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ABSTRACT
Motivated by analyses of DNAmethylation data, we propose a semiparametric mixture model, namely, the
generalized exponential tilt mixturemodel, to account for heterogeneity between differentiallymethylated
and nondifferentially methylated subjects in the cancer group, and capture the differences in higher order
moments (e.g., mean and variance) between subjects in cancer and normal groups. A pairwise pseudolike-
lihood is constructed to eliminate the unknown nuisance function. To circumvent boundary and nonidenti-
fiability problems as in parametric mixture models, we modify the pseudolikelihood by adding a penalty
function. In addition, the test with simple asymptotic distribution has computational advantages com-
pared with permutation-based test for high-dimensional genetic or epigenetic data. We propose a
pseudolikelihood-based expectation–maximization test, and show the proposed test follows a simple chi-
squared limiting distribution. Simulation studies show that the proposed test controls Type I errors well and
has better power compared to several current tests. In particular, the proposed test outperforms the com-
monly used tests under all simulation settings considered, especially when there are variance differences
between two groups. The proposed test is applied to a real dataset to identify differentiallymethylated sites
between ovarian cancer subjects and normal subjects. Supplementarymaterials for this article are available
online.

1. Introduction

DNA methylation plays an important role in the development
of many types of cancer. To identify differentially methylated
Cytosine-Phosphate-Guanine (CpG) sites between cancer and
normal subjects is one of the central tasks to understand con-
tributions of the DNA methylation process on cancer develop-
ment. Usually, cancer subjects are more heterogenous in terms
of DNA methylation distribution as cancer subjects may have
different subtypes of cancer, different stages of cancer, and dif-
ferent history of treatment (Mikeska, Candiloro, and Dobrovic
2010). Thus, DNA methylation levels of some cancer subjects
may follow one distribution and are differentially methylated
compared to normal subjects, while the rest of cancer subjects
may follow a similar distribution as that of normal subjects and
are not differentially methylated. The epigenetic heterogeneity
in cancer has gained tremendous interest lately (Brocks et al.
2014; Oakes et al. 2014; Easwaran, Tsai, and Baylin 2014). CpG
sites with high variability among cancer samples can potentially
be used as epigenetic biomarkers for determining the stage of
cancer progression and designing personalized treatment. Most
of the existing methods for DNA methylation data focus on
testing for differences in means between the cancer and nor-
mal groups, which does not fully capture the differences in
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variances in DNAmethylation data. There is evidence that there
are not only differences in DNA methylation means but also
differences in DNA methylation variations between the cancer
and normal groups (Gervin et al. 2011; Hansen et al. 2011). A
recently proposed method DiffVar (Phipson and Oshlack 2014)
tests the equality of variances in two groups by performing a
t-test on the absolute or squared deviations of the methyla-
tion levels from the group mean. It is, however, restricted in
comparing the variances and cannot detect mean differences in
two groups. More importantly, most of the existing methods for
DNA methylation data are distribution-based methods, includ-
ing the logit-normal mixture model (Siegmund et al. 2004),
the beta mixture model (Houseman et al. 2008), the uniform-
truncated-normal-uniform mixture model (Wang 2011), and a
GLM-basedmethod (Ahn andWang 2013). However, due to the
heterogeneity in distributions of DNA methylation across loci
(Huang, Chen, and Huang 2013), it is insufficient to assume a
parametric distribution for all loci. Fitting site-specific paramet-
ricmodelsmaynot be feasible for a large number of loci, and also
leads to difficulties in model interpretations.

To relax parametricmodel assumptions, exponential tiltmix-
ture models (ETMM) have been considered (Qin 1999; Zou,
Fine, and Yandell 2002; Tan 2009). Specifically, subjects under
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one condition are sampled from a population with the baseline
density function f (x), and subjects under the other condition
are sampled from a mixture population with the density func-
tion h(x). The density h(·) and the relationship between the
densities f (·) and g(·) can be formulated as follows,

h(x) = (1 − λ) f (x) + λg(x);
log{g(x)/ f (x)} = α + βx, (1)

where g(·) is defined as the density function of the methy-
lation levels for the subpopulation in the case group that
are differentially methylated, λ is an unknown mixture pro-
portion parameter, β is an unknown parameter, and α =
− log{∫ ∞

−∞ exp(βx) f (x)dx} is a normalizing constant for the
density function g(x). Note that β = 0 implies α = 0.Model (1)
contains many parametric models as special cases, such as the
mixture of normal distributions with different means but equal
variances, and themixture of gammadistributionswith different
shape parameters but equal scale parameters. Under the ETMM
assumption, testing for homogeneity between cancer and nor-
mal groups, that is, f (·) = h(·), is equivalent to testing λ = 0 or
β = 0.

It has been long recognized that testing for homogeneity in
mixture models is a nonregular problem because the mixture
proportion parameter λ lies on the boundary of its parameter
space [0, 1] and the parametersα andβ are not identifiablewhen
λ = 0. Thus, the asymptotic distributions of tests for homo-
geneity are usually rather complicated and possibly dependent
on the parametric distributions assumed (Davies 1977, 1987).
Recently, Qin and Liang (2011) derived an original score test
undermodel (1) with a simple limiting chi-squared distribution.
More recently, Liu, Li, and Fu (2012) proposed a novel modi-
fied empirical likelihood ratio test under model (1) and devel-
oped an efficient and intuitive expectation–maximization (EM)
algorithm for computing the test statistic. Despite the current
success on the test of homogeneity in ETMM, the aforemen-
tionedmethods only allow a scalar parameter β , which excludes
important parametric distributions such as normal distributions
with unequal means and unequal variances, gamma distribu-
tions with different shape and scale parameters, and beta dis-
tributions. As recent studies have observed that cancer tissues
and some complex disease cases can also be characterized by an
increased variability inDNAmethylation patterns (Hansen et al.
2011; Issa 2011; Teschendorff et al. 2012; Xu et al. 2013), tests
that ignore this feature may lead to a substantial loss of power.
We therefore extended both the score test by Qin and Liang
(2011) and the modified empirical likelihood ratio test by Liu,
Li, and Fu (2012) by generalizing x tokkk(x) = (x, x2) in Equation
(1) to account for differences in bothmeans and variances.How-
ever, as the simulation results summarized in Section 2 of online
supplementarymaterials suggested, both the extended score test
and the extended modified empirical likelihood ratio test have
inflated Type I errors. This suggests that an alternative approach
should be considered.

