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A Unified Theory of Confidence Regions
and Testing for High-Dimensional
Estimating Equations
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Abstract. We propose a new inferential framework for constructing con-
fidence regions and testing hypotheses in statistical models specified by a
system of high-dimensional estimating equations. We construct an influence
function by projecting the fitted estimating equations to a sparse direction ob-
tained by solving a large-scale linear program. Our main theoretical contri-
bution is to establish a unified Z-estimation theory of confidence regions for
high-dimensional problems. Different from existing methods, all of which re-
quire the specification of the likelihood or pseudo-likelihood, our framework
is likelihood-free. As a result, our approach provides valid inference for a
broad class of high-dimensional constrained estimating equation problems,
which are not covered by existing methods. Such examples include, noisy
compressed sensing, instrumental variable regression, undirected graphical
models, discriminant analysis and vector autoregressive models. We present
detailed theoretical results for all these examples. Finally, we conduct thor-
ough numerical simulations, and a real dataset analysis to back up the devel-
oped theoretical results.

Key words and phrases: Post-regularization inference, estimating equa-
tions, confidence regions, hypothesis tests, Dantzig selector, instrumen-
tal variables, graphical models, discriminant analysis, vector autoregressive
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1. INTRODUCTION

Let us observe a sample of n, q-dimensional ran-
dom vectors {Zi}ni=1. Denote with Z the n × q data
matrix obtained by stacking all the vectors Zi . Let
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the function t(Z,β) : Rn×q × Rd "→ Rd specify es-
timating equations t(Z,β) = 0 (Godambe, 1991) for
a d-dimensional unknown parameter β , and further
let Et(β) = limn→∞ Et(Z,β)1 denote the limiting ex-
pected value of the function t(Z,β) as n → ∞. As
an example given n i.i.d. observations Zi and a func-
tion h, this reduces to the classical Z-estimation setup
t(Z,β) = n−1 ∑n

i=1 h(Zi ,β) and Et(β) = Eh(Z,β).
For the purpose of parameter estimation, it is usually
assumed that the estimating equation is unbiased in
the sense that the true value β∗ is the unique solu-
tion to Et(β) = 0. When the dimension d is fixed and
much smaller than the sample size n, inference on β∗

can be obtained by solving the estimating equations
t(Z,β) = 0, and the asymptotic properties follow from

1Here and throughout, such limits should be understood with d

being fixed to its current value.
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the classical Z-estimation theory (van der Vaart, 1998).
However, when d > n, directly solving t(Z,β) = 0 is
an ill-posed problem. To avoid this problem, a popular
approach is to impose the sparsity assumption on β∗,
which motivates constrained Z-estimators in the fol-
lowing generic form (Cai, Liang and Rakhlin, 2014):

β̂ = argmin∥β∥1

subject to
∥∥t(Z,β)

∥∥∞ ≤ λ,
(1.1)

where λ is a regularization parameter.
Assume that we can partition β as (θ,γ ), where θ is

a univariate parameter of interest and γ is a (d − 1)-
dimensional nuisance parameter. Similarly, we denote
β̂ = (θ̂ , γ̂ ) and β∗ = (θ∗,γ ∗). The goal of this pa-
per is to develop a general estimating equation based
framework to obtain valid confidence regions for θ∗
under the regime that d is much larger than n. The
proposed framework has a large number of applica-
tions. For instance, given a convex and smooth loss
function (or negative log-likelihood) ℓ : Rq ×Rd "→ R,
with i.i.d. data Zi , the inference on β can be conducted
based on solving equations specified by the score func-
tion t(Z,β) = n−1 ∑n

i=1
∂ℓ(Zi ,β)

∂β . Hence, inference on
many high-dimensional problems with specifications
of the loss function or the likelihood can be addressed
through our framework. More importantly, the estimat-
ing equation method has an advantage over likelihood
methods in that it usually only requires the specifica-
tion of a few moment conditions rather than the entire
probability distribution (Godambe, 1991). To see the
advantage of our framework, we consider the follow-
ing examples, which are naturally handled by estimat-
ing equations.

1.1 Examples

Linear Regression via Dantzig Selector (Candes and
Tao, 2007). Assume that a linear model (also referred
to as noisy compressed sensing) is specified by the
following moment condition E(Y |X) = XT β∗. Let
X ∈ Rn×d be the design matrix stacking the i.i.d. co-
variates {Xi}ni=1 and Y ∈ Rn be the response vector
with independent entries Yi . Given the moment con-
dition, we can easily construct the estimating func-
tion as t((Y ,X),β) = n−1XT (Xβ − Y ) and Et(β) =
Et((Y ,X),β). In addition, Et(β) = 0 has the true
value β∗ as its unique root, provided that the sec-
ond moment matrix #X := n−1EXT X is positive def-
inite. In the high-dimensional setting, Candes and Tao
(2007) estimated β by the following Dantzig selector:

β̂ = argmin∥β∥1

such that
∥∥n−1XT (Xβ − Y )

∥∥∞ ≤ λ.

Instrumental Variables Regression (IVR). Similar to
the previous example, consider the linear model Y =
XT β∗ + ε. In economics’ applications, it is not al-
ways reasonable to believe that the error and the de-
sign variables are uncorrelated, that is, E[Xε] = 0,
which is a key condition ensuring the unbiasedness of
the estimating equation and consequently the consis-
tency of the Dantzig selector estimate. In such cases,
one may use a set of instrumental variables W ∈ Rd

which are correlated with X but satisfy E[Wε] =
0 and E[ε2|W ] = σ 2. Let X,W ∈ Rn×d be the de-
sign matrix and instrumental variable matrix stack-
ing the i.i.d. covariates {Xi}ni=1 and instrumental vari-
ables {W i}ni=1, respectively, and Y ∈ Rn be the re-
sponse vector with independent entries Yi . Using the
instrumental variables, one can construct the estimat-
ing function t((Y ,X,W),β) = n−1WT (Xβ − Y ) with
Et(β) = Et((Y ,X,W),β). In addition, Et(β) has β∗

as its unique root, provided that the second moment
matrix #WX := n−1EWT X is of full rank. Inspired by
Gautier and Tsybakov (2011), we consider the follow-
ing estimator β̂:

β̂ = argmin∥β∥1

such that
∥∥n−1WT (Xβ − Y )

∥∥∞ ≤ λ.

Graphical Models via CLIME/SKEPTIC (Cai, Liu
and Luo, 2011, Liu, Han and Zhang, 2012). Let
X1, . . . ,Xn be i.i.d. copies of X ∈ Rd with E(X) = 0
and Cov(X) = #X . It is well known that in the case
when X are Gaussian, the precision matrix $∗ =
(#X)−1 induces a graph, encoding conditional inde-
pendencies of the variables X. More generally, this
observation can be extended to transelliptical distribu-
tions (Liu, Han and Zhang, 2012).

Let #n = n−1 ∑
i=1 XiX

T
i be the sample covariance

of X1, . . . ,Xn [recall E(Xi ) = 0]. Based on the sec-
ond moment condition #X$∗ = Id , Cai, Liu and Luo
(2011) proposed the CLIME estimator of $∗:

$̂ = argmin∥$∥1

subject to ∥#n$ − Id∥max ≤ λ.
(1.2)

In this case, we have t(X,$) = #n$ − Id , and
Et($) = #X$− Id . Under the more general setting of
transelliptical graphical models, Liu, Han and Zhang
(2012) substituted the sample covariance #n with a
nonparametric estimate based on Kendall’s tau (see
Remark 2). Doing so breaks down the i.i.d. decompo-
sition of the estimating equation described above, but
continues to belong to our formulation (1.1).
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Discriminant Analysis (Cai and Liu, 2011). Let X
and Y be d-dimensional random vectors, coming from
two populations with different means µ1 = E(X),
µ2 = E(Y ), and a common covariance matrix # =
Cov(X) = Cov(Y ). Given some training samples, we
are interested in classifying a new observation O into
population 1 or population 2. It is well known (e.g., see
Mardia, Kent and Bibby, 1979, Theorem 11.2.1) that,
under certain conditions, the Bayes’ classification rule
takes the form

ψ(O) = I
(
(O − µ)T $δ > 0

)
,

where I (·) is an indicator function, µ = (µ1 + µ2)/2,
δ = (µ1 − µ2) and $ = #−1. Specifically, the obser-
vation O is classified into population 1 if and only if
ψ(O) = 1.

To implement ψ(O) in practice, one has to estimate
the unknown parameters µ1,µ2 and $. Assume we
observe n1 and n2 training samples from population
1 and population 2 denoted by X1, . . . ,Xn1 ∈ Rd and
Y 1, . . . ,Y n2 ∈ Rd . We assume that

Xi = µ1 + U i , i = 1, . . . , n1 and

Y i = µ2 + U i+n1, i = 1, . . . , n2,
(1.3)

where U i are i.i.d. copies of U = (U1, . . . ,Ud)T ,
which satisfies E(U) = 0 and Cov(U) = #. De-
fine the sample means as X̄ = 1

n1

∑n1
i=1 Xi and Ȳ =

1
n2

∑n2
i=1 Y i , and the sample covariances as #̂X =

1
n1

∑n1
i=1(Xi − X̄)(Xi − X̄)T and #̂Y = 1

n2

∑n2
i=1(Y i −

Ȳ )(Y i − Ȳ )T . Furthermore, let #̂n = n1
n #̂X + n2

n #̂Y

be the weighted average of #̂X and #̂Y .
In the high-dimensional setting with d ≫ n, we can-

not directly estimate $ by #̂
−1
n , since the sample co-

variance is not invertible. Noting that the classification
rule solely depends on β∗ = $δ, Cai and Liu (2011)
proposed a direct approach to estimate β∗, rather than
estimating $ and δ separately. Their estimated classi-
fication rule is as follows:

ψ̂(O) = I
((

O − (X̄ + Ȳ )/2
)T β̂ > 0

)
where

β̂ = argmin∥β∥1(1.4)

subject to
∥∥#̂nβ − (X̄ − Ȳ )

∥∥∞ ≤ λ.

Clearly, the latter formulation constitutes a high-
dimensional estimating equation as in (1.1), with
t(({Xi}n1

i=1, {Y i}n2
i=1),β) = #̂nβ − (X̄ − Ȳ ) and

Et(β) = #β − (µ1 − µ2).
Vector Autoregressive Models (Han, Lu and Liu,

2015). Let {Xt }∞t=−∞ be a stationary sequence of mean

0 random vectors in Rd with covariance matrix #. The
sequence {Xt }∞t=−∞ is said to follow a lag-1 autore-
gressive model if

Xt = AT Xt−1 + W t , t ∈ Z := {. . . ,−1,0,1, . . . .},
where A is a d ×d transition matrix, and the noise vec-
tors W t are i.i.d. with W t ∼ N(0,&) and independent
of the history {Xs}s<t . Under the additional assump-
tion that det(Id − AT z) ≠ 0 for all z ∈ C with |z| ≤ 1,
it can be shown that & can be selected so that the
process is stationary, i.e. for all t : Xt ∼ N(0,#). Let
#i := Cov(X0,Xi ), where #0 := #. A simple calcu-
lation under the lag-1 autoregressive model leads to the
following Yule–Walker equation: #i := #0Ai , for any
i ∈ N. A special case of the above equation with i = 1
yields that

(1.5) A = #−1
0 #1.

Assume that the data (X1, . . . ,XT ) follow the lag-1
autoregressive model. By equation (1.5), Han, Lu and
Liu (2015) proposed the following estimator of A in
the high-dimensional setting

Â = argmin
M∈Rd×d

∑

1≤j,k≤d

|Mjk|

subject to ∥S0M − S1∥max ≤ λ,

(1.6)

where λ > 0 is a tuning parameter, S0 =
T −1 ∑T

t=1 XtX
T
t and S1 = (T − 1)−1 ∑T −1

t=1 XtX
T
t+1

are estimators of #0 and #1, respectively, and T is
the number of observations. In this case, we have that
t({Xt }Tt=1,M) = S0M −S1, and Et(M) = #0M −#1.

1.2 Related Methods

Having explored a few examples falling into the es-
timating equation framework (1.1), we move on to out-
line some related works on high-dimensional infer-
ence. Recently, significant progress has been made to-
ward understanding the post-regularization inference
for the LASSO estimator in the linear and general-
ized linear models. For instance, Lockhart et al. (2014),
Taylor et al. (2014), Lee et al. (2013), Tian and Taylor
(2018) suggested conditional tests based on covariates
which have been selected by the LASSO. We stress the
fact that this type of tests are of fundamentally different
nature compared to our work.

Another important class of methods is based on the
bias correction of L1 or nonconvex regularized estima-
tors. In particular, Zhang and Zhang (2014) proposed
the low dimensional projection estimator (LDPE) for
the inference in linear models. The method is further
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extended by Belloni, Chernozhukov and Wei (2013),
van de Geer et al. (2014) to the generalized linear mod-
els. Recently, Ning and Liu (2014, 2017) proposed a
decorrelated score test in a likelihood based frame-
work. The difference between our method and this
class of methods will be discussed in more detail in
the next section. It is also worth mentioning two re-
cent papers focusing on linear models; Zhu and Bradic
(2016), Cai and Guo (2017). These papers set out to
understand how to perform a more general testing of
projections on a potentially dense loading vector in the
linear model. In contrast, our work considers the infer-
ence on the component of β , which is a special case of
the aforementioned papers, but handles the more gen-
eral setting of estimating equations.

A different score related approach is considered by
Voorman, Shojaie and Witten (2014), which is test-
ing a null hypothesis depending on the tuning parame-
ter, and hence differs from our work. For the noncon-
vex penalty, under the oracle properties, the asymptotic
normality property of the estimators is established by
Fan and Lv (2011), which requires strong conditions,
such as the minimal signal condition. In contrast, our
work does not rely on oracle properties or variable se-
lection consistency. P-values and confidence intervals
based on sample splitting and subsampling are sug-
gested by Meinshausen, Meier and Bühlmann (2009),
Meinshausen and Bühlmann (2010), Shah and Sam-
worth (2013), Wasserman and Roeder (2009). How-
ever, the sample splitting procedures may lead to cer-
tain efficiency loss. In a recent paper by Lu et al.
(2015), the authors developed a new inferential method
based on a variational inequality technique for the
LASSO procedure which provably produces valid con-
fidence regions. In contrast to our work, their method
needs the dimension d to be fixed, and it may not be
applicable to the inference problem based on the for-
mulation (1.1).

In addition to the above works, three relevant pa-
pers on Z-estimation are Loh (2017), Belloni, Cher-
nozhukov and Kato (2015), Belloni, Chernozhukov
and Hansen (2014). The first work considered the M-
estimators and influence function in robust regression.
The latter considers Z-estimators, establishes valid-
ity of a bootstrap procedure to construct simultaneous
confidence intervals for an increasing number of pa-
rameters, and studies in detail the LAD case. Their
approach is based on the “orthogonal moment condi-
tion,” which essentially achieves the debiasing feature
needed to obtain confidence regions despite of the high
dimensionality of the nuisance parameters.

1.3 Contributions

Our first contribution is to propose a new procedure
for high-dimensional inference in the estimating equa-
tion framework. In order to construct confidence re-
gions, our method projects the general estimating equa-
tion onto a certain sparse direction, which can be eas-
ily estimated by solving a large-scale linear program.
Thus, the proposed inferential procedure is a general
methodology and can be directly applied to many in-
ference problems, including all aforementioned exam-
ples. We note that such a projection idea is first pro-
posed by Zhang and Zhang (2014). Our method is dif-
ferent in that it directly targets the influence function
of the estimating equation. Below we highlight the dif-
ferences between our method and Zhang and Zhang
(2014), Ning and Liu (2014, 2017).

In the linear model setting, Zhang and Zhang (2014)
search for a projection direction which coincides with
the least squares score equation for the parameter of
interest θ , that is, they aim to estimate a vector w
satisfying wT (Y − θX∗1) = 0. Specifically, they esti-
mate w by approximately solving wT X∗,−1 ≈ 0. In the
present paper, we propose a different estimate of w,
which satisfies the same condition. More importantly,
we extend this idea to general estimating equation set-
tings and provide a very natural and compelling moti-
vation based on influence function expansions. Ning
and Liu (2014, 2017) define the decorrelated score
function n−1 ∑n

i=1[∂ℓ(Zi ,β)/∂θ −wT ∂ℓ(Zi ,β)/∂γ ],
where ℓ(Zi ,β) is the log-likelihood for data Zi , and
wT ∂ℓ(Zi ,β)/∂γ is the sparse projection of the θ -score
function ∂ℓ(Zi ,β)/∂θ to the (d − 1)-dimensional
nuisance score space span{∂ℓ(Zi ,β)/∂γ }. While the
score function can be treated as a special case of esti-
mating equation, such a construction cannot be directly
extended to general estimating equations. The reason
is that it is unclear how to disentangle the estimating
equation for the parameter of interest and the space of
nuisance estimating equations and, therefore, the pro-
jection method in Ning and Liu (2014, 2017) is not
applicable. To address this challenge, motivated from
the classical influence function representation, we pro-
pose a different projection approach, which directly
estimates the influence function of the equation.

