k)(�),

where

L(k)(�) = � 1

n

h

n
X

i=1

Z t

0

XT
ik(u)�dNik(u)�

Z t

0

log
h

n
X

i=1

Yik(u) exp
�

XT
ik(u)�

 

i

dNk(u)
i

.

Thus, the loss function of multivariate failure time model can be decomposed into a sum of K loss
functions of Cox’s proportional hazards models. However, the extension of the inference of the
Cox model to multivariate failure time model is not trivial since the loss function is derived from
a pseudo-likelihood function.

First, we extend the estimation procedure to the multivariate failure time model in the high
dimensional setting, where we take P�(�) = �k�k

1

. It is not di�cult to obtain that (2.2) holds
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for the multivariate failure time model. An alternative approach is that we estimate �⇤ using each
type k of failure time independently. Specifically, we construct the estimator b� by

b� = K�1

K
X

k=1

b�(k), where b�(k) = argmin
�(k)

L(k)(�(k)) + �k�(k)k
1

, for all k.

Since for each b�(k), kb�(k) � �⇤k
1

= OP(�s) by (2.2), it is readily seen that kb� � �⇤k
1

= OP(�s).
We extend the decorrelated score, Wald and partial likelihood ratio tests to the multivariate

failure time model. We first introduce some notation. For k = 1, ...,K,

S
(r)
k (t,�) =

1

n

n
X

i=1

X⌦r
ik (t)Yik(t) exp{XT

ik(t)�}, for r = 0, 1, 2, and Zk(t,�) =
S
(1)

k (t,�)

S
(0)

k (t,�)
,

where their corresponding population versions are

s
(r)
k (t,�) = E

⇥

Yk(t)Xik(t)
⌦r exp{Xik(t)�}

⇤

, for r = 0, 1, 2, and ek(t,�) = s
(1)

k (t,�)/s(0)k (t,�).

Next, we derive the gradient and Hessian matrix at the point � of the loss function,

rL(�) = � 1

n

K
X

k=1

n
X

i=1

Z ⌧

0

�

Xik(u)�Zk(u,�)
 

dNik(u),

and

r2L(�) = 1

n

K
X

k=1

Z ⌧

0

nS
(2)

k (u,�)

S
(0)

k (u,�)
�Zk(u,�)

⌦2

o

dNk(u).

The population version of the gradient and Hessian matrix are

g(�) =
K
X

k=1

E
h

Z ⌧

0

�

X(u)� ek(u,�)
 

dNk(u)
i

,

and

H(�) =
K
X

k=1

E
h

Z ⌧

0

ns
(2)

k (u,�)

s
(0)

k (u,�)
� ek(u,�)

⌦2

o

dNk(u)
i

.

For notational simplicity, let H⇤ = H(�⇤).
Note that, utilizing the decomposable structure, by the similar argument, the concentration

results in Section E of Supplementary Materials hold for the empirical gradient and Hessian matrix.
We estimate the decorrelation vector w⇤ = H⇤�1

✓✓ H⇤
✓↵ by the following estimator

bw = argmin kwk
1

, subject to kr2

✓↵L(0, b✓)�wTr2

✓✓L(0, b✓)k1  �, (H.2)

where � is a tuning parameter.
We first introduce the decorrelated score test in multivariate failure time model. Suppose the

null hypothesis is H
0

: ↵⇤ = 0, and the alternative hypothesis is Ha: ↵⇤ 6= 0. The decorrelated
score function is constructed similar to (3.4) that

bUM (0, b✓) = r↵L(0, b✓)� bwTr✓L(0, b✓). (H.3)
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The main technical di↵erence between the multivariate failure time model and the univariate
Cox’s model is that, the loss function of Cox’s model is a log profile likelihood function, and
Bartlett’s identity Var

�rL(�⇤)
 

= E(r2L(�⇤)) holds. In multivariate case, this identity does not
hold. We need the following lemma which is analogous to Lemma I.1. We omit the proof details
to avoid repetition.

Lemma H.1. For any vector v 2 Rd, if kvk
0

 s0 and
p

s0 log d/n = o(1), it holds that

p
nvTrL(�⇤)p

vT⌦v

d! N(0, 1). where ⌦ = Var
�p

nrL(�⇤)
 2 Rd⇥d.

By the similar argument as in Theorem 4.5, we derive the asymptotic normality of bUM (0, b✓) in
the next theorem.