In this article, we generalize the one-parameter ETMM to a
multi-parameter ETMM, namely, the generalized exponential
tilt mixture model (GETMM), which aims to capture the dif-
ferences in higher order moments between two distributions.
Specifically, the right-hand side of Equation (1) is extended
to a general form of α + βββTkkk(x), so that the multi-parameter

ETMM includes many parametric models, such as the normal
mixture model with unequal variances, the gamma mixture
model, and the beta mixture model. Rather than estimating the
baseline density function f (·) with the empirical likelihood
procedure as inQin and Liang (2011) and Liu, Li, and Fu (2012),
we construct a novel pseudolikelihood based on a conditioning
procedure, which eliminates the baseline density function f (·)
and avoids its estimation. To handle the nonregularity problems
(i.e., boundary and nonidentifiability problems), we construct
a penalized pseudolikelihood where the impacts of the tuning
parameter are studied. Finally, we propose an EM algorithm-
based test for computational efficiency and stability, which can
be shown to follow a simple chi-squared limiting distribution.

The contributions of this work are three-fold. First, we
develop a semiparametric model that captures the differences
in higher moments between distributions. Second, we con-
struct a novel penalized pseudolikelihood, where the unknown
baseline density function f (·) is eliminated and the nonreg-
ularity problems are circumvented. Third, we propose an EM
algorithm-based test with a simple chi-squared limiting dis-
tribution, which is computationally efficient and stable. The
pseudolikelihood EM algorithm has been proposed for han-
dling spatial data (Varin, Høst, and Skare 2005), hiddenMarkov
model (Gao and Song 2011), and family data with multistage
sampling (Choi and Briollais 2011). The convergence property
of the EM algorithm is established by Gao and Song (2011).
Unlike these existing results, the estimated parameters at each
iteration of EM algorithm rather than the estimated stationary
point are used to construct the proposed test.

This article is organized as follows. Section 2 describes the
penalized pseudolikelihood-based EM test (hereafter referred
to as the PLEMT test). The asymptotic null distribution
and the local asymptotic power for the PLEMT test are
provided in Section 3. Simulation studies comparing Type I
errors and power of the PLEMT test with existing tests are sum-
marized in Section 4. A real data application to DNA methyla-
tion data for ovarian cancer is given in Section 5 followed by a
brief discussion in Section 6. Proofs are relegated to Appendices
in online supplementary materials.

2. Statistical Methodology

We propose the following two-group generalized exponential
tilt mixture model (GETMM). We present our model in the
setting of modeling DNA methylation data for the concrete-
ness of interpretation, while noting that it can be generally
applied to any two-group testing problem for homogeneity. At
the �th CpG site, let u�1, . . . , u�n0 be independent, identically
distributed (iid) DNA methylation levels in the normal group
with distribution f�(u), where n0 is the number of normal sub-
jects. It is believed that in the cancer group, only a proportion
of subjects are methylated differentially compared to those in
the normal group, known as nonhomogeneity or heterogeneity
in methylation among cancer subjects (Kalari and Pfeifer 2010).
Moreover, the effect of differential methylation may appear as
changes in variation, in addition to potential a shift in means
(Hansen et al. 2011; Gervin et al. 2011; Teschendorff et al. 2012;
Xu et al. 2013). To account for such features of DNAmethylation
data, we assume that the iid subjects v�1, . . . , v�n1 in the cancer
group follow a mixture distribution with the density h�(v ) as
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follows:

h�(v ) = (1 − λ�) f�(v ) + λ�g�(v ),

where n1 is the number of cancer subjects, λ� is an unknown
mixture proportion parameter (0 ≤ λ� ≤ 1), and the density
functions f�(v ) and g�(v ) are related through amulti-parameter
exponential tilt

log{g�(v )/ f�(v )} = α� + βββ�
Tkkk(v ). (2)

Here, βββ� = (β�1, . . . , β�d )
T is a d-dimensional vector of

unknown parameters, kkk(v ) = {k1(v ), . . . , kd(v )}T is a vec-
tor of prespecified functions of v , and α� = − log[

∫
exp{βββ�

T

kkk(v )} f�(v )dv] is a normalizing constant. It is easy to see that
βββ� = 0 implies α� = 0. For simplicity of notation, we hereafter
suppress the site index �. We acknowledge that the baseline den-
sity function f�(·) can be site-specific and is left completely
unspecified. The parameterλ� can also be site-specific. Note that
the GETMM includes many parametric mixture models. When
kkk(v ) = v , the GETMM reduces to the one-parameter ETMM
described in Equation (1); when kkk(v ) = (v, v2), the GETMM
includes the normal mixture model with unequal variances;
when kkk(v ) = {log(v ), log(1 − v )}, the GETMM includes the
beta mixture model. Both parametric models have been used to
model DNAmethylation data (Siegmund et al. 2004; Houseman
et al. 2008).

Since the majority of differences between the cancer and
normal groups may be contained in means and variances of
methylation levels, we consider the GETMM with two parame-
ters for model parsimony. While the GETMM with more than
two parameters may better capture the differences in higher
moments such as skewness and kurtosis, the corresponding tests
may be underpowered due to the larger degree of freedom. In
addition, the theoretical development of GETMM with more
than twoparameters is similar. Specifically, we letkkk(v ) = (v, v2)

and βββ = (β1, β2). Under this model, testing for homogeneity
between two groups is equivalent to testing

H0 : λ = 0 or β1 = β2 = 0.