Our second contribution is to establish a unified Z-
estimation theory of confidence intervals. In particu-
lar, we construct a Z-estimator θ̃ that is consistent and
asymptotically normal, and its asymptotic variance can
be consistently estimated. Furthermore, the pointwise
asymptotic normality results can be strengthened by
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showing that θ̃ is uniformly asymptotically normal for
β∗ belonging to a certain parameter space (deferred
to the Supplementary Material, Neykov et al., 2018).
Moreover, owing to the flexibility of the estimating
equations framework, we are able to push the theory
through for non-i.i.d. data, relaxing the assumptions
made in most existing work. In terms of relative ef-
ficiency, when the estimating equation corresponds to
the score function, our estimator θ̃ is semiparametri-
cally efficient. The theoretical properties of hypothesis
tests have also been established, but for space limita-
tions the proofs will be omitted and can be provided by
the authors upon request.

Our third contribution is to apply the proposed
framework to establish theoretical results for the pre-
vious motivating examples including the noisy com-
pressed sensing with moment condition, instrumen-
tal variable regression, graphical models, transellipti-
cal graphical models, linear discriminant analysis and
vector autoregressive models. To the best of our knowl-
edge, many of the aforementioned problems (e.g., in-
strumental variables regression, linear discriminant
analysis and vector autoregressive models) have not
been equipped with any inferential procedures.

Finally, we further emphasize the difference between
our method and the class of methods based on the
bias correction of regularized estimators. Compared to
these methods in Zhang and Zhang (2014), Javanmard
and Montanari (2014), van de Geer et al. (2014), Ning
and Liu (2017), our framework differs in the follow-
ing three aspects. First, all of the above propositions
start from a likelihood, or more generally a loss func-
tion. In contrast, our framework directly handles the
estimating equations and is likelihood-free, enabling us
to perform inference in many examples (e.g., the mo-
tivating examples discussed in Section 1.1) where the
likelihood or the loss function is unavailable or difficult
to formulate. For instance, in the instrumental variable
regression it is not clear how to devise a loss function,
while the problem naturally falls into the realm of esti-
mating equations. This leads to different methodologi-
cal development from the previous work, which will be
explained later in detail. Second, some of the existing
work is only tailored for the linear and generalized lin-
ear models. In contrast, our framework covers a much
broader class of statistical models specified by estimat-
ing equations, such as linear discriminant analysis and
vector autoregressive models whose inferential proper-
ties have not been studied before. Third, the estimating
equation framework gives us more flexibility to handle
dependent data, whereas the existing work requires the
data to be independent.

1.4 Organization of the Paper

The paper is organized as follows. In Section 2, we
propose our generic inferential procedure for high-
dimensional estimating equations, and layout the foun-
dations of the general theoretical framework. In Sec-
tion 4, we apply the general theory to study the
motivating examples including the Dantzig selector, in-
strumental variables regression, graphical models, dis-
criminant analysis and autoregressive models. Numer-
ical studies and a real data analysis are presented in
Section 5, and a discussion is provided in Section 6.

1.5 Notation

The following notation is used throughout the pa-
per. For a vector v = (v1, . . . , vd)T ∈ Rd , let ∥v∥q =
(
∑d

i=1 v
q
i )1/q,1 ≤ q < ∞, ∥v∥0 = | supp(v)|, where

supp(v) = {j : vj ≠ 0}, and |A| denotes the cardinal-
ity of a set A. Furthermore, let ∥v∥∞ = maxi |vi |. For
a matrix M, denote with M∗j and Mj∗ the j th col-
umn and row of M correspondingly. Moreover, let
∥M∥max = maxij |Mij |, ∥M∥p = max∥v∥p=1 ∥Mv∥p

for p ≥ 1. If M is positive semidefinite let λmax(M)
and λmin(M) denote the largest and smallest eigen-
values correspondingly. For a set S ⊂ {1, . . . , d} let
vS = {vj : j ∈ S} and Sc be the complement of S. We
denote with φ,),) the p.d.f., c.d.f. and tail probabil-
ity of a standard normal random variable correspond-
ingly. Furthermore, we will use ! to denote weak con-
vergence.

For a random variable X, we define its ψℓ norm for
any ℓ ≥ 1 as

∥X∥ψℓ = sup
p≥1

p−1/ℓ(E|X|p)1/p
.(1.7)

In the present paper, we mainly use the ψ1 and ψ2
norms. Random variables with bounded ψ1 and ψ2
norms are called subexponential and sub-Gaussian
correspondingly (Vershynin, 2012). It can be shown
that a random variable is subexponential if there ex-
ists a constant K1 > 0 such that P(|X| > t) ≤ exp(1 −
t/K1) for all t ≥ 0. Similarly, a random variable is sub-
Gaussian, if there exists a K2 > 0 such that P(|X| >
t) ≤ exp(1 − t2/K2

2 ) for all t ≥ 0. Finally, for two
sequences of positive numbers {an} and {bn} we will
write an ≍ bn if there exist positive constants c,C > 0
such that lim supn an/bn ≤ C and lim infn an/bn ≥ c.

2. HIGH-DIMENSIONAL ESTIMATING EQUATIONS

In this section, we present the intuition behind the
construction of our projection, and formulate the main
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results of our theory. Recall that β = (θ,γ ) ∈ Rd ,
where θ is a univariate parameter of interest and γ is
a (d − 1)-dimensional nuisance parameter. We are in-
terested in constructing a confidence interval for θ . In
fact, our results can be extended in a simple manner
to cases with θ being a finite and fixed-dimensional
vector, but we do not pursue this development in the
present manuscript. Throughout the paper, we assume
without loss of generality that θ is the first component
of β .

In the conventional framework, where the dimen-
sion d is fixed and less than the sample size n, one
can estimate the d-dimensional parameter β by the Z-
estimator, which is the root (assumed to exist) of the
following system of d equations (Godambe, 1991):

t(Z,β) = 0.(2.1)

Under certain regularity conditions, the Z-estimator is
consistent, and one has the following influence func-
tion expansion of the parameter θ̂ , where β̂ = (θ̂ , γ̂ )
is the solution to (2.1) (Newey and McFadden, 1994,
van der Vaart, 1998):

√
n
(
θ̂ − θ∗) = −√

n
[
ET

(
β∗)]−1

1∗ t
(
Z,β∗)

+ op(1).
(2.2)

In the preceding display, we assume ET(β) :=
limn→∞ ET(Z,β)2 is invertible, where T(Z,β) :=
∂
∂β t(Z,β). It is noteworthy to observe that in contrast
to the Hessian matrix of the log-likelihood (or more
generally any smooth loss function), the Jacobian ma-
trix T(Z,β) need not be symmetric in general (refer to
the IVR model for an example). Under further condi-
tions, the right-hand side of (2.2) converges to a normal
distribution, hence guaranteeing the asymptotic nor-
mality of the estimator θ̂ .

In the case when d > n, the estimating equation (2.1)
is ill-posed as one has more parameters than samples,
resulting in multiple solutions for β . To deal with such
situations, under the sparsity assumption on β∗, we
solve the constrained optimization program (1.1):

β̂ = argmin∥β∥1 subject to
∥∥t(Z,β)

∥∥∞ ≤ λ,

which is the first stage of our algorithm. Due to the
constraint in (1.1), the limiting distribution of the es-
timator β̂ , and θ̂ in particular, becomes intractable as
expansion (2.2) is no longer valid. Hence, instead of
focusing on the left-hand side of (2.2), in order to
construct a theoretically tractable estimator of θ we

2Recall that such limits are taken with the current d fixed.

consider a direct approach by estimating the influence
function on the right-hand side. Emulating expression
(2.2), we propose the following projected estimating
function along the direction v̂:

Ŝ(β) = v̂T t(Z,β),

where v̂ is defined as the solution to the optimization
problem

v̂ = argmin∥v∥1

such that
∥∥vT T(Z, β̂) − e1

∥∥∞ ≤ λ′.
(2.3)

In (2.3), λ′ is an additional tuning parameter, and e1
is a d-dimensional row vector (1,0, . . . ,0), where the
position of 1 corresponds to that of θ among β . It is
easily seen that v̂T is a natural estimator of v∗T :=
[ET(β∗)]−1

1∗ in the high-dimensional setting, which is
an essential term in the right-hand side of (2.2). Thus,
Ŝ(β) can be viewed as an estimate of the influence
function for estimating θ in high dimensions. To bet-
ter understand our method, consider the linear model
example. In this case, we have

Ŝ(β) = n−1v̂T XT (Xβ − Y ),

where

v̂ = argmin∥v∥1 such that
∥∥vT #n − e1

∥∥∞ ≤ λ′.

We can see that v̂ corresponds to the first column of the
CLIME estimator for the inverse covariance matrix of
Xi .

We emphasize that the construction of v̂ does not de-
pend on knowing which is the estimating equation for
θ and which is the nuisance estimating equation space,
and thus the projection is different from the decorre-
lated score method in Ning and Liu (2017). In fact, the
lack of a valid loss (or likelihood) function correspond-
ing to the general estimating equations is the main dif-
ficulty for applying the existing likelihood based infer-
ence methods.

Recall that β̂ = (θ̂ , γ̂ ). By plugging in the estimator
γ̂ , we obtain the projected estimating equation Ŝ(θ, γ̂ )
for the parameter of interest θ . Similar to the classical
estimating equation approach, we propose to estimate
θ by a Z-estimator θ̃ , which is the root of Ŝ(θ, γ̂ ) = 0.
In practice, we can solve θ̃ by the standard Newton–
Raphson algorithm. When θ is multidimensional, the
Newton–Raphson algorithm may require more compu-
tational cost. In the following section, we lay out the
foundations of a unified theory guaranteeing that the
estimator θ̃ is asymptotically normal.

We conclude this section by summarizing our two-
step procedure in the Algorithm 1.
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Algorithm 1 Test Statistic for High-Dimensional Esti-
mating Equations
Input: Data {Zi}ni=1, Equation t; Tuning parameters
λ,λ′,

1. Solve the optimization problem (1.1), to obtain an
estimate β̂:

β̂ = argmin∥β∥1

subject to
∥∥t(Z,β)

∥∥∞ ≤ λ;
2. Calculate the projection direction v̂T through the

following optimization based on (2.3):

v̂ = argmin∥v∥1

such that
∥∥vT T(Z, β̂) − e1

∥∥∞ ≤ λ′;
3. Output the sparse projected test function Ŝ(β) =

v̂T t(Z,β). Solve

Ŝ(θ, γ̂ ) = 0

to obtain the corrected estimate θ̃ . (γ̂ is directly ob-
tained from the first step estimate β̂ .)

REMARK 1. Before we move to lay out our frame-
work, we remark that the tests we develop are for
one parameter only. They can be easily generalized to
the setting with fixed dimensional parameters. In cases
when one is interested in performing multiple testing
with an increasing number of parameters, then differ-
ent strategies such as the multiplied bootstrap devel-
oped by Chernozhukov, Chetverikov and Kato (2014)
can be applied.

3. A GENERAL THEORETICAL FRAMEWORK

In this section, we provide generic sufficient con-
ditions which guarantee the existence and asymptotic
normality of θ̃ , which is the root of

Ŝ(θ, γ̂ ) = 0,

as defined in Algorithm 1. Here, γ̂ is directly obtained
from the β̂ estimate of optimization (1.1). Due to space
limitations, we only present results on the confidence
intervals, and the results on uniformly valid confidence
intervals are deferred to the Supplementary Material.
The results and proofs on hypothesis testing can be ob-
tained from the authors upon request.

We assume that t(Z,β) is twice differentiable in β .
Recall that we further require β∗ to be the unique solu-
tion to Et(β) = 0, where Et(β) = limn→∞ Et(Z,β) is

the limiting value of Et(Z,β) as we hold d fixed to its
present value. For any β , we let S(β) := v∗T t(Z,β),
where v∗T := [ET(β∗)]−1

1∗ . Let Pβ be the probability
measure under the parameter β . We use the shorthand
notation P∗ = Pβ∗ , to indicate the measure under the
true parameter β∗. For any vector β = (θ,γ ), we use
the following shorthand notation β θ̌ = (θ̌ ,γ ) to indi-
cate that θ is replaced by θ̌ . Before we proceed to de-
fine our abstract assumptions and present the results,
we first motivate them and give an informal descrip-
tion below.

3.1 Motivation and Informal Description

Throughout this section, we build our theory based
on the premisses that the estimators β̂ and v̂ can be
shown to be L1 consistent, that is, ∥β̂ − β∗∥1 = op(1)

and ∥̂v − v∗∥1 = op(1). This is expected to hold for
estimators solving programs (1.1) and (2.3) owing to
the fact that both programs aim to minimize the L1
norm of the parameters. The L1 consistency [see (3.5)]
is central in what follows. Under this presumption, the
key idea in our theory is the successful control of the
deviations of the “plug-in” equation Ŝ(θ, γ̂ ) = Ŝ(β̂θ )

about the equation S(θ,γ ∗) = S(β∗
θ ) [recall S(β∗

θ ) :=
v∗T t(Z,β∗

θ )], that is, we aim to establish Ŝ(β̂θ ) =
S(β∗

θ ) + op(1). By the mean value theorem,

Ŝ(β̂θ ) = S
(
β∗

θ

) + v̂T T(Z, β̃ν)
(
β̂θ − β∗

θ

)

+ (
v̂ − v∗)T t

(
Z,β∗

θ

)
,

(3.1)

where β̃ν is a point on the line segment joining β̂θ

with β∗
θ . Owing to the L1 consistency of v̂ and β̂ , (3.1)

can indeed be rewritten in the form Ŝ(β̂θ ) = S(β∗
θ ) +

op(1), provided that ∥̂vT T(Z, β̃ν)∥∞ = Op(1) and
∥t(Z,β∗

θ )∥∞ = Op(1). A sufficient and also sensible
condition for these bounds, is to desire ∥t(Z,β∗

θ ) −
Et(β

∗
θ )∥∞ = op(1), and ∥̂vT T(Z, β̃ν) − v∗T ×

ET(β∗
θ )∥∞ = op(1), where Et(β

∗
θ ) and ET(β∗

θ ) are
the limiting expected values of t(Z,β∗

θ ) and v̂T T(Z,

β̃ν), respectively. It is therefore rational to believe that
the latter L∞-norms converge to 0; see Assumption 1.
Furthermore, to show

√
n consistency of the equations

one needs to require an additional scaling condition on
the latter convergence rates; see (3.8).

3.2 Main Results

We now formalize our intuition above by requiring
the following assumption.
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ASSUMPTION 1 (Concentration). There exists a
neighborhood Nθ∗ of θ∗, such that, for all θ ∈ Nθ∗ ,

lim
n→∞P∗(∥∥t

(
Z,β∗

θ

) − Et
(
β∗

θ

)∥∥∞ ≤ r1(n, θ)
)

(3.2)
= 1,

lim
n→∞P∗(∣∣v∗T t

(
Z,β∗

θ

) − v∗T Et
(
β∗

θ

)∣∣ ≤ r2(n, θ)
)

(3.3)
= 1,

lim
n→∞P∗(

sup
ν∈[0,1]

∥∥̂vT T(Z, β̃ν)

(3.4)
− v∗T ET

(
β∗

θ

)∥∥∞ ≤ r3(n, θ)
)

= 1,

where β̃ν = νβ̂θ + (1 − ν)β∗
θ , supθ∈Nθ∗ max(r1(n, θ),

r2(n, θ), r3(n, θ)) = o(1), and the following condition
holds:

sup
θ∈Nθ∗

∥∥Et
(
β∗

θ

)∥∥∞ < ∞,

sup
θ∈Nθ∗

∥∥v∗T [
ET

(
β∗

θ

)]
−1

∥∥∞ < ∞,

where [A]−1 represents a submatrix of A with the first
column removed.

Condition (3.2) means that the equation t(Z,β∗
θ )

concentrates on its limiting value Et(β
∗
θ ) for any θ in

a small neighborhood of θ∗. Similarly, condition (3.3)
implies that the projection of the estimating equation
on v∗ also concentrates on its limiting value locally
around θ∗, and is automatically implied by (3.2) when
∥v∗∥1 = O(1). Finally, condition (3.4) means that the
projection of the Jacobian matrix T(Z, β̃ν) on v̂ con-
centrates on its limiting value v∗T ET(β∗

θ ) in a neigh-
borhood of θ∗. These conditions are mild, and can be
validated for all examples we consider. The two extra
boundedness assumptions ensure that the limiting ex-
pected values of the estimating function and its deriva-
tive projected on the sparse direction v∗ do not blow up
in a neighborhood of θ∗, that is, the estimating function
behaves nicely around the true solution.

ASSUMPTION 2 (L1 Consistency). Let the estima-
tors β̂ and v̂ satisfy

lim
n→∞ P∗(∥∥β̂ − β∗∥∥

1 ≤ r4(n)
) = 1,

lim
n→∞P∗(∥∥̂v − v∗∥∥

1 ≤ r5(n)
) = 1,

(3.5)

where max(r4(n), r5(n)) = o(1).

As mentioned previously, (3.5) is expected to hold
due to the formulations of (1.1) and (2.3). In particular,
(3.5) has been verified for all examples we consider.

Assumptions 1 and 2 suffice to show the following con-
sistency result.

THEOREM 1 (Consistency). Let the (stochastic)
map θ "→ Ŝ(β̂θ ) be either continuous or nondecreas-
ing, and has a single root θ̃ . Furthermore, suppose
that, for any ε > 0,

v∗T [
Et

(
β∗

θ∗−ε

)]
v∗T [

Et
(
β∗

θ∗+ε

)]
< 0.(3.6)

Under Assumptions 1 and 2, we have that

lim
n→∞ P∗(∣∣θ̃ − θ∗∣∣ > ε

) = 0.