Theorem H.2. Suppose that Assumptions 2.1, 2.2, 4.1, 4.2 and 4.3 hold. Let bUM (0, b✓) be defined
in (H.3). Under the null hypothesis that ↵⇤ = 0 and if � ⇣

p

n�1 log d, � ⇣ s0
p

n�1 log d,
n�1/2s3 log d = o(1), we have

p
nbUM (0, b✓)

d! Z, where Z ⇠ N(0,�2) and �2 = ⌦↵↵ � 2w⇤T⌦✓↵ +w⇤T⌦✓✓w
⇤.

Proof. By the definition of bUM (0, b✓) and mean value theorem, we have, for some z, z0 2 [0, 1],
✓̄ = ✓⇤ + z(b✓ � ✓⇤) and e✓ = ✓⇤ + z0(b✓ � ✓⇤),

bUM (0, b✓) = r↵L(0, b✓)� bwTr✓L(0, b✓)
= r↵L(0,✓⇤) +r↵✓L(0,✓⇤)� �

bwTr✓L(0,✓⇤) + bwr✓✓L(0, e✓)(b✓ � ✓⇤)
 

= r↵L(0,✓⇤)�w⇤Tr✓L(0,✓⇤)
| {z }

S

+(w⇤ � bw)Tr✓L(0,✓⇤)
| {z }

E1

+
�r↵✓L(0, ✓̄)� bwTr✓✓L(0, e✓)

 

(b✓ � ✓⇤)
| {z }

E2

.

Using Lemma H.1, taking b = (1,�w⇤T )T and by the assumption that kw⇤k
0

 s0, it holds that

p
nS

d! Z, where Z ⇠ N(0,�2) and �2 = ⌦↵↵ � 2w⇤T⌦✓↵ +w⇤T⌦✓✓w
⇤.

Following a similar proof as that in Theorem 4.5 and utilizing the separable structure in multivariate
failure time model, we have

p
nE

1

= oP(1) and
p
nE

2

= oP(1). This concludes our proof.

Remark H.3. Under the assumptions of H.2, using plug-in estimator b�2 = b⌦↵↵ � 2bwb⌦✓↵ +
bwT

b⌦✓✓ bw converges to �2 at the rate of OP(s0s
p

n�1 log d) = oP(1).

Next, we extend the decorrelated Wald test to the multivariate failure time model, which
constructs confidence intervals for ↵⇤. We first estimate �⇤ by `

1

-penalized estimator b� = (b↵, b✓).
Let

e↵M = b↵�
n@ bUM (b↵, b✓)

@↵

o�1

bUM (b↵, b✓).

We derive the asymptotic normality of e↵M in the next theorem.
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Theorem H.4. Suppose Assumptions 2.1, 2.2, 4.1, 4.2 and 4.3 hold. For � ⇣
p

n�1 log d, � ⇣
s0
p

n�1 log d and n�1/2s3 log d = o(1), under the null hypothesis that ↵⇤ = 0, we have

p
ne↵

d! Z, where Z ⇠ N(0,�2/�4),

and �2 = ⌦↵↵ � 2w⇤T⌦✓↵ +w⇤T⌦✓✓w
⇤, �2 = H⇤

↵↵ �w⇤TH⇤
✓↵.

Proof. By the definition of e↵, we have,

e↵ = b↵�
h

��2 � ��2 +
n@ bUM (b↵, b✓)

@↵

o�1

i

bU(b↵, b✓)

= b↵� ��2

n

bUM (0, b✓) +
(b↵� 0)@ bUM (↵̄, b✓)

@↵

o

+
h

��2 �
n@ bUM (b↵, b✓)

@↵

o�1

i

bU(b↵, b✓), where

= b↵� ��2

bUM (0, b✓)� b↵�2��2 + b↵��2

n

�2 � @ bUM (↵̄, b✓)

@↵

o

+ bUM (b↵, b✓)
h

��2 �
n@ bUM (b↵, b✓

@↵

o�1

i

,

= ���2

bUM (0, b✓)
| {z }

S

+ b↵��2

n

�2 � @ bUM (↵̄, b✓)

@↵

o

| {z }

R1

+ bUM (b↵, b✓)
h

��2 �
n@ bUM (b↵, b✓

@↵

o�1

i

| {z }

R2

,

where the second equality holds by mean value theorem for some ↵̄ = vb↵ and v 2 [0, 1]. For

the first term above, we have
p
nS

d! Z where Z ⇠ N(0,�2/�4) by Theorem H.2. In addition,p
nR

1

= oP(1) and
p
nR

2

= oP(1) by the similar argument in Theorem 4.9. This concludes the
proof.