Maximizing the likelihood function generally involves esti-
mating the baseline density function f (·), typically by an empir-
ical likelihood procedure (Owen 1988). Here, we construct a
pairwise pseudolikelihood, which eliminates f (·) by condition-
ing on order statistics. Specifically, the advantage of the condi-
tioning procedure is to avoid the estimation of f (·).We consider
a pair of observations from the two groups, that is, ui from the
normal group and v j from the cancer group. The conditional
density of (ui, v j) given their order statistics t (1) = min(ui, v j)

and t (2) = max(ui, v j) can be calculated as,

pr(ui, v j|t (1), t (2)) = {1 + R(ui, v j; λ, α, β1, β2)}−1, (3)

where

R(ui, v j; λ, α, β1, β2) = (1 − λ) + λ exp
(
α + β1ui + β2u2i

)
(1 − λ) + λ exp

(
α + β1v j + β2v

2
j
) .

The derivation of Equation (3) is provided in Appendix A of
online supplementary materials. The baseline density function
f (·) is eliminated through this conditioning procedure. This
idea of conditioning was originally proposed by Kalbfleisch

(1978) for rank tests and permutation tests in regression prob-
lems, and later revitalized by Liang and Qin (2000) in regression
analyses under biased sampling.

For each pair of observations (ui, v j), we can calculate the
pairwise conditional density.We thenmultiply all these densities
together and obtain the following log pseudolikelihood function
for all observations,

Lp(λ, α, β1, β2) = 2
n

n0∑
i=1

n1∑
j=1

− log{1 + R(ui, v j; λ, α, β1, β2)},

wheren = n0 + n1.Wenote that the sumof log conditional den-
sities is standardized by the total number of individuals rather
than the number of summands. This is owing to the projection
theory in U-statistics (Lehmann and D’Abrera 1975). As we will
show later, such modification of the log-likelihood is necessary
so that the proposed test has a simple χ2 limiting distribution
with 2 degrees of freedom.

Under the null hypothesis, λ = 0 lies at the boundary of
its parameter space, which leads to a boundary problem (Self
and Liang 1987; Chen and Liang 2010). Furthermore, the null
hypothesis holds for λ = 0 regardless of the values of α, β1,
and β2, and holds for β1 = β2 = 0 regardless of the value of λ.
This implies that the parameter (λ, α, β1, β2) is not identifiable
underH0, which results in complicated asymptotic properties of
the pseudolikelihood ratio function (Chen and Chen 2001; Zhu
and Zhang 2004). To deal with the nonidentifiability problem,
Qin and Liang (2011) fixed the value of λ at 1, so that the other
parameters (α and β) are identifiable and can be estimated by
maximizing the empirical likelihood. The score test statistic was
then constructed. However, the choice of the value for the fixed
λ is arbitrary, and the performance of the score test depends on
the choice of λ. Alternatively, Liu, Li, and Fu (2012) proposed
an empirical likelihood function by adding penalty on λ. Rather
than using the empirical likelihood, we propose the following
penalized pseudolikelihood function to avoid the boundary and
identifiability problems:

Lpp(λ, α, β1, β2) = Lp(λ, α, β1, β2) +C log(λ),

where C is a positive number. The penalty is heavy when λ is
close to 0 and less so when λ approaches 1. The parameter C
is a multiplicative factor of such penalty and is often termed as
the tuning parameter. By using the penalized pseudolikelihood,
the parameter λ is bounded away from 0, and the null hypoth-
esis is then reduced to β1 = β2 = 0. That is, β1 and β2 in the
penalized pseudolikelihood function is asymptotically identifi-
able. When kkk(x) = x, it has been recommended in the literature
thatC can be taken as 1, and the existing tests based on penaliz-
ing λ are not sensitive to the choice ofC (Chen and Chen 2001;
Fu, Chen, and Kalbfleisch 2006a). The GETMM we considered
involves both mean and variance, for example, kkk(x) = (x, x2),
and the recommendation on the choice ofCmay be different. In
our simulation studies, we investigate the impact ofC on the per-
formance of the proposed test. Di and Liang (2011) had inves-
tigated the impacts of tuning parameter C on Type I errors and
power. They suggested to use the smallestC that still provides the
correct Type I error rate. However, the admixturemodel consid-
ered in Di and Liang (2011) is different from the model consid-
ered in this article. Sensitivity analyses on the choice of C have
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been conducted and summarized in the supplementary materi-
als. In general, C = 20 is recommended based on various sce-
narios considered in our sensitivity analyses.

In general, the parameter λ and the parameters (α, β1, β2) are
highly intertwined with each other as in many mixture models
(Bandeen-Roche et al. 1997). This can lead to numerical prob-
lems such as multiple local maxima whenmaximizing the pseu-
dolikelihood. Our simulation results summarized in Table S7
of the supplementary materials show that the pseudolikelihood
method that simultaneouslymaximizes over all parameters faces
the problems of unstable results and inflatedType I errors. In our
proposed PLEMT test, we use a set of different initial values of
λ to avoid being trapped at a local maximum.

The key idea of the PLEMT procedure is that maximiz-
ing the penalized pseudolikelihood with respect to (α, β1, β2)

for a fixed λ is more stable than maximizing over all parame-
ters simultaneously. In DNA methylation data, consider DNA
methylation levels v1, . . . , vn1 in the cancer group are sampled
from a mixture of f (·) and g(·). That is, v1, . . . , vn1 are iid with
a density function h(v ) = (1 − λ) f (v ) + λg(v ). The informa-
tion on whether the DNA methylation level of a particular sub-
ject in the cancer group is from the subpopulation f (·) or g(·)
is considered as missing data.