Condition (3.6) implies that the scalars
v∗T [Et(β

∗
θ∗−ε)] and v∗T [Et(β

∗
θ∗+ε)] have opposite

signs for all ε > 0, which in turn guarantees that θ∗ is a
unique root of the map v∗T [Et(β

∗
θ )]. Hence under (3.6)

the population equation Ŝ(β̂θ ) is unbiased. The con-
dition (3.6) holds for numerous examples and is also
commonly used in the classical asymptotic theory; see
Section 5 of van der Vaart (1998). In fact, the conclu-
sion of Theorem 1 remains valid if one solves the equa-
tion approximately in the sense that Ŝ(β̂ θ̃ ) = op(1). To
establish the asymptotic normality of θ̃ , we require the
following assumptions.

ASSUMPTION 3 (CLT). Assume that for σ 2 =
v∗T #v∗, it holds that

σ−1n1/2S
(
β∗) ! N(0,1),

where # = limn→∞ nCov t(Z,β∗), and assume that
σ 2 ≥ C > 0 for some constant C.

Assumption 3 ensures that the right-hand side of ex-
pansion (3.1) converges to a normal distribution when
scaled appropriately. This CLT condition is mild and
in many cases will hold true. For example, the CLT
will hold whenever the equation t(Z,β∗) is an aver-
age of i.i.d. terms (modulo verifying Lyapunov or Lin-
deberg conditions). This is the case since the function
S(β∗) = v∗T t(Z,β∗) will naturally decompose to av-
erage of i.i.d. terms in such a situation. For some types
of dependent data, Assumption 3 holds by applying the
martingale central limit theorem (e.g., autoregressive
models). Thus, one of the advantages of our frame-
work is that we can handle dependent data, which are
not covered by the existing methods. We show such an
example in Section 4.4.

ASSUMPTION 4 (Bounded Jacobian Derivative).
Suppose there exists a constant γ > 0 such that

∣∣∣∣v
T ∂

∂θ

[
T

(
Z, (θ,γ )

)]
∗1

∣∣∣∣ ≤ ψ(Z),(3.7)
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for any v and β satisfying ∥v − v∗∥1 < γ and ∥β −
β∗∥1 < γ , where ψ : Rn×q "→ R is an integrable func-
tion with E∗ψ(Z) < ∞.

Inequality (3.7) is a technical condition ensuring that
vT ∂

∂θ [T(Z,β)]∗1 is bounded by an integrable func-
tion in a small neighborhood, and hence does not be-
have too erratically, so that the dominated convergence
theorem can be applied. This is a standard condition,
which is also assumed in Theorem 5.41 of van der
Vaart (1998) to establish the asymptotic normality of
Z-estimator in the classical low dimensional regime. It
is easily seen that this condition is mild and holds for
linear estimating equations.

ASSUMPTION 5 (Scaling). Assume the conver-
gence rates in Assumptions 1 and 2 satisfy

n1/2(
r4(n)r3

(
n, θ∗) + r5(n)r1

(
n, θ∗))

= o(1).
(3.8)

Assumption 5 is a technical condition, which says
that the multiplication of the estimation errors of γ̂
(or v̂) by the error of the concentration inequalities
(Assumption 1) is negligible in the bias of the final
estimate θ̃ . This assumption is crucial for the n1/2-
consistency of θ̃ , and can be verified in all of our exam-
ples. We are now in a position to state the main result
of this section.

THEOREM 2 (Asymptotic Normality). Assume the
conditions from Theorem 1 and Assumptions 3, 4 and 5
hold. If σ̂ 2 is a consistent estimator of σ 2, then for any
t ∈ R, we have

lim
n→∞

∣∣P∗(Ûn ≤ t) − )(t)
∣∣ = 0

where Ûn = n1/2

σ̂

(
θ̃ − θ∗)

.

Some generic sufficient conditions for the consis-
tency of σ̂ are shown in Proposition B.1 in Section B.1
of the Supplementary Material. In our examples, we
will develop consistent estimates of the variance σ 2

case by case. Given a consistent estimator σ̂ 2, Theo-
rem 2 implies that we can construct a (1 − α)% confi-
dence interval of θ∗ in the following way:

lim
n→∞P∗(

θ∗ ∈ [
θ̃ − )−1(1 − α/2)σ̂/

√
n,

θ̃ + )−1(1 − α/2)σ̂/
√

n
])

(3.9)

= 1 − α.

We now note a property of our estimator θ̃ in
cases when the estimating equation comes from a log-
likelihood, that is, t(Z,β) = n−1 ∑n

i=1 h(Zi ,β) with

h(Zi ,β) being the gradient of the log-likelihood for
Zi . Denote H(Z,β) = ∂

∂β h(Z,β). According to the
information identity −EH(Z,β∗) = Cov h(Z,β∗), we
have v∗T #v∗ = (#−1)11. In this case, the Z-estimator
θ̃ is efficient (van der Vaart, 1998), because the vari-
ance (#−1)11 coincides with the inverse of the infor-
mation bound for θ .

4. IMPLICATIONS OF THE GENERAL
THEORETICAL FRAMEWORK

In this section, we apply the general theory of Sec-
tion 3 to the motivating examples we listed in the In-
troduction.

4.1 Linear Model and Instrumental Variables
Regression

In this section, we consider the linear model via
Dantzig selector and the instrumental variables regres-
sion. As seen in the Introduction, the instrumental vari-
ables regression can be viewed as a generalization of
the linear regression, by substituting W ≡ X. For sim-
plicity, we only present the results for the linear regres-
sion and defer the development of the inference theory
for instrumental variables regression to Appendix C of
Supplementary Material.

Recall that β := (θ,γ ), and let #n = n−1XT X be
the empirical estimator of the second moment matrix
#X . Our goal is to construct confidence intervals for
the parameter θ . In the linear regression case, we can
easily show that Ŝ(β) reduces to

Ŝ(β) = n−1v̂T XT (Xβ − Y ),

where

v̂ = argmin∥v∥1

subject to
∥∥vT #n − e1

∥∥∞ ≤ λ′,
(4.1)

is an estimator of v∗ = #−1
X eT

1 . We impose the follow-
ing assumption.

ASSUMPTION 6. Assume that the error ε := Y −
XT β∗ and the predictor X are both coordinate-wise
sub-Gaussian, that is,

∥ε∥ψ2 := K < ∞, sup
j∈{1,...,d}

∥Xj∥ψ2 := KX < ∞,

for some fixed constants K,KX > 0. Furthermore, as-
sume that the variance Var(ε) ≥ Cε > 0, the random
variables ε and X are independent, and the second mo-
ment matrix #X satisfies λmin(#X) ≥ δ > 0, where δ
is some fixed constant.
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While assumption that the smallest eigenvalue of #X

is bounded away from 0 could be somewhat restrictive
given that the dimension of #X is allowed to increase,
it ensures that the second moment matrix of the covari-
ates is nondegenerate. To construct confidence inter-
vals for θ , we consider Ûn = .̂−1n1/2(θ̃ − θ∗), where
θ̃ is defined as the solution to Ŝ(θ, γ̂ ) = 0, and

.̂ := v̂T #nv̂n−1
n∑

i=1

(
Yi − XT

i β̂
)2

,(4.2)

is an estimator of the asymptotic variance . :=
v∗T #Xv∗ Var(ε). In high-dimensional models, it is of-
ten reasonable to assume that the vector β∗ is sparse.
Additionally, if we are in a setting where X1 is ex-
pected to be conditionally uncorrelated with many en-
tries of the vector X−1, it is also reasonable to postu-
late that v∗ is sparse. Let s and sv denote the sparsity
of β∗ and v∗ correspondingly, that is, ∥β∗∥0 = s and
∥v∗∥0 = sv. The next corollary of the general Theo-
rem 2 shows the asymptotic normality of Ûn in linear
models. To simplify the presentation of our result, we
will assume that ∥v∗∥1 is bounded, although this is not
needed in our proofs.

COROLLARY 1. Assume that Condition 6 holds,
and

max(sv, s) logd/
√

n = o(1),
√

logd/n = o(1).

Then with λ ≍ √
logd/n and λ′ ≍ √

logd/n, Ûn satis-
fies, for any t ∈ R,

lim
n→∞

∣∣P∗(Ûn ≤ t) − )(t))
∣∣ = 0.

The proof of Corollary 1 can be found in Ap-
pendix F of the Supplementary Material. The condi-
tions in Corollary 1 agree with the existing conditions
in Zhang and Zhang (2014), van de Geer et al. (2014).
In fact, under the additional assumption s3

v/n = o(1),
we can show that Ûn is uniformly asymptotically nor-
mal; see Remark F.1 of the Supplementary Material.
Finally, we comment that a similar asymptotic normal-
ity result under the instrumental variables regression is
shown in Corollary C.1 of the Supplementary Material.

4.2 Graphical Models

We begin with introducing several assumptions
which we need throughout the development. First, let
#X satisfy λmin(#X) ≥ δ > 0, where δ is some fixed
constant. Similar to Section 4.1, we assume that X is
coordinatewise sub-Gaussian, that is,

KX := max
j∈{1,...,d}

∥Xj∥ψ2 < ∞,(4.3)

for some fixed constant KX > 0. Our goal is to con-
struct confidence intervals for a component of $∗,
where $∗ = (#X)−1. Without loss of generality, we
focus on the parameter /∗

1m for some m ∈ {1, . . . , d}.
When X are coming from a Gaussian distribution, the
confidence intervals for /∗

1m provide uncertainty as-
sessment on whether X1 is independent of Xm given
the rest of the variables.

There are a number of recent works considering
the inferential problems for Gaussian graphical models
(Janková and van de Geer, 2015, Chen et al., 2016, Ren
et al., 2015, Liu, 2013) and Gaussian copula graphi-
cal models (Gu et al., 2015, Barber and Kolar, 2015).
Our framework differs from these existing procedures
in the following two aspects. First, our method is based
on the estimating equations rather than the likelihood
and (node-wise) pseudo-likelihood. Second, we only
require each component of X is sub-Gaussian, whereas
the majority of the existing methods require the data to
be sampled from Gaussian or Gaussian copula distri-
butions.

Let β∗ := $∗
∗m, be the mth column of $∗. Then the

CLIME estimator of β∗ given by (1.2) reduces to

β̂ = argmin∥β∥1 subject to
∥∥#nβ − eT

m

∥∥∞ ≤ λ,

where eT
m is a unit column vector with 1 in the mth po-

sition and 0 otherwise. Phrasing this problem in the ter-
minology of Section 3, we can construct d estimating
equations: t(X,β) = #nβ − eT

m. Let us decompose the
vector β as β := (θ,γ ). Then the projected estimating
equation for θ is given by

Ŝ(β) = v̂T (
#nβ − eT

m

)
,

where

v̂ = argmin∥v∥1

such that
∥∥vT #n − e1

∥∥∞ ≤ λ′.
(4.4)

Here, v̂ is an estimate of v∗ := (#X)−1
∗1 = $∗

∗1. No-
tice that, due to the symmetry of β̂ and v̂, if we take
λ = λ′, it suffices to simply solve the CLIME optimiza-
tion (1.2) once in order to evaluate Ŝ(β̂), as β̂ = $̂∗m

and v̂ = $̂∗1. This pleasant consequence for CLIME
shows that in this special case the number of tuning
parameters in the generic procedure described in Sec-
tion 2 can be reduced to 1, and hence the computation
is simplified.

The solution θ̃ to the equation Ŝ(θ, γ̂ ) = 0 has the
following closed form expression:

θ̃ = θ̂ − v̂T (#nβ̂ − eT
m)

v̂T #n,∗1
.(4.5)



INFERENCE FOR HIGH-DIMENSIONAL ESTIMATING EQUATIONS 437

To establish the asymptotic normality of θ̃ , we impose
the following assumption.

ASSUMPTION 7. There exists a constant αmin > 0
such that

. ≥ αmin
∥∥β∗∥∥2

2
∥∥v∗∥∥2

2 where . = Var
(
v∗T XXT β∗)

.

We note that Assumption 7 is natural. For example,
when X ∼ N(0,#X), Isserlis’ theorem yields that for
any two vectors ξ and θ ,

Var
(
ξT XXT θ

) = (
ξT #Xξ

)(
θT #Xθ

) + (
ξT #Xθ

)2

≥ λ2
min(#X)∥ξ∥2

2∥θ∥2
2,

which clearly implies Assumption 7, if λ2
min(#X) is

lower bounded by a constant.
Denote ∥β∗∥0 = s and ∥v∗∥0 = sv. To simplify the

presentation of our result, we will assume that ∥v∗∥1
and ∥β∗∥1 are bounded quantities, although this is not
needed in our proofs. The following corollary yields
the asymptotic normality of Ûn = .̂−1/2n−1/2(θ̃ −θ∗),
where .̂ := n−1 ∑n

i=1(̂v
T (XiX

T
i − #n)β̂)2 is an esti-

mator of ..

COROLLARY 2. Let Assumption 7 and (4.3) hold.
Furthermore, assume that

max
(
s2

v , s2)
logd log(nd)/n = o(1),

∃k > 2 : (svs)
k/nk−1 = o(1),

(4.6)

and Var((v∗T XXT β∗)2) = o(n), E(v∗T XXT β∗)2 =
O(1). Let the tuning parameters be λ ≍ √

logd/n and
λ′ ≍ √

logd/n. Then for all t ∈ R,

lim
n→∞

∣∣P∗(Ûn ≤ t) − )(t)
∣∣ = 0.

The proof of Corollary 2 can be found in Appendix H
of the Supplementary Material. In addition, we pro-
vide a stronger result on uniform confidence intervals
for θ in Corollary H.1 of the Supplementary Material.
Once again, the first part of condition (4.6) agrees with
Ren et al. (2015), Liu (2013). In addition, when the
data are known to be Gaussian one could use the alter-
native estimator .̃ := v̂1β̂m + v̂mβ̂1 of ., which can
also be shown to be consistent under the assumption
max(sv, s)

√
logd/n = o(1). The second part of con-

dition (4.6) is mild, since it is only slightly stronger
than n−1svs = o(1). Unlike Janková and van de Geer
(2015), we do not assume irrepresentable conditions.

REMARK 2 (Transelliptical Graphical Models). Our
estimating equation based methods for constructing
confidence intervals can be extended to transelliptical

graphical models (Liu, Han and Zhang, 2012). The key
idea is to replace the same covariance matrix #n in
(1.2) and (4.4) by

Ŝτ
jk =

⎧
⎨

⎩
sin

(
π

2
τ̂jk

)
, j ≠ k;

1, j = k,

where

τ̂jk = 2
n(n − 1)

×
∑

1≤i<i′≤n

sign
(
(Xij − Xi′j )(Xik − Xi′k)

)
.

Similar to Corollary 2, the asymptotic normality of the
estimator θ̃ is established. The details are shown in Ap-
pendix D of the Supplementary Material.

4.3 Sparse Linear Discriminant Analysis

In this section, we consider an application of the
general theory to the sparse linear discriminant analy-
sis problem. The consistency and rates of convergence
of the classification rule ψ̂(O) (1.4) have been estab-
lished by Cai and Liu (2011) in the high-dimensional
setting. In the following, we apply the theory of Sec-
tion 3 to construct confidence intervals for θ , where θ
is the first component of β , that is, β = (θ,γ ). Note
that if θ = 0, then it implies that the first feature of O
is not needed in the Bayes’ rule ψ(O). Hence, our pro-
cedure can be used to assess whether a certain feature
is significant in the classification.

By the identity β∗ = $δ, we can construct the
d-dimensional estimating equations t((X,Y),β) =
#̂nβ − (X̄ − Ȳ ). Then the projected estimating equa-
tion for θ is given by

Ŝ(β) = v̂T (
#̂nβ − (X̄ − Ȳ )

)
,

where

v̂ = argmin∥v∥1 such that
∥∥vT #̂n − e1

∥∥∞ ≤ λ′,

is an estimator of v∗ = (#−1)∗1. Solving the equation
Ŝ(θ, γ̂ ) = 0 gives us the Z-estimator θ̃ . To establish the
asymptotic normality of θ̃ , we impose the following
assumption.

ASSUMPTION 8. Assume that U satisfies the fol-
lowing moment assumption:

Var
(
v∗T UUT β∗) ≥ Vmin

∥∥v∗∥∥2
2
∥∥β∗∥∥2

2,

where Vmin is a positive constant. In addition, let KU =
maxj∈{1,...,d} ∥Uj∥ψ2 < ∞.
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As seen in the comments on Assumption 7, we
can similarly show that Assumption 8 holds if U ∼
N(0,#) and λ2

min(#) is lower bounded by a pos-
itive constant. We define V1 := Var(v∗T UUT β∗ +
α−1v∗T U), V2 := Var(v∗T UUT β∗ − (1−α)−1v∗T U),
where n1

n = α + o(1) for some 0 < α < 1. Denote

. := αV1 + (1 − α)V2,(4.7)

and Ûn := .̂−1/2n1/2(θ̃ − θ∗), where .̂ is some con-
sistent estimator of .. The explicit form of .̂ is com-
plicated, and we defer its expression to Appendix I of
the Supplementary Material. Denote ∥β∗∥0 = s and
∥v∗∥0 = sv. Once again for simplicity of the presen-
tation we assume that ∥v∗∥1 and ∥β∗∥1 are bounded.
We obtain the following asymptotic normality result.

