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A LIKELIHOOD RATIO FRAMEWORK FOR HIGH-DIMENSIONAL
SEMIPARAMETRIC REGRESSION
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We propose a new inferential framework for high-dimensional semipara-
metric generalized linear models. This framework addresses a variety of chal-
lenging problems in high-dimensional data analysis, including incomplete
data, selection bias and heterogeneity. Our work has three main contribu-
tions: (i) We develop a regularized statistical chromatography approach to
infer the parameter of interest under the proposed semiparametric general-
ized linear model without the need of estimating the unknown base measure
function. (ii) We propose a new likelihood ratio based framework to construct
post-regularization confidence regions and tests for the low dimensional com-
ponents of high-dimensional parameters. Unlike existing post-regularization
inferential methods, our approach is based on a novel directional likelihood.
(iii) We develop new concentration inequalities and normal approximation
results for U-statistics with unbounded kernels, which are of independent in-
terest. We further extend the theoretical results to the problems of missing
data and multiple datasets inference. Extensive simulation studies and real
data analysis are provided to illustrate the proposed approach.

1. Introduction. Modern data are characterized by their high dimensional-
ity, complexity and heterogeneity. More specifically, the datasets usually contain
(1) a large number of explanatory variables, (2) complex sampling and missing
value schemes due to design or incapability of contacting study subjects and
(3) heterogeneity due to the combination of different data sources. To handle
these challenges, regularization based methods are proposed. For instance, the
L1-regularized maximum likelihood estimation for linear models is proposed by
[36] and the nonconvex penalized maximum likelihood estimation is considered
by [11]. During the past decades, these methods enjoy great success in handling
high- dimensional data. However, the existing framework is not flexible enough
to handle more challenging settings with incomplete data, complex sampling, and
multiple heterogeneous datasets. To motivate our study, consider the following two
examples.

EXAMPLE 1 (Missing data and selection bias). Given a univariate random
variable Y and a d dimensional random vector X, assume that Y given X follows
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from a generalized linear model with the canonical link,

(1.1) p(y | x) = exp
{
xT β · y − b

(
xT β, f

) + logf (y)
}
,

where β is a d-dimensional unknown parameter, f (·) is a known base measure
function and b(·, ·) is a normalizing function. Let (Y1,X1), . . . , (Yn,Xn) denote
n independent copies of (Y,X). In high-dimensional data analysis, the samples
(Y1,X1), . . . , (Yn,Xn) may contain missing values or they are observed after some
unknown selection process. To account for the effect of missingness or selection
bias, we introduce an indicator variable δi , whose value is 1 if (Yi,Xi ) is com-
pletely observed or selected, and 0 otherwise. Due to the selection effect, the
standard penalized maximum likelihood estimator under model (1.1) with only
selected data (i.e., δi = 1) is often inconsistent for β . To account for the missing
data and selection bias, we need to develop a new framework to infer the high-
dimensional parameter β .

EXAMPLE 2 (Multiple datasets inference with heterogeneity). Modern data-
sets are often collected by aggregating multiple data sources. Analysis of such
types of data has been studied in the fields of multitask learning in machine learn-
ing [1, 22] and seemingly unrelated regression in econometrics [33]. In the multi-
task learning setting, each dataset corresponds to a learning task. More specifically,
assume that the data in the t th task, t = 1, . . . , T are i.i.d. copies of (Y(t),X(t)),
which follows from (1.1), that is,

(1.2) p(y(t) | x(t)) = exp
{
xT

(t)β t · y(t) − b
(
xT

(t)β t , ft
) + logft (y(t))

}
,

where β t is a task-specific regression parameter. Most of the existing literature
only focuses on the analysis of homogeneous datasets that means ft (·) = f (·) for
any t = 1, . . . , T . However, the aggregated data are often highly heterogeneous.
For instance, the learning tasks obtained from different areas may contain clas-
sification for binary responses as well as regression for continuous and count re-
sponses, which implies different forms of ft (·) in (1.2). Thus, to take into account
data heterogeneity, we need a new inferential procedure for β t that does not de-
pend on the knowledge of ft (·).

To handle the above challenges, we propose a new semiparametric model, which
takes the form (1.1) but with both β and f (·) as unknown parameters. It naturally
handles data with missing values, complex sampling and heterogeneity. This paper
contains three major contributions.

Our first contribution is to provide a new regularized statistical chromatography
procedure to directly estimate the finite dimensional regression parameter β and
leave the nonparametric component f (·) as a nuisance. In particular, we model the
data at a more refined granularity of rank and order statistics, so that sophisticated
conditioning arguments and the structure of exponential family distributions can
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be exploited to separate the parameter of interest and nuisance component (thus
the whole procedure is named “statistical chromatography”). Once the parameter
of interest and nuisance parameter are separated, we eliminate the nuisance com-
ponent to construct a pseudo-likelihood of rank statistics and exploit lower order
approximation to speed up computation.

Our second contribution is to develop a new likelihood ratio inferential frame-
work for low-dimensional parameters under the high-dimensional model. In par-
ticular, we propose a directional likelihood ratio statistic for hypothesis testing and
a maximum directional likelihood estimator for confidence regions in the high-
dimensional setting. Compared to the existing post-regularization inferential meth-
ods, our procedure has two important features: (1) We allow general regularized
estimators including nonconvex regularized estimators and pseudo-likelihood; and
(2) We do not need any signal strength assumption for model selection consis-
tency. Our third contribution is to develop new technical tools for studying high-
dimensional inference related to U-statistics. First, we prove a concentration in-
equality in Lemma A.3 for U-statistics with unbounded kernels with subexponen-
tial decay. A more general maximal inequality is shown in Lemma F.2 of Sup-
plementary Material [29], which plays the key role to derive improved rates of
convergence for multiple datasets inference problems. Second, to apply the central
limit theorem for U-statistics, we provide the theoretical justification of the Hájek
projection in increasing dimensions for normal approximation. More details are
provided in Lemma A.5. These U-statistic results are of independent interest.

Comparison with related works: The proposed model is closely related to the
proportional likelihood ratio model [7, 23]. However, unlike their model we do not
require the density assumption for the nonparametric function. The proposed esti-
mation procedure is related to the permutation based test [16] and the second-order
approximation reduces to the pairwise likelihood considered by [7, 18]. To the best
of our knowledge, the proposed estimation method dates back to the original work
by [18], in which a pairwise likelihood method is used to eliminate the nonpara-
metric function. We follow their idea and generalize it to the missing data and
multitask learning problems. Our investigation mainly focuses on the theoretical
properties in high-dimensional regimes, which have not been studied before.

In the literature, a marginal rank likelihood method is proposed to eliminate the
nuisance functions in the linear transformation model [30] and the copula model
[14]. However, unlike the marginal rank likelihood, our likelihood function can be
viewed as a conditional rank likelihood constructed by the conditional rank prob-
ability given the order statistics. To handle high-dimensional data with missing
values, [34] proposed an expectation-maximization algorithm. When the explana-
tory variables are missing completely at random (MCAR), Loh and Wainwright
[20] developed the theory of a nonconvex optimization approach. Compared with
these works, we consider a much broader class of missing data mechanisms.

In the linear models, the estimation, prediction error bounds and variable se-
lection consistency for the L1-regularized estimator have been well studied by
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[5, 6, 24, 27, 42]. More recently, the estimation bounds and oracle properties for
the nonconvex regularized estimator are established by [12, 21, 38], among others.
In addition to these estimation results, significant progress has been made toward
understanding the high-dimensional inference (e.g., constructing confidence inter-
vals or testing hypotheses) under the generalized linear models. Examples include
[2–4, 15, 37, 41]. All these procedures lead to asymptotically normally distributed
estimators that can be used to construct Wald-type statistics. Other related inferen-
tial procedures include the data-splitting method [26, 39], stability selection [25,
32], L2 confidence set [28] and conditional inference [19, 35]. Under a stronger
oracle property, the asymptotic normality of nonconvex estimators is established
by [11].

This paper proposes a new directional likelihood based method for constructing
confidence regions and testing hypotheses in high dimensions. Compared to the
existing work on high-dimensional inference under the generalized linear model,
our method and theory are different in the following three aspects. First, our pro-
posed semiparametric model is much more sophisticated than the generalized lin-
ear model. In particular, the U-statistic structure due to the statistical chromatog-
raphy leads to additional technical challenge (see the third contribution above)
and requires more refined analysis to control the variability of the estimated nui-
sance parameters in the proposed directional likelihood function. Second, from
the hypothesis testing perspective, our main inferential tool is a new directional
likelihood ratio test, whereas the existing methods mainly focus on the Wald or
score- type tests. Third, we can conduct the inference based on local solutions of
a nonconvex regularized problem, while the method in [37] based on inverting the
Karush–Kuhn–Tucker condition may not be directly applicable.

The rest of this paper is organized as follows. In Section 2, we formally define
the proposed semiparametric model. In Section 3, we introduce the main ideas of
regularized statistical chromatography, along with the directional likelihood based
inference for hypothesis tests and confidence regions. In Section 4, we analyze the
theoretical properties of the obtained confidence regions and establish the asymp-
totic distributions of the directional likelihood ratio test statistics. Section 5 con-
tains both simulation and real data analysis results. The last section includes re-
marks and discussions. The proofs of main results are shown in the Appendix.

Notation: For positive sequences an and bn, we write an ! bn, if an/bn = O(1).
We denote an ≍ bn if an ! bn and bn ! an. Denote Xn "X for some random vari-
able X if Xn converges weakly to X. For v = (v1, . . . , vd)T ∈ Rd , and 1 ≤ q ≤ ∞,
we define ∥v∥q = (

∑d
i=1 |vi |q)1/q , ∥v∥0 = | supp(v)|, where supp(v) = {j : vj ≠

0} and |A| is the cardinality of a set A. Denote ∥v∥∞ = max1≤i≤d |vi | and
v⊗2 = vvT . For a matrix M, let ∥M∥2, ∥M∥∞, ∥M∥1 and ∥M∥L1 be the spec-
tral, elementwise supreme, elementwise L1 and matrix L1 norms of M. For two
matrices M1 and M2, we write M1 ≤ M2 if M2 − M1 is positive semidefinite. For
S ⊆ {1, . . . , d}, let vS = {vj : j ∈ S} and Sc be the complement of S. The gradient
and subgradient of a function f (x) are denoted by ∇f (x) and ∂f (x), respectively.
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For a univariate function f (x), its derivative can also be represented by f ′(x). Let
∇Sf (x) denote the gradient of f (x) with respect to xS . Let Id be the d by d iden-
tity matrix. Let ⌊k⌋ denote the largest integer less than k. Throughout the paper, we
use bold letters to denote vectors and matrices and unbold letters to denote scalars.
We use the following definition of subexponential random variables.

DEFINITION 1.1. A random variable Y is subexponential if there exist con-
stants C,C′ > 0, such that P(|Y | ≥ δ) ≤ C ′ exp(−Cδ), for any δ > 0.

2. The semiparametric generalized linear model. We first define a semi-
parametric natural exponential family model, which further leads to the definition
of the semiparametric generalized linear model.

DEFINITION 2.1 (Semiparametric natural exponential family). A random
variable Y ∈ Y ⊆ R satisfies the semiparametric natural exponential family (spEF)
with parameters (θ, f ), if its density satisfies

(2.1) p(y; θ, f ) = exp
{
θ · y − b(θ, f ) + logf (y)

}
,

where f (·) is an unknown base measure, θ is an unknown canonical parameter,
and b(θ, f ) = log

∫
Y exp(θ · y)f (y) dy < ∞ is the log-partition function.

The spEF extends the classical natural exponential family by treating the base
measure f (y) as an infinite dimensional parameter. By choosing a suitable base
measure, the spEF recovers the whole class of natural exponential family distri-
butions. However, the spEF suffers from the identifiability issue. For instance,
spEF(θ, f ) is identical to spEF(θ, c · f ), where c is any positive constant. To ad-
dress this problem, we need to impose some identifiability conditions, such as
f (y0) = 1, for some y0 ∈ Y , or

∫
Y f (y) · dy = 1 if f (y) is integrable. Later, we

can see that these identifiability conditions will not affect our inference procedures.
We now define the semiparametric generalized linear model.

DEFINITION 2.2 (Semiparametric generalized linear model). Given a vector
of d-dimensional covariates X = (X1, . . . ,Xd)T and response Y ∈ R, assume Y
given X follows the semiparametric natural exponential family

(2.2) p(y | x) = exp
{
θ(x) · y − b

(
θ(x), f

) + logf (y)
}

and θ(x) = βT x,

where b(·, ·) is the log-partition function and β is a d-dimensional parameter. We
say that Y given X follows the semiparametric generalized linear model (GLM)
with parameters (β, f ).

Note that we directly set θ(x) = βT x in (2.2), because we implicitly adopt the
canonical link, that is, we choose a link function g such that g−1(·) = b′(·, f ).
Compared with the classical generalized linear models (GLMs), the proposed
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model contains unknown parameters β and f (·), where β characterizes the co-
variate effect, and f (·) determines the distribution in the natural exponential fam-
ily. For instance, the linear regression with standard Gaussian noise has f (y) =
exp(−y2/2); the logistic regression has f (y) = 1; and the Poisson regression has
f (y) = 1/y!. Thus, these GLMs are parametric submodels of the semiparametric
generalized linear model.

REMARK 1. Some exponential family distributions, such as the normal dis-
tribution, involve dispersion parameters. In this case, the semiparametric natural
exponential family can be written as

p(y; θ , τ, f ) = exp
{[

θ · y − b(θ, f )
]
/a(τ ) + logf (y; τ )

}
,

where f (·; ·) is an unknown positive function, θ is the natural parameter, a(τ ) is
a known function of the dispersion parameter τ and b(θ, f ) is the log-partition
function. Then, with θ(x) = βT x, the semiparametric generalized linear model
reduces to

p(y | x;β, τ, f ) = exp
{
β̄

T
x · y − b̄

(
β̄

T
x, τ, f

) + logf (y; τ )
}
,

where β̄ = β/a(τ ) and b̄(β̄
T
x, τ, f ) = b(a(τ )β̄

T
x, f )/a(τ ). Hence, with the new

reparametrization β̄ , the proposed model is identical to (2.2), except that we allow
b̄(·) and f (·; ·) to depend on the dispersion parameter τ . Later, we will see that
this dependence does not lead to any extra level of difficulty in terms of inference
on β̄ .

The semiparametric generalized linear model has broad applicability to address
the challenging problems involving complex and heterogeneous data. In the fol-
lowing, we illustrate how the semiparametric model can be used to handle the
missing data and selection bias problems in Example 1 and heterogeneous multi-
task learning problem in Example 2.

Revisit of Example 1: Missing data and selection bias. Recall that Yi given Xi

follows the GLM in (1.1) and we are interested in making inference on β . To
account for the missing data and selection effect, we assume that the selection
indicator δi given Yi and Xi satisfies the following decomposable selection model.

DEFINITION 2.3 (Decomposable selection model). The missing data or se-
lection model is decomposable, if there exist two nonnegative functions g1(·) and
g2(·) such that P(δi = 1 | Yi,Xi ) = g1(Yi) · g2(Xi ), where

∫
g1(y) · dy = 1 and∫

g2(x) · dx = 1.

Under the assumption of MCAR, the missing data model satisfies P(δi =
1|Yi,Xi ) = P(δi = 1), which implies that MCAR is decomposable. Indeed, the
decomposable model is much more general. Consider the following partition of
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covariates Xi = (Xio,Xim), and assume that (Yi,Xim) are subject to missingness.
It is seen that the missing at random (MAR), defined by P(δi = 1|Yi,Xi ) = P(δi =
1|Xio), is also decomposable. So is the outcome dependent sampling model [17].
In addition, the decomposable model can be missing not at random (MNAR). For
instance, if Yi is subject to missingness and the missing mechanism only depends
on the potentially unobserved value of Yi , then the missing data pattern is not at
random but is still decomposable. Thus, the decomposable selection model is a
very flexible nonparametric model for missing data and selection bias. In general,
the functions g1(·) and g2(·) may not be identifiable. Later, we will see that this
nonidentifiability issue can be handled by using the proposed method.

To specify the likelihood based on the selected data, we derive the probability
density function of Yi given Xi and δi = 1. Using the Bayes formula,

p(yi | xi , δi = 1) = P(δi = 1 | yi,xi ) · p(yi | xi )/Ti(xi ),

where Ti(xi ) = ∫
P(δi = 1 | yi,xi )p(yi | xi ) dyi and (yi,xi ) is the observed value

of (Yi,Xi). Under the generalized linear model in (1.1) and the decomposable
selection model, we obtain

(2.3) p(yi | xi , δi = 1) = exp
{
xT

i β · yi − b
(
xT

i β, f m) + logf m(yi)
}
,

where f m(y) = g1(y)f (y). Hence, if Yi given Xi follows the GLM (1.1) or more
generally the semiparametric version (2.2) and the selection model is decompos-
able, then Yi given Xi and δi = 1 satisfies (2.2) with the same unknown parameter
β and the unknown based measure f m(y) = g1(y)f (y). We call this the invari-
ance property of semiparametric GLMs under the decomposable selection model.
Hence, the inference on β with missing data and selection bias is equivalent to the
inference problem under the semiparametric GLM (2.2).

Revisit of Example 2: Multiple datasets inference with heterogeneity. In Exam-
ple 2 of Section 1, to take into account of data heterogeneity, we can assume that
the based measure function ft (·) is a task-specific unknown function. Thus, the
multiple datasets inference with heterogeneity can be handled by the semipara-
metric GLM framework, and an inferential method that is invariant to f (·) under
the model (2.2) is needed.

3. Semiparametric inference. In this section, we consider how to construct
confidence intervals and perform hypothesis tests for a single component of β un-
der the semiparametric GLM. The extension to the confidence regions and tests for
multidimensional components of β is standard and is deferred to the Supplemen-
tary Material [29].

3.1. Regularized statistical chromatography. Due to the presence of the un-
known function f (·), the likelihood of the semiparametric GLM is complicated,
making likelihood based inference of β intractable. To handle this problem, we
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propose a new procedure called statistical chromatography to extract information
on β .

For i = 1, . . . , n, suppose that the data (Yi,Xi ) are i.i.d. By the discriminative
modeling approach, the probability distribution of the data is p(y,x;β, f ) = p(y |
x;β, f ) · p(x), where y = (y1, . . . , yn) and x = (x1, . . . ,xn) are the observed val-
ues of Y = (Y1, . . . , Yn) and X = (X1, . . . ,Xn). Since the marginal distribution
of X does not involve β or f , we only focus on the first conditional distribu-
tion p(y | x;β, f ). However, its dependence on β and f is still intertwined and
the inference on β is hindered by the nuisance parameter f . To tackle this prob-
lem, we need to further separate the parameters β and f in the conditional like-
lihood. To this end, we decompose Y = (Y1, . . . , Yn) into R = (R1, . . . ,Rn) and
Y (·) = (Y(1), . . . , Y(n)), which denote the rank and order statistics of Y , respec-
tively. Let r and y(·) denote the observed values of R and Y (·), respectively. Thus,
we have

(3.1) p(y | x;β, f ) = P(R = r | x,y(·);β) · p(y(·) | x;β, f ),

where by the definition of conditional probabilities we can show that

(3.2)

P(R = r | x,y(·);β) =
∏n

i=1 p(yi | xi;β, f )
∑

π∈&

∏n
i=1 p(yπ(i) | xi;β, f )

= exp(
∑n

i=1 βT xi · yi)
∑

π∈& exp(
∑n

i=1 βT xi · yπ(i))
,

where & is the set of all one-to-one maps from {1, . . . , n} to {1, . . . , n}. The intu-
ition behind the data decomposition is that the rank statistic given the order statis-
tic has no information on f . Mathematically, the product

∏n
i=1 f (yi) appearing in

both numerator and denominator of (3.2) only depends on Y (·) and is eliminated.
Since we separate parameters β and f at a more refined granularity of rank and
order statistics, we call this procedure as statistical chromatography.

Given the chromatography decomposition in (3.1), one may opt to only keep
the conditional probability (3.2) for estimation and inference of β . However, the
probability in (3.2) is computationally intensive due to the combinatorial nature of
permutations. To this end, we consider a surrogate of P(R = r | x,y(·);β) using the
kth order information. For notational simplicity, we only present k = 2, and leave
the discussion for k > 2 to the Supplementary Material [29]. For any i and j , let
RL

ij denote the local rank statistic of Yi and Yj among the pair (Yi, Yj ) [i.e., RL
ij =

(1,2) or (2,1)]. Instead of considering the full conditional probability in (3.2),
we study the product of all possible combinations of the local rank conditional
probability,

(3.3)

∏

i<j

P
(
RL

ij = rL
ij | xi ,xj ,y

L
(i,j);β

)

=
∏

i<j

exp(βT xiyi + βT xj yj )

exp(βT xiyi + βT xj yj ) + exp(βT xiyj + βT xj yi)
,
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where YL
(i,j) = (min(Yi, Yj ),max(Yi, Yj )), and yL

(i,j) and rL
ij are the observed val-

ues of YL
(i,j) and RL

ij , respectively. Applying the logarithmic transformation to
(3.3), we obtain the function

(3.4) ℓ(β) = −
(
n

2

)−1 ∑

1≤i<j≤n

log
(
1 + Rij (β)

)
,

where Rij (β) = exp{−(yi − yj ) · βT (xi − xj )}. It is also known as the pairwise
log-likelihood, which has been considered by [7, 8, 18]. In high dimensions, we
may add a regularization term to ℓ(β), which leads to the regularized chromatog-
raphy approach.

3.2. Confidence interval and hypothesis test: A likelihood ratio approach.
Given the composite log-likelihood (3.4), we consider the problem of testing a
pre-specified component of β . Without loss of generality, assume that β can be
partitioned as β = (α,γ T )T , where α ∈ R and γ ∈ Rd−1. Now, we consider the
null hypothesis H0 : α = α0, and treat γ as a (d − 1)-dimensional nuisance param-
eter. Let β∗ be the true value of β . It is well known that the classical likelihood
ratio test is not directly applicable to testing the null hypothesis H0, when the
nuisance parameter γ is high dimensional. In what follows, we propose a new di-
rectional likelihood function and the corresponding likelihood ratio test for H0,
which provides valid inferential results in high-dimensional settings.

Specifically, we define the directional likelihood function for α as

(3.5) ℓ̂(α) = ℓ
(
α, γ̂ + (α̂ − α)ŵ

)
,

where β̂ := (α̂, γ̂ ) is an initial estimator for β∗, and ŵ is an estimator for

(3.6) w∗T := Hαγ (Hγ γ )−1 ∈ Rd−1 where H = −E
{∇2ℓ

(
β∗)}

.