Here, we describe the algorithm to calculate the PLEMT test
statistic. We first choose a finite set of � = {λ1, . . . , λZ}, where
Z is the number of points in the grid (e.g., � = {0.1, . . . 1}).
We then choose the number of iterations S of the EM algo-
rithm. Although the PLEMT test is motivated by the EM algo-
rithm, the calculation of the test statistic does not require the
convergence of the EM algorithm, which has been shown in
Appendix D of online supplementary materials. Generally, only
a few steps of iterations are needed. This feature offers great
computational advantages in analyses of high-dimensional data.
Sensitivity analyses in the supplementary materials suggest that
the performance of the proposed PLEMT test is not sensitive
to the choices of S and Z. Here, we choose Z = 10, and S = 3.
At the zth grid value λz, we set the initial value λ

(1)
z = λz, and

calculate the initial values of (α
(1)
z , β

(1)
z1 , β

(1)
z2 ) by maximizing

Lpp(λ
(1)
z , α, β1, β2). We carry out the following EM algorithm

for S − 1 times.
At the E step of the EM algorithm, we calculate the posterior

probability of the jth cancer subject being differentially methy-
lated given v j and (λ

(s)
z , α

(s)
z , β

(s)
z1 , β

(s)
z2 ) as

ω
(s)
jz = λ

(s)
z g(v j)(

1 − λ
(s)
z

)
f (v j) + λ

(s)
z g(v j)

= λ
(s)
z exp

(
α

(s)
z + β

(s)
z1 v j + β

(s)
z2 v2

j
)

1 − λ
(s)
z + λ

(s)
z exp

(
α

(s)
z + β

(s)
z1 v j + β

(s)
z2 v2

j
) .

We then calculate the expected complete likelihood given the
data and the current parameter estimates, which only involves
the parameter λ

n1∑
j=1

(
1 − ω

(s)
jz

)
log(1 − λ) +

n1∑
j=1

ω
(s)
jz log(λ) +C log(λ).

At the M step, we update λ and other parameters (α, β1, and
β2). Specifically,

λ(s+1)
z = argmax

λ

n1∑
j=1

(
1 − ω

(s)
jz

)
log(1 − λ)

+
n1∑
j=1

ω
(s)
jz log(λ) +C log(λ)

=
∑n1

j=1 ω
(s)
jz +C

n1 +C
, (4)

(
α(s+1)
z , β

(s+1)
z1 , β

(s+1)
z2

) = argmax
α,β1,β2

Lpp
(
λ(s+1)
z , α, β1, β2

)
.

Equation (4) suggests an intuitive explanation of the penalty
term C log(λ) in Lpp(λ, α, β1, β2). Specifically, the proportion
of the subgroup with differential methylation among cases,
λ

(s+1)
z , is calculated as the average of posterior probabilities

of being in this subgroup, ω
(s)
jz , plus C pseudo observations

(known to be in this subgroup). This idea of pseudo-observation
adjustment was originally proposed by Jiahua Chen and his col-
leagues. The pseudolikelihood method that maximizing over
all parameters simultaneously faces the nonconvergence and
computational problems. Our simulation result summarized in
the supplementary materials shows that the parameter esti-
mates are sensitive to the choice of initial values when maxi-
mizing over all parameters simultaneously, leading to unstable
results. By fixing λ at this step, we can get more stable results
thanmaximizing over all parameters simultaneously.We use the
general-purpose optimization procedure in R (R Development
Core Team 2014) to obtain (α

(s+1)
z , β

(s+1)
z1 , β

(s+1)
z2 ). At the zth

grid value, we defineMn(λ
(S)
z ) = 2{Lpp(λ

(S)
z , α

(S)
z , β

(S)
z1 , β

(S)
z2 ) −

Lpp(1, 0, 0, 0)}. We then define our PLEMT test statistic as
follows,

PLEMT = max
{
Mn

(
λ(S)
z

)
, z = 1, . . . ,Z

}
.

Details of the derivation of the PLEMT test statistic are provided
in Appendix D of online supplementary materials.

3. Asymptotic Results

This section provides asymptotic results for the PLEMT test
statistic under the null H0 and under the local alternatives.

We assume the following regularity conditions.
C1. The parameter sets 	α and 	β for α and β are compact.
C2. The distributions of ui and v j have common support and

are not degenerate to a point measure.
C3. The ratio n1/n → ρ, as n → ∞, where 0 < ρ < 1.

The variance σ 2 = var(ui) < ∞ and for some t > M,∫
u2 exp(t|u|) f (u)du < ∞, whereM is a small positive

constant.
The compactness of the parameter spaces in assumption

C1 is commonly adopted in the statistical literature. Such an
assumption may be relaxed by imposing the uniform bound-
edness assumption on the baseline density, for example, see Li,
Chen, and Marriott (2009). The assumption C2 is to guaran-
tee the GETMM is identifiable. The assumption C3 is a reason-
able technical condition for applying the uniform law of large
numbers.
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Theorem 1. Under the regularity conditions C1−C3, and the
null hypothesis H0, the PLEMT test statistic converges weakly
to χ2

2 as n → ∞.

The proof of Theorem 1 is given in Appendix D of online
supplementary materials.

Evaluation of test statistics under alternative hypotheses is
crucial for sample size calculation and experimental design. In
practice, themost interesting situations for alternatives are those
close to the null hypothesis. For mathematical convenience,
statisticians typically focus on the local asymptotic power of test
statistics. Here, we provide a useful result about the asymptotic
power of the PLEMT test under a sequence of local alternatives.
Specifically, for any 0 < λ0 < 1, density function f0(·) and a
fixed τττ 0, consider a sequence of alternatives:

Ha : λ = λ0, f (·) = f0(·), βββ = n−1/2τττ 0,

where τττ 0 is a vector. Under Ha, we do not explicitly specify the
local alternative for α, because α is a function of βββ and f0(·).
With LeCam’s third lemma (Van der Vaart 2000), we can estab-
lish the following results.