COROLLARY 3. Assume that λmin(#) > δ for
some constant δ > 0, and let Assumption 8 hold. If

max(sv, s) logd/
√

n = o(1)
(4.8)

∃k > 2 : (svs)
k/nk−1 = o(1),

holds and λ ≍ √
logd/n and λ′ ≍ √

logd/n, then for
each t ∈ R:

lim
n→∞

∣∣P∗(Ûn < t) − )(t)
∣∣ = 0.

The second part of (4.8) is similar to that in Corol-
lary 2, which is used to establish the Lyapunov’s condi-
tion for central limit theorem. The proof of Corollary 3
can be found in Appendix I of the Supplementary Ma-
terial.

4.4 Stationary Vector Autoregressive Models

In this section, we develop inferential methods for
the lag-1 vector autoregressive models considered in
the Introduction. To this end, we remind the reader
some of the notation; for the full notation, please refer
to page 4. Let {Xt }∞t=−∞ be a stationary sequence of
mean 0 random vectors in Rd with covariance matrix
# which is assumed to follow a lag-1 autoregressive
model

Xt = AT Xt−1 + W t , t ∈ Z := {. . . ,−1,0,1, . . . .},
where A is a d ×d transition matrix, and the noise vec-
tors W t are i.i.d. with W t ∼ N(0,&) and independent
of the history {Xs}s<t . Let β∗ = A∗m, that is, the mth
column of A, be the parameter of interest.

The estimator (1.6) of β∗ reduces to

β̂ = argmin
β∈Rd

∥β∥1

subject to ∥S0β − S1,∗m∥∞ ≤ λ,

(4.9)

where λ > 0 is a tuning parameter, S0 = T −1 ×∑T
t=1 XtX

T
t and S1 = (T − 1)−1 ∑T −1

t=1 XtX
T
t+1. In

terms of our notation, we have that t({Xt }Tt=1,β) =
S0β − S1,∗m, and Et(M) = #0β − #1,∗m,3 where re-
call that #0 = Cov(X0,X0) = # and #1 = Cov(X0,
X1).

Han, Lu and Liu (2015) showed that procedure (4.9)
consistently estimates β under certain sparsity assump-
tions. In the following, we apply our method to con-
struct confidence intervals for θ , where θ is the first
component of β , that is, β = (θ,γ ). Following Algo-
rithm 1, the projected estimating equation for θ is given
by

Ŝ(β) = v̂T (S0β − S1,∗m),

where

v̂ = min
v∈Rd

∥v∥1 subject to
∥∥vT S0 − e1

∥∥∞ ≤ λ′,

is an estimator of v∗T = (#−1
0 )1∗. Define θ̃ to be the

solution to Ŝ(θ, γ̂ ) = 0. Note that in this framework
the estimating equation t(X,β) = S0β −S1,∗m decom-
poses into a sum of dependent random variables. To
handle this challenge, our main technical tool is the
martingale central limit theorem and concentration in-
equalities for dependent random variables.

In the following, we will show that T 1/2(θ̃ −θ∗) con-
verges to N(0,.) in distribution, where

. := 3mmv∗T #0v∗.(4.10)

Recall that & is the covariance of the noise vec-
tors Wt as introduced in the beginning of the sec-
tion. In the Appendix, we argue that 3mm is well es-
timated by S0,mm − β̂

T
S0β̂ . Hence let .̂ = (S0,mm −

β̂
T
S0β̂)(̂vT S0v̂) be an estimator of the asymptotic

variance ., and define

Ûn := .̂−1/2T 1/2(
θ̃ − θ∗)

.

To establish the asymptotic normality of θ̃ (or equiva-
lently of Ûn), we define the following classes of matri-
ces:

M(s) :=
{
M ∈ Rd×d : max

1≤j≤d
∥M∗j∥0 ≤ s,∥M∥1 ≤ M,

∥M∥2 ≤ 1 − ε
}
,

L := {
M ∈ Rd×d : ∥∥M−1∥∥

1 ≤ M,∥M∥2 ≤ M
}
,

where M and 1 > ε > 0 are some fixed constants. We
have the following asymptotic normality result.

3Recall that subindexing a matrix with ∗m indicates the mth col-
umn of this matrix.
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COROLLARY 4. Suppose #0 ∈ L,A ∈ M(s),
minj 3jj ≥ C > 0 and ∥v∗∥0 = sv. Then there ex-
ist λ ≍ √

logd/T and λ′ ≍ √
logd/T such that if

max(sv, s) logd = o(
√

T ), we have for all t ∈ R

lim
T →∞

∣∣P∗(Ûn ≤ t) − )(t)
∣∣ → 0.

Similar to Han, Lu and Liu (2015), we assume that
the matrix A belongs to M(s), for the estimation pur-
pose. The proof of Corollary 4 is given in Appendix J
of the Supplementary material. In this section, we only
discussed the lag-1 autoregressive model. As men-
tioned in Han, Lu and Liu (2015), lag-p models can be
accommodated in the current lag-1 model framework.
Thus, similar methods can be applied to construct con-
fidence intervals under the lag-p model.

5. NUMERICAL RESULTS

In this section, we present numerical results to sup-
port our theoretical claims. Numerical studies on hy-
pothesis testing are available from the authors upon re-
quest.

5.1 Linear Model

In this section, we compare our estimating equation
(EE) based procedure with two existing methods: the
desparsity (van de Geer et al., 2014) and the debias
(Javanmard and Montanari, 2014) methods in linear
models. Note that in their methods the LASSO esti-
mator is used as an initial estimator.

Our simulation setup is as follows. We first gener-
ate n = 150 observations X ∼ N(0,#X), where #X is
a Toeplitz matrix with #X,ij = ρ|i−j |, i, j = 1, . . . , d .
We consider three scenarios for the correlation param-
eter ρ = 0.25,0.4,0.6 and three possible values of
the dimension d = 100,200,500. We generate β∗ un-
der two settings. In the first setting, β∗ is held fixed,
i.e., β∗ = (1,1,1,0, . . . ,0)T , and in the second setting
we take β∗ = (U1,U2,U3,0, . . . ,0)T , where Ui fol-
lows a uniform distribution on the interval [0,2] for
i = 1,2,3. The former setting is labeled as “Dirac”
and the latter as “Uniform” in Table 1 below. Both set-
tings have three nonzero values, i.e., ∥β∗∥0 = 3. The
outcome is generated by Y = XT β∗ + ε, where ε ∼
N(0,1). The simulations are repeated 500 times. The
tuning parameter λ is selected by a 10-fold cross vali-
dation. The parameter λ′ is manually set to 1

2
√

logd/n.
Although its theoretical validity has not been formally
proved we observed that the result is robust with re-
spect to the choice of λ and λ′. Based on the selected

λ and λ′, we construct the confidence intervals for the
first component of β .

In Table 1, we summarize the empirical coverage
probability of 95% confidence intervals and their av-
erage lengths of our estimating equation (EE) based
method, desparsity and debias methods. We find that
the empirical coverage probability of our method is
very close to the desired nominal level. In particular,
our method tends to have shorter confidence intervals
than the existing two methods, when the dimension is
large (e.g. d = 500).

5.2 Graphical Models

In this section we compare our estimating equation
(EE) based procedure to the desparsity method pro-
posed by Janková and van de Geer (2015) based on the
graphical LASSO. We consider two scenarios. In the
first scenario, our data generating process is similar to
Janková and van de Geer (2015). Specifically, we con-
sider a tridiagonal precision matrix $ with /ii = 1, i =
1, . . . , d and /i,i+1 = /i+1,i = ρ ∈ {0.3,0.4} for i =
1, . . . , d − 1. Then we generate data from the Gaussian
graphical model X ∼ N(0,$−1). We have three set-
tings for d = 60,70,80, and we fix the sample size at
n = 250, which is comparable to Janková and van de
Geer (2015). In the second scenario, we generate data
from the transelliptical graphical model. Specifically,
the latent generalized concentration matrix $ is gen-
erated in the same way as in the previous scenario,
and then is normalized so that # = $−1, satisfies
diag(#) = 1. Next, a normally distributed random vec-
tor Z is generated through Z ∼ N(0,#), and is trans-
formed to a new random vector X = (X1, . . . ,Xd),
where

Xj = f (Zj )√∫
f 2(t)φ(t) dt

,

and f (t) := sign(t)|t |α is a symmetric power transfor-
mation with α = 5 and φ(t) is the p.d.f. of a stan-
dard normal distribution. Then X follows from the
transelliptical graphical model with the latent gener-
alized concentration matrix $. Similarly, we consider
d = 60,70,80, and fix the sample size at n = 250. The
simulations are repeated 500 times. The tuning param-
eters λ = λ′ are set equal to 0.5

√
logd/n. In the fol-

lowing, we construct confidence intervals for the pa-
rameter /12.

In Table 2, we present the empirical coverage prob-
ability of 95% confidence intervals and their average
lengths of our estimating equation (EE) based method,
and the desparsity method. As expected, under the
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TABLE 1
The empirical coverage percentages of 95% confidence intervals constructed by our estimating equation (EE) based method, desparsity and

debias methods under the linear model. The average lengths (multiplied by 100) of confidence intervals is shown in parenthesis

Uniform Dirac

d Method ρ = 0.25 ρ = 0.4 ρ = 0.6 ρ = 0.25 ρ = 0.4 ρ = 0.6

100 EE 94 (34) 95 (38) 95 (43) 95 (33) 96 (38) 95 (43)
desparsity 96 (37) 96 (39) 95 (44) 96 (38) 95 (39) 94 (44)

debias 95 (34) 95 (36) 94 (41) 95 (37) 94 (42) 95 (42)

200 EE 95 (33) 96 (41) 95 (45) 95 (35) 94 (41) 95 (45)
desparsity 94 (32) 95 (38) 95 (47) 95 (39) 96 (44) 96 (47)

debias 95 (38) 95 (38) 95 (43) 96 (38) 96 (42) 95 (45)

500 EE 96 (39) 96 (40) 95 (42) 95 (39) 96 (40) 95 (42)
desparsity 96 (39) 95 (42) 95 (48) 96 (43) 96 (45) 96 (48)

debias 95 (44) 95 (44) 94 (50) 95 (45) 95 (45) 94 (52)

Gaussian graphical model, the confidence intervals of
both methods have accurate empirical coverage prob-
ability and similar lengths. However, the desparsity
method which imposes the Gaussian assumption shows
significant under-coverage for the transelliptical graph-
ical model. In contrast, the proposed method preserves
the nominal coverage probability, which demonstrates
the numerical advantage of our method.

5.3 Real Data Analysis

In this section, we construct confidence regions for
the gene network from the atlas of gene expression in
the mouse aging project dataset (Zahn et al., 2007).
The same dataset has been previously analyzed in Ning
and Liu (2013), where the authors focus on a subset of
d = 37 genes belonging to the mouse vascular endothe-
lial growth factor signaling pathway in 8 tissues. The
number of replicates within each tissue is n = 40.

Our analysis proceeds conditionally on each of the 8
tissue types—Adrenal (A), Cerebrum (C), Hippocam-
pus (H), Kidney (K), Lung (L), Muscle (M), Spinal
(S), Thymus (T). Namely, for each type of tissue, we
construct the confidence intervals of each edges in the
gene network by using our method and the procedure
proposed by Janková and van de Geer (2015). In par-
ticular, our inference is based on the approach devel-
oped in Section 4.2 with the sample covariance ma-
trix replaced by the rank covariance matrix defined in
Remark 2; see also Appendix D in the Supplementary
Material for details. The tuning parameter λ is deter-
mined by the 5-fold cross-validation, under the Gaus-
sian likelihood function, for a grid of values in the in-
terval [0.3,0.8], which is selected based on the fact
that

√
logd/n ≈ 0.3. The tuning parameter λ′ is set

to be the same as λ. The tuning parameter in Janková
and van de Geer (2015) is selected by the same cross-
validation method.

TABLE 2
The empirical coverage probability of 95% confidence intervals constructed by our estimating equation (EE) based method and the

desparsity method under the Gaussian graphical model and transelliptical graphical model. The average length of confidence intervals is
shown in parenthesis

Gaussian Transelliptical

d Method ρ = 0.3 ρ = 0.4 ρ = 0.3 ρ = 0.4

60 EE 0.95 (0.3) 0.94 (0.2) 0.93 (0.3) 0.94 (0.3)
desparsity 0.95 (0.3) 0.95 (0.3) 0.80 (0.3) 0.44 (0.3)

70 EE 0.95 (0.3) 0.94 (0.2) 0.92 (0.3) 0.94 (0.3)
desparsity 0.95 (0.3) 0.96 (0.3) 0.74 (0.3) 0.47 (0.3)

80 EE 0.95 (0.3) 0.95 (0.2) 0.93 (0.3) 0.94 (0.4)
desparsity 0.94 (0.3) 0.94 (0.3) 0.70 (0.3) 0.44 (0.3)
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FIG. 1. 95% confidence intervals for the edges among the two sets of genes—Plcg2, Pla2g6 and Pla2g6 (first row) and Mapk13, Mapk14
and Mapkapk2 (second row), within each of 8 tissues indicated by their first letter. The confidence intervals based on our EE method are
displayed in solid lines, while the intervals of Janková and van de Geer (2015) are displayed in dashed lines.

To perform the comparison, we consider 2 sets of
genes which have been shown to be associated by biol-
ogists. The first set of genes—Pla2g6, Ptk2 and Plcg2,
comes from the group of PLC-γ genes in the PKC-
dependent pathway, and is crucial for ERK phosphory-
lation and proliferation (Holmes et al., 2007). The sec-
ond set of genes is comprised of Mapk13, Mapk14 and
Mapkapk2, which are related to the migration of en-
dothelial cells. Instead of plotting confidence intervals
for all the edges in the gene network, in Figure 1 we
only plot confidence intervals for the 3 edges connect-
ing genes Pla2g6, Ptk2 and Plcg2, and genes Mapk13,
Mapk14 and Mapkapk2, within each of the 8 tissues.
As we see from the plot, while most of the point es-
timates of our method and Janková and van de Geer
(2015) are close, their variances differ drastically. The
main reason is that in this dataset the gene expres-
sion values are highly non-Gaussian; see Ning and Liu
(2013) for demonstration. Thus, the inference proce-
dure based on the Gaussian assumption (Janková and

van de Geer, 2015) seems to provide inaccurate re-
sults with very wide confidence intervals. In contrast,
the proposed method which relaxes the Gaussian as-
sumption, produces confidence intervals with shorter
length. In fact, most of the 95% confidence intervals by
the proposed method do not cover 0, which concludes
that these genes are statistically dependent. This re-
sult is consistent with the biological findings that genes
Pla2g6, Ptk2 and Plcg2, and genes Mapk13, Mapk14
and Mapkapk2 are associated.

6. DISCUSSION

In this paper, we propose a generic procedure to con-
struct confidence intervals for Z-estimators in a high-
dimensional setting. We establish a general theoretical
framework, and illustrate it with several important ap-
plications including linear models, instrumental vari-
ables regression, graphical models, classification and
time series models. Our framework has better numeri-
cal performance than previously suggested algorithms,
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and has the advantage of having a broader scope. In
particular, it covers many applications (e.g., instrumen-
tal variables regression, linear discriminant analysis
and vector autoregressive models) for which the infer-
ential procedure is previously unexplored.

Additionally, our results can be easily extended to
cases with multidimensional parameters of interest. We
would like to mention that unlike approaches such as
the ones developed by Nickl and van de Geer (2013),
our methodology cannot be immediately extended to
find a global honest confidence region for the entire
parameter β . It is an interesting problem to explore
whether we can carry over certain results in the frame-
work of honest confidence regions for β under the lin-
ear regression considered by Nickl and van de Geer
(2013), to the general estimating equations that we
consider. We leave this question for future investiga-
tion. Finally, we would like to discuss one caveat in
the proposed method. If the equation t is nonconvex,
it is less clear how one can find the global minimizer
of the first step optimization (1.1) and there may exist
multiple solutions of Ŝ(θ, γ̂ ) = 0. Although our the-
ory continues to hold in such cases, the practical im-
plementation requires extra attention. To this end, we
make the following two comments. First, Chapter 1.2
of Zhao (2012) provided an alternative minimization
approach, which can be used to define the first step es-
timator β̂ . Second, Small and Yang (1999) discussed
how to choose roots when estimating equations have
multiple roots. Their approach can be potentially ap-
plied to select the root of Ŝ(θ, γ̂ ) = 0.

ACKNOWLEDGMENTS

The authors are grateful to the Editor, Associate Ed-
itor and the anonymous referees for their suggestions
which led to substantial improvements in the presenta-
tion of this work.

SUPPLEMENTARY MATERIAL

Supplement to “A Unified Theory of Confidence
Regions and Testing for High-Dimensional Esti-
mating Equations” (DOI: 10.1214/18-STS661SUPP;
.pdf). This is the supplementary material to “A Unified
Theory of Confidence Regions and Testing for High-
Dimensional Estimating Equations” by M. Neykov,
Y. Ning, H. Liu and J. Liu.

REFERENCES

BARBER, R. F. and KOLAR, M. (2015). Rocket: Robust confi-
dence intervals via Kendall’s tau for transelliptical graphical
models. Preprint. Available at arXiv:1502.07641.