Here, the estimators β̂ and ŵ will be introduced later and Hαγ and Hγ γ are the
corresponding partitions of H. Later, we can show that the directional likelihood
function ℓ̂(α) can be treated as a standard likelihood function for a single unknown
parameter α. For instance, we define the maximum directional likelihood estimator
as

(3.7) α̂P = argmax
α∈R

ℓ̂(α).

To test the null hypothesis H0 : α∗ = α0, we define the maximum directional like-
lihood ratio test (DLRT) statistic as

(3.8) )n = 2n
{
ℓ̂
(
α̂P ) − ℓ̂(α0)

}
.

In the following, we explain the intuition behind the directional likelihood (3.5)
based on the geometry of submodels in the semiparametric literature and the or-
thogonality property for nuisance parameters. We note that a similar orthogonality
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property has been used by [3, 4] for the post-selection inference. We leave the
detailed comparison and discussion to Remark 2.

Given the likelihood function ℓ(β), we consider a parametrization for a surface
S ⊂ Rd+1, in which the coordinates of points can be expressed as (β,ℓ(β)) ∈
Rd+1. Consider two smooth functions α(·) ∈ R and γ (·) ∈ Rd−1, satisfying
α(0) = α∗, α′(0) ≠ 0 and γ (0) = γ ∗. Define a smooth curve δ : I → Rd+1, which
maps t ∈ I to (α(t),γ (t), ℓc(t)), where I is an interval in R containing a small
neighborhood of 0 and ℓc(t) = ℓ(α(t),γ (t)). Note that the curve δ is within the
surface S and passes through the true values (α∗,γ ∗,ℓ(β∗)) when t = 0. Since the
curve δ is determined by the form of (α(t),γ (t)), we need to decide how to choose
(α(t),γ (t)) such that the likelihood ℓc(t) along the curve has desired properties.
Taking the derivative with respect to t , the score function of ℓc(t) at t = 0 is given
by

Sc
(
α∗,γ ∗) := dℓc(t)

dt

∣∣∣∣
t=0

= α′(0) · ∇αℓ
(
α∗,γ ∗) + [

γ ′(0)
]T · ∇γ ℓ

(
α∗,γ ∗)

.

To construct a valid test statistic, the key insight is to ensure that Sc(α,γ ) is robust
to the perturbation of the high-dimensional nuisance parameter γ . Mathematically,
we require the following orthogonality property, that is, E[∇γ Sc(α

∗,γ ∗)] = 0;
see Remark 2 for further discussion. This implies α′(0)Hαγ + [γ ′(0)]T Hγ γ = 0,
which is equivalent to γ ′(0)/α′(0) = −w∗ by (3.6). Thus, for t in a small neigh-
borhood of 0, the Taylor theorem implies

α(t) = α∗ + α′(0)t + o(t) and γj (t) = γ ∗
j − α′(0)w∗

j t + o(t),

where 1 ≤ j ≤ d − 1. Ignoring the higher order terms, this gives ℓc(t) = ℓ(α∗ +
α′(0)t,γ ∗ −α′(0)w∗t). Finally, a reparametrization of ℓc(t) with α := α∗ +α′(0)t

yields a function ℓ̄c(α) of α, defined as

ℓ̄c(α) := ℓc

(
α − α∗

α′(0)

)
= ℓ

(
α,γ ∗ + (

α∗ − α
)
w∗)

.

Replacing α∗, γ ∗ and w∗ by the corresponding estimators α̂, γ̂ and ŵ, the function
ℓ̄c(α) becomes the directional likelihood in (3.5). This gives the geometric intu-
ition on how the directional likelihood is derived. When ℓ(β) is the log-likelihood
function, the curve (α(t),γ (t)) corresponds to the least favorable curve up to a
reparametrization [31].

Next, we consider how to obtain estimators α̂, γ̂ and ŵ in the directional like-
lihood (3.5). To estimate β∗, our proposed framework allows a wide class of esti-
mators β̂ = (α̂, γ̂ ) including the regularized estimators with nonconvex (or folded
concave) penalty functions; see Remark 3. To estimate the (d − 1)-dimensional
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vector w∗, we use the following Lasso-type estimator:

(3.9) ŵ = arg max
w

{1
2

wT ∇2
γ γ ℓ(β̂)w − wT ∇2

γαℓ(β̂) − λ1∥w∥1

}
,

where λ1 ≥ 0 is a tuning parameter.
To analyze the semiparametric GLM, one technical challenge is that ∇ℓ(β) is a

high-dimensional U-statistic with a possibly unbounded kernel function, that is,

∇ℓ(β) = 2
n(n − 1)

·
∑

1≤i<j≤n

Rij (β) · (yi − yj ) · (xi − xj )

1 + Rij (β)
.

To decouple the correlation between summands in ∇ℓ(β), we resort to the Hájek
projection [13] and define

(3.10) Ûn = 2
n

n∑

i=1

g
(
yi,xi ,β

∗)
where g(yi,xi ,β) = n

2
· E

{∇ℓ(β) | yi,xi
}
.

By definition, 2n−1g(yi,xi ,β
∗) is the projection of ∇ℓ(β∗) onto the σ -field gen-

erated by (yi,xi ), and we sum over all samples to construct Ûn. We therefore
approximate the U-statistic ∇ℓ(β∗) by the sum of independent random variables
Ûn. Let % = E{(g∗

i )
⊗2} denote the variance of g∗

i , where g∗
i = g(yi,xi ,β

∗). In
Theorem 4.1, we prove

n1/2 · (
α̂P − α∗) " N

(
0,4 · σ 2 · H−2

α|γ
)
,

where σ 2 = -αα − 2w∗T %γα + w∗T %γγ w∗, Hα|γ = Hαα − Hαγ H−1
γ γ Hγα and

-αα , %γα and %γγ are corresponding partitions of %. To construct confidence
intervals and Wald-type hypothesis test, one needs to estimate the asymptotic vari-
ance, which depends on the unknown covariance and Hessian matrices % and H.
By exploiting the U-statistic structure of ∇ℓ(β), we can estimate % by

(3.11) %̂ = 1
n

·
n∑

i=1

{
1

n − 1

n∑

j=1,j≠i

Rij (β̂) · (yi − yj ) · (xi − xj )

1 + Rij (β̂)

}⊗2

.

Thus, we define σ̂ 2 = -̂αα − 2ŵT %̂γα + ŵT %̂γ γ ŵ. Moreover, we can estimate
Hα|γ by Ĥα|γ = −∇2

ααℓ(β̂) + ŵT ∇2
γαℓ(β̂). Therefore, a two-sided confidence in-

terval for α∗ with (1 − ξ) coverage probability is given by [α̂P − ζn−1/2, α̂P +
ζn−1/2], where ζ = 2σ̂ Ĥ−1

α|γ 0−1(1 − ξ/2).
In addition, to test the null hypothesis H0 : α∗ = α0, Theorem 4.2 shows

that the maximum directional likelihood ratio test statistic )n in (3.8) satisfies
(4σ 2)−1Hα|γ )n " χ2

1 . Hence our test with the significance level ξ is

(3.12) ψDLRT(ξ) = 1
{(

4 · σ̂ 2)−1 · Ĥα|γ · )n ≥ χ2
1ξ

}
,

where χ2
1ξ is the (1 − ξ)th quantile of a χ2

1 random variable. The null hypothe-
sis is rejected if and only if ψDLRT(ξ) = 1, and the associated p-value is given by
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PDLRT = 1 − χ2
1 ((4σ̂ 2)−1Ĥα|γ )n), where χ2

1 (·) is the c.d.f. of a chi-squared dis-
tribution with degree of freedom 1. In Corollary 4.2, we prove that the proposed
test can control the type I error asymptotically, that is, limn→∞ P(ψDLRT(ξ) = 1 |
H0) = ξ and the p-value is asymptotically uniformly distributed, that is, PDLRT "
Uniform[0,1], under H0.

REMARK 2 (Orthogonality condition). Recall that the orthogonality condi-
tion plays an important role in deciding the direction of the curve δ at t = 0 in our
geometric interpretation. Under the GLM and the median regression, [4] and [3]
developed an alternative method based on a similar orthogonality property, called
immunization, to perform post-selection inference. For instance, in the context of
the logistic regression model, the key idea of [4] is to construct an instrument
zi = z(xi ) ∈ R such that the orthogonality condition ∇γ E[{yi − G(βT xi )}zi] = 0
holds, where G(·) = exp(·)/(1 + exp(·)). Their test statistic for H0 : α∗ = α0 is

given by Tn = n−1 ∑n
i=1{yi − G(β̂

T
0 xi )}̂zi , where β̂0 = (α0, γ̂ ) for some regu-

larized estimator γ̂ and ẑi is an estimate of zi . They proved that under regularity
conditions n1/2Tn is asymptotically normal with mean 0 and the variance can be
consistently estimated. Our likelihood ratio method is different in the following
two aspects. First, while our procedure also relies on a similar orthogonality con-
dition, we do not explicit construct the instrumental variable zi in our testing pro-
cedure. Second, our test statistic is different. Namely, their test statistic Tn is based
on the sample version of the moment condition E[{yi −G(βT xi )}zi] = 0, whereas
our test statistic )n in (3.8) is based on the ratio of the directional likelihood.

4. Main results. We first prove the asymptotic normality of the maximum di-
rectional likelihood estimator α̂P in (3.7). We then derive the limiting distribution
of )n as well as the validity of the maximum directional likelihood ratio test in
(3.12) under the null hypothesis H0 : α∗ = α0.

In the following, we present some regularity conditions. Recall that we define
g(yi,xi ,β

∗) and H in (3.10) and (3.6), respectively. Denote

% = E
{
g
(
yi,xi ,β

∗)⊗2}
, Hα|γ = Hαα − Hαγ H−1

γ γ Hγα.

ASSUMPTION 4.1. Assume that Y is subexponential which satisfies Defini-
tion 1.1, and ∥X∥∞ ≤ m for a positive constant m. Assume that c ≤ λmin(%) ≤
λmax(%) ≤ c′, and c ≤ λmin(H) ≤ λmax(H) ≤ c′, for some constants c, c′ > 0.

It is easily seen that the subexponential condition holds for most commonly used
GLMs in practice. Following [37], we assume the bounded covariates for simplic-
ity. It can be easily relaxed to the sub-Gaussian or subexponential assumptions.
Note that % can be interpreted as the second moment of the Hájek projection,
which approximates the asymptotic variance of ∇ℓ(β∗), and Hα|γ is known as the
partial information matrix for α in the literature. This condition assumes that the
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eigenvalues of % and H are lower and upper bounded by positive constants. They
are standard regularity conditions even for low dimensional models.

The following main theorem establishes the asymptotic normality of the maxi-
mum directional likelihood estimator α̂P . Let s = ∥β∗∥0 and s1 = ∥w∗∥0, where
w∗ is defined in (3.6).

THEOREM 4.1. Under the semiparametric GLM in Definition 2.2 and
Assumption 4.1, assume that β̂ satisfies ∥&̂∥2 = OP(

√
s logd/n), ∥&̂∥1 =

OP(s
√

logd/n), and |&̂T ∇2ℓ(β∗)&̂| = OP(s logd/n), where &̂ = β̂ − β∗. Given
any small constant δ > 0, it holds

(4.1) lim
n→∞

max{s, s1}2 · logd

n1/2−δ
= 0.

Then with λ1 ≍ logn · √logd/n, we have

n1/2(
α̂P − α∗) "N

(
0,4σ 2H−2

α|γ
)

where σ 2 = -αα − 2w∗T %γα + w∗T %γγ w∗.

PROOF. A detailed proof is provided in Appendix A. #

Our condition (4.1) essentially requires that w∗ and β∗ are sufficiently sparse
such that the estimation errors of w∗ and β∗ and the approximation error in the Há-
jek projection are controllable. Similarly, under the GLM, [37] assumed that the
inverse of the Fisher information matrix ' = H−1 is sparse. Let '∗α and '∗γ de-
note the columns of ' corresponding to α and γ . To see the connections, consider
the following block matrix inverse formula, '∗α = H−1

α|γ (1,−Hαγ H−1
γ γ )T , where

Hα|γ = Hαα −Hαγ H−1
γ γ Hγα . Since w∗ = H−1

γ γ Hγα , we have ∥w∗∥0 = ∥'∗α∥0 −1.
Hence, our sparsity assumption on w∗ is implied by the sparsity of '. Moreover,
our results reveal that the sparsity of '∗γ is not needed for the inference on α.

Under the GLM, [37] and [4] imposed the condition that max{s, s1}2 · logk d =
o(n) for some constant k > 0, which is weaker than our condition (4.1). This is
mostly due to the technical differences between the composite likelihood derived
by the chromatography approach (which has a U-statistic structure) and the likeli-
hood of the generalized linear model.

We also note that, the rate of λ1 agrees with the conventional
√

logd/n rate
for tuning parameters up to a logn factor, due to the subexponential tail of the
response variable Y . In particular, if Y is bounded (e.g., 0–1 binary response), the
logn factor can be eliminated so that we have λ1 ≍ √

logd/n.
It is seen that our assumptions do not contain any type of minimal signal

strength condition on the nonzero components of β∗. Therefore, unlike the oracle-
type results in [11], variable selection consistency is not a priori for our approach
and a valid p-value can be produced even if a covariate is not selected in the model.
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REMARK 3 (Estimation consistency). Note that Theorem 4.1 requires that
the initial estimator β̂ satisfies ∥β̂ − β∗∥2 = OP(

√
s logd/n), ∥β̂ − β∗∥1 =

OP(s
√

logd/n) and |(β̂ − β∗)T ∇2ℓ(β∗)(β̂ − β∗)| = OP(s logd/n). In high-
dimensional settings, we can estimate β by maximizing the following penalized
composite likelihood function with a generic penalty function pλ(·):

(4.2) β̂ ∈ argmax
β∈Rd

{

ℓ(β) −
d∑

j=1

pλ(βj )

}

,

where λ ≥ 0 is a tuning parameter. In GLMs, [12, 21, 38] showed such conditions
hold. We prove that the same conclusion holds for β̂ under the semiparametric
GLM. To save space, we leave the detailed analysis of the finite sample estima-
tion error bound of β̂ with both Lasso penalty and the nonconvex penalty to the
Supplementary Material [29]. Here, we emphasize that our inferential framework
allows general regularized estimators such as nonconvex penalty functions. Thus,
it is more flexible than [37] based on inverting the Karush–Kuhn–Tucker condition
for the Lasso estimator.

To apply Theorem 4.1 to construct confidence intervals, one needs to estimate
the asymptotic variance σ 2H−2

α|γ , which depends on the unknown covariance ma-
trix % and Hα|γ . Recall that such an estimator %̂ is given in (3.11). The following
corollary justifies the validity of the confidence interval.

COROLLARY 4.1. Under the conditions in Theorem 4.1, the confidence inter-
val

CIξ = {
α ∈ R : ∣∣α − α̂P

∣∣ ≤ 2 · σ̂ · Ĥ−1
α|γ · 0−1(1 − ξ/2)/n1/2}

has the asymptotic coverage 1 − ξ , that is, limn→∞ P(α∗ ∈ CIξ ) = 1 − ξ .

PROOF. A detailed proof is shown in the Supplementary Material [29]. #

We note that the estimator α̂P is not semiparametrically efficient, because not all
information about β is retained in the statistical chromatography. Our numerical
results seem to suggest that α̂P is nearly as efficient as the estimator under the
classical generalized linear model. Thus, our method gains model flexibility and
computational efficiency without paying much price on the information loss.

Next, we prove the asymptotic distribution of the test statistic )n and the valid-
ity of the maximum likelihood ratio test under the same conditions in Theorem 4.1
and Corollary 4.1.

THEOREM 4.2. Under the conditions in Theorem 4.1 and α∗ = α0, then
(
4 · σ 2)−1 · Hα|γ · )n " χ2

1 .
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PROOF. A detailed proof is shown in the Supplementary Material [29]. #

As before, to apply the theorem in practice, we replace σ 2 and Hα|γ with their
estimators. The following corollary shows that under H0, type I error of the test
ψDLRT(ξ) converges to the desired significance level ξ and the p-value is asymp-
totically uniform.

COROLLARY 4.2. Suppose the conditions in Corollary 4.1 hold. Then

lim
n→∞ P

(
ψDLRT(ξ) = 1 | H0

) = ξ and PDLRT " Uniform[0,1] under H0,

where ψDLRT(ω) is defined in (3.12) and PDLRT = 1 − χ2
1 ((4 · σ̂ 2)−1 · Ĥα|γ · )n)

is the associated p-value.

PROOF. A detailed proof is shown in the Supplementary Material [29]. #

Finally, we conclude this section with the following remarks on the extensions
to missing data and multiple datasets inference. Due to the space constraint, we
defer the detailed results to the Supplementary Material [29].

REMARK 4 (Missing data and multiple datasets inference). In the missing
data setup, as shown in equation (2.3), Y given X and δ = 1 satisfies the semipara-
metric GLM with the same finite dimensional parameter β and unknown function
f m(·). The inferential results in this section can be easily extended to the missing
data setup; see the Supplementary Material [29] for details. In the multiple datasets
inference setup, the sparsity patterns of the d-dimensional parameter β∗

t in (1.2)
are usually identical across t = 1, . . . , T . To encourage the common sparsity of
β∗

t and meanwhile account for the heterogeneity of different datasets, we can use
similar estimation procedures to (4.2) with the group Lasso penalty. In the Sup-
plementary Material [29], we obtain the finite sample error bounds for parameter
estimation and the corresponding inferential results. In particular, by establishing
a new maximal inequality for U-statistic with unbounded kernels (i.e., Lemma F.2
of the Supplementary Material [29]), we prove that the group Lasso estimator at-
tains faster rates of convergence than the Lasso estimator. This extends the results
in linear models [22] to the more challenging semiparametric setting.

5. Numerical results. In this section, we provide synthetic and real data ex-
amples to back up the theoretical results.

5.1. Simulation studies. We conduct simulation studies to assess the finite
sample performance of the proposed methods. We generate the outcomes from
(1) the linear regression with the standard Gaussian noise or (2) the logistic regres-
sion, and the covariates from N(0,%), where -ij = 0.6|i−j |. The true values of β
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are β∗
j = µ for j = 1,2,3 and β∗

j = 0 for j = 4, . . . , d . Thus, the cardinality of the
support set of β∗ is s = 3. The sample size is n = 100, the number of covariates is
d = 200 and the number of simulation replications is 500.

We calculate the ℓ1-regularized estimator β̂ by using the glmnet package in R.
In particular, we determine the regularization parameter λ by minimizing the K-
fold cross validated loss function,

CV(λ) =
K∑

k=1

{
ℓ
(
β̂

(−k)
λ

) − ℓ(−k)(β̂(−k)
λ

)}
,

where ℓ(−k) stands for the loss function evaluated without the kth subset and simi-
larly β̂

(−k)
λ stands for the regularized estimator derived without using the kth sub-

set. In the simulation studies, we use 5-fold cross validation. The tuning parameter
for the Dantzig selector λ1 in (3.9) is chosen by 4

√
log(nd)/n. We find that the

simulation results are not sensitive to the choice of λ1. We only present the results
with the Lasso penalty. Similar results are observed by using the folded concave
penalty based on the LLA algorithm [12].

For the linear regression, we consider the directional likelihood ratio test
(DLRT) and the Wald test based on the asymptotic normality of α̂P , as well as
the desparsifying method in [37, 41] and debias method in [15]. Both of these two
methods are tailored for the linear regression with the L2 loss and are optimal for
confidence intervals and hypothesis testing. To examine the validity of our tests, we
report their type I errors for the null hypothesis H0 : β1 = µ with various choices
of µ ∈ [0,1] at the 0.05 significance level. The results are summarized in Table 1.
We find that, our Wald test and DLRT yield accurate type I errors, which are com-
parable to the desparsifying and debias methods. In addition, we also compare the
powers of these tests. In particular, we test the null hypothesis H0 : β1 = 0, but
increase µ from 0 to 1 in the data generating procedure. As shown in the left panel

TABLE 1
Type I errors of the Wald test and directional likelihood ratio test (DLRT), the desparsifying and
debias methods for linear and logistic regressions for H0 : α = µ, at the 0.05 significance level,

where µ = 0.00, . . . ,1.00

Model Method 0.00 0.10 0.20 0.40 0.60 0.80 1.00

Linear Wald 0.048 0.066 0.060 0.052 0.054 0.046 0.054
DLRT 0.040 0.052 0.064 0.042 0.032 0.034 0.040

Desparsity 0.044 0.054 0.058 0.044 0.058 0.058 0.056
Debias 0.034 0.030 0.036 0.024 0.028 0.028 0.028

Logistic Wald 0.054 0.060 0.054 0.054 0.066 0.068 0.038
DLRT 0.052 0.048 0.058 0.056 0.054 0.050 0.038

Desparsity 0.052 0.044 0.058 0.046 0.050 0.058 0.058
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FIG. 1. Power curves for testing H0 : β1 = 0 for the linear (left panel) and logistic (right panel)
regressions at the 0.05 significance level.

of Figure 1, our Wald test and DLRT based on the semiparametric GLM are nearly
as efficient as the desparsifying and debias methods. Such results show that the
semiparametric GLM gains model flexibility by losing little inferential efficiency.

For the logistic model, we only consider the desparsifying method, because the
debias method is not defined. As shown in Table 1, our proposed tests yield well
controlled type I errors. Similarly, the power comparison for testing H0 : β1 = 0
in Figure 1 reveals that our tests under the more flexible semiparametric model
are comparable to the desparsifying method. Moreover, the DLRT is more pow-
erful than the remaining two tests, which demonstrates the numerical advantages
of the likelihood ratio inference over the Wald-type tests. This observation is also
consistent with the literature for low dimensional inference.