Theorem 2. Under the alternatives Ha, the limiting distribution
of the PLEMT test statistic is χ2

2 {λ2
0(1 − ρ)ρτττT

0 
τττ 0}, where
χ2
2 (c) denotes the noncentral chi-squared distribution with 2

degrees of freedom and noncentrality parameter c.

The proof is given in Appendix E of online supplementary
materials. An important observation is, given a total number of
subjects n, the asymptotic power is maximized when the design
is balanced (i.e., ρ = 0.5 or n0 = n1).

4. Simulation Studies

We conduct simulation studies to evaluate the finite sample per-
formance of the proposed PLEMT test comparing with seven
existing tests, namely, the score test based on the one-parameter
ETMM, the modified empirical likelihood ratio test, the Wald
test based on logistic regression, the t-test, the Wilcoxon test,
the F test of equality of variances, and the Kolmogorov–Smirnov
test.

We consider a variety of parametric models. Specifically, for
each simulation setting, the data are generated from themixture
model (2) with one of the following choices of density functions
f (·) and g(·).

Model A (Normal model). Let f (·) and g(·) be the density
functions of Normal (μ1, σ

2
1 ) and Normal (μ2, σ

2
2 ), respec-

tively. Then

log{g(x)/ f (x)} = 1
2
(
log σ 2

1 − log σ 2
2
) + σ 2

2 μ2
1 − σ 2

1 μ2
2

2σ 2
1 σ 2

2

+σ 2
1 μ2 − σ 2

2 μ1

σ 2
1 σ 2

2
x + σ 2

2 − σ 2
1

σ 2
1 σ 2

2
x2.

Model B (Beta model). Let f (·) and g(·) be the density func-
tions of two beta distributions with shape parameters (a1, b1)
and (a2, b2), respectively. Then

log{g(x)/ f (x)} = log
{
B(a1, b1)
B(a2, b2)

}
+ (a2 − a1) log x

+(b2 − b1) log(1 − x),

where B(·, ·) is the beta function.
Model C (Gamma model). Let f (·) and g(·) be the density

functions of Gamma (m1, θ1) and Gamma (m2, θ2) with shape
parametersm1,m2 and scale parameters θ1, θ2 > 0. Then

log
g(x)
f (x)

= log
{

�(m1)

�(m2)

}
+ m1 log(θ1) − m2 log(θ2)

+(m2 − m1) log x +
(
1
θ1

− 1
θ2

)
x.

Note that Models A−C belong to the GETMM. In Equation
(2), Models A−C have kkk(x) = (x, x2), {log(x), log(1 − x)}, and
{log(x), x}, respectively. To evaluate the robustness of the pro-
posed test to model misspecifications, we consider two addi-
tional models (Models D−E) when the exponential tilt model
assumption is not satisfied. It is expected thatmisspecifiedmod-
els may lead to incorrect Type I errors for tests based on the
GETMM assumption.

Model D (Negative binomial model). Let f (·) and g(·) be the
density functions of the Negative Binomial (NB) distribution
(r1, p1) andNB (r2, p2), where r1 and r2 are the numbers of fail-
ures until the experiment is stopped, and p1 and p2 are success
probabilities in each experiment. Then

log
g(x)
f (x)

= r2 log
(

p2
1 − p2

)
− r1 log

(
p1

1 − p1

)

+x log
(
1 − p2
1 − p1

)
+ log

(
x − 1
r2 − 1

)
− log

(
x − 1
r1 − 1

)
.

Model E (t distribution). Let f (·) and g(·) be the density func-
tions of the t distributions (ncp1, d f1) and (ncp2, d f2), where
ncp1 and ncp2 are the noncentrality parameters, and d f1 and
d f2 are degrees of freedom.

We compare Type I errors and power of the tests. For power
comparisons, we conduct simulation studies under Scenario I
where f (·) and g(·) are different in means only, Scenario II
where f (·) and g(·) are different in variances only, and Scenario
III where both means and variances of f (·) and g(·) are differ-
ent. For each of the power scenarios, we consider settings where
λ takes different values from 0 to 1. The rejection rates based
on 5000 simulations are used to estimate Type I errors and the
rejection rates based on 1000 simulations are used to estimate
the power. We consider a sample size setting with 100 subjects
in each group.

Table 1 summarizes the Type I errors of the eight tests under
comparison for five models (A−E). Under both nonmisspeci-
fication scenario (Models A−C) and misspecification scenario
(ModelsD−E), the Type I errors of the PLEMT test, the EST test,
the MELRT test, the t-test, the Wilcoxon test, and the Logistic
regression test are relatively close to the corresponding nominal
levels given the moderate sample size (n = 200). The proposed
test has slightly inflated Type I errors under model misspecifi-
cations compared to t-test, Wilcoxon test, and logistic regres-
sion test. It is not surprising to see that the Type I errors of the F
test are inflated under the Gamma, Negative binomial, and the
tmodels, because the F test is known to be sensitive to nonnor-
mality. The Kolmogorov–Smirnov test yields conservative Type
I errors under all settings, especially in the negative binomial
model.

Since the Type I errors of the F test are inflated, we only
compare the power of the remaining seven tests. Figure 1 plots
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Table . Type I error (%) comparisons of the PLEMT test, the score test based on empirical likelihood (EST), the modified empirical likelihood ratio test (MELRT), the t-test,
the Wilcoxon test, the Logistic regression test, the F test of equality of variances, and the Kolmogorov–Smirnov (KS) test, at . and . significant levels for Normal, Beta,
Gamma, Negative binomial, and tmodels (Models A–E).

Model Level (%) PLEMT EST MELRT t-test Wilcoxon Logistic F KS

Nonmisspecifiedmodels
A: Normal . . . . . . . . .