Finally, we extend the decorrelated partial likelihood ratio test to the multivariate failure time
model. The test statistic is

2n
�L(0, b✓)� L(e↵, b✓ � e↵bw)

 

.

Under the null hypothesis, the test statistic follows a weighted chi-squared distribution as shown
in the following theorem.

Theorem H.5. Suppose Assumptions 2.1, 2.2, 4.1, 4.2 and 4.3 hold. If � ⇣
p

n�1 log d, � ⇣
s0
p

n�1 log d and n�1/2s3 log d, under the null hypothesis ↵⇤ = 0, we have

2n
�L(0, b✓)� L(e↵, b✓ � e↵bw)

 d! �2��2Z�, where Z� ⇠ �2

1

,

and �2 = ⌦↵↵ � 2w⇤T⌦✓↵ +w⇤T⌦✓✓w
⇤, �2 = H⇤

↵↵ �w⇤TH⇤
✓↵.

Proof. We have, by mean value theorem, for some ↵̄ = v
1

b↵, ↵̄0 = v
2

b↵, ✓̄ = ✓⇤ + t
3

(b✓ � ✓⇤) and
✓̄0 = ✓⇤ + v

4

(b✓ � ✓⇤) and 0  v
1

, v
2

, v
3

, v
4

 1,

L(e↵, b✓ � e↵bw)� L(0, b✓)

=e↵r↵L(0, b✓)� e↵bwTr✓L(0, b✓) + e↵2

2
r↵↵(L(↵̄, b✓) + bwTr✓✓L(0, ✓̄)bw � e↵2

bwTr↵✓L(↵̄0, ✓̄0)

= e↵bU(0, b✓)
| {z }

L

+
e↵2
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n

r↵↵L(↵̄, b✓) + bwTr✓✓L(0, ✓̄)bw � 2bwr↵✓L(↵̄0, ✓̄0)
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| {z }

E

.
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We first look at the term L. By Theorem H.2, we have bU(0, b✓) = bU(0, b✓⇤) + oP
�

n�1/2
�

, and by

Theorem H.4 e↵ = ���2

bU(0, b✓) + oP
�

n�1/2
�

, we have

L = ���2

bUM (0, b✓)2 + oP
�

n�1

�

.

Next, we look at the term E,

E =
e↵2

2

�

H⇤
↵↵ +H⇤

↵✓H
⇤�1

✓✓ H⇤
✓↵ � 2H⇤

↵✓H
⇤�1

✓✓ H⇤
✓↵

�

| {z }

E1

+
e↵2

2

h

�r↵↵L(↵̄, b✓)�H⇤
↵↵

 

+
�

bwTr✓✓L(0, ✓̄)bw �w⇤H⇤
✓✓w

⇤ � 2
�

ewr↵✓L(↵̄0, ✓̄0)�H⇤
↵✓w

⇤ 
i

| {z }

E2

.

By Theorem H.4, it holds that 2nE
1

d! �2��2Z�. In addition, by the similar argument as in
Theorem 4.11, we have E

2

= oP
�

n�1

�

. Thus, we have

2n
�L(0, b✓)� L(e↵, b✓ � e↵bw)

 d! �2��2Z�, where Z� ⇠ �2

1

,

which concludes our proof.

I More Simulation Results

In this section, we provide more simulation results for the inference on the low dimensional para-
metric component ↵. Using the same data generating schemes in Section 6, we first provide more
detailed simulation results about the decorrelated estimator e↵ defined in (3.8), where we provide
the estimator’s bias, standard deviation, estimated standard deviation and empirical coverage prob-
ability for �

1

= 0 and �
2

= 1 in Tables 1 and 2. We find that for both zero and nonzero coe�cients
the proposed estimator has very small bias. In addition, the estimated standard errors (ESE) are
close to the empirical standard errors (SE) and the coverage probabilities are very close to 95%.
This suggests that the theoretical results on the asymptotic normality of the proposed estimator
work well in empirical studies.