To further demonstrate the advantage of the proposed methods, we consider
the data with missing values. Similar to the previous data generating proce-
dures, we first simulate the original data Yi and Xi . Then, for the linear regres-
sion, we consider the following two scenarios to create missing values: (1) the
response Yi is observed (i.e., δi = 1) if and only if Yi ≤ 0; and (2) Yi is al-
ways observed if Yi ≤ 0 and observed with probability 0.2 if Yi > 0, that is,
P(δi = 1 | Yi,Xi ) = 1−0.8I (Yi > 0). For the logistic regression, we also consider
two scenarios to create missing values: (1) P(δi = 1 | Yi,Xi ) = 0.2 + 0.6Yi ; and
(2) P(δi = 1 | Yi,Xi ) = 0.2 + 0.8Yi . Since the desparsifying and debias methods
are developed based on the assumption that no missing values exist, we consider
the following two practical procedures for handling missing data on Y . The first
approach is that we apply the desparsifying and debias methods directly to samples
with Y observed, which is known as the complete-case analysis. The second ap-
proach is that we apply these two methods to an imputed dataset. More specifically,
for those samples with missing values on Y , we impute Y by using the k-nearest
neighbors method, implemented by the R function impute.knn. The type I er-
rors are shown in Table 2. As expected, for the desparsifying and debias methods,
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TABLE 2
Type I errors of the Wald test and directional likelihood ratio test (DLRT), the desparsifying method

and debias method based on complete-case analysis (CC-) and imputation (Imp-) for linear and
logistic regressions with missing data (selection bias) for H0 : α = µ, at the 0.05 significance level,

where µ = 0.10, . . . ,0.25

Scenario Model Method 0.10 0.15 0.20 0.25 0.30 0.35

1 Linear Wald 0.062 0.048 0.064 0.046 0.064 0.050
DLRT 0.056 0.042 0.060 0.036 0.056 0.048

CC-Desparsity 0.076 0.156 0.214 0.278 0.334 0.580
Imp-Desparsity 0.068 0.128 0.176 0.198 0.270 0.448

CC-Debias 0.126 0.322 0.488 0.662 0.820 0.900
Imp-Debias 0.108 0.260 0.306 0.438 0.470 0.624

1 Logistic Wald 0.058 0.064 0.060 0.070 0.078 0.054
DLRT 0.044 0.052 0.044 0.054 0.052 0.042

CC-Desparsity 0.296 0.698 0.956 0.988 1.000 1.000
Imp-Desparsity 0.214 0.582 0.902 0.980 1.000 1.000

2 Linear Wald 0.060 0.068 0.048 0.060 0.072 0.052
DLRT 0.060 0.062 0.040 0.048 0.052 0.046

CC-Desparsity 0.086 0.098 0.164 0.370 0.524 0.660
Imp-Desparsity 0.080 0.088 0.146 0.236 0.268 0.362

CC-Debias 0.072 0.152 0.334 0.530 0.728 0.804
Imp-Debias 0.070 0.096 0.148 0.308 0.376 0.442

2 Logistic Wald 0.078 0.032 0.050 0.052 0.052 0.060
DLRT 0.074 0.022 0.040 0.044 0.042 0.046

CC-Desparsity 0.156 0.422 0.546 0.656 0.768 0.846
Imp-Desparsity 0.124 0.234 0.340 0.338 0.466 0.514

the type I errors of the complete-case analysis are far from the 0.05 significance
level. Although the imputation method shows some advantages over the complete-
case analysis, similar patterns are observed. Therefore, in the presence of missing
data, the existing methods cannot produce any result that is statistically reliable. In
contrast, the type I errors based on the proposed tests are well controlled, and they
are robust to the missing data and selection bias. The same conclusion holds under
all simulation scenarios.

In summary, our proposed testing procedures under the semiparametric GLM
are as competitive as the existing methods even if the assumed model is correct.
More importantly, in the presence of missing data or selection bias, the proposed
methods significantly outperform the existing ones.

5.2. Analysis of gene expression data. In this section, we apply the proposed
tests to analyze the AGEMAP (Atlas of Gene Expression in Mouse Aging Project)
gene expression data [40]. The dataset contains the expression values for 296 genes
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TABLE 3
Significant genes selected by the Wald and directional likelihood ratio tests under the

semiparametric GLM, the desparsifying method and debias method based on complete-case
analysis (CC-) and imputation (Imp-) for the gene expression data. Here, M% samples are missing

M Wald DLRT CC-Desparsity CC-Debias Imp-Desparsity Imp-Debias

0 Cdc42 Cdc42 Cdc42 Cdc42 Cdc42 Cdc42
15 Cdc42 Cdc42 – – Mapk13 –
25 Cdc42 Cdc42 – – Ppp3cb –
35 Cdc42 Cdc42 – – Nfatc3,Ppp3cb –

belonging to the mouse vascular endothelial growth factor (VEGF) signaling path-
way. The sample size is n = 40. Among these 296 genes, we are interested in iden-
tifying genes that are significantly associated with the target gene Casp9. Thus, we
treat the gene Casp9 as the response and the remaining 295 genes as covariates.

Since no missing value presents, we directly apply the desparsifying and de-
bias methods to test H0 : βj = 0 for each 1 ≤ j ≤ 295, under the linear model
assumption. Similarly, we can assume that the gene Casp9 given the remaining
variables follows the semiparametric GLM and the proposed Wald and likelihood
ratio tests can be applied. To take into account of the multiplicity of tests, we use
the step-down method in the R function p.adjust to adjust the p-values. At the
0.05 significance level, all these four methods claim that gene Cdc42 is significant;
see the first row of Table 3. This suggests that our tests are as effective as those
existing procedures when there are no missing values.

To further illustrate the advantage of our methods in the presence of missing
data, we create missing values for the outcome variable Yi . More specifically, if
Yi is among the top M% samples, where M = 0,15,25 and 35, we remove the
values of Yi . Here, M = 0 means no missing data is created. This corresponds to
the analysis of the original complete data. Similar to that in the simulation studies,
the considered missing data mechanism depends on the unobserved values, which
makes the analysis challenging.

The results are shown in Table 3, where the results based on the original com-
plete data (M = 0) can be used as a benchmark. Based on the incomplete dataset,
after the same adjustment for p-values, our Wald and likelihood ratio tests still se-
lect gene Cdc42, which are consistent with the results based on the original data.
This pattern is preserved, even after 35% data are removed. For the desparsifying
and debias methods, similar to the simulation studies, we can either apply them
to those samples with only complete data (complete-case analysis) or the full data
created by the imputation method. In particular, the CC-Desparsity and the CC-
Debias methods consistently select no genes, when there exist missing data. This
seems to suggest a lack of power for the existing methods based on the complete-
case analysis. In addition, Imp-Desparsity tends to select very different genes at
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different levels of missing data percentage. They are all different from the bench-
mark gene Cdc42. Our analysis suggests that the presence of missing values can
dramatically change the results of Imp-Desparsity. Finally, Imp-Debias performs
similar to CC-Debias and tends to have low powers.

In conclusion, the existing methods based on the imputation methods or com-
plete cases are either very sensitive to the missing data or have low powers. On the
other hand, the proposed tests are quite robust and potentially more reliable in the
presence of missing data.

6. Discussion. In this paper, we propose a new likelihood ratio inference
framework for high-dimensional semiparametric generalized linear models. The
proposed model is semiparametric in that the base measure function f (·) is un-
specified. This offers extra flexibility to handle the problems with missing data,
selection bias and heterogeneity. We note that the proposed model is different from
many standard semiparametric models such as the partially linear model. Although
in this paper we only consider the likelihood ratio inference for the semiparametric
GLM, similar inferential methods can be applied to more general high-dimensional
semiparametric models. This is an interesting direction to explore in the future.

Another future direction is to develop the joint confidence intervals for the en-
tire d-dimensional parameter β∗. Under the GLM, [4] constructed the joint con-
fidence intervals based on a multiplier bootstrap method for approximating max-
imum of sums of independent high-dimensional random vectors [9]. Under the
proposed semiparametric GLM, the gradient of the composite log-likelihood has
a U-statistic structure. To construct joint confidence intervals, it may require to
extend the high-dimensional multiplier bootstrap method based on sums of in-
dependent random vectors to U-statistics. Such extensions are worthy of further
investigation.

APPENDIX A: PROOF OF MAIN RESULTS

In this Appendix, we give the proof of Theorem 4.1. The proofs of the remaining
results, including Corollary 4.1, and Theorem 4.2 are deferred to the Supplemen-
tary Material [29].

We define an unbiased score function as S(β∗) := ∇αℓ(β∗) − w∗T ∇γ ℓ(β∗),
which plays an important role in the proof. The proof of Theorem 4.1 has three
steps. First, we show that the first derivative of ℓ̂(α) approximates S(β∗). Second,
we apply the central limit theorem for a linear combination of high- dimensional
U-statistics to conclude the asymptotic normality of S(β∗). Finally, we show that
the negative Hessian of ℓ̂(α) approximates Hα|γ . For notational simplicity, denote
M := max1≤i<j≤n ∥(yi − yj ) · (xi − xj )∥∞. By Assumption 4.1, we have M =
OP(logn).

Step 1: Show the convergence of ℓ̂′(α∗). Define γ̂ (α) := γ̂ + (α̂ − α)ŵ and
&̂γ = γ̂ (α∗) − γ ∗. Moreover, recall that S(β∗) := ∇αℓ(β∗) − w∗T ∇γ ℓ(β∗). By
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the chain rule and mean value theorem, we have

ℓ̂′(α∗) = ∇αℓ
(
α∗, γ̂

(
α∗)) − ŵT ∇γ ℓ

(
α∗, γ̂

(
α∗)) = S

(
β∗) + I1 + I2,(A.1)

where I1 := (w∗ − ŵ)T ∇γ ℓ(β∗) and I2 := {∇2
αγ ℓ(α∗, γ̄ ) − ŵT ∇2

γ γ ℓ(α∗, γ̃ )}&̂γ .
Here, γ̄ and γ̃ are intermediate values between γ ∗ and γ̂ (α∗). Thus, the first step
of the proof reduces to controlling the two terms I1 and I2 in (A.1). In particular, to
bound I1, we need the following Lemma A.1 to bound ∥ŵ − w∗∥1 and Lemma A.2
to bound ∥∇ℓ(β∗)∥∞, respectively.

LEMMA A.1. Under the conditions in Theorem 4.1,

∥∥ŵ − w∗∥∥
1 = OP

(
M(s + s1) ·

√
logd

n

)
.

LEMMA A.2. Assume that Assumption 4.1 holds. Then, for any C′′ > 0, we
have ∥∇ℓ(β∗)∥∞ ≤ C′′ · √logd/n, with probability at least

(A.2) 1 − 2 · d · exp
[
−min

{
C2 · C′′2

29 · C′2 · m2 · logd

n
,

C · C′′

25 · C′ · m ·
√

logd

n

}
· k

]
,

where k = ⌊n/2⌋, and C,C′ are defined in Definition 1.1.

PROOF. To prove Lemma A.2, the key is to prove a new concentration inequal-
ity for U-statistics with subexponential kernel functions. In particular, the follow-
ing lemma allows the kernel function to be unbounded, which is more general than
most of existing concentration results for U-statistics with bounded kernels, such
as Theorem 4.1.13 in [10]. The following result can be of independent interest,
whose proof is shown in the Supplementary Material [29].

LEMMA A.3. Let X1, . . . ,Xn be independent random variables. Consider the
following U-statistics of order m,

Un =
(

n

m

)−1 ∑

i1<···<im

u(Xi1, . . . ,Xim),

where the summation is over all i1 < · · · < im selected from {1, . . . , n} and
E[u(Xi1, . . . ,Xim)] = 0 for all i1 < · · · < im. Assume that the kernel function
u(Xi1, . . . ,Xim) is symmetric in the sense that u(Xi1, . . . ,Xim) is independent of
the order of Xi1, . . . ,Xim . If there exist constants L1 and L2, such that

(A.3) P
(∣∣u(Xi1, . . . ,Xim)

∣∣ ≥ x
) ≤ L1 · exp(−L2 · x),

for all i1 < · · · < im and all x ≥ 0, then

P
(|Un| ≥ x

) ≤ 2 · exp
[
−min

{
L2

2 · x2

8 · L2
1

,
L2 · x
4 · L1

}
· k

]
,

where k = ⌊n/m⌋ is the largest integer less than n/m.
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Given the above lemma, we need to verify that the kernel function hij (β
∗) has

mean 0, where

(A.4) hij (β) = Rij (β) · (yi − yj ) · (xi − xj )

1 + Rij (β)
,

and it satisfies (A.3). To show E{hij (β
∗)} = 0, let &ij denote the event {(YL

(i),

YL
(j)) = (yi, yj ),Xi = xi ,Xj = xj }. By (3.3), the conditional distribution of Yi

and Yj given &ij follows a binomial distribution,

(A.5) P(Yi = yi, Yj = yj | &ij ;β) = [
1 + Rij (β)

]−1
,

and P(Yi = yj , Yj = yi | &ij ;β) = Rij (β)/[1 + Rij (β)]. According to this bino-
mial distribution, the conditional expectation of hij (β

∗) given &ij is

E
{
hij

(
β∗) | &ij ;β∗}

= Rij (β
∗)(yi − yj )(xi − xj )

1 + Rij (β
∗)

P
(
Yi = yi, Yj = yj | &ij ;β∗)

+
R−1

ij (β∗)(yj − yi)(xi − xj )

1 + R−1
ij (β)

P
(
Yi = yj , Yj = yi | &ij ;β∗)

.

By plugging (A.5) into above equation, it is easy to verify that E{hij (β
∗) |

&ij } = 0. Finally, E{hij (β
∗)} = E[E{hij (β

∗)|&ij }] = 0. Next, we verify the kernel
function satisfies (A.3). Since Rij (β) > 0 and maxij |xij | ≤ m, we have

∥∥hij
(
β∗)∥∥∞ ≤ ∥∥(yi − yj ) · (xi − xj )

∥∥∞ ≤ 2 · m · |yi − yj |.
By the subexponential tail condition on yi , for any x > 0 and k = 1, . . . , d ,

P
(∣∣[hij

(
β∗)]

k

∣∣ > x
) ≤ P

(|yi − yj | > (2m)−1x
) ≤ 2C′ exp

{−C(4m)−1x
}
.

Then we apply Lemma A.3 with k = ⌊n/2⌋ to complete the proof. #

Hence, by Lemma A.1 and Lemma A.2, we can show that

|I1| ≤
∥∥w∗ − ŵ

∥∥
1
∥∥∇γ ℓ

(
β∗)∥∥∞ = OP

(
M(s + s1) ·

√
logd

n
·
√

logd

n

)
= oP

( 1√
n

)
,

where the last step follows by the conditions in Theorem 4.1. We further
separate I2 into the following terms: |I2| ≤ I21 + I22 + I23, where I21 =
|{∇2

αγ ℓ(β∗) − ŵT ∇2
γ γ ℓ(β∗)}&̂γ |, I22 = |{∇2

αγ ℓ(β∗) − ∇2
αγ ℓ(α∗, γ̄ )}&̂γ | and

I23 = |ŵT {∇2
γ γ ℓ(β∗) − ∇2

γ γ ℓ(α∗, γ̃ )}&̂γ |. To control the three terms, we first
need to bound ∥&̂γ ∥1. By the conditions in Theorem 4.1, we have ∥γ̂ − γ ∗∥1 =
OP(s

√
logd/n) and |α̂ − α∗| = OP(s1/2√logd/n). Moreover, by the Cauchy–

Schwarz inequality, it holds that ∥w∗∥1 ≤ √
s1∥w∗∥2 ≤ √

s1∥H−1
γ γ HT

αγ ∥2 ≤
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√
s1λmin(H)−1λmax(H) ≤ √

s1c
−1c′, where the last inequality is by Assump-

tion 4.1. Therefore,

∥&̂γ ∥1 ≤ ∥∥γ̂ − γ ∗∥∥ + ∣∣α̂ − α∗∣∣∥ŵ∥1 = OP

(
max{s, s1}

√
logd

n

)
,

where we used the fact that ∥ŵ∥1 = ∥w∗∥1 + oP(1) = OP(s
1/2
1 ). To control the

three terms in I2, the key step is to quantify the smoothness of the Hessian matrix
∇2ℓ(α∗,γ ) in a small neighborhood of γ ∗.

LEMMA A.4. Under the conditions in Theorem 4.1, for any deterministic se-
quence δn such that M · δn = o(1), we have

sup
∥β−β∗∥1≤δn

∥∥∇2ℓ(β) − ∇2ℓ
(
β∗)∥∥∞ = OP(M · δn),

where M := max1≤i<j≤n ∥(yi − yj ) · (xi − xj )∥∞.

PROOF. Let wij = exp{−(yi − yj ) · &T (xi − xj )}, where & = β − β∗. By
definition, Rij (β) = Rij (β

∗) · wij . Thus,

∇2ℓ(β) = −
(
n

2

)−1 ∑

1≤i<j≤n

uij · Rij (β
∗) · (yi − yj )

2 · (xi − xj )
⊗2

(1 + Rij (β
∗))2 ,

where uij = wij · (1 + Rij (β
∗))2(1 + wij · Rij (β

∗))−2. Note that if wij ≥ 1, then
(1 + Rij (β

∗))2/(1 + wij · Rij (β
∗))2 ≤ 1. On the other hand, if wij ≤ 1,

(1 + Rij (β
∗))2

(1 + wij · Rij (β
∗))2 ≤ (1 + Rij (β

∗))2

w2
ij · (1 + Rij (β

∗))2
= 1

w2
ij

.

Thus, uij ≤ max{wij ,w
−1
ij }. Therefore, for any 1 ≤ s, t ≤ d ,

(A.6)

∣∣∇2
stℓ(β) − ∇2

stℓ
(
β∗)∣∣

=
(
n

2

)−1 ∑

i<j

Rij (β)(yi − yj )
2(xis − xjs)(xit − xjt )(uij − 1)

(1 + Rij (β))2

≤ 2−1∣∣∇2
ssℓ

(
β∗) + ∇2

t tℓ
(
β∗)∣∣ max

i<j

∣∣max
{
wij ,w

−1
ij

} − 1
∣∣.

By Hölder’s inequality, we have

sup
∥β−β∗∥1≤δn

max
i<j

∣∣(yi − yj ) · &T (xi − xj )
∣∣ ≤ M · ∥&∥1 = OP(M · δn) = oP(1),

and sup∥β−β∗∥1≤δn
maxi<j |max{wij ,w

−1
ij } − 1| = OP(M · δn). Thus, by (A.6),

sup
∥β−β∗∥1≤δn

∥∥∇2ℓ(β) − ∇2ℓ
(
β∗)∥∥∞ ! {∥∥∇2ℓ

(
β∗) + H

∥∥∞ + ∥H∥∞
}
Mδn.
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By Assumption 4.1, ∥H∥∞ is bounded. It remains to control ∥∇2ℓ(β∗) + H∥∞.
Let r̄ij = Tij − E(Tij ), where

Tij = Rij (β
∗) · (yi − yj )

2 · (xi − xj )
⊗2

(1 + Rij (β
∗))2 .

Then ∇2ℓ(β∗) + H = − 2
n(n−1) · ∑

i<j r̄ij is a mean-zero second-order U-statistic
with kernel function r̄ij . For any 1 ≤ a, b ≤ d , r̄ij satisfies [r̄ij ](a,b) ≤ 2 · M2. The
Hoeffding inequality yields, for any x > 0,

P
(∣∣∇2

abℓ
(
β∗) + Ha,b

∣∣ > x
) ≤ 2 · exp

(
− k · x2

8 · M4

)
,

where k = ⌊n/2⌋. Taking x = M2√logd/n, by union bound, we get with high
probability, ∥∇2ℓ(β∗) + H∥∞ ≤ M2√logd/n. #

Now we consider these three terms in I2 one by one. For I21, by Lemmas A.1
and C.2 in the Supplementary Material [29],

I21 ≤ ∥∥∇2
αγ ℓ

(
β∗) − w∗T ∇2

γ γ ℓ(β)
∥∥∞∥&̂γ ∥1 + ∥∥ŵ − w∗∥∥

1
∥∥∇2

γ γ ℓ
(
β∗)∥∥∞∥&̂γ ∥1

= OP

(
M · max{s, s1} · logd

n
+ M · max{s, s1}2 · logd

n

)
= oP

( 1√
n

)
,

where the last step follows from the scaling condition (4.1). Now, we consider
I22. By Lemma A.4 and the fact that ∥γ̄ − γ ∗∥1 ≤ ∥&̂γ ∥1 = OP(max{s, s1} ·√

logd/n), we have

I22 ≤ ∥∥∇2
αγ ℓ

(
β∗) − ∇2

αγ ℓ
(
α∗, γ̄

)∥∥∞∥&̂γ ∥1

= OP

(
M max{s, s1}2 logd

n

)
= oP

( 1√
n

)
,

where the last equality follows from the scaling condition (4.1). Following the
similar arguments as in the proof of Lemma A.4, we can prove that

(A.7) I23 ≤ C

(
M · max{s, s1} ·

√
logd

n

)
· ∣∣ŵT ∇2

γ γ ℓ
(
β∗)

&̂γ
∣∣.

By Lemma A.1 and the similar argument to the proof of Lemma C.2,
∣∣ŵT ∇2

γ γ ℓ
(
β∗)

&̂γ
∣∣ ≤ ∣∣w∗T ∇2

γ γ ℓ
(
β∗)

&̂γ
∣∣ + ∣∣(ŵ − w∗)T ∇2

γ γ ℓ
(
β∗)

&̂γ
∣∣

= OP

(
max{s, s1} ·

√
logd

n
+ M · max{s, s1}2 · logd

n

)
.

Together with (A.7), we have

I23 = OP

(
M · max{s, s1}2 · logd

n

)
= oP

( 1√
n

)
.
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Thus, we have proved the rate of convergence of n1/2|ℓ̂′(α∗) − S(β∗)|, that is,

(A.8) n1/2 · ∣∣ℓ̂′(α∗) − S
(
β∗)∣∣ = OP

(
M · max{s, s1}2 · logd√

n

)
= oP(1).

Step 2: Characterize the limiting distribution of S(β∗). We provide the follow-
ing lemma on the central limit theorem for U-statistics with increasing dimensions.

LEMMA A.5. Under Assumption 4.1, for any b ∈ Rd with ∥b∥0 ≤ s̃ and
∥b∥2 = 1, if s̃3/2 · n−1/2 · M3 = oP(1), then

√
n

2
· (

bT %b
)−1/2 · bT ∇ℓ

(
β∗) "N(0,1).

PROOF. The lemma is proved by using the Hoeffding’s decomposition:
√

n

2
· (

bT %b
)−1/2 · bT ∇ℓ

(
β∗)

= (
bT %b

)−1/2 1√
n

n∑

i=1

bT g
(
yi,xi ,β

∗)

+
√

n

2
(
bT %b

)−1/2bT {∇ℓ
(
β∗) − Ûn

}
,

where g(yi,xi ,β
∗) and Ûn are defined in (3.10). We can verify that the Lyapunov

central limit theorem for independent random variables can be applied for the first
term under the assumption that s1 = o(n1/3−δ). The remaining proof requires more
careful calculation of the moment of approximation error bT (∇ℓ(β∗)− Ûn) in the
Hájek projection, because here we allow the intrinsic dimension s̃ to scale with n.
We defer the detailed proof to the Supplementary Material [29]. #

Since S(β∗) is a sparse linear combination of the U-statistic ∇ℓ(0,γ ∗) and
∥w∗∥0 = s1, with b = (1,−w∗T )T , Lemma A.5 implies that

(A.9) n1/2S
(
β∗)

/(2σ ) " N(0,1).