. . . . . . . . .
B: Beta . . . . . . . . .

. . . . . . . . .
C: Gamma . . . . . . . . .

. . . . . . . . .
Misspecifiedmodels
D: Negative binomial . . . . . . . . .

. . . . . . . . .
E: t . . . . . . . . .

. . . . . . . . .

the power curves of the seven tests under GETMMs (Mod-
els A−C). As λ increases, the power of all tests increases. For
power Scenario I with mean differences only, the PLEMT test
is slightly more powerful than the Kolmogorov–Smirnov test,
and has slightly lower but comparable power than the rest five
tests. This is because the PLEMT test has two degrees of free-
dom, while the other five tests have only one degree of freedom.
The slight loss of power for the PLEMT test is due to the extra
one degree freedom when there are only mean differences. For
the power Scenario II with variance differences only, the PLEMT
test is much more powerful than all the other tests as expected
since they do not fully account for variance differences and the
mixture structure of the data. More specifically, the MELRT test
has about 17%−46% less power than that of the PLEMT test, the
Kolmogorov–Smirnov test has about 40%–90% less power than
that of the PLEMT test, whereas the other four tests have essen-
tially no power beyond Type I errors. This is consistent with
the simulation results in Liu, Li, and Fu (2012) that the MELRT
test is more powerful than the EST test. When both mean and
variance are different, the PLEMT test remains to be the most
powerful one. The degree of the power loss of the other six tests
depends on the proportion of the variance difference in the over-
all mean and variance differences. Under the setting we consid-
ered, the MELRT test is the second most powerful test with a
power about 5%–25% lower than that of the PLEMT test. The
other four tests are grossly underpowered.

Similar patterns are observed in Figure 2 for misspecified
models (Models D and E). The PLEMT test has a slightly lower
power than the other tests under power Scenario I, while it is the
most powerful test under power Scenarios II and III. One inter-
esting phenomena is that there is a power gain for theWilcoxon
test under Scenario II and III for the misspecified models com-
paring with that under GETMMs, while the Wilcoxon test has
essentially no power beyond Type I errors under GETMMs.
This is because the Wilcoxon test may capture some of the
variance differences when the distributions are heavily skewed,
but cannot capture these differences when the distributions are
symmetric.

In summary, our simulation studies suggest performance
from the proposed PLEMT test compared to the existing ones.
The proposed PLEMT test has well-controlled Type I errors
and substantial power gain when the variance differences need
to be taken into account. The proposed PLEMT test also shows
some degree of robustness under model misspecifications.

The PLEMT test is implemented as an R software package
robustETM, which is attached as the supplementary materials.

5. Application to DNAMethylation Data of Ovarian
Cancer

We apply the PLEMT test to the data from the United
Kingdom Ovarian Cancer Population Study to select differen-
tially methylated sites between ovarian cancer cases and age-
matched healthy controls using the Illumina Infinium Human
Methylation27 Beadchip (Teschendorff et al. 2010). The original
data have 266 ovarian cancer cases with 131 pretreatment cases
and 135 post-treatment cases, and 274 age-matchedhealthy con-
trols. Since age and having received treatment or notwhen blood
samples are taken are factors known to affect DNA methylation
levels, we choose to use the 131 ovarian cancer cases who gave
their blood at the time of their diagnosis prior to treatment and
with age-matched controls. We refer readers toWang (2011) for
the detailed quality control steps. We end up with 96 cancer
subjects and 136 normal subjects with DNA methylation lev-
els at 22,951 sites. Because our simulation results suggest that
the MELRT test is the second most powerful test accounting for
the variance differences, we focus on the comparisons among
the PLEMT test, the commonly used t-test, and theMELRT test
in this real data application. We also only focus on the original
DNA methylation levels instead of the logit transformed ones.
Due to the presence of multiple hypothesis testing, the num-
ber of false positivesmay rapidly increase such that the scientific
discoveries may become unreliable. To address this problem, we
adapt the procedure in Storey (2002) to control the false discov-
ery rate (FDR), which is defined as the number of false positives
divided by the number of total discoveries. In particular, for each
hypothesis test, we calculate a number called q-value, which is
the minimum FDR that can be attained when the test is signif-
icant. It can be regarded as a hypothesis testing error measure
for each test with respect to FDR (Storey 2002). Here, we use the
“qvalue” package in R to calculate the q-value for each hypothe-
sis test.

The proposed PLEMT test, the t-test, and theMELRT test are
then applied to the methylation data at these 22,951 sites. Of the
sites tested, 3112 sites have q-values < 0.05 using the PLEMT
test, 2699 sites have q-values < 0.05 using the t-test, and 2881
sites have q-values < 0.05 using the MELRT test. These num-
bers are cross-tabulated in Table 2. There are 2418 overlapping
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Figure . Power of the PLEMT test, the score test based on empirical likelihood (EST), the modified empirical likelihood ratio test (MELRT), the t-test, the Wilcoxon test,
the Logistic regression test, and the Kolmogorov–Smirnov (KS) test for Normal, Beta, and Gamma models as a function of mixture proportion λ when the numbers of
observations in two groups are n0 = n1 = 100.

sites that have q-values < 0.05 using both the PLEMT test and
the t-test, and 694 sites that are identified by the PLEMT test
but not by the t-test. There are 2543 overlapping sites that have
q-values< 0.05 using both the PLEMT test and theMELRT test,
and 569 sites that were identified by the PLEMT test but not by
the MERLT test.