Next, we investigate how our proposed methods work when �⇤ is not very sparse. Setting s = 10
and 20, using the same data generating scheme as in Section 6, we report the empirical Type I
error in Tables 3 and 4. It is seen that when d = 100 and 200, the type I error of the proposed
method is reasonably accurate. As d further increases to 500, the tests become conservative (i.e.,
type I error is smaller than the nominal level). This is mainly due to the fact that there exists
significant estimation error of the initial Lasso estimator under the PH model for large s and d.
This phenomenon is consistent with the existing literature such as the numerical results in Bradic
et al. (2011).

We then consider a scheme where the censoring rate is higher. Using the same data generating
scheme as in Section 6, except that the i-th censoring time is generated from an exponential
distribution with mean U ⇥ exp(XT

i �
⇤), where U ⇠ Unif[1, 2]. This censoring scheme results in

about 50% censored samples. As seen in Tables 5 and 6, our methods work reasonably well for
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moderately high dimensional setting (i.e., d = 100 and 200). As d further increases to 500, the tests
tend to be more conservative (the empirical Type I error rate is slightly smaller than the nominal
level), due to the high censoring rate.

Finally, we look at the case where the inverse of the Fisher information matrix is not sparse.
Using the same data generating scheme as in Section 6, except that we let the covariance matrix
X be ⌃jj = 1 and ⌃jk = ⇢ if j 6= k. The results are reported in Tables 7 and 8. We find that,
when d = 100 or 200, the Type I error of our methods is very close to the nominal level. When
d = 500, our test becomes a little bit more conservative in the sense that the Type I error is smaller
than the nominal level. Thus, under the setting with non-sparse ⌃�1, our methods still empirically
work very well with moderately high dimensional covariates. For very high dimensional case (i.e.,
d = 500), the proposed test is less powerful, because the estimation of w⇤ seems less accurate.

J Simulation for the Inference on the Baseline Hazard Function

on Simulated Data

In this section, we demonstrate the empirical performance of the decorrelated inference proce-
dure on the baseline hazard function ⇤

0

(t) proposed as in Section 5. We consider three sce-
narios with ⇤

0

(t) = t, t2/2 and t3/3. Note that when ⇤
0

(t) = p�1tp, the survival time fol-
lows a Weibull distribution with shape parameter p and scale parameter {p exp(�XT

i �
⇤)}1/p, i.e.,

W
�

p, {p exp(�XT
i �

⇤)}1/p�. We use the same data generating procedures for the covariate Xi’s,
parameter �⇤ and censoring time R as in the previous subsection.

In each simulation, we construct 95% confidence intervals for ⇤
0

(t) at t = 0.2 using the proce-
dures proposed in Section 5. The simulation is repeated 1,000 times. The results for the empirical
coverage probabilities of ⇤

0

(t) are summarized in Tables 9 and 10. It is seen that the coverage
probabilities are all between 93% and 97%, which matches our theoretical results.

To further examine the performance of our method, we conduct additional simulation studies
by plotting the 95% confidence intervals of ⇤

0

(t) at t = 0.05, 0.1, 0.15, ..., 0.5, with ⇤
0

(t) = t and
t2/2. The results are presented in Figures 1 and 2.
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Table 1: Biases, standard errors (SE), estimated standard errors (ESE) and coverage probabilities
(CP) for the Wald estimator for �

1

= 0 and �
2

= 1 with nominal coverage probability 95%, where
(s, n) = (2, 150).

Bias SE ESE CP

⇢ d �
1

�
2

�
1

�
2

�
1

�
2

�
1

�
2

0.25 100 0.031 -0.019 0.184 0.203 0.231 0.217 94.7% 93.9%
200 0.035 -0.049 0.237 0.231 0.312 0.272 94.6% 93.5%
500 -0.038 -0.057 0.284 0.263 0.325 0.297 94.0% 92.9%

0.4 100 0.030 -0.042 0.245 0.184 0.262 0.209 94.8% 93.5%
200 -0.029 -0.061 0.272 0.256 0.276 0.293 94.6% 93.0%
500 -0.037 -0.066 0.330 0.312 0.381 0.365 93.8% 92.7%

0.6 100 -0.026 -0.043 0.264 0.198 0.287 0.234 94.9% 93.7%
200 0.029 -0.051 0.294 0.269 0.327 0.294 94.5% 93.2%
500 0.046 -0.065 0.385 0.310 0.415 0.348 95.6% 92.7%

0.75 100 0.023 -0.052 0.283 0.206 0.301 0.254 95.1% 93.6%
200 -0.034 -0.057 0.342 0.257 0.352 0.298 95.3% 92.9%
500 0.067 -0.070 0.411 0.325 0.398 0.402 96.2% 92.1%

van der Vaart, A. W. (2000). Asymptotic Statistics. Cambridge University Press.

van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes.
Springer.
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Table 2: Biases, standard errors (SE), estimated standard errors (ESE) and coverage probabilities
(CP) for the Wald estimator for �

1

= 0 and �
2

= 1 with nominal coverage probability 95%, where
(s, n) = (3, 150).