Step3: Show the convergence of ℓ̂′′(ᾱ) for any ᾱ between 0 and α̂P . We now
show that |ℓ̂′′

n(ᾱ) + Hα|γ | = oP(1). By chain rule, we have

(A.10)
ℓ̂′′
n(ᾱ) = ∇2

ααℓ
(
ᾱ, γ̂ (ᾱ)

) − 2∇2
αγ ℓ

(
ᾱ, γ̂ (ᾱ)

)T ŵ + ŵT ∇2
γ γ ℓ

(
ᾱ, γ̂ (ᾱ)

)T ŵ

= (
1,−ŵT )∇2ℓ

(
ᾱ, γ̂ (ᾱ)

)(
1,−ŵT )T

.

We then decompose ℓ̂′′
n(ᾱ) + Hα|γ into two terms, namely,

(A.11)

ℓ̂′′
n(ᾱ) + Hα|γ = [

ℓ̂′′
n(ᾱ) − (

1,−ŵT )∇2ℓ
(
β∗)(

1,−ŵT )T ]

+ [(
1,−ŵT )∇2ℓ

(
β∗)(

1,−ŵT )T + Hα|γ
]

:= I3 + I4.
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Let &̄ = (ᾱ, γ̂ (ᾱ)T )T − β∗. We have

(A.12) ∥&̄∥1 ≤ ∣∣ᾱ − α∗∣∣ + ∥∥γ̂ − γ ∗∥∥
1 + |α̂ − ᾱ|∥ŵ∥1.

To control |ᾱ − α∗|, we need a bound on the rate of convergence of the post-
regularization estimator α̂P − α∗. The following lemma serves our purpose.

LEMMA A.6. Under the conditions in Theorem 4.1, we have

∣∣α̂P − α∗∣∣ = OP

(√
logn

n

)
.

By Lemma A.6, we have |ᾱ −α∗| ≤ |α̂P −α∗| = OP(
√

logn/n). Moreover, we
have ∥γ̂ − γ ∗∥1 = OP(s · √logd/n), ∥ŵ∥1 = ∥w∗∥1 + oP(1) and that

|α̂ − ᾱ| ≤ ∣∣α̂ − α∗∣∣ + ∣∣ᾱ − α∗∣∣ = OP

(√
s log(d ∨ n)

n

)
.

Putting together the above results and by (A.12), we conclude that ∥&̄∥1 =
OP(max{s, s1} · √log(d ∨ n)/n).

For the first term in (A.11), similar to the proof of Lemma A.4, we get

(A.13) |I3| ≤ C

(
M · max{s, s1} ·

√
log(d ∨ n)

n

)
· ∣∣̂vT ∇2ℓ

(
β∗)

v̂
∣∣,

where v̂ = (1, ŵT )T . Let v∗ = (1,w∗T )T . By Lemma A.1 and Lemma C.2,
∣∣̂vT ∇2ℓ

(
β∗)

v̂
∣∣ ≤ ∣∣v∗T ∇2ℓ

(
β∗)

v∗∣∣ + 2
∣∣(v̂ − v∗)T ∇2ℓ

(
β∗)

v∗∣∣

+ ∣∣(v̂ − v∗)T ∇2ℓ
(
β∗)(

v̂ − v∗)∣∣

≤ ∣∣v∗T Hv∗∣∣ + oP(1).

Therefore, we conclude that

(A.14) |I3| = OP
(
M · max{s, s1} ·

√
log(d ∨ n)/n

) = oP(1).

We now focus on I4, which can be decomposed into the following terms: I4 =
I41 − 2I42 + I43, where I41 = ∇2

ααℓ(β∗) + Hαα , I42 = ŵT ∇2
αγ ℓ(β∗) + w∗T Hαγ

and I43 = ŵT ∇2
γ γ ℓ(β∗)ŵ + w∗T Hγ γ w∗. By the proof of Lemma A.4, we have

∥∇2ℓ(β∗) + H∥∞ = OP(M2 · √
logd/n). Hence, I41 = OP(M2 · √

logd/n) =
oP(1). For the second term, it holds that I42 = ŵT (∇2

αγ ℓ(β∗) + Hαγ ) − (ŵ −
w∗)T Hαγ . We have |ŵT (∇2

αγ ℓ(β∗) + Hαγ )| ≤ ∥ŵ∥1∥∇2
αγ ℓ(β∗) + Hαγ ∥∞ =

OP(M2 · √
s1 logd/n), and |(ŵ − w∗)T Hαγ | ≤ ∥ŵ − w∗∥1∥Hαγ ∥∞ = oP(1).
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Therefore, we conclude that |I42| = oP(1). For the term I43, we apply similar ar-
guments to get I43 = OP(M(s1 + s)

√
logd/n) = oP(1). Hence, we conclude that

I4 = oP(1). Together with (A.14), this implies

(A.15)
∣∣ℓ̂′′

n(ᾱ) + Hα|γ
∣∣ = oP(1).

Given (A.8), (A.9), (A.15), we now wrap up the whole proof. By first-order
optimality condition, we have ℓ̂′(α̂P ) = 0. Applying mean-value theorem, we get
ℓ̂′(α̂P ) = ℓ̂′(α∗) + ℓ̂′′(ᾱ)(α̂P − α∗), where ᾱ is an intermediate value between α̂P

and α∗. This implies

(A.16) α̂P − α∗ = ℓ̂′′(ᾱ)−1ℓ̂′(α∗)
.

Finally, combining (A.16), (A.8), (A.9), (A.15) and applying Slutsky’s theorem,
we have n1/2(α̂P − α∗) = −H−1

α|γ · n1/2S(β∗) + oP(1). We complete the proof of
Theorem 4.1.
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This document contains supplementary appendices of the paper
“A Likelihood Ratio Framework for High Dimensional Semiparamet-
ric Regression” authored by Yang Ning, Tianqi Zhao and Han Liu.
It is organized as follows. Appendix B contains the additional proofs
of main results in the main paper. Appendix C contains the proofs of
technical lemmas used in the main paper. Appendix D contains the
parameter estimation results under the semiparametric GLM. Ap-
pendix E studies the extension to the missing data and selection bias
problem. Appendix F studies the extension to the multiple datasets
inference problem. Appendix G contains the proofs of lemmas and
theorems shown in this document. Appendix H considers the confi-
dence regions and hypothesis tests for multi-dimensional parameter
of interest. Finally, Appendix I contains further simulation results.

APPENDIX B: ADDITIONAL PROOFS OF MAIN RESULTS

In this appendix, we present the proofs of Corollaries 4.1, 4.2, and Theo-
rem 4.2. For notational simplicity, denoteM :“ maxi†j ||pyi´yjqpxi´xjq||8.

B.1. Proof of Corollary 4.1. By Theorem 4.1, it is su�ces to show
|p�2 ´ �2| “ oPp1q and | pH↵|� ´ H↵|� | “ oPp1q. We provide the following

Lemma that shows the concentration of p⌃.

Lemma B.1. Under the same conditions as in Corollary 4.1, it hods that

|| p⌃ ´ ⌃||8 “ OP
´

M3 ¨ s ¨
c

log d

n

¯

.

Proof. The detailed proof is shown in Supplementary Appendix G.

Given this lemma, we now prove Corollary 4.1. Recall that

�2 “ ⌃↵↵ ´2w˚T⌃�↵ `w˚T⌃��w
˚ and p�2 “ p⌃↵↵ ´2pwT

p⌃�↵ ` pwT
p⌃�� pw.
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We now rearrange these terms and group them in the following way,

|p�2 ´ �2| § |p⌃↵↵ ´ ⌃↵↵| ´ 2| pwT
p⌃�↵ ´ w˚T⌃�↵|

` | pwT
p⌃�� pw ´ w˚T⌃��w

˚| :“ I
1

´ 2I
2

` I
3

.(B.1)

We first consider I
1

. Applying Lemma B.1, we have

(B.2) I
1

§ || p⌃ ´ ⌃||8 “ OP
´

M3 ¨ s ¨
c

log d

n

¯

.

For I
2

, using the triangle inequality, we have

I
2

§ |p pw ´ w˚qT p p⌃�↵ ´ ⌃�↵q| ` |p pw ´ w˚qT⌃�↵q| ` |w˚T p p⌃�↵ ´ ⌃�↵q|
:“ I

21

` I
22

` I
23

.

By Lemmas B.1 and A.1, we can bound I
21

, I
22

and I
23

respectively as
follows,

I
21

§ || pw ´ w˚||
1

|| p⌃�↵ ´ ⌃�↵||8 “ OP
´

Mps ` s
1

q
c

log d

n
¨ M3s

c

log d

n

¯

,

I
22

§ || pw ´ w˚||
1

¨ ||⌃�↵||8 “ OP
´

M ¨ ps ` s
1

q ¨
c

log d

n

¯

,

I
23

§ ||w˚||
1

¨ || p⌃�↵ ´ ⌃�↵||8 “ OP
´

M3 ¨ s ¨
c

s
1

log d

n

¯

.

It follows that

(B.3) I
2

“ OP
´

M3 ¨ s ¨
c

s
1

log d

n

¯

.

Following the similar arguments, we can bound I
3

as follows,

I
3

§
ˇ

ˇ

pwT p p⌃�� ´ ⌃��q pw
ˇ

ˇ `
ˇ

ˇ

pwT⌃�� pw ´ w˚T⌃��w
˚ˇ

ˇ :“ I
31

` I
32

.

It holds that

I
31

§ || pw||2
1

¨ || p⌃�� ´ ⌃�� ||8 “ OP
´

M3 ¨ s
1

¨ s ¨
c

log d

n

¯

.

To control I
32

, we apply the following lemma.

Lemma B.2. Let W be a symmetric pd ˆ dq-matrix and pv and v P Rd.
Then

|pvTWpv ´ vTWv| § ||W||8 ¨ ||pv ´ v||2
1

` 2 ¨ ||Wv||8 ¨ ||pv ´ v||
1

.
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Proof of Lemma B.2. Note that

|pvTWpv ´ vTWv| § |ppv ´ vqTWppv ´ vq| ` 2 ¨ |vTWppv ´ vq|
§ ||W||8 ¨ ||pv ´ v||2

1

` 2 ¨ ||Wv||8 ¨ ||pv ´ v||
1

.

The proof is complete.

By Lemma B.2, we can show that

I
32

§ ||⌃�� ||8|| pw ´ w˚||2
1

` ||⌃�↵||8|| pw ´ w˚||
1

“ OP
´

Mps ` s
1

q
c

log d

n

¯

.

It follows that

I
3

“ OP
´

M3 ¨ s
1

¨ s ¨
c

log d

n

¯

.(B.4)

Combining (B.1), (B.2), (B.3) and (B.4), we obtain the convergence rate

|p�2 ´ �2| “ OP
´

M3 ¨ s
1

¨ s ¨
c

log d

n

¯

“ oPp1q.

Now we prove | pH↵|� ´ H↵|� | “ oPp1q. By definition, we have

| pH↵|� ´ H↵|� | “ | ´ r2

↵↵`p p

�q ` pwTr2

↵�`p p

�q ´ H↵↵ ` w˚TH↵� |
§ |r2

↵↵`p p

�q ` H↵↵| ` } pw}
1

}r2

↵�`p p

�q ` H↵�}8
` }H↵�}8} pw ´ w˚}

1

.(B.5)

Applying the argument in Step 3 of the proof of Theorem 4.1, we get

}r2`p p

�q ` H}8 “ }r2`p p

�q ´ r2`p�˚q}8 ` }r2`p�˚q ` H}8

“ OP

ˆ

M ¨ s ¨
c

log d

n
` M2 ¨

c

log d

n

˙

.(B.6)

Therefore, |r2

↵↵`p p

�q ` H↵↵| ` } pw}
1

}r2

↵�`p p

�q ` H↵�}8 “ OP
`

M ¨ pM ` sq ¨
a

s
1

log d{n
˘

“ oPp1q. Moreover, }H↵�}8} pw´w˚}
1

“ oPp1q. Hence by (B.5),

we conclude that | pH↵|� ´ H↵|� | “ oPp1q.
Applying the result of Theorem 4.1 and Slusky’s theorem, we obtain the

conclusion of the corollary.
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4 TIANQI ZHAO AND HAN LIU

B.2. Proof of Corollary 4.2. In the previous section we proved that
|p�2´�2| “ oPp1q and | pH↵|�´H↵|� | “ oPp1q. Therefore, by applying Theorem
4.2 and Slusky’s theorem, we obtain

p4 ¨ p�2q´1 ¨ pH↵|� ¨ ⇤n  �2

1

.

Thus, we have limnÑ8 Pp 
DLRT

p⇠q “ 1 | H
0

q “ limnÑ8 P
`

p4 ¨ p�2q´1 ¨ pH↵|� ¨
⇤n ° �2

1⇠

˘

“ ⇠. Similarly, for any t P p0, 1q, we have

lim
nÑ8PpP

DLRT

† tq “ lim
nÑ8P

´

�2

1

`

p4 ¨ p�2q´1 ¨ pH↵|� ¨ ⇤n

˘

° 1 ´ t
¯

“ lim
nÑ8P

´

p4 ¨ p�2q´1 ¨ pH↵|� ¨ ⇤n ° �2

1t

¯

“ t.

This completes the proof.

B.3. Proof of Theorem 4.2. By the first order KKT condition, we
have p`1

npp↵P q “ 0. Hence, using Taylor expansion, we have for some ↵̄
1

lying
between ↵

0

and p↵ that

p`np↵
0

q´p`npp↵P q “ p`1
npp↵P qp↵

0

´p↵P q`1

2
p`2
np↵̄

1

qpp↵P ´↵
0

q2 “ 1

2
p`2
np↵̄

1

qpp↵P ´↵
0

q2.

Under the null hypothesis, ↵˚ “ ↵
0

. Therefore,

⇤n “ ´2n
 

p`np↵
0

q ´ p`npp↵P q
(

“ ´p`2
np↵̄

1

q
 ?

n ¨ pp↵P ´ ↵˚q
(

2

.

By Theorem 4.1, we have
?
n ¨ pp↵P ´ ↵˚q  N

`

0, 4�2 ¨ H´2

↵|�
˘

. Moreover,

applying the exact same argument as Step 3 in the proof of Theorem 4.1, we
obtain ´p`2

np↵̄
1

q “ H↵|� ` oPp1q. Therefore, applying Slusky and continuous
mapping theorem, we have

p4�2q´1H↵|�⇤n  �2

1

.

This completes the proof.

APPENDIX C: PROOFS OF TECHNICAL LEMMAS

In this appendix, we present the proofs of Lemma A.1, A.3 and Lemma
A.5, A.6 used in the proof of Theorem 4.1. Before that, we first present
another technical lemma on the Bernstein type concentration inequality for
U-statistics [1] and the application of this inequality in our problems.
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Lemma C.1 (Bernstein’s inequality for U -statistics [1]). Given i.i.d. ran-
dom variables Z

1

, . . . Zn taking values in a measurable space pS,Bq and a
symmetric and measurable kernel function h : Sm Ñ R, we define the U -
statistics with kernel h as U :“

`

n
m

˘´1

∞

i1†...†im
hpZi1 , . . . , Zimq. Suppose

that EhpZi1 , . . . , Zimq “ 0, E
 

ErhpZi1 , . . . , Zimq | Zi1s
(

2 “ �2 and }h}8 § b.
There exists a constant Kpmq ° 0 depending on m such that

Pp|U | ° tq § 4 exp
 

´ nt2{r2m2�2 ` Kpmqbts
(

, @t ° 0.

Lemma C.2. Under the assumptions in Theorem 4.1, it holds that

}r2

�↵`p�˚q ´ r2

��`p�˚qw˚}8 “ OP
´

M

c

log d

n

¯

.

Proof. We prove this lemma by applying Lemma C.1. Let xi “ pxi↵,xT
i�qT

and zi “ xi↵ ´ x

T
i�w

˚. Thus, we can rewrite the U-statistics r2

�↵`p�˚q ´
r2

��`p�˚qw˚ as U “ pU p1q, ..., U pd´1qqT , where U pkq :“
`

n
2

˘´1

∞

i†j h
pkq
ij , with

hpkq
ij “ Rijp�˚q ¨ pyi ´ yjq2 ¨ pxik ´ xjkq ¨ pzi ´ zjq

p1 ` Rijp�˚qq2 .

Noting that }w˚}
2

“ }H´1

��H
T
↵�}

2

§ �
min

pHq´1�
max

pHq is bounded by the
eigenvalue assumption on H, |yi ´ yj | § 2M and xi is uniformly bounded,

we can show that }hpkq
ij } § CM2

?
s
1

, for some constant C not depending on
i, j, k. In addition,

EtErhpkq
ij | yi,xisu2 § Erhpkq

ij hpkq
ij s § 2mM2 ¨ E

!Rijp�˚q ¨ pyi ´ yjq2 ¨ pzi ´ zjq
p1 ` Rijp�˚qq2

)

§ 2mM2 ¨ �
max

pHq ¨ }v˚}
2

§ C 1M2,

where v˚ “ p1,w˚T qT and C 1 is a positive constant. Applying Lemma C.1
and the union bound, we obtain

Pp}U}8 ° tq § 4pd ´ 1q exp
 

´ nt2{r8C 1M2 ` CKpmqM2

?
s
1

¨ ts
(

.

Note that M
a

s
1

log d{n “ op1q. Choosing t “ C2M
a

log d{n for some su�-
ciently large C2 in the above inequality, we can easily see that the probability
of }U}8 ° t tends to 0. This completes the proof.
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C.1. Proof of Lemma A.1. DenoteQpwq “ 1

2

wTr2

��`p p

�qw´wTr2

�↵`p p

�q.
By definition of pw, Qp pwq´�

1

} pw}
1

• Qpw˚q´�
1

}w˚}
1

. Denote p� “ pw´w˚.
After rearrangement of terms, we obtain

´1

2
p�Tr2

��`p p

�q p� § ´ p�T pr2

�↵`p p

�q ´ r2

��`p p

�qw˚q
` r�

1

}w˚}
1

´ �
1

} pw}
1

s :“ I
1

` I
2

.(C.1)

For I
2

, by the triangle inequality, it is easy to see that

I
2

§ �
1

}w˚
Sw

}
1

´ �
1

} pwSw}
1

´ �
1

} pwSc
w

}
1

§ �
1

} p�Sw}
1

´ �
1

} p�Sc
w

}
1

.

Now, we consider I
1

. We further separate I
1

into the following two terms,

I
1

“ ´ p�T pr2

�↵`p�˚q ´ r2

��`p�˚qw˚q
´ p�T

”

pr2

�↵`p p

�q ´ r2

�↵`p�˚qq ´ pr2

��`p p

�q ´ r2

��`p�˚qqw˚
ı

:“ I
11

` I
12

.

For the first term I
11

, we have

|I
11

| § } p�}
1

¨ }pr2

�↵`p�˚q ´ r2

��`p�˚qw˚q}8 § CM

c

log d

n
} p�}

1

,

where the last step follows from Lemma C.2 and C is some positive constant.
Let xi “ pxi↵,xT

i�qT . By the Cauchy-Schwarz inequality, it can be shown
that for some constants C 1, C2 ° 0,

|I
12

| “
ˇ

ˇ

ˇ

ˆ

n

2

˙´1

ÿ

1§i†j§n

Rijp�˚qpyi ´ yjq2 p�T pxi� ´ xj�qpzi ´ zjqpuij ´ 1q
p1 ` Rijp�˚qq2

ˇ

ˇ

ˇ

§
b

´ p�Tr2

��`p�˚q p� ¨ C 1M
b

´ p�T
�r2`p�˚q p��

§ C2M

c

s log d

n
¨
b

´ p�Tr2

��`p�˚q p�,

where zi “ xi↵ ´ x

T
i�w

˚, uij is defined in the proof of Lemma A.4 and
p�� “ p

� ´ �

˚. In addition, by Lemma A.4,

ˇ

ˇ

ˇ

p�T
”

r2`��p p

�q ´ r2`��p�˚q
ı

p�
ˇ

ˇ

ˇ

À Ms

c

log d

n
¨ | p�Tr2`��p�˚q p�|,

which further implies

| p�Tr2`��p�˚q p�| À | p�Tr2`��p p

�q p�| À | p�Tr2`��p�˚q p�|,
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HIGH DIMENSIONAL SEMIPARAMETRIC INFERENCE 7

given Ms
a

log d{n “ op1q. Choose �
1

“ 2CM
a

log d{n, and plug the
bounds for I

1

and I
2

back into (C.1), we obtain

´1

2
p�Tr2

��`p�˚q p� § C2M

c

s log d

n
¨
b

´ p�Tr2

��`p�˚q p�

` 3CM

c

log d

n
¨ } p�Sw}

1

´ CM

c

log d

n
¨ } p�Sc

w
}
1

.(C.2)

If r´ p�Tr2

��`p�˚q p�s1{2 ° 2C2M
a

s log d{n, (C.2) implies } p�Sc
w

}
1

§ 3} p�Sw}
1

.
Next, we need to verify that for n large enough

inf
vPC

´s
1

¨ pvTr2

��`p�˚qvq
||vSw ||2

1

• c,(C.3)

where C “ tv P Rd´1 : ||vSc
w

||
1

§ 3||vSw ||
1

u, c is a positive constant and
Sw “ tj : w˚

j ‰ 0u is the support set for w˚. By �
min

pHq • c ° 0, it yields

´s
1

¨ vTr2

��`p�˚qv
||vSw ||2

1

• s
1

¨ pc ¨ }v}2
2

´ }H�� ` r2

��`p�˚q}8 ¨ }v}2
1

q
||vSw ||2

1

• c ` OPps
1

¨ M2 ¨
a

log d{nq “ c ` oPp1q,
where the last step follows from the proof of Lemma A.4. Thus, we obtain
} p�Sw}

1

§ c1{2?
s
1

¨ r´ p�Tr2

��`p�˚q p�s1{2. By plugging into (C.2), we have

r´ p�Tr2

��`p�˚q p�s1{2 À M

c

ps ` s
1

q log d
n

.(C.4)

If 6} p�Sw}
1

• } p�Sc
w

}
1

, by the same argument in (C.3) with a slightly di↵er-
ent cone condition C1 “ tv P Rd´1 : ||vSc

w
||
1

§ 6||vSw ||
1

u then we have

} p�}
1

§ 7} p�Sw}
1

À ?
s
1

¨ r´ p�Tr2

��`p�˚q p�s1{2 À Mps ` s
1

q
c

log d

n
.

On the other hand, if 6} p�Sw}
1

§ } p�Sc
w

}
1

, (C.2) implies

0 § ´1

2
p�Tr2

��`p�˚q p� § C2M

c

s log d

n
¨
b

´ p�Tr2

��`p�˚q p�

´ C

2
M

c

log d

n
¨ } p�Sc

w
}
1

.(C.5)

Combining (C.4) and (C.5),

} p�}
1

§ 7

6
} p�Sc

w
}
1

À ?
s ¨ r´ p�Tr2

��`p�˚q p�s1{2 À Mps ` s
1

q
c

log d

n
.