We denote � = (m1 − m2)/sd1 as the standardized mean
difference between cancer and normal subjects, and r21 =
sd2/sd1 as the ratio of standard deviations between cancer and
normal subjects, wherem1 andm2 are the means of the normal
subjects and cancer subjects, respectively, and sd1 and sd2 are the
standard deviations of the normal subjects and cancer subjects,
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Figure . Power of the PLEMT test, the score test based on empirical likelihood (EST), the modified empirical likelihood ratio test (MELRT), the t-test, the Wilcoxon test, the
Logistic regression test, and the Kolmogorov–Smirnov (KS) test for Negative binomial and Tmodels as a function ofmixture proportionλwhen thenumbers of observations
in two groups are n0 = n1 = 100.

respectively. We further examine the distribution of � and r21
for the sites tested. The upper three panels of Figure 3 displays
the distribution of � and r21 for the 694 sites that are identi-
fied by the PLEMT test but not the t-test, for the 281 sites that
are identified by the t-test but not the PLEMT test, and for the
2418 overlapping sites that are identified by both the PLEMT test
and the t-test, respectively. The lower three panels of Figure 3
displays the distributions of � and r21 for the 569 sites that are
identified by the PLEMT test but not theMELRT test, for the 338
sites that are identified by the MELRT test but not the PLEMT
test, and for the 2542 sites that are identified by both the PLEMT
test and the MELRT test, respectively.

It is clear that the sites identified by the PLEMT test only
but not the t-test havemore significant variance differences than
mean differences between the cancer and normal groups, which
is the scenario the proposed test is designed for. In contrast,

those sites that are identified by the t-test only have more sig-
nificant mean differences than variance differences between the
cancer and normal groups in general. For the overlapping 2418
sites that are identified by both the PLEMT test and the t-test, the
majority have much larger differences in means than the sites
identified by only one method. Thus, these sites are relatively
easier to be identified as all methods look for mean differences.
Moreover, for those sites that have relatively small mean differ-
ences (but still have larger mean differences than sites that are
identified by the PLEMT test only), they have large differences
in variance in general. Thus, the PLEMT test is able to iden-
tify them, although simulation studies suggested a slightly lower
power for the PLEMT test in such scenarios than the t-test. Sim-
ilar patterns can be found when comparing the PLEMT test and
the MELRT test. An interesting phenomenon is that for the 338
sites identified by the MELRT test only but not the PLEMT test

Table . ×  tables for the number of sites identified by the PLEMT test versus t-test, and the PLEMT test versus the MELRT test.

PLEMT PLEMT

q-Value< 0.05 ≥ 0.05 q-Value< 0.05 ≥ 0.05

t-test q-value< .   MELRT < 0.05  
q-value≥ .  , ≥ 0.05  ,
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Figure . Upper panels: distributions of the standardized mean difference � and the ratio of standard deviations r21 for the , ,  sites that are identified by the
PLEMT test but not the t-test, by the t-test but not the PLEMT test, by both the PLEMT test and the t-test, respectively; Lower panels: distributions of� and r21 for the ,
,  sites that are identified by the PLEMT test but not the MELRT test, by the MELRT test but not the PLEMT test, by both the PLEMT test and the MELRT test. The 
CpG sites between the clouds in the lower middle panel are highlighted in red.

(lower middle panel of Figure 3), there are 9 points between the
clouds (highlighted in red), where the differences in bothmeans
and variances are very small. As shown later, our further exami-
nation suggests that those sites identified by theMELRT testmay
be false positive.

We examine the top 50 sites with most significant results
from the PLEMT test among the 694 sites that are identi-
fied by the PLEMT test but not the t-test. By estimating the
proportion of differentially methylated subjects in the cancer
group compared to those in the normal group, we find the
mixture feature at 16 out of the 50 sites (i.e., close to one-third)
based on the estimated λ. For example, at site cg26457013, the
proportion of differentially methylated subjects in the cancer
group compared to those in the normal group is 22%, with
estimated (β1, β2) = (−86.79,−5.52). At site cg11905589,
the proportion of differentially methylated subjects in the
cancer group compared to those in the normal group is 78%,
with estimated (β1, β2) = (−10.87,−71.68). At both sites,
there are sizable differences in means and variances. Specifi-
cally, we have (�, r21) = (0.28, 0.76) at site cg26457013, and
(�, r21) = (0.11, 0.70) at site cg11905589. We further examine
the 9 CpG sites between the clouds in the lower middle panel
of Figure 3 with small differences in both means and variances
that are identified by the MELRT test but not the PLEMT test,
where we apply all eight tests investigated in the simulation
studies on these nine sites. The results suggest that some of the
identified sites might have been false positive since all other

six existing tests generate large p-values (results are included in
Section S3 of online supplementary materials).

We compare the predictive power of significant CpG sites
detected by PLEMT, MELRT, and t-test. The top ranked CpG
sites (by statistical significance) detected by the three methods
are largely overlapped, because most of them show differences
in average methylation levels. To emphasize the distinctions of
different methods, we ignore the common ones and pick top 30
CpG sites uniquely identified by these three tests, and then use
them as predictors to classify cancer and normal samples. We
use random forest (Breiman 2001) as the classification method,
and compare the receiver operating characteristics (ROC)
curves generated from 100 runs of three-fold cross-validation.
As shown in Figure 4, the area under the ROC curve of PLEMT
is greater than that of MELRT and t-test, (AUC: 0.76, 0.66, and
0.64 for PLEMT, MELRT, and t-test, respectively). This result
indicates that compared with the other two methods, PLEMT
identifies CpG sites that can better distinguish cancer patients
from normal people.

We further investigate the 15 genes that the top 15 CpG sites
reside among those CpG sites that were uniquely identified by
the proposed PLEMT method only but not by the t-test or by
the MELRT method. Out of the 15 genes, 9 of them have been
reported to be associated with cancer. These include genes that
are reported to be related with breast cancer: PMP22 (Winslow,
Leandersson, and Larsson 2013), AIM2 (Liu, Yi, and Liu 2015),
colorectal cancer: CNGA3 (Shaikh et al. 2015), ovarian cancer
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Figure . Receiver operating characteristics (ROC) curves for the PLEMT test, the
MELRT test, and t-test using random forest as the classification method.