Bias SE ESE CP

⇢ d �
1

�
2

�
1

�
2

�
1

�
2

�
1

�
2

0.25 100 -0.025 -0.035 0.203 0.185 0.228 0.196 94.9% 93.4%
200 -0.034 -0.049 0.248 0.233 0.312 0.261 95.2% 92.8%
500 0.057 -0.065 0.362 0.357 0.349 0.382 93.2% 92.0%

0.4 100 0.024 -0.045 0.261 0.195 0.285 0.250 94.8% 93.7%
200 -0.041 -0.065 0.284 0.254 0.307 0.273 95.4% 93.0%
500 0.056 -0.081 0.322 0.343 0.424 0.362 93.9% 92.2%

0.6 100 0.028 -0.052 0.268 0.213 0.314 0.206 94.6% 93.5%
200 0.034 -0.059 0.307 0.275 0.365 0.277 95.1% 92.7%
500 -0.037 -0.083 0.379 0.324 0.431 0.356 94.2% 92.3%

0.75 100 -0.022 -0.047 0.274 0.212 0.325 0.265 95.0% 93.2%
200 0.033 -0.062 0.325 0.271 0.388 0.307 94.4% 92.5%
500 -0.052 -0.069 0.419 0.348 0.463 0.376 95.9% 91.7%

Table 3: Average Type I error under the non-sparse �⇤ setting with ⌘ = 5% and (n, s) = (150, 10).

⇢ = 0.25 ⇢ = 0.4 ⇢ = 0.6 ⇢ = 0.75

Method d Dirac Unif[0, 2] Dirac Unif[0, 2] Dirac Unif[0, 2] Dirac Unif[0, 2]

Score 100 6.3% 6.6% 6.8% 6.7% 6.4% 6.2% 6.0% 5.7%
200 6.4% 6.1% 5.5% 5.7% 3.8% 4.1% 3.6% 3.3%
500 1.9% 2.0% 2.5% 2.6% 2.1% 1.5% 1.5% 0.9%

Wald 100 7.1% 6.8% 6.7% 7.2% 6.4% 6.2% 5.5% 5.2%
200 7.0% 6.7% 5.7% 6.5% 4.1% 4.7% 3.8% 3.3%
500 2.5% 1.9% 2.9% 2.6% 1.1% 1.7% 0.8% 1.5%

LRT 100 7.6% 7.0% 7.4% 7.2% 6.6% 6.1% 5.2% 5.3%
200 7.3% 7.2% 7.1% 6.9% 3.9% 3.3% 3.5% 3.8%
500 1.3% 1.1% 2.1% 2.0% 2.4% 1.8% 1.6% 0.9%
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Table 4: Average Type I error of under the non-sparse �⇤ setting with ⌘ = 5% and (n, s) = (150, 20).

⇢ = 0.25 ⇢ = 0.4 ⇢ = 0.6 ⇢ = 0.75

Method d Dirac Unif[0, 2] Dirac Unif[0, 2] Dirac Unif[0, 2] Dirac Unif[0, 2]

Score 100 6.2% 6.8% 6.0% 6.3% 7.2% 7.2% 6.7% 7.1%
200 7.5% 7.4% 6.5% 6.4% 6.6% 6.8% 7.2% 6.9%
500 1.7% 1.1% 1.6% 0.8% 1.7% 1.0% 1.9% 1.2%

Wald 100 6.8% 6.9% 6.6% 6.5% 7.1% 7.3% 7.0% 7.5%
200 6.9% 6.2% 6.5% 6.8% 6.6% 6.3% 7.2% 7.3%
500 1.6% 1.2% 1.1% 1.0% 1.4% 1.3% 1.6% 0.7%

LRT 100 6.5% 6.3% 7.3% 6.8% 7.2% 7.6% 7.4% 7.5%
200 5.9% 6.1% 6.2% 6.9% 6.6% 7.1% 7.2% 7.0%
500 1.7% 1.4% 1.2% 1.3% 0.7% 1.4% 1.5% 1.2%

Table 5: Average Type I error under high-censoring setting with ⌘ = 5% under high censoring
scheme where (s, n) = (2, 150).