Thus, in both cases, we have } p�}
1

À Mps ` s
1

q
a

log d{n. This completes
the proof.
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8 TIANQI ZHAO AND HAN LIU

C.2. Proof of Lemma A.3. By the symmetry of the kernel function,
Un can be rewritten as follows,

Un “ 1

k
¨ 1

n!
¨
ÿ

vnpXi1 , ..., Xinq,

where the summation is over all n! permutations of t1, ..., nu, and
vnpXi1 , ..., Xinq “ upXi1 , ..., Ximq`upXim`1 , ..., Xi2mq...`upXikm´m`1 , ..., Xikmq.
Note that vnpX

1

, ..., Xnq is a sum of k independent random variables. Then,
for any x • 0 and t ° 0, by the Markov inequality, we obtain that

PpUn • xq “ P
”

exp
!

t ¨ 1

n!
¨
ÿ

vnpXi1 , ..., Xinq
)

• exppt ¨ k ¨ xq
ı

§ expp´t ¨ k ¨ xq ¨ E
”

exp
! 1

n!
¨
ÿ

t ¨ vnpXi1 , ..., Xinq
)ı

,(C.6)

where the summation is over all n! permutations of t1, ..., nu. By Jensen
inequality, (C.6) yields,

PpUn • xq § expp´t ¨ k ¨ xq ¨ E
” 1

n!
¨
ÿ

exptt ¨ vnpXi1 , ..., Xinqu
ı

“ expp´t ¨ k ¨ xq ¨ 1

n!
¨
ÿ

k
π

s“1

E
”

exptt ¨ upXism´m`1 , ..., Xismqu
ı

,

where the last equality follows by the independence of upXism´m`1 , ..., Xismq
for s “ 1, ..., k. For notational simplicity, we write u for upXism´m`1 , ..., Xismq.
By (A.3), for all j • 1 and L

1

° 1,

E|u|j “
ª 8

0

Pp|u|j ° xq ¨ dx § L
1

¨
ª 8

0

expp´L
2

¨ x1{jq ¨ dx

“ L
1

Lj
2

¨ j! §
´L

1

L
2

¯j
¨ j!.(C.7)

Next, we apply the Taylor theorem for exppt ¨ uq. By Eu “ 0, it yields,

Etexppt ¨ uqu “ 1 ` t ¨ Eu `
ÿ

j°1

tj ¨ Euj
j!

“ 1 `
ÿ

j°1

tj ¨ Euj
j!

.

Together with (C.7), it follows that for t § L
2

{p2 ¨ L
1

q,

Etexppt ¨ uqu § 1 `
ÿ

j°1

´ t ¨ L
1

L
2

¯j
“ 1 `

´ t ¨ L
1

L
2

¯

2

¨
ÿ

j•0

´ t ¨ L
1

L
2

¯j

§ 1 ` 2 ¨
´ t ¨ L

1

L
2

¯

2

§ exp
!

2 ¨
´ t ¨ L

1

L
2

¯

2

)

.(C.8)
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HIGH DIMENSIONAL SEMIPARAMETRIC INFERENCE 9

Combining (C.6) and (C.8), we conclude that if t § L
2

{p2 ¨ L
1

q

PpUn • xq § expp´t ¨ k ¨ xq ¨ exp
´2 ¨ L2

1

¨ t2
L2

2

¨ k
¯

.

Then, we can optimize the upper bound with respect to t for any given x.
This yields t “ mintL2

2

¨ x{p4 ¨ L2

1

q, L
2

{p2 ¨ L
1

qu. Then

PpUn • xq § exp
´

´ min
!L2

2

¨ x2
8 ¨ L2

1

,
L
2

¨ x
4 ¨ L

1

)

¨ k
¯

.

Applying the previous argument to ´Un, we obtain

PpUn § ´xq § exp
´

´ min
!L2

2

¨ x2
8 ¨ L2

1

,
L
2

¨ x
4 ¨ L

1

)

¨ k
¯

.

The result follows by a combination of these two bounds.

C.3. Proof of Lemma A.5.

Proof of Lemma A.5. By the definition of gpyi,xi,�˚q, we have

(C.9) pUn “ 2

npn ´ 1q ¨
n

ÿ

i“1

ÿ

j‰i

hij|i, and hij|i “ Ephij | yi,xiq,

where hij “ hijp�˚q is given by (A.4) and gpyi,xi,�˚q “ 1

n´1

¨ ∞j‰i hij|i.
Note that

?
n

2
¨ pbT⌃bq´1{2¨bTr`p�˚q “ pbT⌃bq´1{2 ¨ 1?

n
¨

n
ÿ

i“1

bTgpyi,xi,�
˚q

`
?
n

2
¨ pbT⌃bq´1{2 ¨ bT tr`p�˚q ´ pUnu :“ I

1

` I
2

.

Note that Etgpyi,xi,�˚qu “ Ephijq “ 0. Hence, bTgpyi,xi,�˚q in I
1

are
mutually independent mean-zero random variables. In addition, we have
CovpI

1

q “ 1. To apply the central limit theorem for I
1

, we now verify the
Lyapunov condition for I

1

. By Assumption 4.1, bT⌃b is lower bounded by
�
min

p⌃q, and

n´3{2
n

ÿ

i“1

E|pbT⌃bq´1{2bTgpyi,xi,�
˚q|3 “ Op1q¨n´3{2

n
ÿ

i“1

E|bTgpyi,xi,�
˚q|3.
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10 TIANQI ZHAO AND HAN LIU

Let B denote the support set of the vector b. Note that }bB}
2

§ }b}
2

“ 1
and bTgpyi,xi,�˚q “ bT

BgBpyi,xi,�˚q. By the Cauchy inequality, we have

n´3{2 ¨
n

ÿ

i“1

E|bTgpyi,xi,�
˚q|3 § n´3{2 ¨

n
ÿ

i“1

E||gBpyi,xi,�
˚q||3

2

.

By (A.4), it is easy to show that ||hij ||8 § M , which implies ||hij|i||8 § M ,
and ||gpyi,xi,�˚q||8 § M . Moreover, by assumption |B| § rs and the Hölder
inequality, we obtain

n´3{2 ¨
n

ÿ

i“1

E|pbT⌃bq´1{2 ¨ bTgpyi,xi,�
˚q|3 “ OPprs3{2 ¨ n´1{2 ¨ M3q “ oPp1q.

Thus, the Lyapunov Central Limit Theorem implies I
1

 Np0, 1q. In the
following, we shall show that I

2

“ oPp1q. Note that I
2

can be rewritten as

I
2

“
?
n

2
¨ pbT⌃bq´1{2 ¨ 1

npn ´ 1q ¨
ÿ

i†j

bTwij ,

where wij “ hij ´hij|i ´hij|j . Next, we would like to calculate the variance
of I

2

. This requires to calculate the covariance of wij and wlk. To this end,
we have to separately consider several situations according to the equality
among i, j, l, k. In the first case, for i ‰ l, k and j ‰ l, k,

Epwijw
T
lkq “ Ephijh

T
lkq ´ Ephijh

T
lk|lq ´ Ephijh

T
lk|kq ´ Ephij|ih

T
lkq

` Ephij|ih
T
lk|lq ` Ephij|jh

T
lk|kq ´ Ephij|jh

T
lkq

` Ephij|jh
T
lk|lq ` Ephij|jh

T
lk|kq.(C.10)

For the first term, EphijhT
lkq “ EphijqEphT

lkq “ 0, followed by the indepen-
dence of hij and hlk. Similarly, using the independence and the mean 0
results Ephijq “ Ephlkq “ Ephlk|kq “ Ephij|jq “ 0, all these nine terms in

(C.10) are 0. This implies EpwijwT
lkq “ 0. Similar to (C.10), if only one of

i, j is identical to one of l, k, say i “ l, then

Epwijw
T
ikq “ Ephijh

T
ikq ´ Ephijh

T
ik|iq ´ Ephij|ih

T
ikq ` Ephij|ih

T
ik|iq,

where the remaining terms in (C.10) are 0 by the same arguments. Note
that

Ephijh
T
ikq “ EtEphijh

T
ik | yi,xiqu “ EtEphij | yi,xiqEphT

ik | yi,xiqu “ Ephij|ih
T
ik|iq,

Ephijh
T
ik|iq “ EtEphijh

T
ik|i | yi,xiqu “ EtEphij | yi,xiqhT

ik|iu “ Ephij|ih
T
ik|iq,

Ephij|ih
T
ikq “ EtEphikh

T
ij|i | yi,xiqu “ EtEphik | yi,xiqhT

ij|iu “ Ephij|ih
T
ik|iq.
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HIGH DIMENSIONAL SEMIPARAMETRIC INFERENCE 11

Therefore, EpwijwT
ikq “ 0. Then, the nontriavial covariance of wij and wlk

must have i “ l and j “ k if i † j, l † k. This leads to

EpI2
2

q “ n ¨ pbT⌃bq´1 ¨ 1

n2pn ´ 1q2 ¨
ÿ

i†j

ÿ

l†k

bTEpwijw
T
lkqb

“ n ¨ pbT⌃bq´1 ¨ 1

n2pn ´ 1q2 ¨
ÿ

i†j

bTEpwijw
T
ijqb.

Let B denote the support set of the vector b. Note that |B| § rs and
pbT⌃bq´1 “ Op1q. Then

(C.11) EpI2
2

q “ Op1q ¨ 1

npn ´ 1q2 ¨
ÿ

i†j

�
max

!

EpwBijw
T
Bijq

)

.

Since ||hij ||8 § M , ||hij|i||8 § M , we obtain ||wijwT
ij ||8 “ OPpM2q, and

therefore,

(C.12) �
max

!

EpwBijw
T
Bijq

)

§ rs ¨ ||wijw
T
ij ||8 “ OPprs ¨ M2q.

Combining (C.11) and (C.12), we obtain EpI2
2

q “ OPprs ¨M2{nq “ oPp1q. By
the Markov inequality, we have I

2

“ oPp1q. Applying the Slutsky’s Theorem,
we finish the proof.

C.4. Proof of Lemma A.6.

Proof of Lemma A.6. Define the event E↵ “
 

|p↵P ´↵˚| § C¨
a

log n{n
(

for some constant C. In the following we show that

lim
nÑ8PpEc

↵q “ 0,

for some constant C. Define the set D :“ t↵ : |↵´ ↵˚| § C ¨
a

log n{nu and

let Gp↵q :“ ´p`2p↵˚q´1

p`1p↵q ` ↵. If there exists ↵ P D such that Gp↵q “ ↵,
then we have p`1p↵q “ 0. This implies ↵ “ p↵, which further implies that
p↵ P D. By Brouwer Fixed Point theorem, there exists ↵ P D such that
Gp↵q “ ↵ if GpDq Ä D. Hence, by the above chain of arguments, to show
limnÑ8 PpEc

↵q “ 0, it su�ces to show that

lim
nÑ8P

`

GpDq Ä D˘

“ 1.

For any ↵ P D, by Taylor expansion, it holds for some intermediate value ↵̄
that

Gp↵q “ ´p`2p↵˚q´1

`

p`1p↵˚q ` p`2p↵̄qp↵ ´ ↵˚q
˘

` ↵

“ ´p`2p↵˚q´1

 

p`1p↵˚q `
`

p`2p↵̄q ´ p`2p↵˚q
˘

p↵ ´ ↵˚q
(

` ↵˚(C.13)
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12 TIANQI ZHAO AND HAN LIU

We first show that ´p`2p↵˚q´1 is upper bounded with high probability. Note
that

´p`2
np↵˚q “ r´p`2

np↵˚q ` p1, pwT qr2`p�˚qp1, pwT qT s
´ rp1, pwT qr2`p�˚qp1, pwT qT ` H↵|�s ` H↵|�
:“ I

1

` I
2

` H↵|� .(C.14)

The analysis of (C.14) is similar to that of (A.11) with ↵̄ replaced by ↵˚.
For I

1

, we have }p↵˚, p

�p↵˚qT qT ´ �

˚}
1

“ }p

� ´ �}
1

` |p↵ ´ ↵˚|}w˚}
1

“
OP

`

maxts, s
1

u ¨
a

log d{n
˘

. Similar to (A.11), we can show that

I
1

“ OP
`

M ¨ maxts, s
1

u ¨
a

log d{n
˘

“ oPp1q.

Moreover, I
2

is the same as I
4

in (A.11), hence I
2

“ oPp1q. Therefore, we
have |p`2

np↵˚q ` H↵|� | “ oPp1q. As H´1

↵|� “ Op1q, we conclude that

(C.15) ´ p`2
np↵˚q´1 is upper bounded with probability tending to 1.

Next we obtain an upper bound for p`1
np↵˚q. We showed in the proof of

Theorem 4.1 that
?
np`1

np↵˚q “ ?
nSp�˚q ` oPp1q. Moreover, by the proof of

Lemma A.5, we have

?
nSp�˚q “ ?

np1,´w˚T q p

Un ` ?
n
 

Sp�˚q ´ p1,´w˚T q p

Un

(

:“ I
3

` I
4

.(C.16)

By definition, we have p

Un “ 2n´1

∞n
i“1

gpyi,xi,�˚q. Moreover, gpyi,xi,�˚q
are i.i.d. Hence

Erp?
np1,´w˚T q p

Unq2s “ 4n´1E
„

!

n
ÿ

i“1

p1,´w˚T qgpyi,xi,�
˚q

)

2

⇢

“ E
“

tp1,´w˚T qgpyi,xi,�
˚qu2

‰

§ }p1,´w˚T q}2
2

¨ �
max

p⌃q,

which is bounded by a constant. Applying Markov’s inequality, we have

P
´

|I
3

| •
a

log n
¯

§ Erp?
np1,´w˚T q p

Unq2s
log n

“ op1q.

This implies that I
3

À ?
log n with probability tending to 1. Moreover, by

the proof of Lemma A.5, we have I
4

“ oPp1q. Therefore, by (C.16), we have

(C.17) |p`1
np↵˚q| À

a

log n{n with probability tending to 1.
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HIGH DIMENSIONAL SEMIPARAMETRIC INFERENCE 13

Lastly, we bound the term p↵ ´ ↵˚qpp`2
np↵̄q ´ p`2p↵˚qq. By the formula for

p`2
np↵q, we have

p`2
np↵̄q ´ p`2p↵˚q “ p1,´ pwT qtr2`p↵̄, p

�p↵̄qq
´ r2`p↵˚, p

�p↵˚qup1,´ pwT qT .(C.18)

As ↵̄ P D, we have }p↵̄, p

�p↵̄qT q ´ p↵˚, p

�p↵˚qT q}
1

§ |↵̄ ´ ↵˚|p1 ` } pw}
1

q À
M ¨

a

s
1

log n{n. Therefore, by (C.18) and the similar argument to the proof

of (A.14), we conclude that sup↵PD |p`2
np↵̄q ´ p`2p↵˚q| À M2 ¨

a

s
1

log n{n.
which implies

(C.19) sup
↵PD

|p↵ ´ ↵˚qpp`2
np↵̄q ´ p`2p↵˚qq| À M2 ¨ s1{2

1

¨ log n{n À
a

log n{n,

where we used the scaling condition that for any given � ° 0,

M2 ¨
a

s
1

log n{n À s1{2
1

{n1{2´� “ op1q,

by (4.1). Combining (C.13), (C.15), (C.17) and (C.19), we conclude that

lim
nÑ8P

`

GpDq Ä D˘

“ lim
nÑ8P

´

sup
↵PD

|Gp↵q ´ ↵˚| À
a

log n{n
¯

“ 1,

which concludes the proof.

APPENDIX D: RESULTS FOR PARAMETER ESTIMATION

In this section, we first present the error bounds in `q norm pq • 1q for
parameter estimation with the Lasso penalty. Then we present the results
with the nonconvex penalty. Finally, we present a lemma which verifies the
assumed conditions hold with high probability.

D.1. Error Bounds in the `q Norm for Lasso Estimator. Let
�

˚ “ p�˚
1

, ...,�˚
d qT denote the vector of true parameter. Consider the opti-

mization problem (4.2) with the Lasso penalty

p

� P argmax
�

!

`p�q ´ �
d

ÿ

j“1

|�j |
)

.

To bound the estimation error of p

�, we need to impose conditions on the
minimal eigenvalues of the Hessian matrix associated with the vectors in a
restricted set. In GLMs, the compatibility factor [7], restricted eigenvalue [2]
and weak cone invertibility factor [9] have been commonly used to control
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14 TIANQI ZHAO AND HAN LIU

the estimation error for the Lasso estimator. For the proposed model, given a
constant ⇠, we similarly define the compatibility factor, restricted eigenvalue
and weak cone invertibility factor as

pr2`p�˚q, sq “ min

"

´s1{2pvTr2`p�˚qvq1{2

||vS ||
1

: v P Rdzt0u, ||vSc ||
1

§ ⇠||vS ||
1

*

,

REpr2`p�˚q, sq “ min

"

´ vTr2`p�˚qv
||v||2

2

: v P Rdzt0u, ||vSc ||
1

§ ⇠||vS ||
1

*

,

and

⇢qpr2`p�˚q, sq “ min

"

´ s1{qvTr2`p�˚qv
||vS ||

1

||v||q
: v P Rdzt0u, ||vSc ||

1

§ ⇠||vS ||
1

*

,

where S “ tj : �˚
j ‰ 0u denotes the support set of �˚ and s “ |S| is the

cardinality of S. For notational simplicity, we suppress their dependence
on the constant ⇠. The following theorem establishes the nonasymptotic
estimation error bounds.

Theorem D.1. Assume that the following two events
(D.1)

A
1

“
"

max
1§i†j§n

||pyi´yjqpxi´xjq||8 § M

*

, A
2

“
"

||r`p�˚q||8 § p⇠ ´ 1q�
⇠ ` 1

*

,

hold for some constant ⇠ ° 1 and some M , and ⌧ “ Mp⇠`1qs�{t22pr2`p�˚q, squ †
e´1. Then

|| p

� ´ �

˚||
1

§ expp⌘qp⇠ ` 1q
22pr2`p�˚q, sqs�,(D.2)

|| p

� ´ �

˚||
2

§ 2 expp⌘q⇠
p1 ` ⇠qREpr2`p�˚q, sqs

1{2�,(D.3)

|| p

� ´ �

˚||q § 2 expp⌘q⇠
p1 ` ⇠q⇢qpr2`p�˚q, sqs

1{q�, q • 1,(D.4)

|| p

�||
0

§ expp4⌘q⇠2�2
max

RE2pr2`p�˚q, sqs,(D.5)

where ⌘ § 1 is the smallest z satisfying z expp´zq “ ⌧ , and �
max

is the
maximum eigenvalue of ´r2`p�˚q. In addition,

”

p p

� ´ �

˚qTr2`p�˚qp p

� ´ �

˚q
ı

1{2
§ 2⇠ expp⌘q

p⇠ ` 1qRE1{2pr2`p�˚q, sq
s1{2�.

Proof. The detailed proof is shown in Supplementary Appendix G.
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HIGH DIMENSIONAL SEMIPARAMETRIC INFERENCE 15

In many applications, it is often reasonable to assume the covariates are
uniformly bounded. In this case, A

1

holds for some constant M , provided yi
is also uniformly bounded, which is true for the binary or categorical out-
comes. On the other hand, if yi follows the sub-Gaussian or sub-exponential
distribution, thenA

1

holds with probability tending to 1, withM “ C
?
log n

or M “ C log n for some su�ciently large constant C. In addition, Lemma
A.2 implies }r`p�˚q}8 § C2 ¨

a

log d{n with high probability. This suggests
that we can take � —

a

log d{n. In the end of this section, we shall show
that the restricted eigenvalue RE2pr2`p�˚q, sq is lower bounded by a pos-
itive constant under the Gaussian, logistic and Poisson models. The same
conclusions also hold for the compatibility factor and weak cone invertibility
factor.

Up to a multiplicative constant, the upper bounds in (D.2), (D.3) and
(D.4) are identical to those in the linear regression [2] and GLMs [7]. Indeed,
[6] established the minimax lower bound in the sparse linear regression with
Gaussian noise, that is min

r� max�˚PB0psq || r

� ´ �

˚||
2

Á
a

s logpd{sq{n with

positive probability, where B
0

psq “ t� P Rd : ||�||
0

§ su is the L
0

-ball with
radius s. Since the linear regression with Gaussian noise is a parametric
submodel, this also serves as a lower bound for the semiparametric GLM.
Compared with (D.3), we conclude that the upper bound for p

� is identical
to the lower bound up to a logarithmic factor. Therefore, p

� is nearly rate
optimal in the minimax sense under the semiparametric GLM.

D.2. Error Bounds for the Nonconvex Estimator. In this section,
we establish the statistical consistency of p

�, which is the solution to the op-
timization problem (4.2) with a nonconvex penalty function. The theoretical
results are shown in the following corollary.

Corollary D.1. Assume that there exist constants ⇢, ⌧ and r ° 0 such
that for any v P Rd and }v}

1

§ r, it satisfies

(D.6) ´ vTr2`p�˚qv • ⇢ ¨ }v}2
2

´ ⌧ ¨ }v}2
1

¨ log d
n

.

Under the same assumptions as in Theorem D.1, we have

(D.7) || p

� ´ �

˚||
2

§ C
2

¨ s1{2 ¨ �, and || p

� ´ �

˚||
1

§ C
1

¨ s ¨ �,
and rp p

� ´�

˚qTr2`p�˚qp p

� ´�

˚qs1{2 § C
3

¨ s1{2 ¨�, where C
1

and C
2

are two
positive constants.

The proof is similar to that of Theorem D.1. We omit it for simplicity.
By Lemma A.2, we have }r`p�˚q}8 § C2 ¨

a

log d{n with high probability.
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16 TIANQI ZHAO AND HAN LIU

Thus, with � —
a

log d{n, we obtain

(D.8) || p

�´�

˚||
2

“ OPps1{2 ¨
a

log d{nq, and || p

�´�

˚||
1

“ OPps¨
a

log d{nq,

and

(D.9) rp p

� ´ �

˚qTr2`p�˚qp p

� ´ �

˚qs1{2 “ OPps1{2 ¨
a

log d{nq.

Note that this result justifies conditions on the initial estimator p

�, and
therefore the nonconvex estimator p

� can be used as an initial estimator
for post-regularization inference. Since the optimization problem (4.2) is
nonconvex, the obtained solution may depend on the specific algorithm for
solving (4.2). [8] proposed an approximate path following algorithm, and
Theorem 4.7 of [8] showed that the estimator produced by the algorithm
has the same convergence rate as in (D.7), (D.8) and (D.9).