BELLONI, A., CHERNOZHUKOV, V. and HANSEN, C. (2014).
Inference on treatment effects after selection among
high-dimensional controls. Rev. Econ. Stud. 81 608–650.
MR3207983

BELLONI, A., CHERNOZHUKOV, V. and KATO, K. (2015). Uni-
form post-selection inference for least absolute deviation re-
gression and other Z-estimation problems. Biometrika 102 77–
94. MR3335097

BELLONI, A., CHERNOZHUKOV, V. and WEI, Y. (2013). Honest
confidence regions for logistic regression with a large number
of controls. Preprint. Available at arXiv:1304.3969.

CAI, T. T. and GUO, Z. (2017). Confidence intervals for high-
dimensional linear regression: Minimax rates and adaptivity.
Ann. Statist. 45 615–646. MR3650395

CAI, T. T., LIANG, T. and RAKHLIN, A. (2014). Geometrizing
local rates of convergence for linear inverse problems. Preprint.
Available at arXiv:1404.4408.

CAI, T. and LIU, W. (2011). A direct estimation approach to sparse
linear discriminant analysis. J. Amer. Statist. Assoc. 106 1566–
1577. MR2896857

CAI, T., LIU, W. and LUO, X. (2011). A constrained ℓ1 minimiza-
tion approach to sparse precision matrix estimation. J. Amer.
Statist. Assoc. 106 594–607. MR2847973

CANDES, E. and TAO, T. (2007). The Dantzig selector: Statistical
estimation when p is much larger than n. Ann. Statist. 35 2313–
2351. MR2382644

CHEN, M., REN, Z., ZHAO, H. and ZHOU, H. (2016). Asymp-
totically normal and efficient estimation of covariate-adjusted
Gaussian graphical model. J. Amer. Statist. Assoc. 111 394–406.
MR3494667

CHERNOZHUKOV, V., CHETVERIKOV, D. and KATO, K. (2014).
Gaussian approximation of suprema of empirical processes.
Ann. Statist. 42 1564–1597. MR3262461

FAN, J. and LV, J. (2011). Nonconcave penalized likelihood with
NP-dimensionality. IEEE Trans. Inform. Theory 57 5467–5484.
MR2849368

GAUTIER, E. and TSYBAKOV, A. (2011). High-dimensional in-
strumental variables regression and confidence sets. Preprint.
Available at arXiv:1105.2454.

GODAMBE, V. P. (1991). Estimating functions. Clarendon Press,
Oxford.

GU, Q., CAO, Y., NING, Y. and LIU, H. (2015). Local and global
inference for high dimensional gaussian copula graphical mod-
els. Preprint. Available at arXiv:1502.02347.

HAN, F., LU, H. and LIU, H. (2015). A direct estimation of high
dimensional stationary vector autoregressions. J. Mach. Learn.
Res. 16 3115–3150. MR3450535

HOLMES, K., ROBERTS, O. L., THOMAS, A. M. and
CROSS, M. J. (2007). Vascular endothelial growth factor
receptor-2: Structure, function, intracellular signalling and ther-
apeutic inhibition. Cellular Signalling 19 2003–2012.

JANKOVÁ, J. and VAN DE GEER, S. (2015). Confidence intervals
for high-dimensional inverse covariance estimation. Electron. J.
Stat. 9 1205–1229. MR3354336

JAVANMARD, A. and MONTANARI, A. (2014). Confidence in-
tervals and hypothesis testing for high-dimensional regression.
J. Mach. Learn. Res. 15 2869–2909. MR3277152

LEE, J. D., SUN, D. L., SUN, Y. and TAYLOR, J. E. (2013). Exact
inference after model selection via the lasso. Preprint. Available
at arXiv:1311.6238.

https://doi.org/10.1214/18-STS661SUPP
http://arxiv.org/abs/arXiv:1502.07641
http://www.ams.org/mathscinet-getitem?mr=3207983
http://www.ams.org/mathscinet-getitem?mr=3335097
http://arxiv.org/abs/arXiv:1304.3969
http://www.ams.org/mathscinet-getitem?mr=3650395
http://arxiv.org/abs/arXiv:1404.4408
http://www.ams.org/mathscinet-getitem?mr=2896857
http://www.ams.org/mathscinet-getitem?mr=2847973
http://www.ams.org/mathscinet-getitem?mr=2382644
http://www.ams.org/mathscinet-getitem?mr=3494667
http://www.ams.org/mathscinet-getitem?mr=3262461
http://www.ams.org/mathscinet-getitem?mr=2849368
http://arxiv.org/abs/arXiv:1105.2454
http://arxiv.org/abs/arXiv:1502.02347
http://www.ams.org/mathscinet-getitem?mr=3450535
http://www.ams.org/mathscinet-getitem?mr=3354336
http://www.ams.org/mathscinet-getitem?mr=3277152
http://arxiv.org/abs/arXiv:1311.6238


INFERENCE FOR HIGH-DIMENSIONAL ESTIMATING EQUATIONS 443

LIU, W. (2013). Gaussian graphical model estimation with false
discovery rate control. Ann. Statist. 41 2948–2978. MR3161453

LIU, H., HAN, F. and ZHANG, C.-H. (2012). Transelliptical
graphical models. In Advances in Neural Information Process-
ing Systems.

LOCKHART, R., TAYLOR, J., TIBSHIRANI, R. J. and TIBSHI-
RANI, R. (2014). A significance test for the lasso. Ann. Statist.
42 413–468. MR3210970

LOH, P.-L. (2017). Statistical consistency and asymptotic normal-
ity for high-dimensional robust M-estimators. Ann. Statist. 45
866–896. MR3650403

LU, S., LIU, Y., YIN, L. and ZHANG, K. (2015). Confidence in-
tervals and regions for the lasso using stochastic variational in-
equality techniques in optimization. Technical report.

MARDIA, K. V., KENT, J. T. and BIBBY, J. M. (1979). Multi-
variate Analysis: Probability and Mathematical Statistics. Aca-
demic Press, London. MR0560319

MEINSHAUSEN, N. and BÜHLMANN, P. (2010). Stability se-
lection. J. R. Stat. Soc. Ser. B. Stat. Methodol. 72 417–473.
MR2758523

MEINSHAUSEN, N., MEIER, L. and BÜHLMANN, P. (2009). p-
values for high-dimensional regression. J. Amer. Statist. Assoc.
104 1671–1681. MR2750584

NEWEY, W. K. and MCFADDEN, D. (1994). Large sample esti-
mation and hypothesis testing. In Handbook of Econometrics,
Vol. IV. Handbooks in Econom. 2 2111–2245. North-Holland,
Amsterdam. MR1315971

NEYKOV, M., NING, Y., LIU, J. S and LIU, H. (2018). Supple-
ment to “A Unified Theory of Confidence Regions and Testing
for High Dimensional Estimating Equations.” DOI:10.1214/18-
STS661SUPP.

NICKL, R. and VAN DE GEER, S. (2013). Confidence sets in sparse
regression. Ann. Statist. 41 2852–2876. MR3161450

NING, Y. and LIU, H. (2013). High-dimensional semiparametric
bigraphical models. Biometrika 100 655–670. MR3094443

NING, Y. and LIU, H. (2014). Sparc: Optimal estimation and
asymptotic inference under semiparametric sparsity. Preprint.
Available at arXiv:1412.2295.

NING, Y. and LIU, H. (2017). A general theory of hypothesis
tests and confidence regions for sparse high dimensional mod-
els. Ann. Statist. 45 158–195. MR3611489

REN, Z., SUN, T., ZHANG, C.-H. and ZHOU, H. H. (2015).
Asymptotic normality and optimalities in estimation of

large Gaussian graphical models. Ann. Statist. 43 991–1026.
MR3346695

SHAH, R. D. and SAMWORTH, R. J. (2013). Variable selection
with error control: Another look at stability selection. J. R. Stat.
Soc. Ser. B. Stat. Methodol. 75 55–80. MR3008271

SMALL, C. G. and YANG, Z. (1999). Multiple roots of estimating
functions. Canad. J. Statist. 27 585–598. MR1745824

TAYLOR, J., LOCKHART, R., TIBSHIRANI, R. J. and TIB-
SHIRANI, R. (2014). Post-selection adaptive inference for
least angle regression and the lasso. Preprint. Available at
arXiv:1401.3889.

TIAN, X. and TAYLOR, J. (2018). Selective inference with a ran-
domized response. Ann. Statist. 46 679–710. MR3782381

VAN DE GEER, S., BÜHLMANN, P., RITOV, Y. and DEZEURE, R.
(2014). On asymptotically optimal confidence regions and
tests for high-dimensional models. Ann. Statist. 42 1166–1202.
MR3224285

VAN DER VAART, A. W. (1998). Asymptotic Statistics. Cambridge
Series in Statistical and Probabilistic Mathematics 3. Cam-
bridge Univ. Press, Cambridge. MR1652247

VERSHYNIN, R. (2012). Introduction to the non-asymptotic analy-
sis of random matrices. In Compressed Sensing 210–268. Cam-
bridge Univ. Press, Cambridge. MR2963170

VOORMAN, A., SHOJAIE, A. and WITTEN, D. (2014). Inference
in high dimensions with the penalized score test. Preprint. Avail-
able at arXiv:1401.2678.

WASSERMAN, L. and ROEDER, K. (2009). High-dimensional vari-
able selection. Ann. Statist. 37 2178–2201. MR2543689

ZAHN, J. M., POOSALA, S., OWEN, A. B., INGRAM, D. K.,
LUSTIG, A., CARTER, A., WEERARATNA, A. T.,
TAUB, D. D., GOROSPE, M., MAZAN-MAMCZARZ, K.
et al. (2007). AGEMAP: A gene expression database for aging
in mice. PLoS Genet. 3 e201.

ZHANG, C.-H. and ZHANG, S. S. (2014). Confidence intervals for
low dimensional parameters in high dimensional linear models.
J. R. Stat. Soc. Ser. B. Stat. Methodol. 76 217–242. MR3153940

ZHAO, S. D. (2012). Survival analysis with high-dimensional co-
variates, with applications to cancer genomics. Ph.D. thesis,
Harvard Univ.

ZHU, Y. and BRADIC, J. (2016). Linear hypothesis testing in
dense high-dimensional linear models. Preprint. Available at
arXiv:1610.02987.

http://www.ams.org/mathscinet-getitem?mr=3161453
http://www.ams.org/mathscinet-getitem?mr=3210970
http://www.ams.org/mathscinet-getitem?mr=3650403
http://www.ams.org/mathscinet-getitem?mr=0560319
http://www.ams.org/mathscinet-getitem?mr=2758523
http://www.ams.org/mathscinet-getitem?mr=2750584
http://www.ams.org/mathscinet-getitem?mr=1315971
https://doi.org/10.1214/18-STS661SUPP
http://www.ams.org/mathscinet-getitem?mr=3161450
http://www.ams.org/mathscinet-getitem?mr=3094443
http://arxiv.org/abs/arXiv:1412.2295
http://www.ams.org/mathscinet-getitem?mr=3611489
http://www.ams.org/mathscinet-getitem?mr=3346695
http://www.ams.org/mathscinet-getitem?mr=3008271
http://www.ams.org/mathscinet-getitem?mr=1745824
http://arxiv.org/abs/arXiv:1401.3889
http://www.ams.org/mathscinet-getitem?mr=3782381
http://www.ams.org/mathscinet-getitem?mr=3224285
http://www.ams.org/mathscinet-getitem?mr=1652247
http://www.ams.org/mathscinet-getitem?mr=2963170
http://arxiv.org/abs/arXiv:1401.2678
http://www.ams.org/mathscinet-getitem?mr=2543689
http://www.ams.org/mathscinet-getitem?mr=3153940
http://arxiv.org/abs/arXiv:1610.02987
https://doi.org/10.1214/18-STS661SUPP


Submitted to Statistical Science

Supplement: A Unified Theory of
Confidence Regions and Testing for
High Dimensional Estimating
Equations
Matey Neykov Yang Ning Jun S. Liu Han Liu

APPENDIX A: THEORY ON UNIFORMLY VALID CONFIDENCE
INTERVALS

In Section 3, we showed that if �⇤ is fixed, the solution to the equation
bS(✓, b�) = 0 can be used to construct asymptotically valid confidence re-
gions for the parameter ✓. In this Section we prove a stronger result which
guarantees that the confidence interval is valid uniformly over the following
parameter space:

⌦ = {�⇤ : k�⇤k
0

 s⇤}.
We restrict our attention to ⌦ since we need the parameter �⇤ to be

su�ciently sparse in order for us to consistently estimate it. In the following,
we introduce some assumptions guaranteeing uniform convergence.

Assumption A.1 (Uniform Consistent Estimation).

lim
n!1

sup
�2⌦

P�(kb� � �k
1

 r
1

(n)) = 1, lim
n!1

sup
�2⌦

P�(kbv � vk
1

 r
2

(n)) = 1,

where r
1

(n), r
2

(n) = o(1).

Assumption A.2. Assume that there exists an ⌘ > 0 such that:

lim
n!1

inf
�2⌦

inf
ˇ✓2N✓

P�(kt(Z,�ˇ✓)� Et(�ˇ✓)k1  r
3

(n)) = 1,(A.1)

lim
n!1

inf
�2⌦

inf
ˇ✓2N✓

P�(|vT t(Z,�
ˇ✓)� vTEt(�ˇ✓)|  r

4

(n)) = 1,(A.2)

lim
n!1

inf
�2⌦

inf
ˇ✓2N✓

P�

✓

sup
⌫2[0,1]

kbvTT(Z, e�⌫)� vTET(�ˇ✓)k1  r
5

(n)

◆

= 1,(A.3)

where N✓ = (✓ � ⌘, ✓ + ⌘) and max(r
3

(n), r
4

(n), r
5

(n)) = o(1), e�⌫ = ⌫ b�
ˇ✓ +

(1� ⌫)�
ˇ✓. We also assume

sup
�2⌦

sup
ˇ✓2N✓

kEt(�ˇ✓)k1 < 1, sup
�2⌦

sup
ˇ✓2N✓

kvT [ET(�ˇ✓)]�1

k1 < 1.

We next prove the uniform consistency of the Z-estimator e✓, which is a
uniform analogue of Theorem 1.

1
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Proposition A.1. Assume that the (stochastic) map ✓̌ 7! bS(b�
ˇ✓) is continu-

ous with a single root or nondecreasing. In addition, assume that vTEt(�✓�✏)⇥
vTEt(�✓+✏) < 0 for any ✏ > 0. Under conditions A.1 and A.2 we have that
for any ✏ > 0: sup�2⌦ P�(|e✓ � ✓| > ✏) = o(1).

Assumption A.3 (Uniform CLT). For �2 = vT⌃v we have:

lim
n!1

sup
�2⌦

sup
t2R

|P�(�
�1n1/2S(�)  t)� �(t)| = 0,(A.4)

where⌃ = limn!1 nCov t(Z,�), and it is assumed that inf�2⌦ �2 � C > 0.

Assumption A.4. Assume that there exists a � > 0 such that:

sup
�2⌦

sup
max(kˇv�vk

1

,k ˇ���k
1

)<�

�

�

�

�

v̌T @

@✓

⇥

T(Z, �̌)
⇤

⇤1

�

�

�

�

  (Z),(A.5)

where  is an integrable function such that sup�2⌦ E (Z) < 1.

Assumption A.5 (Uniform Consistency of Variance). Assume there exists
an estimator b�2 of �2, such that limn!1 inf�2⌦ P�(|b�2 � �2|  r

6

(n)) = 1,
where r

6

(n) = o(1).

In Section B.2 we provide su�cient conditions to obtain b� satisfying As-
sumption A.5. Finally, we present a uniform weak convergence result for
the Z-estimator which strengthens Theorem 2. Its proof can be found in
Appendix E.

Theorem A.1. Under Assumptions A.1 – A.5, the assumptions in Proposi-
tion A.1 and n1/2(r

1

(n)r
5

(n)+r
2

(n)r
3

(n)) = o(1), we have limn!1 sup�2⌦ supt2R |P�(bUn 
t)� �(t)| = 0, where bUn = n1/2

b� (e✓ � ✓).

Remark A.1. Notice that Theorem A.1 immediately implies that

lim
n!1

sup
�2⌦

sup
t2R

+

|P�(|bUn|  t)� �(t) + �(�t)| = 0.

The latter can be equivalently expressed as

lim
n!1

sup
�2⌦

sup
t2R

+

|P�(✓ 2 (e✓ � b�t/
p
n, e✓ + b�t/

p
n))� �(t) + �(�t)| = 0,

which implies that the confidence region (e✓�b�t/
p
n, e✓+b�t/

p
n) is uniformly

valid over the parameter space � 2 ⌦ provided that the assumptions we
discussed in this section hold.

APPENDIX B: SUFFICIENT CONDITIONS FOR VARIANCE
CONSISTENCY

In this brief Section we present su�cient conditions for having consistent
variance estimators.
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B.1 Consistent Estimators of the Variance

We now provide generic su�cient conditions for constructing a consistent
estimate of the variance. Let b⌃ be a consistent estimator of Cov t(Z,�). In
the case when t(Z,�) = n�1

Pn
i=1

h(Zi,�) one can use b⌃ := 1

n

Pn
i=1

h(Zi, b�)h(Zi, b�)T .

We consider the “plugin” estimator: b�2 = bvT
b⌃bv of �2. Define: bUn =

b��1n1/2(e✓ � ✓⇤). We are interested in showing that bUn converges weakly
to a standard normal distribution. To this end we define the following as-
sumption:

Assumption B.1 (Variance Consistency). Assume that the following holds:

lim
n!1

P⇤(kb⌃�⌃k
max

 r
7

(n)) = 1,

where r
7

(n) = o(1).