⇢ = 0.25 ⇢ = 0.4 ⇢ = 0.6 ⇢ = 0.75

Method d Dirac Unif[0, 2] Dirac Unif[0, 2] Dirac Unif[0, 2] Dirac Unif[0, 2]

Score 100 5.0% 4.7% 4.9% 4.6% 4.5% 4.2% 4.4% 4.1%
200 4.4% 4.5% 4.1% 3.7% 3.6% 3.3% 3.5% 3.0%
500 2.8% 2.8% 2.2% 2.4% 2.1% 2.6% 1.8% 2.3%

Wald 100 5.1% 5.2% 4.9% 4.6% 4.2% 4.4% 4.1% 4.3%
200 3.9% 4.3% 4.1% 3.6% 3.4% 3.6% 3.2% 3.0%
500 2.7% 2.6% 2.5% 2.5% 2.3% 2.4% 2.4% 2.0%

LRT 100 4.8% 4.6% 4.8% 4.5% 4.5% 4.6% 4.4% 4.3%
200 3.9% 4.3% 3.8% 4.0% 3.6% 3.5% 3.4% 3.1%
500 3.0% 2.5% 2.7% 2.1% 2.5% 1.9% 2.3% 2.0%
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Table 6: Average Type I error under high-censoring setting with ⌘ = 5% under high censoring
scheme where (s, n) = (3, 150).

⇢ = 0.25 ⇢ = 0.4 ⇢ = 0.6 ⇢ = 0.75

Method d Dirac Unif[0, 2] Dirac Unif[0, 2] Dirac Unif[0, 2] Dirac Unif[0, 2]

Score 100 5.2% 5.5% 4.6% 4.8% 4.3% 4.4% 4.7% 4.5%
200 4.5% 4.4% 4.3% 4.3% 4.0% 3.6% 3.3% 3.2%
500 2.9% 2.8% 2.6% 2.2% 2.1% 1.9% 1.6% 1.7%

Wald 100 5.4% 5.2% 4.9% 4.7% 4.2% 4.5% 4.3% 4.0%
200 4.6% 4.5% 4.0% 4.1% 3.6% 3.3% 3.2% 2.9%
500 2.6% 2.5% 2.3% 2.3% 1.9% 1.9% 1.7% 2.0%

LRT 100 5.2% 4.8% 4.7% 4.6% 4.2% 3.9% 4.1% 4.3%
200 4.5% 4.4% 4.6% 4.4% 3.2% 3.5% 3.4% 3.1%
500 2.9% 2.6% 2.4% 2.3% 2.0% 1.8% 1.8% 1.9%

Table 7: Average Type I error under non-sparse w⇤ setting with ⌘ = 5% where (n, s) = (150, 2).

⇢ = 0.25 ⇢ = 0.4 ⇢ = 0.6 ⇢ = 0.75

Method d Dirac Unif[0, 2] Dirac Unif[0, 2] Dirac Unif[0, 2] Dirac Unif[0, 2]

Score 100 5.0% 5.3% 5.1% 5.3% 4.7% 4.5% 3.8% 3.5%
200 5.6% 5.3% 4.6% 4.8% 3.7% 3.5% 3.6% 3.3%
500 2.9% 2.1% 2.4% 2.1% 2.7% 2.5% 2.0% 1.7%

Wald 100 5.3% 5.2% 5.4% 4.6% 4.8% 5.6% 5.2% 5.5%
200 4.7% 5.1% 4.3% 4.2% 3.8% 4.1% 3.8% 3.4%
500 2.7% 2.2% 2.3% 1.8% 2.0% 1.7% 1.7% 1.6%

LRT 100 5.5% 5.4% 4.8% 5.3% 4.0% 4.4% 5.2% 5.7%
200 4.6% 4.9% 3.5% 3.9% 3.2% 3.6% 3.4% 3.7%
500 2.0% 2.6% 2.4% 2.5% 2.7% 2.2% 1.9% 1.6%
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Table 8: Average Type I error under non-sparse w⇤ setting with ⌘ = 5% where (n, s) = (150, 3).