D.3. Verifying RE and RSC Conditions. Finally, we conclude this
section by showing that RE2pr2`p�˚q, sq is lower bounded by a positive
constant and (D.6) holds for many important GLMs, such as linear regres-
sion with Gaussian noise, logistic regression and Poisson regression, with
high probability. We now justify the validity of these assumptions in the
following proposition.

Proposition D.1. Let the mean and covariance of xi be 0 and ⌃x “
Covpxiq and denote m “ max

1§i§nmax
1§j§d |xij |. Assume that xi is a sub-

Gaussian vector with a finite sub-Gaussian norm denoted by Cx, and also
assume }�˚}

2

§ C� for some finite constant C�.

(a) Assume that the linear regression with Gaussian noise holds, i.e., Y “
�

˚T
X ` ✏, with ✏ „ Np0, 1q. Then, with probability at least 1´ 2 ¨ d´6,

(D.10) ´ vTr2`p�˚qv • ⇢ ¨ }v}2
2

´ ⌧ ¨ }v}2
1

¨ log d
k

,

where ⇢ “ CR ¨ C 1
1

¨ C 1
R ¨ �

min

p⌃xq, ⌧ “ 4 ¨ C⌘ and k “ tn{2u. Here, C 1
1

ia an absolute positive constant, C 1
R “ expp´2 ¨ R2q and

(D.11) C⌘ “ 32 ¨ CR ¨ m2, with CR “ expp´4 ¨ Rq
r1 ` expp4 ¨ Rqs2 ,

where R is a constant satisfying

C2
1

¨ C2

x ¨ exp
´

´ C3
1

¨ R2

C2

� ¨ C2

x

¯

§ �
min

p⌃xq,
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HIGH DIMENSIONAL SEMIPARAMETRIC INFERENCE 17

for some absolute positive constants C2
1

and C3
1

. In addition, with
probability at least 1 ´ 2 ¨ d´6,
(D.12)

´vTr2`p�˚qv • ⇢1¨}v}2
2

, where ⇢1 “ CRC
1
1

C 1
R�min

p⌃xq´64C⌘s

c

log d

k
.

(b) Assume that the logistic regression for Y holds, i.e., PpY “ 0 | Xq “
r1 ` expp�˚T

Xqs´1, and PpY “ 1 | Xq “ 1 ´ PpY “ 0 | Xq. Then,
with probability at least 1´2¨d´6, (D.10) and (D.12) hold with C 1

1

“ 1,
C 1
R “ 2 ¨ expp´Rq ¨ r1 ` exppRqs´2 and C⌘ is defined in (D.11).

(c) Assume that the Poisson regression, ppy | xq “ expry¨�˚T
x´expp�˚T

xqs{y!,
holds. Then, with probability at least 1 ´ 2 ¨ d´6, (D.10) and (D.12)
hold with C 1

1

“ 1, C 1
R “ 2 ¨ expr´R ´ 2 ¨ exppRqs and C⌘ is defined in

(D.11).

Proof. The detailed proof is shown in Supplementary Appendix G.

APPENDIX E: EXTENSIONS TO MISSING DATA

In this section, we will illustrate how the semiparametric GLM is useful
for handling high dimensional data with missing values and heterogeneity.
We start from the following missing data problem.

Assume that Y given X follows the GLMs in equation (1.1) and the miss-
ing data process is decomposable. As shown in equation (2.3), Y given X

and � “ 1 satisfies the semiparametric GLM with the same finite dimensional
parameter � and unknown function fmp¨q. Following the same regularized
statistical chromatography arguments in Section 3, the conditional probabil-
ity of RL

ij “ r

L
ij given the order statistic Y

L
pi,jq “ pminpYi, Yjq,maxpYi, Yjqq,

the covariate pxi,xjq and the selection indicator �i “ �j “ 1 is

PpRL
ij “ r

L
ij | yL

pi,jq,xi,xj , �i “ �j “ 1;�q “ t1 ` Rijp�qu´1,

where Rijp�q is given by (3.4). Thus, the composite log-likelihood function
becomes

`mp�q “ ´
ˆ

n

2

˙´1

ÿ

1§i§j§n

�i ¨ �j ¨ log
´

1 ` Rijp�q
¯

.

Note that the samples i and j contribute to the loss function if and only
if they are both completely observed, i.e., �i “ �j “ 1. Hence, `mp�q is
expressed in terms of the observed data and is computable in practice. The
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18 TIANQI ZHAO AND HAN LIU

initial estimator is given by

(E.1) p

�m P argmax
�

`mp�q ´
d

ÿ

j“1

p�mp�jq,

where �m • 0 is a tuning parameter and p�p¨q is a generic penalty function
(which could be nonconvex). Further discussions on the parameter estima-
tion in the presence of missing data can be found in Supplementary Materi-
als. In the following, we apply the main results in Section 4 to establish the
limiting distribution of the maximum directional likelihood estimator and di-
rectional likelihood ratio test statistic under the null hypothesis H

0

: ↵˚ “ 0.
Let p

�m “ pp↵m, p

�mq. Consider the following directional likelihood function
p`mp↵q “ `mp↵, p

�m ` pp↵m ´ ↵q pwmq, where

(E.2) pwm “ argmax
w

!1

2
wTr2

��`
mp p

�mqw ´ wTr2

�↵`
mp p

�mq ´ �m1

}w}
1

)

.

Let ↵P
m “ argmax↵PR p`mp↵q, and ⇤m

n “ 2ntp`mp↵P
mq´p`mp↵

0

qu. We now estab-
lish the asymptotic properties of p↵P

m ´↵˚ and ⇤m
n under the null hypothesis

H
0

: ↵˚ “ 0. Let Hm “ ´Epr2`mp�˚qq and gmpyi,xi,�q “ n
2

¨ Etr`mp�q |
yi,xi, �i “ 1u. Define

pHmq↵|� “ pHmq↵↵´pHmq↵�rpHmq��s´1pHmq�↵ and⌃m “ Etgb2

m pyi,xi,�
˚qu.

The following assumption, analogous to Assumption 4.1, is adopted for the
missing data setting, and we refer to Section 4 for more detailed discussions.

Assumption E.1. Assume that Y is sub-exponential which satisfies Def-
inition 1.1, and }X}8 § m for a positive constant m. Assume that c §
�
min

p⌃mq § �
max

p⌃mq § c1, and c § �
min

pHmq § �
max

pHmq § c1, for some
constants c, c1 ° 0.

Let w˚
m “ rpHmq��s´1pHmq�↵ and s

1

“ ||w˚
m||

0

. The following hypothe-
sis testing result is a direct corollary of Theorems 4.1 and 4.2. For simplicity,
we omit the proof.

Corollary E.1. Assume that Y follows from the generalized linear
model (1.1) and the missing data process satisfies Definition 2.3. Suppose As-
sumptions E.1 holds. Assume } p�}

2

“ OPp
a

s log d{nq, } p�}
1

“ OPps
a

log d{nq,
and | p�Tr2`p�˚q p�| “ OPps log d{nq, where p� “ p

�m ´ �

˚ and s “ }�˚}
0

.
Given any small constant � ° 0, it holds that

lim
nÑ8

maxts, s
1

u2 ¨ log d
n1{2´�

“ 0.
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Then with �m1

— log n ¨
a

log d{n, we have

n1{2 ¨ pp↵P ´ ↵˚q Np0, 4�2m ¨ pHmq´2

↵|�q,

where �2m “ p⌃mq↵↵ ´2w˚T
m p⌃mq�↵ `w˚T

m p⌃mq��w˚
m. Moreover, under the

null hypothesis, it holds that p4 ¨ p�2mq´1 ¨ p pHmq↵|� ¨ ⇤n  �2

1

, where

p�2m :“ pp⌃mq↵↵ ´ 2pwT
mp p⌃mq�↵ ` pwT

mp p⌃mq�� pwm,

p⌃m :“ 1

n
¨

n
ÿ

i“1

! 1

n ´ 1
¨

n
ÿ

j“1,j‰i

�i ¨ �j ¨ Rijp p

�mq ¨ pyi ´ yjq ¨ pxi ´ xjq
1 ` Rijp p

�mq
)b2

,

and p pHmq↵|� :“ ´r2

↵↵`
mp p

�mq ` pwT
mr2

�↵`
mp p

�mq.

Similar to the previous section, the following two Lemmas are su�cient
to imply the validity of the error bounds with either Lasso or nonconvex
penalty function. The proof of Corollary E.1 is similar to that of Theorem
4.1 and Theorem 4.2, and we omit the proof.

In the first Lemma, it shows that ||r`mp�˚q||8 § C2 ¨
a

log d{n with high
probability. In the second Lemma, it shows that the inequality (D.6) for
`mp�˚q holds with high probability. These two Lemmas yield that the esti-
mator p

�m has the desired convergence rates with missing data and selection
bias.

Lemma E.1. Assume that assumption E.1 holds. Then, for any C2 ° 0,

we have }r`mp�˚q}8 § C2 ¨
b

log d
n , with probability at least

(E.3) 1´ 2 ¨ d ¨ exp
”

´min
! C2 ¨ C22

29 ¨ C 12 ¨ m2

¨ log d
n

,
C ¨ C2

25 ¨ C 1 ¨ m ¨
c

log d

n

)

¨ k
ı

,

where k “ tn{2u, m “ max
1§i§nmax

1§j§d |xij |, and C,C 1 are defined in
Definition 1.1.

Proof. The proof is similar to Lemma A.2 and is omitted.

Lemma E.2. Let the mean and covariance of xi be 0 and ⌃x “ Covpxiq
and denote m “ max

1§i§nmax
1§j§d |xij |. Assume that xi is a sub-Gaussian

vector with the finite sub-Gaussian norm denoted by Cx, and also assume
}�˚}

2

§ C� for some finite constant C�.
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(a) Assume that the linear regression with Gaussian noise holds, i.e., Y “
�

˚T
X ` ✏, with ✏ „ Np0, 1q. Assume that there exists an interval

I Ö r´1, 1s such that for any y P I satisfies g
1

pyq ° c for some constant
c ° 0 and g

2

pxq is a positive constant, where g
1

and g
2

are given in
definition 2.3. Then, with probability at least 1 ´ 2d´6,

(E.4) ´ vTr2`mp�˚qv • ⇢ ¨ }v}2
2

´ ⌧ ¨ }v}2
1

¨ log d
k

,

where ⇢ “ CR ¨ C 1
1

¨ C 1
R ¨ �

min

p⌃xq, ⌧ “ 4 ¨ C⌘ and k “ tn{2u. Here, C 1
1

ia an absolute positive constant, C 1
R “ expp´2 ¨ R2q and

(E.5) C⌘ “ 32 ¨ CR ¨ m2, with CR “ expp´4 ¨ Rq
r1 ` expp4 ¨ Rqs2 ,

where R is a constant satisfying

C2
1

¨ C2

x ¨ exp
´

´ C3
1

¨ R2

C2

� ¨ C2

x

¯

§ �
min

p⌃xq.

for some absolute positive constants C2
1

and C3
1

.
(b) Assume that the logistic regression for Y holds, i.e., PpY “ 0 | Xq “

r1 ` expp�˚T
Xqs´1, and PpY “ 1 | Xq “ 1 ´ PpY “ 0 | Xq. Assume

that g
1

p0q ° c and g
1

p1q ° c for some constant c ° 0. Then, with
probability at least 1 ´ 2d´6, (E.4) holds with C 1

1

“ 1, C 1
R “ 2 ¨ c2 ¨

expp´Rq ¨ r1 ` exppRqs´2 and C⌘ is defined in (E.5).
(c) Consider the Poisson regression, ppy | xq “ expry�˚T

x´expp�˚T
xqs{y!.

Assume that there exists two positive integers z
1

and z
2

, z
1

‰ z
2

sat-
isfying g

1

pz
1

q ° c and g
1

pz
2

q ° c for some constant c ° 0. Then, with
probability at least 1 ´ 2d´6, (E.4) holds with C 1

1

“ 1,

C 1
R “ c2 ¨ pz

1

´ z
2

q2 ¨ 1

z
1

!z
2

!
¨ exp

!

´ z
1

¨R´ z
2

¨R´ 2 ¨ exppRq
)

, and

C⌘ “ 32¨CR¨m2¨rmaxtz
1

, z
2

us2, with CR “ expp´4Rmaxtz
1

, z
2

uq
r1 ` expp4Rmaxtz

1

, z
2

uqs2 .

Proof. The proof is similar to Lemma D.1 and is omitted.

APPENDIX F: EXTENSION TO MULTIPLE DATASETS INFERENCE
WITH HETEROGENEITY

Consider the following problem setup. Assume that there exist nt samples
in the tth task, where t “ 1, ..., T . Given t, for any i “ 1, ..., nt, the data
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pyiptq,xiptqq are independent, and yiptq given xiptq follows the semiparametric
GLM in equation (1.2). Here, we allow the sample sizes n

1

, ...., nT to be
di↵erent, and denote n “ mintn

1

, ..., nT u. In this section, we mainly focus
on the finite sample estimation error bounds for this multitask learning
problem.

Assume that the sparsity patterns of the d-dimensional parameter �

˚
t

are identical for any t “ 1, ..., T . In other words, the response variables
depend on the same covariates across di↵erent tasks. Hence, the group Lasso
penalty can be used to encourage the group sparsity. Following the statistical
chromatography in Section 3, for notational simplicity we directly study the
following loss function instead of the loglikelihood function for the tth task

(F.1) `tp�tq “
ˆ

nt

2

˙´1

ÿ

1§i§j§nt

log

ˆ

1 ` Rtijp�tq
˙

,

where Rtijp�q “ expt´pyiptq ´ yjptqq�T
t pxiptq ´ xjptqqu. Combining the loss

functions for all tasks and applying the group Lasso penalty, we can estimate
�

˚ “ p�˚T
1

, ...,�˚T
T qT by

(F.2) p

�H “ argmin
�

"

`Hp�q ` �H

d
ÿ

j“1

p
T

ÿ

t“1

�2tjq1{2
*

,

where `Hp�q “ ∞T
t“1

`tp�tq is a composite loss function and �H ° 0 is a
tuning parameter. Note that the group Lasso penalty uses the L

2

norm
to combine parameters within the group and the L

1

norm for parameters
between groups. This type of penalty function can shrink all parameters
within a group to 0, and therefore encourages group sparsity.

Let �

j “ p�
1j , ...,�TjqT denote the coe�cients corresponding to the jth

covariate across di↵erent tasks, and p

�

j
H denote the corresponding compo-

nents in p

�H . For every 1 § q † 8, we define the mixed p2, qq-norm of �
as

||�||
2,q “

ˆ d
ÿ

j“1

`

T
ÿ

t“1

�2tj
˘q{2

˙

1{q
“

ˆ d
ÿ

j“1

||�j ||q
2

˙

1{q
,

and the p2,8q-norm of � as ||�||
2,8 “ max

1§j§d ||�j ||
2

. In this section, we
use rjfp�q to denote the derivative of fp�q with respect to the vector �

j

and r2

jkfp�q to denote the mixed derivative of fp�q with respect to the

vector �

j and �

k. Following the Karush-Kuhn-Tucker (KKT) conditions,
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p

�H is a solution to (F.2) if and only if

(F.3)

$

&

%

rj`Hp p

�Hq “ ´�H
p�j
H

|| p�j
H ||2

, if || p

�

j
H ||

2

‰ 0,

||rj`Hp p

�Hq||
2

§ �H , if || p

�

j
H ||

2

“ 0.

Similarly, if p

�H is not unique, we allow p

�H to be any solution of equation
(F.3).

F.1. Upper Bounds for Parameter Estimation. Let SH “ tj :
�

˚j ‰ 0, j “ 1, ..., du denote the group support set for �

˚, and sH “ |SH |
denote the cardinality of SH . Given the constant ⇠, we can generalize the
compatibility factor, the restricted eigenvalue, and the weak cone invertibil-
ity factor to the multitask learning problem,

Hpr2`Hp�˚q, sHq “ min

"

s1{2
H pvTr2`Hp�˚qvq1{2

||vSH ||
2,1

: v P RdˆT zt0u, ||vSc
H ||

2,1 § ⇠||vSH ||
2,1

*

,

REHpr2`Hp�˚q, sHq “ min

"

vTr2`Hp�˚qv
||v||2

2,2

: v P RdˆT zt0u, ||vSc
H ||

2,1 § ⇠||vSH ||
2,1

*

,

⇢Hqpr2`Hp�˚q, sHq “ min

"

s1{q
H vTr2`Hp�˚qv
||vSH ||

2,1||v||
2,q

: v P RdˆT zt0u, ||vSc
H ||

2,1 § ⇠||vSH ||
2,1

*

.

Similar to the analysis of L
1

-regularized estimator, the cone ||vSc
H ||

2,1 §
⇠||vSH ||

2,1 indexed by the true support set SH is used to restrict the space
for eigenvectors. In contrast, the restricted eigenvalue condition defined for
the multitask linear regression in [5] is taking infimum over all possible cones
||vJc ||

2,1 § ⇠||vJ ||
2,1, where |J | § sH . Hence, our condition is slightly weaker

than [5].

Theorem F.1. Assume that the two events

A
1H “

 

max
t

max
i†j

||pyiptq ´ yjptqqpxiptq ´ xjptqq||8 § M
(

,

A
2H “

"

||r`Hp�˚q||
2,8 § p⇠ ´ 1q�H

⇠ ` 1

*

,(F.4)

hold for some constant ⇠ ° 1, and ⌧ “ Mp⇠`1qsH�H{t22Hpr2`Hp�˚q, sHqu †
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1{e. Then

|| p

�H ´ �

˚||
2,1 § expp⌘qp⇠ ` 1q

22Hpr2`Hp�˚q, sHqsH�H ,(F.5)

|| p

�H ´ �

˚||
2,2 § 2 expp⌘q⇠

p1 ` ⇠qREHpr2`Hp�˚q, sHqs
1{2
H �H ,(F.6)

|| p

�H ´ �

˚||
2,q § 2 expp⌘q⇠

p1 ` ⇠q⇢Hqpr2`Hp�˚q, sHqs
1{q
H �H , q • 1,(F.7)

|tj : p

�

j
H ‰ 0u| § expp4⌘q⇠2�2

max

RE2

Hpr2`Hp�˚q, sHqsH ,(F.8)

where ⌘ § 1 is the smallest z satisfying z expp´zq “ ⌧ , and �
max

is the
maximum eigenvalue of r2`Hp�˚q.

Proof. The detailed proof is shown in Supplementary Appendix G.

Note that the rate of convergence in Theorem F.1 depends crucially on
the choice of �H . The following lemma provides the lower bound for �H in
the multitask learning problem.

Lemma F.1. Under Assumption 4.1 and assume that tn{2u´1 logp12dq §
1{2 holds. For n • 4, with probability at least 1´2

?
2plogp12dqq{plogp2dqq1`2�

for some � ° 0,

||r`Hp�˚q||
2,8 § 4

?
10mC̄1{2T 1{2

n1{2 ` T 1{4plogp2dqq 3
4`�

n1{2
32

?
2C 1m
C

,

where C̄ “ 2

ª 8

0

C 1 expp´Cx1{2qdx and C,C 1 are specified in Definition 1.1.

Moreover, provided

�H Á T 1{2 ` T 1{4plog dq3{4`�

n1{2 ,

with probability at least 1 ´ 2
?
2plogp12dqq{plogp2dqq1`2�, the event A

2H in
(F.4) holds.

Proof. The detailed proof is shown in Supplementary Appendix G.

Remark 1. Theorem F.1, Lemma F.1, together with Lemma G.6, imply
that

(F.9)
1?
T

|| p

�H ´ �

˚||
2,q “ OP

ˆ

s1{q
H

n1{2

ˆ

1 ` plog dq3{4`�

T 1{4

˙˙

,
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for any q • 1, provided n — n
1

— ¨¨¨ — nT . Note that we divide the estimation
error by

?
T such that the results can be interpreted as the error per task.

Similar to [5], we find that our estimator enjoys the dimension independence

phenomenon. That is, if plog dq3{4`�

T 1{4 “ op1q, then 1?
T

|| p

�H´�

˚||
2,q “ OP

` s
1{q
H

n1{2
˘

,

which is independent of the dimensionality d.

Remark 2. Recall that by Theorem F.1, replacing the Group Lasso

penalty with the Lasso penalty, we obtain 1?
T

|| p

�H ´�

˚||
2,2 “ OPp

b

sH log d
n q.

Compared with (F.9), the Group Lasso yields faster convergence rate than

the Lasso estimator, if plog dq3{4`�

T 1{4 “ op1q. Similar phenomenon is observed
by [5] for the linear regression. Moreover, our results (F.9) with q “ 1 are

sharper than the convergence rate 1?
T

|| p

�H´�

˚||
2,1 “ OPpsH

b

log d
n q obtained

by [4, 3] for classical GLMs.

In order to prove Lemma F.1, we establish a new maximal moment in-
equality for U-statistics with unbounded kernels. This result is also of inter-
est in its own right.

Lemma F.2. Let X
1

, ..., Xn be independent random variables. Consider
the following d-dimensional U-statistics of order m

U “
ÿ

i1†...†im

upXi1 , ..., Ximq{
ˆ

n

m

˙

,

where the summation is over all i
1

† ... † im selected from t1, ..., nu,
and EtupXi1 , ..., Ximqu “ 0 for all i

1

† ... † im. For 1 § j § d, let
ujpXi1 , ..., Ximq denote the jth component of upXi1 , ..., Ximq. For any M •
1, define cM “ tc ° 0 : exppM ´ 1q ´ 1 § pc ´ 2qdu and k “ tn{mu to be
the largest integer less than n{m. Assume that k´1 logpcMdq § 1{2. If there
exist constants L

1

and L
2

, such that for any 1 § j § d,

Pp|ujpXi1 , ..., Ximq| • xq § L
1

expp´L
2

xq,

for all i
1

† ... † im and all x • 0, then for any M • 1

E
ˆ

max
1§j§d

|Uj |M
˙

§ 23M{2
ˆ

L
1

L
2

˙Mˆ

logpcMdq
k

˙M{2
.

Proof. The detailed proof is shown in Supplementary Appendix G.
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F.2. Hypothesis tests. Assume that the parameter in the tth task
can be partitioned into �t “ p↵t,�tq, where ↵t is the parameter of interest
and �t is the nuisance parameter. Assume that we are interested in testing
H

0

: ↵t “ 0. Since the data from di↵erent tasks are independent, to make
inference on ↵t, we can only consider the data from the tth task. Hence,
following the similar approach, the directional likelihood can be constructed
based on modifying `tp�tq in (F.1). Hence, the inferential properties in this
setting are similar to the those in the main paper. To save space, we do not
replicate the details.