Proposition B.1. Assume the same assumptions as in Proposition 2 plus
Assumption B.1. Let furthermore k⌃k

max

= O(1), kv⇤T⌃k1r
2

(n) = o(1)
and kv⇤k2

1

r
7

(n) = o(1), then for any t 2 R we have:

lim
n!1

|P⇤(bUn  t)� �(t))| = 0.

The proof of Proposition B.1 can be found in Section E.

B.2 Uniformly Consistent Estimators of the Variance

Assumption B.2 (Plugin Variance Consistency). Assume that the follow-
ing holds:

lim
n!1

inf
�2⌦

P�(kb⌃�⌃k
max

 r
8

(n)) = 1,

where r
8

(n) = o(1).

We then have the following:

Proposition B.2. Assume that

sup
�2⌦

k⌃k
max

= O(1), sup
�2⌦

kvT⌃k1r
2

(n) = o(1), sup
�2⌦

kvk2
1

r
8

(n) = o(1),

and b⌃ satisfies Assumption B.2. Then b�2 = bvT
b⌃bv satisfies Assumption A.5.

The proof of this proposition is omitted as it follows easily from the proof
of Proposition B.1 and Lemma E.2 in the Appendix.

APPENDIX C: CONFIDENCE INTERVALS FOR INSTRUMENTAL
VARIABLES REGRESSION

Recall that � := (✓,�), and let ⌃n = n�1[X;W]T [X;W] be the empirical
estimator of ⌃ = E(XT ,W T )T (XT ,W T ). Conformally we decompose the
matrices ⌃n and ⌃ into four blocks corresponding to ordered pairings of
X and W indicated by subscripting with the pair, e.g. ⌃WX,n and ⌃WX

correspond to n�1WTX and EWXT resectively. Our goal is to construct
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confidence intervals for the parameter ✓. It is easy to show that bS(�) reduces
to

bS(�) = n�1

bvTWT (X� � Y ),

where

bv = argmin kvk
1

, subject to kvT⌃WX,n � e
1

k1  �0,(C.1)

is an estimator of v⇤ = ⌃�1

WXeT
1

. We impose the following assumption.

Assumption C.1. Let the error " := Y � XT�⇤, the predictors X and
instruments W be coordinate-wise sub-Gaussian, i.e.,

k"k 
2

:= K < 1, sup
j2{1,...,d}

max(kXjk 
2

, kWjk 
2

) := KWX < 1,

for some fixed constants K,KWX > 0 and Var(") � C" > 0. Furthermore,
assume �

min

(⌃WX⌃XW ) � �2 > 0, where � is some fixed constant. Addi-
tionally recall that E["2|Z] = �2, E[Z"] = 0.

Assumption C.2. We impose the following assumptions on the covariance
⌃. Assume:

k⌃�1

XW⌃WW⌃
�1

WXk
max

 D
max

, inf
s2{1,...,d},s log d<

p
n!

CS⌃WX (s, 1) � ⇤ > 0,

for some su�ciently large D
max

> 0, ! > 0 is a su�ciently small fixed
constant, and the quantity CS⌃WX (s, 1) is defined in Definition G.1.

Assumption C.1 is mild and ensures that the random variables ",X,W
are not heavy-tailed, the matrix ⌃WX is invertible, the instrumental vari-
ables W are uncorrelated with ", and that " is homoscedastic given the
instrumental variables. Assumption C.2 is a technical assumption. The first
condition ensures that the random variable v⇤TW has a finite second mo-
ment, i.e. E(v⇤TW )2  D

max

< 1. The second condition implies that the
matrix ⌃WX is “coordinate-wise sensitive” with respect to the L

1

norm.
Such a condition is first proposed by Gautier and Tsybakov (2011), and
can be viewed as an extension of the commonly used restricted eigenvalue
(RE) condition. It is not hard to show that this condition holds (for all
s 2 {1, . . . , d}) if for example �

min

(⌃XW + ⌃WX) � 4⇤, where the in-
equality is in the sense of eigenvalues comparison.
To construct confidence intervals for ✓, we consider bUn = b��1n1/2(e✓�✓⇤),

where e✓ is defined as the solution to bS(✓, b�) = 0, and

b� := n�1

n
X

i=1

((bvTWi)(Yi �XT
i
b�))2,(C.2)

is an estimator of the asymptotic variance � := Var[v⇤TW "]. As in the
linear model we will assume that v⇤ and �⇤ are sparse. Let s and sv denote
the sparsity of �⇤ and v⇤ correspondingly, i.e., k�⇤k

0

= s and kv⇤k
0

= sv.
The next corollary of the general Theorem 2 shows the asymptotic normality
of bUn in instrumental variable regressions. To simplify the presentation of
our result we will assume that kv⇤k

1

is bounded, although this is not needed
in our proofs.
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Corollary C.1. Assume that condition C.1 and C.2 hold, and

max(sv, s) log d/
p
n = o(1),

p

log d/n = o(1).

Then with � ⇣
p

log d/n and �0 ⇣
p

log d/n, bUn satisfies for any t 2 R:

lim
n!1

|P⇤(bUn  t)� �(t))| = 0.

The proof of Corollary C.1 can be found in Appendix G. The conditions
in Corollary C.1 agree with the existing conditions in Zhang and Zhang
(2014); van de Geer et al. (2014) for the simple linear model. In fact, under
the additional assumption s3v/n = o(1), we can show that bUn is uniformly
asymptotically normal; see Remark G.1.

APPENDIX D: CONFIDENCE INTERVALS FOR TRANSELLIPTICAL
MODELS

In this subsection we consider the transelliptical graphical models (TGM),
proposed by Liu et al. (2012b). We recall several definitions before we pro-
ceed.

Definition D.1 (Elliptical distribution Fang et al. (1990)). Let µ 2 Rd

and ⌃ 2 Rd⇥d. We say that the d-dimesnional vector X has an elliptical

distribution, and we denote it with X ⇠ ECd(µ,⌃, ⇠) if X
d
= µ + ⇠AU ,

where U is a random vector uniformly distributed on the unit sphere in
Rq, ⇠ � 0 is a scalar random variable independent of U , A 2 Rd⇥q is a
deterministic matrix such that AAT = ⌃.

Definition D.2 (Transelliptical distribution Liu et al. (2012b)). We call
the continuous random vector X = (X

1

, . . . , Xd)T transelliptically dis-
tributed, and we denote it with X ⇠ TEd(⌃, ⇠; f1, . . . , fd), if there exists a
set of monotone univariate functions f

1

, . . . , fd and a non-negative random
variable ⇠, with P(⇠ = 0) = 0, such that:

(f
1

(X
1

), . . . , fd(Xd))
T ⇠ ECd(0,⌃, ⇠),

where ⌃ is symmetric with diag(⌃) = 1 and ⌃ > 0 in a positive-definite
sense. Here ⌃ is called the “latent generalized correlation matrix”.

The graphical structure in TGMs can then be defined through the notion
of the “latent generalized concentration matrix” — ⌦ = ⌃�1, i.e. an edge
is present between two variables Xj, Xk if and only if ⌦jk 6= 0. To construct
an estimate of ⌦, Liu et al. (2012b) suggested estimating the correlation
matrix ⌃ first. This can be done by using a non-parametric estimate of the
correlation such as Kendall’s tau, and transforming it back, to obtain an
estimate of ⌃.
Assume that X

1

, . . . ,Xn are i.i.d. copies of X. Recall the definitions of
b⌧jk and bS⌧

jk given in Remark 2. Note that it is clear from the definition of
b⌧jk, that it is an unbiased estimator of:

⌧jk = P((Yj � Y 0
j )(Yk � Y 0

k) > 0)� P((Yj � Y 0
j )(Yk � Y 0

k) < 0),
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where Y ,Y 0 ⇠ X are i.i.d. random variables. It can be seen that bS⌧
jk

consistently estimates ⌃ (see e.g. (Liu et al., 2012a)). Let ⌦⇤ = ⌃�1. The
TGM estimator with CLIME is given by:

b⌦ = argmin k⌦k
1

, such that k bS⌧⌦� Idkmax

 �.

To derive confidence intervals for the parameter ⌦⇤
1m, we can apply a similar

approach to the graphical models. Denote with � = ⌦⇤m. Then the CLIME
with TGM reduces to

b� = argmin k�k
1

, such that k bS⌧� � eTmk1  �.

According to our formulation of the test statistic we have bS(�) = bvT ( bS⌧��
eTm), where

bv = argmin kvk
1

, such that kvT
bS⌧ � e

1

k1  �0.(D.1)

The solution e✓ to equation bS(✓, b�) = 0, has a closed form expression in this
example, and it is given below:

e✓ = b✓ �
bvT ( bS⌧

b� � eTm)

bvT
bS⌧
⇤1

.(D.2)

Next we argue that e✓ can be used to construct confidence intervals for the
parameter ✓. We note that the estimating equation in the TGM with CLIME
is not a sum of i.i.d. statistics, due to the U -statistic structure of S⌧ as
compared to estimating equations we considered in our previous examples.
Nevertheless, the assumptions in Section 2 are general enough to handle such
a case. Let ⇥ be a d⇥d random matrix with entries ⇥jk := ⇡ cos

�

⇡
2

⌧jk
�

⌧Yjk ,
where:

⌧Yjk = [P((Yj � Y 0
j )(Yk � Y 0

k) > 0|Y )� P((Yj � Y 0
j )(Yk � Y 0

k) < 0|Y )� ⌧jk],

with Y ,Y 0 are i.i.d. copies of X (and all ⌧Yjk being a random variable
depending on Y ). Define

� := Var(v⇤T⇥�⇤).(D.3)

Assumption D.1. Let X satisfy the following distributional assumption
— there exists ↵

min

> 0 such that � � ↵
min

kv⇤k2
2

k�⇤k2
2

.

Remark D.1. As in the CLIME case, we can show that the condition
Var(v⇤T⇥�⇤) � ↵

min

kv⇤k2
2

k�⇤k2
2

is equivalent to Var(v⇤T⇥�⇤) � V
min

, as-
suming that the matrix ⌃ � � > 0.

Next, we proceed to define b� an estimate for �. To this end define the
matrices b⇥i:

b⌧ ijk :=
1

n� 1

X

i0 6=i

sign ((Xij �Xi0j)(Xik �Xi0k))� b⌧jk, b⇥i
jk := ⇡ cos

⇣⇡

2
b⌧jk

⌘

b⌧ ijk.

Note that {b⇥i
jk}jk is symmetric by definition. Define the estimator b� :=

n�1

Pn
i=1

(bvT
b⇥i
b�)2. We have the following:
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Corollary D.1. Assume the data follow from the transelliptical graphical
models and Assumption D.1 holds. Furthermore, assume that the smallest
eigenvalue of the correlation matrix satisfies �

min

(⌃) � � > 0 is bounded
away from 0, and diag(⌃) = 1. Let k�⇤k

0

= s and kv⇤k
0

= sv and b� is a
consistent estimate of �. Under the following additional assumptions

max(sv, s)kv⇤k
1

k�⇤k
1

log d/n1/2 = o(1), kv⇤k2
1

k�⇤k2
1

max(sv, s)
p

log d/n = o(1),

(D.4)

9 k > 2 : (svs)
k/nk�1 = o(1),(D.5)

we can take � ⇣ k�⇤k
1

p

log d/n and �0 ⇣ kv⇤k
1

p

log d/n so that the statis-

tic bUn = b��1/2n1/2(e✓ � ✓) satisfies for all t: limn!1 |P(bUn  t)� �(t)| = 0.

Similarly, we can show the following result regarding uniformly valid con-
fidence intervals. Before that we define a class of correlation matrices, in
analogy to the CLIME case:

eS(L, s) = {⌃ : ⌃ = ⌃T , 0 < �  �
min

(⌃), diag(⌃) = 1, k⌃�1k
1

 L,max
i

k⌃�1

⇤i k0  s},

Corollary D.2. Let X ⇠ TEd(µ,⌃, ⇠) with ⌃ 2 eS(L, s). Assume further-
more that X satisfies Assumption D.1, and

s3n�1/2 = o(1), sL2 log(d)n�1/2 = o(1), sL4

p

log d/n = o(1).(D.6)

Then we have limn!1 sup⌃2 eS(L,s) supt |P�(bUn  t)� �(t)| = 0.

APPENDIX E: PROOFS OF THE GENERAL THEORY

Recall that S(�) := v⇤T t(Z,�), and bS(�) := bvT t(Z,�). We start by de-
riving an asymptotic expansion of the projected estimating equation bS(b�✓⇤).

Lemma E.1. Suppose Assumptions (3.5), 1 and

n1/2(r
4

(n)r
3

(n, ✓⇤) + r
5

(n)r
1

(n, ✓⇤)) = o(1),(E.1)

hold. Then we have the following asymptotic expansion:

n1/2
bS(b�✓⇤) = n1/2S(�⇤) + op(1).

Proof of Lemma E.1. Let for brevity r
1

(n) = sup✓2N✓⇤
r
1

(n, ✓) and
r
3

(n) = sup✓2N✓⇤
r
3

(n, ✓). We start by showing that for all ✓ 2 N✓⇤ :

bS(b�✓) = S(�⇤
✓) + op(1) = v⇤T [Et(�

⇤
✓)] + op(1).(E.2)

This fact will be used in the proof of Theorem 1. By the mean value theorem
we have:

bS(b�✓) = v⇤T t(Z,�⇤
✓) + bv

TT(Z, e�⌫)(b�✓ � �⇤
✓)

| {z }

I
1

+(bv � v⇤)T t(Z,�⇤
✓)

| {z }

I
2
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Next we control I
1

:

|I
1

|  k[bvTT(Z, e�⌫)]�1

k1kb�✓ � �⇤
✓k1  Op(r3(n) + kv⇤T [ET(�

⇤
✓)]�1

k1
| {z }

O(1)

)Op(r4(n))

(E.3)

where by [·]�1

we mean discarding the first entry (corresponding to ✓) of
the vector. We proceed to bound I

2

:

|I
2

|  kbv � v⇤k
1

kt(Z,�⇤
✓)k1 = Op(r5(n))Op(r1(n) + kEt(�

⇤
✓)k1

| {z }

O(1)

).(E.4)

This combined with (3.3) concludes the our initial statement. For the in-
fluence function expansion stated in Lemma E.1 observe that Et(�⇤

✓⇤) = 0
and v⇤T [ET(�⇤

✓⇤)]�1

= 0 and hence using (E.1) we can modify bounds (E.3)
and (E.4) to:

n1/2(|I
1

|+ |I
2

|)  n1/2Op(r4(n)r3(n, ✓
⇤) + r

5

(n)r
1

(n, ✓⇤)) = op(1),

and we are done.

Proof of Theorem 1. First assume that the map ✓ 7! bS(b�✓) is con-
tinuous and has a unique 0. Take ✏ > 0 so that both ✓⇤ � ✏, ✓⇤ + ✏ 2 N✓⇤ .
Without loss of generality let v⇤TEt(�✓⇤�✏) < 0 and v⇤TEt(�✓⇤+✏) > 0 for
all ✏ > 0. Note that by the continuity of ✓ 7! bS(b�✓), and the fact that e✓ is
the unique root P⇤(bS(b�✓⇤�✏) < 0, bS(b�✓⇤+✏) > 0)  P⇤(✓⇤ � ✏ < e✓ < ✓⇤ + ✏).
Now by (E.2) from Lemma E.1 we have that the left hand side converges
to 1 and this concludes the proof in the first case. The same argument goes
through in the second case.

Proof of Theorem 2. Let Un = n1/2
p
v⇤T⌃v⇤ (

e✓ � ✓⇤). It su�ces to show

that the statement holds for Un, as the statement for bUn is a corollary after
an application of Slutsky’s theorem. By the mean value theorem:

bS(b�e✓) =
bS(b�✓⇤) + bv

T [T(Z, b�✓⇤)]⇤1(e✓ � ✓⇤) +
1

2
bvT @

@✓
[T(Z, e�⌫)]⇤1(e✓ � ✓⇤)2,

(E.5)

where e�⌫ = ⌫ b�e✓ + (1� ⌫)b�✓⇤ for some ⌫ 2 [0, 1]. By (3.7) and the fact that

bv and e�⌫ are consistent (by (3.5) and Theorem 1) we have that:
�

�

�

�

1

2
bvT @

@✓
[T(Z, e�⌫)]⇤1(e✓ � ✓⇤)2

�

�

�

�

 (e✓ � ✓⇤)2Op(1) = |e✓ � ✓⇤|op(1).

Observe that by Lemma E.1 and Assumption 3 we have n1/2
p
v⇤T⌃v⇤

bS(b�✓⇤) =

Op(1), and more precisely n1/2
p
v⇤T⌃v⇤

bS(b�✓⇤)  N(0, 1). Next by Assumption
1,

n1/2|b✓ � ✓⇤|(|bvT [T(Z, b�✓⇤)]⇤1|
| {z }

1+op(1)

+op(1)) = Op(1),
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and hence we conclude that b✓� ✓⇤ = Op(n�1/2). Thus by Assumption 1 and
Sltusky’s:

n1/2(e✓ � ✓⇤)p
v⇤T⌃v⇤

= � n1/2
bS(b�✓⇤)p

v⇤T⌃v⇤
bvT [T(Z, b�✓⇤)]⇤1

+ op(1) N(0, 1),

which concludes the proof.