HOXB8 (Stavnes et al. 2013), liver cancer HNF4A (Ning et al.
2010), pancreatic cancer PCDHB2 (Carter et al. 2010), and can-
cer progression STRN4 (Wong et al. 2014), CHCHD4 (Yang
et al. 2012), and VHL (Kim andKaelin 2004), where the number
in the parenthesis is the rank of p-value among the 15 genes.

In summary, the proposed PLEMT test has identified novel
sites of potential interest that are missed by the commonly used
t-test and the MELRT test, and has better predictive powers.
Therefore, it can serve as a useful complement to the standard
tests.

6. Discussion

In this article, we proposed a novel pseudolikelihood-based EM
test to identify differentially methylated loci. Specifically, we
developed a semiparametric model to account for heterogene-
ity between differentially methylated subjects and nondifferen-
tially methylated subjects in the cancer group, and capture the
differences in higher order moments (e.g., mean and variance)
between subjects in the cancer and normal groups. We con-
structed a novel penalized pseudolikelihood to eliminate the
unknown baseline density function and circumvent the nonreg-
ularity problems.We also proposed an EM algorithm-based test
for computational efficiency and stability, which follows a sim-
ple chi-squared limiting distribution. Through simulation stud-
ies we demonstrated the feasibility and power of the proposed
test. The proposed test outperformed the existing tests especially
when there is variance difference between two groups. We have
also conducted sensitivity analyses to empirically show that the
results are not sensitive to the tuning parameters C, S, and Z.
Cross-validation procedures can be used here to obtain an opti-
mal choice of tuning parameters. However, these procedures are
usually computational expensive. Instead,C can be simply set at
20 for reasonable Type I errors and power, as suggested from our
sensitivity analyses.

The proposed PLEMT test with pairwise conditioning proce-
dure has the advantage of eliminating the nuisance baseline den-
sity function f (·). However, the baseline density function may
be assumed known in other scenarios. For example, an accurate
estimate of the baseline density function could be obtained
when the data of large size of normal subjects are available. In
this case, there is no need to use the proposed conditioning pro-
cedure to eliminate the nuisance baseline function. Instead, a
penalized likelihood ratio test for admixture model can be used
to test for homogeneity (Fu, Chen, and Kalbfleisch 2006b; Di
and Liang 2011). As suggested by a referee, we have conducted
simulation studies to compare the performance of the proposed
PLEMT test ( f (·) unknown) with the penalized likelihood
ratio test for admixture model ( f (·) known); see the additional
simulation results in the supplementary materials. We found
that the penalized likelihood ratio test for admixture model
has more power compared with the proposed PLEMT test,
especially when the proportion parameter is relatively small.

In this article, the sample sizes in normal and cancer groups
are set to be equal. In some cancer datasets, there may be more
cancer samples than normal samples, or more normal samples
than cancer samples for relatively rare/under-studied cancer.
We have conducted additional simulation studies when the two
groups are unbalanced. The results for Type I errors and power
comparisons are summarized in Table S7 in the supplementary
materials. The balance of two groups has some impacts on Type
I errors and permutationmethods may be needed to better con-
trol Type I errors if two groups are highly unbalanced.

We compare the Type I errors of the proposed PLEMT test
using χ2 distribution with the Type I errors of the permutation-
based PLEMT test. The Type I errors of the proposed PLEMT
test and the permutation-based PLEMT test are similar. Due to
the time cost of the permutation-based test, we suggest the use
of the proposed PLEMT test with a simple χ2 asymptotic distri-
bution when the sample size is sufficiently large.

In this article, the prespecified kernel function k(v ) =
(v, v2) is considered for illustration. The misspecification of the
kernel function does not lead to inflated Type I errors. How-
ever, better choice of the kernel functionmay yield higher power.
We are currently working on incorporating the Box–Cox trans-
formation into the generalized exponential tilt model for more
model flexibilities.

The proposedmethod aims to detectmethylation loci that are
marginally different between the case and control groups, which
plays the same role as the sure independent screening method
for high-dimensional feature selection (Fan and Lv 2008). How-
ever, this marginal approach may neglect the methylation loci
that are jointly associated with cancer development but are
marginally uncorrelated. To address this problem in the frame-
work of linearmodels and generalized linearmodels, Fan and Lv
(2008) and Fan, Samworth, and Wu (2009) proposed an itera-
tive sure independent screening method, which iteratively adds
a new feature into the current variables and then perform the
sure screening step. Different from these existing approaches,
our case group may contain misclassification, such that the can-
cer status cannot be directly modeled by a logistic regression. It
is of interest to develop an iterative screening method to handle
our methylation data.
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For analysis of DNA methylation data in cancer research,
age has been considered as a strong demographic risk factor
(Christensen et al. 2009). Chen et al. (2013) proposed an age-
adjusted nonparametric method to detect differentially methy-
lated loci. Specifically, the rank-based Kruskal–Wallis test was
conducted separately in different age groups, then a combined
p-value was reported. This method focuses on the differences
in medians, and is expected to be underpowered when there are
differences in variances. Alternatively, Huang, Chen, andHuang
(2013) proposed an age-adjusted nonparametricmethod to cap-
ture the differences in both means and variances, where the
Neuhaeuser’s one-sided test (Neuhäuser 2003) was conducted
within each age group and a combined p-value was reported.
Permutation was used to obtain the age-specific p-values. How-
ever, both methods are not easy to extend to more than one
confounders and do not account for the heterogeneity in DNA
methylation among cases. The proposed PLEMT test can be
extended to regression models where multivariate covariates
are simultaneously adjusted and heterogeneity in cases can be
accounted for. Such an extension is currently under investiga-
tion and will be reported in the future.

SupplementaryMaterials
Asymptotic results, proofs, additional simulation results, and additional
data application results are available with this article as online supplemen-
tary materials.
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