APPENDIX G: PROOFS OF AUXILIARY LEMMAS

In this appendix, we present the proofs of the auxiliary Lemmas in pre-
vious appendices.

G.1. Proof of Lemma B.1. We first introduce the following interme-
diate estimator,

p⌃p�q “ 1

npn ´ 1q2 ¨
n

ÿ

i“1

ÿ

j‰i,k‰i

rijkp�q,

where the kernel function rijkp�q is defined as

rijkp�q “ Rijp�q ¨ Rikp�q ¨ pyi ´ yjq ¨ pyi ´ ykq ¨ pxi ´ xjqpxi ´ xkqT
p1 ` Rijp�qq ¨ p1 ` Rikp�qq .

We have p⌃ “ p⌃p p

�q and the following decomposition,

p⌃p p

�q ´ ⌃ “
 

p⌃p p

�q ´ p⌃p�˚q
(

`
 

p⌃p�˚q ´ ⌃
(

:“ I
1

` I
2

.

To control I
1

, we will bound the derivative of p⌃p�q with respect to �. In
particular, for any pa, bq element of rijkp�q and any 1 § l § d, after some
simple algebra, we can show that

ˇ

ˇ

ˇ

Brrijkp�qspa,bq
B�l

ˇ

ˇ

ˇ

§ M2 ¨
ˇ

ˇ

ˇ

B
B�l

´ Rijp�qRikp�q
p1 ` Rijp�qqp1 ` Rikp�qq

¯

ˇ

ˇ

ˇ

§ M3 ¨ Rijp�qRikp�qp1 ` Rijp�qq ` Rijp�qRikp�qp1 ` Rikp�qq
p1 ` Rijp�qq2 ¨ p1 ` Rikp�qq2 § 2M3,

where M :“ max
1§i†j§n ||pyi ´ yjq ¨ pxi ´ xjq||8. Thus, by the mean value

theorem and the assumption } p

�´�

˚}
1

“ OPps
a

log d{nq, we can show that

rrijkp p

�q ´ rijkp�˚qspa,bq “ Brrijkp�qspa,bq
B� p p

� ´ �

˚q

§
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Brrijkp�qspa,bq
B�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8
¨ || p

� ´ �

˚||
1

“ OP
´

M3 ¨ s ¨
c

log d

n

¯

,

imsart-aos ver. 2014/10/16 file: supp.tex date: April 17, 2017



26 TIANQI ZHAO AND HAN LIU

where � lies in between p

� and �

˚. Thus, this implies

(G.1) ||I
1

||8 “ OP
´

M3 ¨ s ¨
c

log d

n

¯

.

By the definition of ⌃ and hij|i in (C.9), we have

⌃ “ 1

npn ´ 1q2
n

ÿ

i“1

ÿ

j‰i,k‰i,k‰j

Ephij|ih
T
ik|iq ` 1

npn ´ 1q2
n

ÿ

i“1

ÿ

j‰i

Ephb2

ij|iq

“ 1

npn ´ 1q2
n

ÿ

i“1

ÿ

j‰i,k‰i,k‰j

Ephijh
T
ikq ` 1

npn ´ 1q2
n

ÿ

i“1

ÿ

j‰i

Ephb2

ij|iq,

where the last step follows from the fact that hij and hik are independent
given yi,xi. Since rijkp�˚q “ hijhT

ik, we have

I
2

“ n ´ 2

n ´ 1

! 1

npn ´ 1qpn ´ 2q
ÿ

j‰i,k‰i,j‰k

“

rijkp�˚q ´ Etrijkp�˚qu
‰

)

` 1

n ´ 1

! 1

npn ´ 1q
ÿ

j‰i

“

rijjp�˚q ´ Etrijjp�˚qu
‰

)

` 1

n ´ 1

! 1

npn ´ 1q
ÿ

j‰i

“

Ethb2

ij u ´ Ethb2

ij|iu
‰

)

:“ n ´ 2

n ´ 1
I
21

` 1

n ´ 1
I
22

` 1

n ´ 1
I
23

It is seen that I
21

is a mean-zero third order U-statistic. Note that rijkp�˚q
satisfies rrijkp�˚qspa,bq § M2. The Hoe↵ding inequality yields that for any
pa, bq element of I

21

,

P
´

ˇ

ˇ

ˇ

rI
21

spa,bq
ˇ

ˇ

ˇ

° x
¯

§ 2 ¨ exp
´

´ k ¨ x2
8 ¨ M4

¯

,

where k “ tn{3u. By the union bound inequality,

||I
21

||8 “ OP
´

M2 ¨
c

log d

n

¯

.

Similarly, I
22

is a mean-zero second order U-statistic with the kernel function
rijjp�˚q satisfying rrijjp�˚qspa,bq § M2. By using the same arguments, we
can show that

||I
22

||8 “ OP
´

M2 ¨
c

log d

n

¯

.
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For I
23

, note that ||hij ||8 § M , which implies that ||Ehb2

ij ||8 § M2. In

addition, by the definition of hij|i in (C.9), we can show that ||Ehb2

ij|i||8 §
M2. Hence, ||I

23

||8 “ OPpM2q. Combining the error bounds for I
21

, I
22

and
I
23

, we finally obtain

(G.2) ||I
2

||8 “ OP
´

M2 ¨
c

log d

n

¯

.

Combining the error bounds for I
1

and I
2

in (G.1) and (G.2), we can con-
clude the proof,

|| p⌃p p

�q´⌃||8 “ OP
´

M3¨s¨
c

log d

n

¯

`OP
´

M2¨
c

log d

n

¯

“ OP
´

M3¨s¨
c

log d

n

¯

.

G.2. Proof of Theorem D.1. Before we present the proof of Theorem
D.1, we start from the following Lemma.

Lemma G.1. Let � P Rd and b “ maxi†j |pyi ´ yjq�T pxi ´ xjq|, then

(G.3) ´ expp´bqr2`p�q § ´r2`p� ` �q § ´ exppbqr2`p�q,

and

(G.4) ´ expp´bq�Tr2`p�q� § Dp� ` �,�q § ´ exppbq�Tr2`p�q�.

Proof. The proof of this Lemma follows from that of Lemma A.4. Hence,
we omit the details.

Recall that Dp p

�,�q “ ´p p

� ´ �qT pr`p p

�q ´ r`p�qq is the symmetrized
Bregman divergence. By exploiting the KKT condition, we can show the
following basic inequality.

Lemma G.2. Let p� “ p

�´�

˚ and Dp p

�,�q “ ´p p

�´�qT pr`p p

�q´r`p�qq.
Then, we have

p�´ ||r`p�˚q||8q|| p�Sc ||
1

§ Dp p

�,�˚q ` p�´ ||r`p�˚q||8q|| p�Sc ||
1

§ p�` ||r`p�˚q||8q|| p�S ||
1

.

Moreover, for any ⇠ ° 1, || p�Sc ||
1

§ ⇠|| p�S ||
1

, provided ||r`p�˚q||8 § �p⇠ ´
1q{p⇠ ` 1q.
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Proof of Lemma G.2. Since ´`p�q is convex, Dp p

�,�q • 0. Thus the
first inequality holds. Denote p� “ p

� ´ �

˚. Note that

Dp p

�,�˚q “ ´ p�T tr`p�˚ ` p�q ´ r`p�˚qu
“ ´

ÿ

jPSc

p�jrj`p�˚ ` p�q ´
ÿ

jPS
p�jrj`p�˚ ` p�q ` p�Tr`p�˚q.

Furthermore, by the KKT condition, we have

Dp p

�,�˚q § ´
ÿ

jPSc

�p�jsgnpp�jq `
ÿ

jPS
| p�j |�` || p�||

1

||r`p�˚q||8

“ ´�|| p�Sc ||
1

` �|| p�S ||
1

` || p�||
1

||r`p�˚q||8
“

ˆ

�` ||r`p�˚q||8
˙

|| p�S ||
1

´ p�´ ||r`p�˚q||8q|| p�Sc ||
1

.

This completes the proof.

In the following, we start the proof of Theorem D.1. Let p� “ p

� ´ �

˚,
a “ p�{|| p�||

1

and x “ || p�||
1

. By Lemma G.1, we get
(G.5)
Dp�˚ `xa,�˚q • ´ expp´bqx2aTr2`p�˚qa • ´x2 expp´MxqaTr2`p�˚qa,

where

b “ max
i†j

|pyi ´yjq p�T pxi ´xjq| § max
k

max
i†j

|pyi ´yjqpxik ´xjkq||| p�||
1

§ Mx.

By the definition of the compatibility factor,

(G.6) ´ a

Tr2`p�˚qa • 2pr2`p�˚q, sq||aS ||2
1

{s.

By Lemma G.2, in the event ||r`p�˚q||8 § �p⇠ ´ 1q{p⇠ ` 1q, we have

Dp�˚ ` xa,�˚q § 2x⇠�

⇠ ` 1
||aS ||

1

´ 2x�

⇠ ` 1
||aSc ||

1

“ 2x�||aS ||
1

´ 2x�

⇠ ` 1
§ x�p⇠ ` 1q||aS ||2

1

{2,(G.7)

where the equality follows from ||a||
1

“ 1. Combining (G.5), (G.6) and
(G.7), we derive

x expp´Mxq § ⇠ ` 1

22pr2`p�˚q, sq�s.
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Note that by definition Mx expp´Mxq § ⌧ . Since ⌘ is the smallest solution
of z expp´zq “ ⌧ , and z expp´zq ´ ⌧ is an increasing function of z for z § 1,
we have Mx § ⌘. Thus

|| p�||
1

“ x § ⌘

M
“ ⌧ expp⌘q

M
“ p⇠ ` 1q expp⌘q

22pr2`p�˚q, sq�s.

This completes the proof of (D.2). To prove (D.3), by the definition of the
restricted eigenvalue, we have

(G.8) ´ a

Tr2`p�˚qa • REpr2`p�˚q, sq||a||2
2

.

Similar to (G.7), we have

(G.9) Dp�˚ ` xa,�˚q § 2x⇠�

1 ` ⇠
||aS ||

1

§ 2x⇠�

1 ` ⇠
s1{2||aS ||

2

§ 2x⇠�

1 ` ⇠
s1{2||a||

2

.

Combining (G.5), (G.8) and (G.9), we derive

x||a||
2

§ 2⇠ exppMxq
p⇠ ` 1qREpr2`p�˚q, sqs

1{2�.

Note that Mx § ⌘. Then

|| p�||
2

“ x||a||
2

§ 2⇠ expp⌘q
p⇠ ` 1qREpr2`p�˚q, sqs

1{2�.

This completes the proof of (D.3). Based on this result, we further combine
(G.5) with (G.9),

r p�Tr2`p�˚q p�s1{2 § 2⇠ expp⌘q
p⇠ ` 1qRE1{2pr2`p�˚q, sq

s1{2�.

To prove (D.4), by the definition of the weak cone invertibility factor, we
have

(G.10) ´ a

Tr2`p�˚qa • ⇢qpr2`p�˚q, sq||aS ||
1

||a||q{s1{q.

Similar to (G.7), we have

(G.11) Dp�˚ ` xa,�˚q § 2x⇠�

⇠ ` 1
||aS ||

1

´ 2x�

⇠ ` 1
||aSc ||

1

§ 2x⇠�

1 ` ⇠
||aS ||

1

.

Combining (G.5), (G.10) and (G.11), we derive

x||a||q § 2⇠ exppMxq
p⇠ ` 1q⇢dpr2`, sqs

1{q�.
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Since || p�||q “ x||a||q and Mx § ⌘, we obtain

(G.12) || p�||q “ x||a||q § 2⇠ expp⌘q
p⇠ ` 1q⇢dpr2`, sqs

1{q�.

This completes the proof of (D.4). By the KKT condition, if p�j ‰ 0, then

�signpp�jq “ rj`p p

�q “ rj`p�˚q `
d

ÿ

k“1

r2

jk`p r

�qp p

� ´ �

˚qk,

where r

� is some intermediate value between �

˚ and p

�. Given event A
2

,

ˇ

ˇ

ˇ

ˇ

d
ÿ

k“1

r2

jk`p r

�qp p

� ´ �

˚qk
ˇ

ˇ

ˇ

ˇ

• �´ ||r`p�˚q||8 “ 2

⇠ ` 1
�.

Denote Jp p

�q “ tj : p

�j ‰ 0u. Thus

4�2

p⇠ ` 1q2 || p

�||
0

§
ÿ

jPJp p�q

ˆ d
ÿ

k“1

r2

jk`p r

�qp p

� ´ �

˚qk
˙

2

§ ||r2`p r

�qp p

� ´ �

˚q||2
2

§ || p

� ´ �

˚||2
2

�2
max

p´r2`p r

�qq,
where �

max

pr2`p r

�qq is the largest eigenvalue of r2`p r

�q. By Lemma G.1 and
the fact that Mx § ⌘,

´r2`p r

�q § ´ exppMxqr2`p�˚q § ´ expp⌘qr2`p�˚q.
This implies that �

max

p´r2`p r

�qq § expp⌘q�
max

. Together with (D.3), we
find

|| p

�||
0

§ expp4⌘q⇠2�2
max

RE2pr2`p�˚q, sqs.

This completes the proof.

G.3. Proof of Proposition D.1. Denote Fij “ t|yi| § ⌘u X t|yj | § ⌘u
and F 1

ij “ t|�˚T
xi| § Ru X t|�˚T

xj | § Ru, where ⌘ and R are positive
constants to be chosen later. We first apply a truncation argument for the
Hessian matrix.

´r2`p�˚q • 2

npn ´ 1q ¨
ÿ

i†j

Rijp�˚qpyi ´ yjq2pxi ´ xjqb2

p1 ` Rijp�˚qq2 ¨ pFijq ¨ pF 1
ijq

• 2 ¨ CR

npn ´ 1q ¨
ÿ

i†j

pyi ´ yjq2 ¨ pxi ´ xjqb2 ¨ pFijq ¨ pF 1
ijq,
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where CR “ expp´4 ¨ R ¨ ⌘q ¨ p1 ` expp4 ¨ R ¨ ⌘qq´2. Consider the following
U-statistic

W “ 2 ¨ CR

npn ´ 1q ¨
ÿ

i†j

pyi ´ yjq2 ¨ pxi ´ xjqb2 ¨ pFijq ¨ pF 1
ijq.

We first verify (D.6) holds. For any v P Rd, we get

´vTr2`p�˚qv • vTWv “ vTEpWqv ` vT rW ´ EpWqsv.
By the Hölder inequality, we get

|vTWv ´ vTEpWqv| § ||v||2
1

¨ ||W ´ EpWq||8,

and it further implies that

(G.13) ´ vTr2`p�˚qv • vTEpWqv ´ ||v||2
1

¨ ||W ´ EpWq||8.

Next, we establish the concentration of W to its mean. Note that after the
truncation argument, the kernel function of W is bounded, i.e.,

||CR ¨ pyi ´ yjq2 ¨ pxi ´ xjqb2 ¨ pFijq||8 § 16 ¨ CR ¨ m2 ¨ ⌘2.
The Hoe↵ding inequality can be applied to the centered U-statistic Wjk ´
EpWjkq. For some constant t ° 0 to be chosen, and any 1 § j, k § d,

P
´

|Wjk ´ EpWjkq| • t
¯

§ 2 ¨ exp
´

´ k ¨ t2
2 ¨ C2

⌘

¯

.

where k “ tn{2u and C⌘ “ 32 ¨ CR ¨ m2 ¨ ⌘2. By the union bound inequality,
(G.14)

P
´

||W´EpWq||8 • t
¯

§
ÿ

1§j,k§d

P
´

|Wjk´EpWjkq| • t
¯

§ 2¨d2¨exp
´

´ k ¨ t2
2 ¨ C2

⌘

¯

.

Taking t “ 4¨C⌘ ¨
a

log d{k, we obtain that ||W´EpWq||8 § 4¨C⌘ ¨
a

log d{k,
with probability at least 1´ 2d´6. As seen from (G.13), it remains to find a
lower bound for vTEpWqv. In the following, we establish the lower bounds
for three important generalized linear models, including linear regressions
with Gaussian errors, logistic regressions and Poisson regressions.
Linear model: If y follows from the linear model with Np0, 1q error, with
⌘ “ 1 under F 1

ij , we get

E
“

pyi ´ yjq2 ¨ t|yi| § 1, |yj | § 1u | xi,xj

‰

“ 1?
2⇡

¨
ª

1

´1

ª

1

´1

pyi ´ yjq2 ¨ exp
”

´ pyi ´ �

˚T
xiq2 ` pyj ´ �

˚T
xjq2

2

ı

¨ dyidyj

• 1?
2⇡

¨
ª

1

´1

ª

1

´1

pyi ´ yjq2 ¨ expr´py2i ` y2j q ´ 2 ¨ R2s ¨ dyidyj .(G.15)
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For notational simplicity, we let
(G.16)

C 1
1

“ 1?
2⇡

¨
ª

1

´1

ª

1

´1

pyi´yjq2¨expr´py2i `y2j qs¨dyidyj , and C 1
R “ expp´2¨R2q.

By (G.15), we have,

vTEpWqv “ vTE
“

EpW | xq
‰

v • C 1
1

¨ CR ¨ C 1
R ¨ vTErpxi ´ xjqb2 ¨ pF 1

ijqsv.

Let F
1c
ij be the complement of F 1

ij . The Cauchy inequality yields,

vTErpxi ´ xjqb2 ¨ pF 1c
ij qsv § Er2pvT

xiq2 ¨ pF 1c
ij q ` 2pvT

xjq2 ¨ pF 1c
ij qs

“ 4 ¨ ErpvT
xiq2 ¨ pF 1c

ij qs.

Since xi is sub-Gaussian and let u “ v{}v}
2

, we further have

vTErpxi ´ xjqb2 ¨ pF 1c
ij qsv § 4 ¨ }v}2

2

¨ ErpuT
xiq2 ¨ pF 1c

ij qs

§ 4 ¨ }v}2
2

¨
b

EpuT
xiq4 ¨

b

PpF 1c
ij q

§ 16
?
2 ¨ }v}2

2

¨ C2

x ¨
b

Pp|�˚T
xi| ° Rq

§ C2
1

¨ }v}2
2

¨ C2

x ¨ exp
´

´ C3
1

¨ R2

C2

� ¨ C2

x

¯

,

where C2
1

and C3
1

are absolute positive constants. Now, we choose R such
that

C2
1

¨ C2

x ¨ exp
´

´ C3
1

¨ R2

C2

� ¨ C2

x

¯

§ �
min

p⌃xq.

Thus, vTErpxi ´ xjqb2 ¨ pF 1c
ij qsv § �

min

p⌃xq ¨ }v}2
2

, which implies that

vTEpWqv • C 1
1

CRC
1
R

!

vTEpxi ´ xjqb2v ´ vTErpxi ´ xjqb2 ¨ pF 1c
ij qsv

)

• C 1
1

CRC
1
R ¨ �

min

p⌃xq ¨ ||v||2
2

.(G.17)

By (G.13), (G.14) and (G.17), we finally obtain, with probability at least
1 ´ 2d´6,

(G.18) ´ vTr2`p�˚qv • ⇢ ¨ }v}2
2

´ ⌧ ¨ }v}2
1

¨ log d
k

,

where ⇢ “ CR ¨ C 1
1

¨ C 1
R ¨ �

min

p⌃xq and ⌧ “ 4 ¨ C⌘.
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Logistic model: If y given x follows from the logistic regression, one can
take ⌘ “ 1 in above proof, since |y| § 1. In this case, (G.15) reduces to

E
“

pyi ´ yjq2 ¨ t|yi| § 1, |yj | § 1u | xi,xj

‰

“ Ppyi “ 1 | xiqPpyj “ 0 | xjq ` Ppyi “ 0 | xiqPpyj “ 1 | xjq

“ expp�˚T
xiq ` expp�˚T

xjq
r1 ` expp�˚T

xiqsr1 ` expp�˚T
xjqs • C 1

R,(G.19)

where

C 1
R “ 2 ¨ expp´Rq

r1 ` exppRqs2 .

Hence, following the same arguments, we can establish (G.18) with ⇢ “
CR ¨ C 1

R ¨ �
min

p⌃xq and ⌧ “ 4 ¨ C⌘. Here, C 1
R is redefined in (G.19).

Poisson model: If y given x follows from the Poisson regression, with ⌘ “ 1,
similarly, we can get

E
“

pyi ´ yjq2 ¨ t|yi| § 1, |yj | § 1u | xi,xj

‰

“ exp
”

�

T
xj ´ expp�T

xiq ´ expp�T
xjq

ı

` exp
”

yi�
T
xi ´ expp�T

xiq ´ expp�T
xjq

ı

• C 1
R,(G.20)

where
C 1
R “ 2 ¨ expr´R ´ 2 ¨ exppRqs.

Hence, following the same arguments, we can establish (G.18) with ⇢ “
CR ¨ C 1

R ¨ �
min

p⌃xq and ⌧ “ 4 ¨ C⌘. Here, C 1
R is redefined in (G.20).

Next, we will verify the RE condition holds. For any v P Rd and }vSc}
1

§
3 ¨ }vS}

1

, by the Cauchy inequality, (G.13) further implies,

´vTr2`p�˚qv • vTEpWqv ´ 16 ¨ ||vS ||2
1

¨ ||W ´ EpWq||8
• vTEpWqv ´ 16 ¨ s ¨ ||v||2

2

¨ ||W ´ EpWq||8.(G.21)

Recall that, by (G.14), we obtain that ||W ´ EpWq||8 § 4 ¨ C⌘ ¨
a

log d{n,
with probability at least 1 ´ d´6. Similar to the proof of (G.18), after some
algebra, it is easy to show that, for the Gaussian model, with probability at
least 1 ´ 2d´6,

(G.22) ´ vTr2`p�˚qv • ⇢1 ¨ }v}2
2

,

where ⇢1 “ CR ¨ C 1
1

¨ C 1
R ¨ �

min

p⌃xq ´ 64 ¨ C⌘ ¨ s ¨
a

log d{k.
Here C 1

R is defined in (G.16). Similarly, for the logistic model, (G.22) holds
with C 1

1

“ 1 and C 1
R defined in (G.19). For the Poisson model, (G.22) holds

with C 1
1

“ 1 and C 1
R defined in (G.20).
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G.4. Proofs of Multiple Datasets Inference.

Lemma G.3. Denote p� “ p

�H´�

˚ and DHp�
1

,�q “ p�
1

´�qT pr`Hp�
1

q´
r`Hp�qq. We have
`

�H ´ ||r`Hp�˚q||
2,8

˘

|| p�Sc
H ||

2,1 § DHp p

�H ,�˚q `
`

�H ´ ||r`Hp�˚q||
2,8

˘

|| p�Sc
H ||

2,1

§
`

�H ` ||r`Hp�˚q||
2,8

˘

|| p�SH ||
2,1.