Proof of Proposition A.1. We start by showing that for all ✏ > 0:

sup
�2⌦

sup
ˇ✓2N✓

P�

⇣

|bS(b�
ˇ✓)� vTEt(�ˇ✓)| > ✏

⌘

= o(1).

We have:

sup
�2⌦

sup
ˇ✓2N✓

P�

⇣

|bS(b�
ˇ✓)� vTEt(�ˇ✓)| > ✏

⌘

 sup
�2⌦

sup
ˇ✓2N✓

P�

✓

�

�

�

�

vT t(Z,�
ˇ✓)� vTEt(�ˇ✓)

�

�

�

�

>
✏

3

◆

+ sup
�2⌦

sup
ˇ✓2N✓

P�

✓

sup
⌫2[0,1]

�

�

�

�

bvT [T(Z, e�⌫)]�1

�

�

�

�

1
kb�

ˇ✓ � �
ˇ✓k1 >

✏

3

◆

+ sup
�2⌦

sup
ˇ✓2N✓

P�

✓

kbv � vk
1

kt(Z,�
ˇ✓)k1 >

✏

3

◆

,(E.6)

where e�⌫ = ⌫ b�
ˇ✓+(1�⌫)�

ˇ✓. By Assumptions A.1 and A.2 it follows that the
RHS is o(1), as we claimed. First let us assume that the maps ✓̌ 7! bS(b�

ˇ✓) are
continuous. To shorten the notation in the remaining of the proof we will
use use the following notation: If A,B are random variables we write P(A ?
c
1

, B 7 c
2

) := P((A > c
1

\ B < c
2

) [ (A < c
1

\ B > c
2

)). Then following
inequality holds inf�2⌦ P�(bS(b�✓�✏) 7 0, bS(b�✓+✏) ? 0)  inf�2⌦ P�(✓ � ✏ <
e✓ < ✓ + ✏). Next for small enough ✏ > 0 such that ✓ ± ✏ 2 N✓, we have:

inf
�2⌦

P�(v
TEt(�✓�✏) 7 0,vTEt(�✓+✏) ? 0)

� sup
�2⌦

P�(bS(b�✓�✏) ? 2vTEt(�✓�✏), bS(b�✓+✏) 7 2vTEt(�✓+✏))

 inf
�2⌦

P�(bS(b�✓�✏) 7 0, bS(b�✓+✏) ? 0).

The LHS goes to 1 by (E.6), and hence the proof is complete in this case.
In the case when ✓̌ 7! bS(b�

ˇ✓) are non-decreasing, exactly the same argument
goes through.

Lemma E.2. Let Xn(r) and ⇠n(r) be two sequences of random variables,
depending on a parameter r 2 R. Suppose that limn supr2R supt |Pr(Xn(r) 
t)�F (t)| = 0 where F is a continuous cdf, and limn infr2R Pr(|1� ⇠n(r)| 
⌧(n)) = 1 for ⌧(n) = o(1). Assume in addition that F is Lipschitz, i.e. there
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exist  > 0, such that for any t, s 2 R : |F (t) � F (s)|  |t � s|. Then we
have:

lim
n

sup
r2R

sup
t

�

�

�

�

Pr

✓

Xn(r)

⇠n(r)
 t

◆

� F (t)

�

�

�

�

= 0.

Proof of Lemma E.2. The proof follows by a direct calculation, and
we omit the details.

Lemma E.3. Under Assumptions A.1 — A.4, we have:

lim
n!1

inf
�2⌦

P�

⇣

�

�

�

bS(b�✓)� S(�)
�

�

�

 r
1

(n)r
5

(n) + r
2

(n)r
3

(n)
⌘

= 1.(E.7)

If in addition n1/2(r
1

(n)r
5

(n) + r
2

(n)r
3

(n)) = o(1), we have:

lim
n!1

sup
�2⌦

sup
t

|P�(�
�1n1/2

bS(b�✓)  t)� �(t)| = 0.(E.8)

Proof of Lemma E.3. Let G�
i be the event inside the probability mea-

sures in assumptions A.1 — A.4 corresponding to the rate ri(n) for i =
1, . . . , 5. It is clear that inf�2⌦ P�(G�) � 1 �

P

5

i=1

sup�2⌦ P�[(G�
i )

c] ! 1.
Next, the proof of (E.7) can be done through the same argument as in
the proof of Theorem E.1, but using the uniform convergence assump-
tions. Note that the bounds (E.3) and (E.4) continue to hold on the event
G� = G�

1

\ . . . \ G�
5

. Hence by Assumptions A.1 and A.2 the proof of (E.7)
is complete.
Next we show (E.8). Let (n) = n1/2C�1/2(r

1

(n)r
5

(n)+r
2

(n)r
3

(n)), where
we recall the definition of C: inf�2⌦ vT⌃v � C > 0. Then we have:

P�(�
�1n1/2

bS(b�✓)  t)  P�(�
�1n1/2

bS(b�✓)  t,G�) + P�((G�)c)

 P�(�
�1n1/2S(�)  t+ (n)) + P�((G�)c).

The above implies the following inequality:

P�(�
�1n1/2

bS(b�✓)  t)� �(t)
 P�(�

�1n1/2S(�)  t+ (n))� �(t+ (n)) + (�(t+ (n))� �(t)) + P�((G�)c)

 P�(�
�1n1/2S(�)  t+ (n))� �(t+ (n)) +

(n)p
2⇡

+ P�((G�)c),

where we took into account the fact that � is Lipschitz with constant  1p
2⇡
.

Now using Assumption A.3, the fact that (n) = o(1) and P�((G�)c) = o(1)
we conclude that:

lim sup
n!1

sup
�2⌦

sup
t

P�(�
�1n1/2

bS(b�✓)  t)� �(t)  0.

With a similar argument one can show the converse, namely:

lim inf
n!1

inf
�2⌦

inf
t
P�(�

�1n1/2
bS(b�✓)  t)� �(t) � 0.

This concludes the proof of (E.8).
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Proof of Theorem A.1. By Assumption A.5, we have:

inf
�

P�

✓

�

�

�

�

1� b���1

�

�

�

�

 r
6

(n)

C

◆

� P�

✓

|b� � �|  r
6

(n)p
C

◆

� inf
�

P�

�

|b�2 � �2|  r
6

(n)
�

= 1� o(1),(E.9)

where recall that inf�2⌦ vT⌃v � C > 0. The last expression implies that:
Next define:

⇣n(�) = b��
�1

✓

bvT [T(Z, e�✓)]⇤1

◆

, ⌘n(�, ⌫) =
b���1

2
bvT @

@✓
[T(Z, e�⌫)]⇤1(e✓ � ✓),

where e�⌫ = ⌫ b�e✓ + (1� ⌫)b�✓ and let ⇠n(�, ⌫) = ⇣n(�) + ⌘n(�, ⌫).
We will show that

lim
n

inf
�2⌦

inf
⌫2[0,1]

P�(|1� ⇠n(�, ⌫)|  ⌧(n)) = 1,(E.10)

for some ⌧(n) = o(1), or equivalently — for every ✏ > 0 : sup�2⌦ sup⌫2[0,1] P�(|1�
⇠n(�, ⌫)| > ✏) = o(1). We proceed with the following:

sup
�2⌦

sup
⌫2[0,1]

P�(|1� ⇠n(�, ⌫)| > ✏)  sup
�2⌦

P�(|1� ⇣n(�)| > ✏/2)

| {z }

I
1

+ sup
�2⌦

sup
⌫2[0,1]

P�(|⌘n(�, ⌫)| > ✏/2)

| {z }

I
2

.

First we tackle I
1

. We have:

I
1

 sup
�2⌦

P�(|1� b���1| > ✏/4) + sup
�2⌦

P�(|b���1| > 2) + sup
�2⌦

P�(|1� bvT [T(Z, e�✓)]⇤1| > ✏/8),

and all of the terms on the RHS are o(1) due to (E.9) and Assumption A.4
respectively.
Next we handle I

2

term. Let E = sup�2⌦ E� (Z), where the function  
is defined in Assumption A.4. Fix an ↵ > 0, and proceed as:

I
2

 sup
�2⌦

P�(|b���1| � 2) + sup
�2⌦

P�(|e✓ � ✓⇤| > E�1✏↵/2) + sup
�2⌦

P�( (Z) � ↵�1E)  o(1) + ↵,

where the last inequality follows from (E.9), Proposition A.1 and Markov’s
inequality. Taking the limit n ! 1 shows that limn sup�2⌦ sup⌫2[0,1] P�(|⌘n(�, ⌫)| >
✏/2)  ↵. Taking ↵ ! 0 shows (E.10). Next observe that by (E.5) we have
the following identity:

n1/2(e✓ � ✓)

b�
= �n1/2

bS(b�✓)

�⇠n(�, ⌫)
.(E.11)

Now combining the fact that (E.10) with our results from Lemmas E.2 and
E.3 in addition to (E.11) completes the proof.

Proof of Proposition B.1. Note that the only thing left to show is
the consistency of the plugin estimate bvT

b⌃bv for v⇤T⌃v⇤, with the rest of the
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argument following from Theorem 2 and Slutsky’s theorem. By the triangle
inequality we have:

|bvT
b⌃bv � v⇤T⌃v⇤|  kbvT � v⇤k

1

kb⌃(bv � v⇤)k1
| {z }

I
1

+2 kv⇤T
b⌃k1kbv � v⇤k

1

| {z }

I
2

+ kv⇤k2
1

kb⌃�⌃k
max

| {z }

I
3

Next we control |I
1

|  Op(r2(n)2r7(n) + k⌃k
max

r2
2

(n)) = op(1). Next

|I
2

|  2Op(kv⇤k
1

r
2

(n)r
7

(n) + kv⇤T⌃k1r
2

(n)) = op(1).

Finally, for I
3

we have |I
3

|  kv⇤k2
1

Op(r7(n)) = op(1).

APPENDIX F: PROOFS FOR THE DANTZIG SELECTOR

We recall the definition of restricted eigenvalue (RE) assumption (Bickel
et al., 2009).

Definition F.1 (RE). We say that the symmetric positive semi-definite
matrix Mk⇥k possesses the restricted eigenvalue property if:

REM(s, ⇠) = min
S⇢{1,...,k},|S|s

min

⇢

uTMu

kuSk2
2

: u 2 Rd \ {0}, kuSck
1

 ⇠kuSk1
�

> 0.

Definition F.2. Denote with X the n⇥ d matrix whose rows are the XT
i

vectors stacked together. Let Y be the an n⇥ 1 vector stacking the obser-
vations Yi for i = 1, . . . , n and let " = Y �X�⇤.

Proof of Corollary 1. We will prove this result by validating all of
the assumptions required of the general Theorem 2. Regarding Assumption

(3.5), observe that from Lemma F.4, we have that kv⇤�bvk
1

= Op

⇣

kv⇤k
1

sv
p

log d/n
⌘

and by Lemma F.6 — k�⇤ � b�k
1

= Op

⇣

s
p

log d/n
⌘

.

Assumption 1 can be verified as follows. To see (3.2), fix a |✓ � ✓⇤| < ✏,
for some ✏ > 0. Next by the triangle inequality:
�

�

�

�

⌃n�
⇤
✓ � n�1XTY �⌃X(�⇤

✓ ��⇤)

�

�

�

�

1
 kn�1XT"k1 + k⌃n,⇤1 �⌃X,⇤1k1✏.

The two terms on the RHS are Op(
p

log d/n), by the proof of Lemma
F.5 (see F.6) and Lemma F.2. The same logic shows that |v⇤T⌃n�⇤

✓ �
n�1v⇤TXTY �v⇤T⌃X,⇤1(✓�✓⇤)| = Op(kv⇤k

1

p

log d/n), which implies (3.3).
Since the Hessian T in (3.4) is free of � we are allowed to set r

3

(n) = �0 ⇣
kv⇤k

1

p

log d/n = o(1) (by Lemma F.4). Finally the two expectations in
Assumption 1, are bounded as we see below:

k⌃X(�⇤
✓ � �⇤)k1  k⌃X,⇤1k1✏  2K2

X✏, kv⇤T⌃X,�1

k1 = 0.

By adding up the following two identities:

p
nOp

⇣

kv⇤k
1

p

log d/n
⌘

Op

⇣

s
p

log d/n
⌘

= op(1),

p
nOp

⇣

kv⇤k
1

sv
p

log d/n
⌘

Op

⇣

p

log d/n
⌘

= Op

�

kv⇤k
1

sv log d/
p
n
�

= op(1),
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we get that (3.8) is also valid in this case.
To verify the consistency of e✓ we check the assumptions in Theorem 1.

Clearly the map ✓ 7! v⇤T⌃X(�⇤
✓ � �⇤) = (✓ � ✓⇤) has a unique 0 when

✓ = ✓⇤. Moreover, the map ✓ 7! bvT (⌃n
b�✓ � n�1XTY ) is continuous as it is

linear. In addition, it has a unique zero except in cases when bvT⌃n,⇤1 = 0.
However note that |bvT⌃n,⇤1 � 1|  �0 by (4.1), and hence for small enough
values of �0 a unique zero will always exist.
Assumption 3 is verified in Lemma F.1. We move on to show (3.7). Clearly

(3.7) is trivial as its LHS ⌘ 0 in this case. Finally Proposition F.1 checks
that b� is a consistent estimate of �. This completes the proof.

Remark F.1. In fact, under the additional assumption s3v/n = o(1), the
proof of Corollary 1 implies that the uniform types of assumptions in Section
A are satisfied, and hence under the same assumptions as in Corollary 1,
we have:

lim
n!1

sup
k�k

0

s

sup
t2R

|P�(bUn  t)� �(t))| = 0.

By Remark A.1 the above equality readily translates from estimator uniform
consistency to confidence region uniform consistency. It is noteworthy to
mention that the space of uniformity is ⌦ = {� : k�k

0

 s}, provided that
the conditions of Corollary 1 hold, which includes that the covariates X sat-
isfy sv = kv⇤k

0

and max(sv, s)kv⇤k
1

log d/
p
n = o(1), kv⇤k2

1

p

log d/n =
o(1).

Remark F.2. Note here that it is implied that �0 = o(1) and hence since
kv⇤k

1

� 2K�2

X it follows that � = o(1) as well.

Remark F.3. Observe that kv⇤k
1

 p
svkv⇤k

2

 p
sv�. This yields su�-

cient conditions by substituting kv⇤k
1

with
p
sv. Moreover, under the as-

sumption that v⇤TX is sub-Gaussian, we can further relax the requirements
on sparsity sv dimension d and number of observations n.

Lemma F.1. Assume that condition 6 holds and max(sv, s)kv⇤k
1

log d/
p
n =

o(1). Then ��1/2n1/2S(�⇤) N(0, 1).

Proof of Lemma F.1. To show the weak convergence we verify Lya-
punov’s condition for the CLT.We need to show that n�2

�

2

Pn
i=1

E
�

�v⇤TXi(XT
i �

⇤ � Yi)
�

�

4

converges to 0. Note that we have�2 � �
min

(⌃X)kv⇤k4
2

Var(")2 = O(1)kv⇤k4
2

.
Therefore it su�ces to consider the following expression:

n�2

kv⇤k4
2

n
X

i=1

E
�

�v⇤TXi(X
T
i �

⇤ � Yi)
�

�

4  n�2

n
X

i=1

E k(Xi"i)S
v

k4
2

 n�1s2vM,

(F.1)

where M = 28(KKX)4, and the last inequality holding from Lemma F.9.
Using the fact that kv⇤k

1

� 2K�2

X as seen in Remark F.2, we have that
max(sv, s)kv⇤k

1

log d/
p
n = o(1) implies s2v/n = o(1) and completes the

proof.
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Remark F.4. Using the Berry-Esseen theorem for non-identical random
variables in combination with Lemma F.9 we can further show:

sup
t

�

�

�

�

P⇤
✓

n1/2

p
�
S(�⇤)  t

◆

� �(t)
�

�

�

�

 CBE(6KKX)
3n�1/2s3/2v = o(1),

where M and CBE are absolute constants.

Proposition F.1. Under Assumption 6, and the following additional as-

sumption kv⇤k2
1

q

log d
n

= o(1), we have that b�!p �.

Proof of Proposition F.1. We show that each of the two sums is
corresponding to its population counterpart, and then the proof follows
upon an application of Slutsky’s theorem. We start with the first term:
�

�

�

�

1

n

n
X

i=1

(bvTXi)
2 � v⇤T⌃Xv⇤

�

�

�

�


�

�

�

�

1

n

n
X

i=1

[(bvTXi)
2 � (v⇤TXi)

2]

| {z }

I
1

�

�

�

�

+ |v⇤T⌃nv
⇤ � v⇤T⌃Xv⇤

| {z }

I
2

|,

|I
1

|  kbv � v⇤k
1

(k⌃nbvk1 + k⌃nv
⇤k1).

We know from Lemma F.4, that kv⇤ � bvk
1

= Op

⇣

kv⇤k
1

sv
p

log d/n
⌘

, and

by definition k⌃nbvk1  1 + �0. In the proof of Lemma F.4 we also show
that

k⌃nv
⇤k1 = 1 +Op

⇣

kv⇤k
1

p

log d/n
⌘

,

upon appropriately choosing �0 ⇣ kv⇤k
1

p

log d/n, with a large enough pro-

portionality constant. Thus sinceOp

⇣

kv⇤k
1

sv
p

log d/n
⌘⇣

2 +Op

⇣

kv⇤k
1

p

log d/n
⌘⌘

=

op(1) we have shown |I
1

| = op(1). We next tackle |I
2

|  kv⇤k2
1

k⌃n�⌃Xk
max

.