⇢ = 0.25 ⇢ = 0.4 ⇢ = 0.6 ⇢ = 0.75

Method d Dirac Unif[0, 2] Dirac Unif[0, 2] Dirac Unif[0, 2] Dirac Unif[0, 2]

Score 100 4.5% 4.8% 5.1% 4.7% 4.0% 4.5% 4.2% 3.5%
200 3.8% 4.2% 4.1% 4.3% 4.2% 4.0% 3.7% 3.8%
500 2.0% 2.4% 2.3% 2.5% 1.6% 1.5% 0.7% 1.0%

Wald 100 4.5% 5.0% 4.8% 5.4% 3.7% 3.5% 4.4% 4.2%
200 3.8% 3.9% 3.7% 4.2% 3.8% 3.5% 3.8% 3.7%
500 2.3% 2.1% 2.4% 2.0% 1.9% 2.4% 0.9% 0.8%

LRT 100 5.6% 5.2% 4.4% 4.5% 3.7% 3.5% 3.8% 4.3%
200 3.6% 3.9% 4.5% 4.2% 3.5% 3.9% 3.6% 3.5%
500 2.9% 2.2% 2.4% 2.0% 0.7% 1.4% 0.9% 0.7%

Table 9: Empirical coverage probability of 95% confidence intervals for ⇤
0

(t) at t = 0.2 with
(n, s) = (150, 2)

⇢ = 0.25 ⇢ = 0.4 ⇢ = 0.6 ⇢ = 0.75

⇤
0

(t) d Dirac Unif[0, 2] Dirac Unif[0, 2] Dirac Unif[0, 2] Dirac Unif[0, 2]

t 100 95.3% 95.1% 94.7% 95.1% 95.2% 94.6% 95.4% 94.9%
200 95.5% 95.8% 95.7% 95.3% 94.6% 94.5% 94.4% 94.2%
500 95.9% 96.2% 95.5% 94.8% 94.3% 94.1% 93.7% 93.5%

t2 100 95.1% 95.3% 95.2% 95.0% 95.4% 94.7% 95.2% 95.3%
200 95.5% 94.8% 95.4% 94.7% 94.6% 94.0% 94.4% 94.5%
500 96.6% 96.7% 96.1% 95.4% 94.9% 94.3% 93.8% 93.6%

t3 100 95.2% 95.0% 95.1% 95.3% 94.8% 95.1% 95.2% 94.7%
200 95.4% 94.7% 94.6% 95.5% 95.2% 95.8% 94.6% 94.3%
500 96.6% 95.9% 96.3% 95.9% 94.5% 94.7% 93.6% 93.4%

30



Table 10: Empirical coverage probability of 95% confidence intervals for ⇤
0

(t) at t = 0.2 with
(n, s) = (150, 3)

⇢ = 0.25 ⇢ = 0.4 ⇢ = 0.6 ⇢ = 0.75

⇤
0

(t) d Dirac Unif[0, 2] Dirac Unif[0, 2] Dirac Unif[0, 2] Dirac Unif[0, 2]

t 100 95.1% 94.8% 94.8% 95.2% 95.3% 95.1% 94.8% 95.4%
200 95.6% 95.3% 95.4% 95.2% 94.7% 94.8% 94.2% 94.3%
500 96.2% 95.9% 95.8% 96.1% 95.2% 94.3% 93.3% 93.6%

t2 100 95.3% 94.7% 95.3% 94.9% 94.5% 95.3% 95.4% 95.2%
200 94.7% 94.5% 95.4% 95.2% 94.1% 94.9% 94.3% 93.8%
500 96.5% 96.2% 95.8% 96.0% 95.5% 95.1% 93.2% 93.7%

t3 100 95.0% 95.2% 94.6% 94.8% 95.1% 95.4% 94.9% 95.5%
200 95.3% 95.5% 95.2% 94.5% 94.3% 94.6% 93.8% 93.5%
500 95.9% 96.3% 95.7% 96.0% 95.4% 94.7% 93.6% 93.1%
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Figure 1: 95% confidence intervals for the baseline hazard function at t = 0.05, 0.1, ..., 0.5. The
red solid line denotes the estimated baseline hazard function e⇤

0

(t, b�), and blue dashed line denotes
⇤
0

(t) = t.
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Figure 2: 95% confidence intervals for the baseline hazard function at t = 0.05, 0.1, ..., 0.5. The red
solid line denotes the estimated baseline hazard function e⇤

0

(t, b�), and the blue dashed line denotes
⇤
0

(t) = t2/2.
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