It implies that for any ⇠ ° 1, || p�Sc
H ||

2,1 § ⇠|| p�SH ||
2,1, when ||r`Hp�˚q||

2,8 §
�p⇠ ´ 1q{p⇠ ` 1q.

Proof of Lemma G.3. Denote p�j “ p

�

j
H ´ �

˚j . Note that �

˚j “ 0 if
j P Sc

H , and thus

DHp p

�H ,�˚q “ p�T tr`Hp�˚ ` p�q ´ r`Hp�˚qu
“

ÿ

jPSc
H

p

�

jTrj`Hp�˚ ` p�q `
ÿ

jPSH

p�jrj`Hp�˚ ` p�q ´ p�TrH`p�˚q.

Furthermore, by the KKT condition in (F.3) and Cauchy inequality, we have

DHp p

�H ,�˚q § ´
ÿ

jPSc
H

�H || p

�

j ||
2

`
ÿ

jPSH

|| p�j ||
2

�H `
d

ÿ

j“1

|| p�j ||
2

||rj`Hp�˚q||
2

§ ´�H || p�Sc
H ||

2,1 ` �H || p�SH ||
1

` || p�||
2,1||r`Hp�˚q||

2,8

“
`

�H ` ||r`Hp�˚q||
2,8

˘

|| p�SH ||
2,1 ´

`

�H ´ ||r`Hp�˚q||
2,8

˘

|| p�Sc
H ||

2,1.

This completes the proof.

Lemma G.4. Let � P RdˆT and b “ maxtmaxi†j |pyiptq´yjptqq�T
t pxiptq´

xjptqq|, then

(G.23) expp´bqr2`Hp�q § r2`Hp� ` �q § exppbqr2`Hp�q,
and

(G.24) expp´bq�Tr2`Hp�q� § DHp� ` �,�q § exppbq�Tr2`Hp�q�.

Proof of Lemma G.4. Note that by Lemma G.1, for any t “ 1, ..., T ,

expp´btqr2`tp�tq § r2`tp�t ` �tq § exppbtqr2`tp�tq,
where bt “ maxi†j |pyiptq ´ yjptqq�T

t pxiptq ´xjptqq|. Since r2`Hp�q is a block
diagonal matrix with the tth block given by r2`tp�tq and by definition
bt § b, we obtain equation (G.23). (G.24) follows by (G.23) and the mean
value theorem.
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Proof of Theorem F.1. Let p� “ p

�H ´ �

˚, a “ p�{|| p�||
2,1 and x “

|| p�||
2,1. Note that

max
t

|| p�t||1 §
d

ÿ

j“1

max
t

| p�tj | §
d

ÿ

j“1

p
T

ÿ

t“1

p�2

tjq1{2 “ || p�||
2,1 “ x.

Hence,

b “ max
t

max
i†j

|pyiptq ´ yjptqq p�T
t pxiptq ´ xjptqq|

§ max
t

max
i†j

||pyiptq ´ yjptqqpxiptq ´ xjptqq||8 max
t

|| p�t||1 § Mx.

By Lemma G.4, we get

DHp�˚ ` xa,�˚q • expp´bqx2aTr2`Hp�˚qa
• x2 expp´MxqaTr2`Hp�˚qa,(G.25)

By the definition of the compatibility factor,

(G.26) a

Tr2`Hp�˚qa • 2Hpr2`Hp�˚q, sHq||aSH ||2
2,1s

´1

H .

By Lemma G.3, provided A
2H holds, we have

DHp�˚`xa,�˚q § 2x⇠�H
⇠ ` 1

||aSH ||
2,1´2x�H

⇠ ` 1
||aSc

H ||
2,1 “ 2x�H ||aSH ||

2,1´2x�H
⇠ ` 1

.

By the Cauchy inequality, we obtain

(G.27) DHp�˚ ` xa,�˚q § x�Hp⇠ ` 1q||aSH ||2
2,1{2,

Combining (G.25), (G.26) and (G.27), we derive

x expp´Mxq § ⇠ ` 1

22Hpr2`Hp�˚q, sHq�HsH “ ⌧ § 1

e
.

Since ⌘ is the smallest solution of z expp´zq “ ⌧ , and fpzq “ z expp´zq ´ ⌧
is an increasing function of z for z § 1, we have Mx § ⌘. Thus

|| p�||
2,1 “ x § ⌘

M
“ ⌧ expp⌘q

M
“ p⇠ ` 1q expp⌘q

22Hpr2`Hp�˚q, sHq�HsH .

This completes the proof of (F.5).
To prove (F.6), by the definition of the restricted eigenvalue, we have

(G.28) a

Tr2`Hp�˚qa • REHpr2`Hp�˚q, sHq||a||2
2,2.
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Similar to (G.27), we have

DHp�˚ ` xa,�˚q § 2x⇠�H
1 ` ⇠

||aSH ||
2,1 § 2x⇠�H

1 ` ⇠
s1{2
H ||aSH ||

2,2

§ 2x⇠�H
1 ` ⇠

s1{2
H ||a||

2,2.(G.29)

Combining (G.25), (G.28) and (G.29), we derive

x||a||
2,2 § 2⇠ exppMxq

p⇠ ` 1qREHpr2`Hp�˚q, sHqs
1{2
H �H .

Note that Mx § ⌘. Then

|| p�||
2,2 “ x||a||

2,2 § 2⇠ expp⌘q
p⇠ ` 1qREHpr2`Hp�˚q, sHqs

1{2
H �H .

This completes the proof of (F.6).
To prove (F.7), by the definition of the weak cone invertibility factor, we

have

a

Tr2`Hp�˚qa • ⇢Hqpr2`Hp�˚q, sHq||aSH ||
2,1||a||

2,q{s1{q
H .

Similar to (G.27), we have

DHp�˚ ` xa,�˚q § 2x⇠�H
⇠ ` 1

||aSH ||
2,1 ´ 2x�H

⇠ ` 1
||aSc

H ||
2,1 § 2x⇠�H

1 ` ⇠
||aSH ||

2,1.

This yields,

|| p�||
2,q “ x||a||

2,q § 2⇠ expp⌘q
p⇠ ` 1q⇢Hdpr2`Hp�˚q, sHqs

1{q
H �H .

The proof is complete. By the KKT condition (F.3), if p

�

j
H ‰ 0, then

´�H
p

�

j
H

|| p

�

j
H ||

2

“ rj`Hp p

�Hq “ rj`Hp�˚q `
d

ÿ

k“1

r2

jk`Hp r

�qp p

�H ´ �

˚qk,

where r

� is some intermediate value between �

˚ and p

�H . Given event AH2

,

||
d

ÿ

k“1

r2

jk`Hp r

�qp p

�H ´ �

˚qk||
2

• �H ´ ||r`Hp�˚q||
2,8 “ 2

⇠ ` 1
�H .
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Denote Jp p

�Hq “ tj : p

�

j ‰ 0u. Thus

4�2H
p⇠ ` 1q2 |Jp p

�Hq| §
ÿ

jPJp p�Hq
||

d
ÿ

k“1

r2

jk`Hp r

�qp p

�H ´ �

˚qk||2
2

§ ||r2`Hp r

�qp p

�H ´ �

˚q||2
2

§ || p

�H ´ �

˚||2
2

�2
max

pr2`Hp r

�qq.

By Lemma G.4 and the fact that Mx § ⌘,

r2`Hp r

�q § exppMxqr2`Hp�˚q § expp⌘qr2`Hp�˚q.

This implies that �
max

pr2`Hp r

�qq § expp⌘q�
max

, and thus

|Jp p

�Hq| § expp4⌘q⇠2�2
max

RE2pr2`Hp�˚q, sHqsH .

This completes the proof.

Lemma G.5. Let Z
1

, ...., Zn be d-dimensional independent random vec-
tors and Zij be the jth component of Zi. Then,

E
ˆ

max
1§j§d

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

pZij ´ EZijq
ˇ

ˇ

ˇ

ˇ

˙

§ r8 logp2dqs1{2E
ˆ„

max
1§j§d

n
ÿ

i“1

Z2

ij

⇢

1{2˙

.

Proof of Lemma G.5. Define the random variable Wj “ |∞n
i“1

Zij✏i|,
where p✏

1

, ..., ✏nq is a sequence of i.i.d Rademacher random variables inde-
pendent of Z “ pZ

1

, ..., Znq. Let EZ denote the conditional expectation given
Z. For any t ° 0, by Jensen’s inequality,

EZp max
1§j§d

Wjq § t log

"

EZ exp

ˆ

max
1§j§d

Wj{t
˙*

§ t log

" d
ÿ

j“1

EZ exppWj{tq
*

.

Using Hoe↵ding’s inequality, EZ exppWj{tq § 2 expp∞n
i“1

Z2

ij{p2t2qq, which
yields,

d
ÿ

j“1

EZ exppWj{tq § 2d max
1§j§d

exp

ˆ n
ÿ

i“1

Z2

ij{p2t2q
˙

.

Thus,

EZp max
1§j§d

Wjq § t

"

logp2dq ` max
1§j§d

ˆ n
ÿ

i“1

Z2

ij{p2t2q
˙*

.
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With t “
b

max
1§j§d

∞n
i“1

Z2

ij{p2 logp2dqq, we obtain

(G.30) EZp max
1§j§d

Wjq § r2 logp2dqs1{2E
ˆ„

max
1§j§d

n
ÿ

i“1

Z2

ij

⇢

1{2˙

.

By symmetrization, we get

(G.31) E
ˆ

max
1§j§d

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

pZij ´ EZijq
ˇ

ˇ

ˇ

ˇ

˙

§ 2EZp max
1§j§d

Wjq.

We complete the proof by combining (G.30) and (G.31).

Proof of Lemma F.2. Note that xM § logM pex ` eM´1 ´ 1q. For any
t ° 0, by Jensen’s inequality,

Ep max
1§j§d

|Uj |M q § tME logM
"

exp

ˆ

max
1§j§d

|Uj |{t
˙

` exppM ´ 1q ´ 1

*

§ tM logM
"

E exp

ˆ

max
1§j§d

|Uj |{t
˙

` exppM ´ 1q ´ 1

*

§ tM logM
" d

ÿ

j“1

E exp

ˆ

|Uj |{t
˙

` exppM ´ 1q ´ 1

*

.(G.32)

Consider the following representation of U,

U “ 1

n!

ÿ

i1,...,in

vpXi1 , ..., Xinq,

where the summation is over all n! permutations of t1, ..., nu, and

vpXi1 , ..., Xinq “ 1

k

k
ÿ

s“1

Ys, where Ys “ upXsm´m`1

, ..., Xsmq.

Note that vpXi1 , ..., Xinq is an average of k independent random variables.
Similar to the proof of Lemma A.3, by Jensen’s inequality and independence
of Yj , we obtain

E exp

ˆ

|Uj |{t
˙

§ 2

n!

ÿ

E exp

ˆ k
ÿ

s“1

Yjs
kt

˙

§ 2

n!

ÿ

k
π

s“1

E exp

ˆ

Yjs
kt

˙

,

where the summation is over all n! permutations of t1, ..., nu. By (C.8), for
t • 2L1

L2k
,

E exp
Yjs
kt

§ exp

"

2

ˆ

L
1

L
2

˙

2 1

k2t2

*

.
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This implies that

E exp

ˆ

|Uj |{t
˙

§ 2 exp

"

2

ˆ

L
1

L
2

˙

2 1

kt2

*

.(G.33)

Using (G.32) and (G.33) and 2dx ` exppM ´ 1q ´ 1 § cMdx, we have

Ep max
1§j§d

|Uj |M q § tM logM
"

2d exp

"

2

ˆ

L
1

L
2

˙

2 1

kt2

*

` exppM ´ 1q ´ 1

*

§ tM logM
"

cMd exp

"

2

ˆ

L
1

L
2

˙

2 1

kt2

**

“ tM
"

logpcMdq ` 2

ˆ

L
1

L
2

˙

2 1

kt2

*M

.

Since k´1 logpcMdq § 1{2, we can take t “
c

2L2
1

L2
2k logpCMdq , which satisfies

t • 2L1
L2k

. This yields,

Ep max
1§j§d

|Uj |M q § 23M{2
ˆ

L
1

L
2

˙Mˆ

logpcMdq
k

˙M{2
.

Proof of Lemma F.1. Denote

Btkij “ ´Rtijp�˚qpyiptq ´ yjptqqpxikptq ´ xjkptqq
1 ` Rtijp�˚q ,

Dtk “
ˆ

nt

2

˙

ÿ

i†j

Btkij , Atk “ D2

tk, and Wtk “ Atk ´ EpAtkq.

For any t ° 0, by Markov inequality,

P
ˆ

||r`Hp�˚q||
2,8 ° t

˙

“ P
ˆ

max
1§k§d

´

T
ÿ

t“1

Atk

¯

1{2
° t

˙

§ P
ˆ

max
1§k§d

T
ÿ

t“1

Wtk ° t2 ´ max
1§k§d

T
ÿ

t“1

EpAtkq
˙

§
ˆ

t2 ´ max
1§k§d

T
ÿ

t“1

EAtk

˙´1

E
ˆ

max
1§k§d

|
T

ÿ

t“1

Wtk|
˙

.
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We first consider EpAtkq. Note that

(G.34) EpAtkq “ 4

n2

t pnt ´ 1q2
ÿ

i†j

ÿ

l†m

EpBtkijBtklmq.

By Assumption 4.1,

(G.35) Epyi´yjq2 “ Ey2i `Ey2j § C̄, where C̄ “ 2

ª 8

0

C 1 expp´Cx1{2qdx.

There exist three cases in (G.34). When i “ l and j “ m, by Assumption
4.1 and (G.35) we obtain EpBtkijBtklmq § 4m2C̄. When either i “ l, j “ m,
i “ m or j “ l is true, EpBtkijBtklmq § 2m2C̄. Finally, when none of i, j, l
and m are identical, we have EpBtkijBtklmq “ EpBtkijqEpBtklmq “ 0. Thus,
for any n ° 1, (G.34) can be bounded by

EpAtkq § 4

n2

t pnt ´ 1q2
ˆ

ntpnt ´ 1q
2

4m2C̄ ` 8n3m2C̄

˙

§ 160m2C̄

n
.(G.36)

By Lemma G.5, Jensen’s inequality and independence of A
1k, ..., ATk,

E
ˆ

max
1§k§d

|
T

ÿ

t“1

Wtk|
˙

§ r8 logp2dqs1{2E
ˆ„

max
1§k§d

T
ÿ

t“1

A2

tk

⇢

1{2˙

§ r8 logp2dqs1{2
„

E
ˆ

max
1§k§d

T
ÿ

t“1

A2

tk

˙⇢

1{2

§ r8 logp2dqs1{2
„ˆ T

ÿ

t“1

E max
1§k§d

A2

tk

˙⇢

1{2
.

Recall that Atk “ D2

tk and Dtk is a mean zero second order U-statistic.
To control Emax

1§k§dA2

tk, we apply Lemma F.2 with m “ 2, k “ tnt{2u,
M “ 4, c

4

“ 12, L
1

“ 2C 1 and L
2

“ C{p4mq,

E
ˆ

max
1§k§d

A2

tk

˙

§ 26
ˆ

8C 1m
C

˙

4

ˆ

logp12dq
rnt{2s

˙

2

.

Thus,

E
ˆ

max
1§k§d

|
T

ÿ

t“1

Wtk|
˙

§
a

8T logp2dq
n

25 logp12dq
ˆ

8C 1m
C

˙

2

.(G.37)

imsart-aos ver. 2014/10/16 file: supp.tex date: April 17, 2017



HIGH DIMENSIONAL SEMIPARAMETRIC INFERENCE 41

Combining (G.36) with (G.37), we have

P
ˆ

||r`Hp�˚q||
2,8 ° t

˙

§
ˆ

t2 ´ 160m2C̄

n
T

˙´1

a

8T logp2dq
n

ˆ 25 logp12dq
ˆ

8C 1m
C

˙

2

.

We complete the proof by taking

t “ 1601{2mC̄1{2T 1{2

n1{2 ` T 1{4 logp2dq3{4`�

n1{2
32

?
2C 1m
C

.

This finishes the proof.

Lemma G.6. Assume that both m “ max
1§t§T maxi,j |xijptq| and R “

max
1§t§T maxi |�˚T

t xiptq| are bounded. Assume that yptq given xptq satisfies
one of the following models,

(1) Gaussian linear regression, yptq “ �

˚T
t xptq ` ✏, with ✏ „ Np0, 1q,

(2) 0-1 Logistic regression, Ppyptq “ 0 | xptqq “ p1 ` expp�˚T
t xptqqq´1,

(3) Poisson regression, Ppyptq | xptqq “ exppyptq�˚T
t xptq´expp�˚T

xptqqq{yptq!.

Denote the covariance matrix of xptq to be ⌃xt “ Covpxptqq. Then there exist
constants C,C 1, C2 ° 0 such that

2Hpr2`Hp�˚q, sHq • C min
1§t§T

�
min

p⌃xtq,

REHpr2`Hp�˚q, sHq • C min
1§t§T

�
min

p⌃xtq,

⇢Hqpr2`Hp�˚q, sHq • C min
1§t§T

�
min

p⌃xtq,

with probability at least 1´C 1dT 2 expp´C2nS´2

H T´2tmin
1§t§T �min

p⌃xtqu2q.

Proof of Lemma G.6. The proof is similar to that of Proposition D.1
and is omitted for simplicity.

APPENDIX H: INFERENCE ON MULTI-DIMENSIONAL
PARAMETERS

In this section, we consider the case that the parameter of interest ↵ is
K-dimensional. Here, K can be greater than 1 but is fixed not increasing
with n. Following the similar argument to the univariate case, we define the
directional likelihood function for ↵ as

p`p↵q “ `p↵, p

� ` xWp p

↵ ´ ↵qq,
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where p

� :“ p p

↵, p

�q is a first-stage regularized estimator for �˚, and xW is an
estimator for

W˚T :“ H↵�pH��q´1 P RKˆpd´Kq.

In particular, xW “ pxW
1

, ..., xWKq is given by the following Lasso type esti-
mator

xWk “ arg max
wPRd´K

!1

2
wTr2

��`p p

�qw ´ wTr2

�↵k
`p p

�q ´ �
1

}w}
1

)

,

for 1 § k § K. In addition, we define the maximum directional likelihood
estimator as

p

↵

P “ argmax
↵PRK

p`p↵q.

To test the null hypothesisH
0

: ↵˚ “ ↵

0

, we define the maximum directional
likelihood ratio test (DLRT) statistic as

⇤n “ 2ntp`p p

↵

P q ´ p`p↵
0

qu.

Similar to Theorem 4.1, we can prove

n1{2 ¨ p p

↵

P ´ ↵

˚q MVNp0, 4 ¨ H´1

↵|��
2H´1

↵|�q,

where �2 “ ⌃↵↵´2W˚T⌃�↵`W˚T⌃��W˚,H↵|� “ H↵↵´H↵�H´1

��H�↵

and ⌃↵↵, ⌃�↵ and ⌃�� are corresponding partitions of ⌃. Recall that

�

2 and H↵|� can be similarly estimated by p

�

2 and pH↵|� . Therefore, a
confidence region for ↵˚ with p1 ´ ⇠q coverage probability is given by

CR⇠ “
!

↵ P RK : 4´1np↵ ´ p

↵

P qT pH↵|� p

�

´2

pH↵|�p↵ ´ p

↵

P q § �2

K⇠

)

,

where �2

K⇠ is the p1 ´ ⇠q-th quantile of a �2

K random variable.
In addition, to test the null hypothesis H

0

: ↵˚ “ ↵

0

, we can show that
under the null hypothesis, the maximum directional likelihood ratio test
statistic ⇤n satisfies for each t P R

lim
nÑ8

ˇ

ˇ

ˇ

Pp⇤n § tq ´ PpZTH´1

↵|�Z § tq
ˇ

ˇ

ˇ

“ 0,

where Z „ MVNp0, 4�2q. This result establishes the limiting distribution
of ⇤n under the null hypothesis. It can be used to calculate p-values, once
�

2 and H↵|� are estimated.
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APPENDIX I: ADDITIONAL NUMERICAL RESULTS

In this section we present additional simulation results. The setup is simi-
lar to that in Section 5 of the main text, but we consider higher dimensional
settings with d “ 500 and d “ 1000. The number of repetitions is 400. We
also examine the Poisson regression model, in which Yi are drawn i.i.d. from
a Poisson distribution with mean parameter �i “ eX

T
i �. The numerical re-

sults for d “ 500 is shown in Table 1. In this table, we also compare two
di↵erent methods for choosing the tuning parameters. In the first method,
the tuning parameters are chosen by the theoretical levels of � “ 4

a

log d{n
and �

1

“ 4 log n
a

log d{n. In the second method, they are chosen by cross
validation as discussed in Section 5. The results for d “ 1000 is shown in
Table 2.

It can be seen that the type I errors are close to their theoretical values
in all settings. In particular, our tests are valid under the high-dimensional
Poisson regression, which has not been studied or tested anywhere in the
literature. Moreover, it can be seen that choosing theoretical values for the
tuning parameters have similar e↵ects as employing cross validation.

We report the computational time of the methods considered above. Our
directional likelihood ratio test on average takes 14.879 seconds, while the
de-biased and de-sparsified lasso method takes 0.499 and 0.681 seconds.
Our method is slower as we are essentially working with a npn ´ 1q{2 ˆ
d dimensional regression problem. The computational speeds are reported
based on simulations run on Mac X Yosemite with 2.7GHZ Intel Core i5.

Table 1
Type I errors of the Wald test and directional likelihood ratio test (DLRT), for linear,

logistic and Poisson regressions for H0 : ↵ “ µ, at the 0.05 significance level, where

µ “ 0.0, 0.5, 1.0, and d “ 500.

Theoretical value Cross validation

Model Method 0.0 0.5 1.0 0.0 0.5 1.0
Linear Wald 0.063 0.030 0.045 0.053 0.040 0.040

DLRT 0.055 0.023 0.043 0.043 0.033 0.038
Logistic Wald 0.080 0.050 0.053 0.055 0.068 0.060

DLRT 0.073 0.045 0.048 0.058 0.055 0.055
Poisson Wald 0.053 0.050 0.030 0.053 0.060 0.045

DLRT 0.053 0.048 0.040 0.050 0.055 0.043
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Table 2
Type I errors of the Wald test and directional likelihood ratio test (DLRT), for linear,

logistic and Poisson regressions for H0 : ↵ “ µ, at the 0.05 significance level, where

µ “ 0.0, 0.5, 1.0, and d “ 1000.
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Type I errors of the Wald test and directional likelihood ratio test (DLRT), for linear,
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µ “ 0.0, 0.5, 1.0, and d “ 1000.

Linear Logistic
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