Lemma F.2 gives us that k⌃n�⌃Xk
max

= Op(
p

log d/n), and thus because
of our extra assumption we have |I

2

| = Op(kv⇤k2
1

p

log d/n) = op(1).
Now we turn to the second part of the proof:
�

�

�

�

1

n

n
X

i=1

(Yi �XT
i
b�)2 � Var(")

�

�

�

�


�

�

�

�

1

n

n
X

i=1

(Yi �XT
i
b�)2 � 1

n

n
X

i=1

(Yi �XT
i �

⇤)2

| {z }

I
3

�

�

�

�

+

�

�

�

�

1

n

n
X

i=1

"2i � Var(")

| {z }

I
4

�

�

�

�

.

The term I
4

is clearly op(1) because of the LLN ("i are centered and have
finite variance as sub-Gaussian random variables). Thus we are left to deal
with I

3

:

|I
3

|  1

n
kX(b� � �⇤)k2

2

+
2

n

n
X

i=1

|XT
i (b� � �⇤)||"i|

 1

n
kX(b� � �⇤)k2

2

+
2

n
kX(b� � �⇤)k

2

v

u

u

t

n
X

i=1

"2i ,
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where Xn⇥d is a matrix, with rows XT
i stacked together. (F.8) in Lemma

F.6 gives us that 1

n
kX(b� � �⇤)k2

2

= Op(
s log d

n
) = op(1), and since by LLN

q

1

n

Pn
i=1

"2i = Op(1), we have |I
3

| = op(1), which shows the consistency of

the second estimator and concludes the proof.

Lemma F.2. We have that with probability at least 1� 2d2�c̄A2

X :

k⌃n �⌃Xk
max

 4AXK
2

X

p

log d/n.

Note. The constant c̄ is a universal constant independent of the X distri-
bution, KX is as defined in the main text, and AX > 0 is an arbitrarily
chosen constant satisfying AX

p

log d/n  1.

Proof of Lemma F.2. First we note that the elements of the matrix
– XXT are sub-exponential random variables. This fact can be seen since
by Cauchy-Schwartz, one can easily obtain that:

kXiXjk 
1

 2kXik 
2

kXjk 
2

 2K2

X .(F.2)

Next by the triangle inequality it is clear that kXiXj � EXiXjk 
1

 4K2

X .
The proof is completed by applying a standard Bernstein tail bound (see
Proposition 5.16 in Vershynin (2010) e.g.).

Lemma F.3. Assume the same conditions as in Lemma F.2, and assume
further that the minimum eigenvalue �

min

(⌃X) > 0 and s
p

log d/n 
(1 � ) �

min

(⌃X)

(1+⇠)24AXK2

X
, where 0 <  < 1. We then have that ⌃n satisfies

the RE property with RE⌃n(s, ⇠) � RE⌃X (s, ⇠) � �
min

(⌃X) > 0 with
probability at least 1� 2d2�c̄A2

X .

Proof of Lemma F.3. The proof follows a standard argument so omit
the details.

Definition F.3. For a fixed 0 <  < 1, let RE(s, ⇠) = RE⌃X (s, ⇠).

Lemma F.4. Assume that — �
min

(⌃X) > � > 0, sv
p

log d/n  (1 �
) �

min

(⌃X)

(1+1)

2

4AXK2

X
, where 0 <  < 1 and �0 � kv⇤k

1

4AXK
2

X

p

log d/n. Then

we have that kbv � v⇤k
1

 8�0s
v

RE(sv,1)
with probability at least 1 � 2d2�c̄A2

X .
Additionally we have:

kbvSc
v

� v⇤
Sc
v

k
1

 kbvS
v

� v⇤
S
v

k
1

.(F.3)

Proof of Lemma F.4. The proof follows a standard argument so omit
the details.

Lemma F.5. Assume the same conditions as in Lemma F.2 and that
p

log d/n  C for some constant C. Let S = supp(�⇤), and let � =

AK
q

log d
n

. Then, with probability at least 1 � ed
1� cA2

2(1+2CAX )K2

X � 2d2�c̄A2

X
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(where c is a universal constant independent of the distribution of ", K =
k"k 

2

, and the other constants are defined in Lemma F.2) we have:

kb�Sc � �⇤
Sck

1

 kb�S � �⇤
Sk1, and:(F.4)

�

�

�

⌃n(�
⇤ � b�)

�

�

�

1
 2�.(F.5)

Proof of Lemma F.5. Note that by a Hoe↵ding’s type of inequality
for sub-Gaussian random variables (see Proposition 5.10 (Vershynin, 2010))
and the union bound, we have:

P
✓

�

�

�

�

1

n
XT"

�

�

�

�

1
� t
�

�

�

X

◆

 ed exp

✓

� cnt2

K2k⌃nkmax

◆

,(F.6)

where c is a universal constant. The remainder of the proof follows by stan-
dard arguments so we omit the details.

Lemma F.6. Assume the same conditions as in Lemmas F.2, F.3 (with
⇠ = 1), and F.5, so that ⌃n satisfies the RE assumption with RE(s, 1)

with high probability. Set � = AK
q

log d
n

, as in Lemma F.5. Then with

probability at least 1� ed
1� cA2

2(1+2CAX )K2

X � 2d2�c̄A2

X we have:

kb� � �⇤k
1

 8AK

RE(s, 1)
s
p

log d/n,(F.7)

kX(b� � �⇤)k2
2

 16A2K2

RE(s, 1)
s log d.(F.8)

Proof of Lemma F.6. The proof follows by standard arguments and
we omit the details.

Lemma F.7. Let {Xi}ni=1

are identical (not necessarily independent), d-
dimensional sub-Gaussian vectors with max

1in,1jd kXijk 
2

= K. Then
we have:

max
i=1,...,n

kXiX
T
i kmax

= Op(log(nd)).

Proof of Lemma F.7. The proof follows after an application of a Bern-
stein type of of tail bound (Vershynin, 2010, see e.g.) and we omit the
details.

Lemma F.8. Let Xi, i = 1 . . . k are sub-exponential with kXik `
 U , for

some ` � 1 and denote by X the vector with entries Xi. Then for any
p, q � 1 we have:

EkXkpq  [E[kXkpqq ]]1/(qp)  (pq)p/`Upkp/q
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Proof of Lemma F.8. We apply Jensen’s followed by Minkowski’s in-
equality to obtain the following:

[E[kXkpq ]]1/p  [E[kXkpqq ]]1/(qp)  [k(E(Xi)
pq)1/q]1/p  (pq)1/`Uk1/p,

where the last inequality follows by the definition of  ` norm. Raising this
inequality to the power of p finishes the proof.

Lemma F.9. Let R ⇢ {1, . . . , d} with |R| = r. Then we have the following:

Ek(X")Rk4
2

 r228(KKX)4.

Proof of Lemma F.9. Simply observe that Ek(X")Rk4
2


p

E|"|8
p

Ek(X)Rk8
2

,
and apply Lemma F.8 for  

2

.

APPENDIX G: PROOFS FOR IVR

Definition G.1 (CS). For the (not necessarily symmetric) matrix Mk⇥k

we define its coordinate-wise sensitivity with respect to the L
1

norm by:

CSM(s, ⇠) = min
S⇢{1,...,k},|S|s

min
�

skMuk1 : u 2 Rd \ {0}, kuSck
1

 ⇠kuSk1, kuSk1 = 1
 

> 0.

This definition is inspired by Gautier and Tsybakov (2011).

Definition G.2. Denote with X and W the n⇥d matrices whose rows are
theXT

i andW T
i vectors stacked together respectively. Let Y be the an n⇥1

vector stacking the observations Yi for i = 1, . . . , n and let " = Y �X�⇤.

Proof of Corollary C.1. The proof is the same as the proof of Corol-
lary 1 upon usages of the Lemmas developed in this section. We omit the
details.

Remark G.1. In fact, the proof of Corollary C.1 implies that the uniform
types of assumptions in Section A are satisfied, and hence under the same
assumptions as in Corollary C.1, we have:

lim
n!1

sup
k�k

0

s

sup
t2R

|P�(bUn  t)� �(t))| = 0.

Lemma G.1. Assume that condition 6 holds and max(sv, s)(kv⇤k
1

_1) log d/
p
n =

o(1). Then:
��1/2n1/2S(�⇤) N(0, 1).

Proof of Lemma G.1. The proof is the same as that of Lemma F.1
after using the Lemmas developed below. We omit the details.

Remark G.2. Using the Berry-Esseen theorem for non-identical random
variables in combination with Lemma F.9 we can further show:

sup
t

�

�

�

�

P⇤
✓

n1/2

p
�
S(�⇤)  t

◆

� �(t)
�

�

�

�

 CBE(6KKWX)
3n�1/2s3/2v = o(1),

where M and CBE are absolute constants.
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Proposition G.1. Under assumption 6, and the following additional as-
sumption:

kv⇤k2
1

p

log d/n = o(1),

we have that b�!p �.

Proof of Proposition G.1. By the triangle inequality, for any two
vectors a and b we have |kak

2

� kbk
2

|  ka� bk
2

. Making multiple usages
of this inequality one realizes that it su�ces to show:

n�1

n
X

i=1

((v⇤ � bv)TWi)
2((�⇤ � b�)TXi)

2 = op(1), n
�1

n
X

i=1

(v⇤TWi)
2((�⇤ � b�)TXi)

2 = op(1),

n�1

n
X

i=1

((v⇤ � bv)TWi)
2"2i = op(1), n

�1

n
X

i=1

(v⇤TWi)
2"2i � E(v⇤TWi)

2"2i = op(1),

and E(v⇤TWi)2"2i < 1. We show these convergences in turn. For the first
term we have:

n�1

n
X

i=1

((v⇤�bv)TWi)
2((�⇤�b�)TXi)

2  kv⇤�bvk2
1

k�⇤�b�k2
1

Op(log(nd)
2) = op(1),

with high probability, where use used Lemma F.7 and Lemmas G.6 and
G.4. For the second term:

n�1

n
X

i=1

(v⇤TWi)
2((�⇤ � b�)TXi)

2  k�⇤ � b�k2
1

max
i=1,...,n

kXik21n�1

n
X

i=1

(v⇤TWi)
2

 Op

⇣s2 log d log(nd)

n

⌘

n�1

n
X

i=1

(v⇤TWi)
2,

with high probability. By Lemma G.2 we have:

n�1

n
X

i=1

(v⇤TWi)
2  kv⇤k2

1

kn�1

X

i=1

WiW
T
i �⌃WW k

max

| {z }

Op(

p
log d/n)

+v⇤T⌃WWv⇤
| {z }

D
max

= Op(1),

which combined with the bound in the previous display completes the proof
for the second term. The third term bound follows upon noticing:

n�1

n
X

i=1

((v⇤ � bv)TWi)
2"2i  kbv � v⇤k2

1

max kWik21 n�1

X

"2i
| {z }

Op(1)

 Op

⇣s2 log d log(nd)

n

⌘

Op(1)

= op(1).

Moving to the last term we have:

�

�

�

n�1

n
X

i=1

(v⇤TWi)
2"2i�E(v⇤TWi)

2"2i

�

�

�

 kv⇤k2
1

kn�1

n
X

i=1

Wi,S
v

W T
i,S

v

"2i�⌃WW ,S
v

S
v

�2k1,
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where Sv = supp(v⇤). The final concentration is handled in Lemma G.7.
Applying this lemma in conjunction with the union bound gives us the
existence of a constant CKWX depending on K and KWX such that:

P(kn�1

n
X

i=1

Wi,S
v

W T
i,S

v

"2i�⌃WW ,S
v

S
v

�2k1 � t)  s2v
Ck

KWX [
p

k/n+ k2/n]k

tk
,

for all k 2 N. Selecting t = 2e4CKWX

q

log d
n

, k = dmin(log d, (n log d)1/4)e
brings the above bound of the orderO(s2v exp(�4dmin(log d, (n log d)1/4)e)) =
o(1), and shows that:

�

�

�

n�1

n
X

i=1

(v⇤TWi)
2"2i � E(v⇤TWi)

2"2i

�

�

�

 O
⇣

kv⇤k2
1

r

log d

n

⌘

= o(1).

We conclude the proof with noticing that E[E[(v⇤TWi)2"2i |W ]] = �2E[v⇤TWiW T
i v⇤] <

1.

Lemma G.2. We have that with probability at least 1� 2d2�c̄A2

X :

�

�

�

�

�

1

n

n
X

i=1

[W T
i ,XT

i ]
T [W T

i ,XT
i ]�⌃

�

�

�

�

�

max

= k⌃n �⌃k
max

 4AWXK
2

WX

p

log d/n.

Note. The constant c̄ is a universal constant independent of the X and
W distributions, KWX is as defined in the main text, and AWX > 0 is an
arbitrarily chosen constant satisfying AWX

p

log d/n  1.

Proof of Lemma G.2. Proof is follows by the same argument as in
Lemma F.2, so we omit the details.

Lemma G.3. Assume the same conditions as in Lemma G.2, and assume
further that the matrix ⌃WX satisfies CS⌃WX (s, ⇠) > ⇤ and that s is
su�ciently small so that s

p

log d/n  (1�) ⇤

(1+⇠)4AWXK2

WX
, where 0 <  <

1. We then have that ⌃WX,n satisfies the CS property with CS⌃WX,n(s, ⇠) �
CS⌃WX (s, ⇠) > 0 with probability at least 1� 2d2�c̄A2

WX .

Proof of Lemma G.3. This proof is simply using Definition G.1 and
Lemma G.2.

Definition G.3. For a fixed 0 <  < 1, let CS(s, ⇠) = CS⌃WX (s, ⇠).

Lemma G.4. Assume that CS⌃WX (sv, 1) � ⇤ > 0, and that further sv
is small enough so that sv

p

log d/n  (1 � ) ⇤

(1+1)4AWXK2

WX
, where 0 <

 < 1 and �0 � kv⇤k
1

4AWXK
2

WX

q

log d
n

. Then we have that kbv � v⇤k
1


8�0s

v

CS

⌃WX
(s

v

,1)
with probability at least 1� 2d2�c̄A2

WX .
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Proof of Lemma G.4. Using a standard argument and Lemma G.2
we can show that with probability at least 1� 2d2�2c̄A2

WX , v⇤ satisfies (C.1)
and consequently

�

�

�

�

1

n

n
X

i=1

(bv � v⇤)TWiX
T
i

�

�

�

�

1

�

�

�

�

1

n

n
X

i=1

bvTWiX
T
i � e

1

�

�

�

�

1
+

�

�

�

�

1

n

n
X

i=1

v⇤TWiX
T
i � e

1

�

�

�

�

1
 2�0.

(G.1)

Let Sv = supp(v⇤), with sv = |Sv|. Using the formulation of program
(C.1) it is not hard to show that:

kbvSc
v

� v⇤
Sc
v

k
1

 kbvS
v

� v⇤
S
v

k
1

.(G.2)

By Lemma G.3, ⌃WX,n satisfies the CS assumption under our conditions
and hence

kbvS
v

� v⇤
S
v

k
1

CS⌃WX (sv, 1)

sv
 k⌃WX,n(bv � v⇤)k1

by (G.1)

 2�0

Hence by (G.2) we conclude kbv � v⇤k
1

 4sv�0/CS⌃WX (sv, 1), which is
what we wanted to show.

Lemma G.5. Assume the same conditions as in Lemma G.2 and that
p

log d/n  C for some constant C. Let S = supp(�⇤), and let � =

AK
q

log d
n

. Then, with probability at least 1 � 2d1�(cA2

)/(4K2

XX) (where c

is a universal constant Lemma G.2) we have:

kb�Sc � �⇤
Sck

1

 kb�S � �⇤
Sk1,(G.3)

and:
�

�

�

⌃WX,n(�
⇤ � b�)

�

�

�

1
 2�.(G.4)

Proof of Lemma G.5. Note that by a Bernstein type of inequality for
sub-exponential random variables (see Proposition 5.16 (Vershynin, 2010))
and the union bound, we have:

P
✓

�

�

�

�

1

n
WT"

�

�

�

�

1
� t

◆

 2d exp

✓

�cmin
⇣ nt2

4K2K2

WX

,
nt

2KKWX

⌘

◆

,(G.5)

where c is a universal constant, and we used the fact that maxi2{1,...,d} k"Wik 
1


2KKZX . Set t = �. Provided that A  2KWX the above probability bounds
gives us that the event E :=

�

�

�

1

n
WT"

�

�

1  �
 

holds with probability at

least 1� 2d1�(cA2

)/(4K2

XX).
Note that when E holds, the true parameter satisfies the Dantzig selector

constraint and thus we can obtain (G.3) in the same manner as in Lemma
G.4. Using the triangle inequality on E shows (G.4).
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Lemma G.6. Assume the same conditions in Lemmas G.2, G.3 (with ⇠ =
1), and G.5, so that ⌃WX,n satisfies the CS assumption with CS(s, 1)

with high probability. Set � = AK
q

log d
n

, as in Lemma G.5. Then with

probability at least 1� 2d1�(cA2

)/(4K2

XX) we have:

kb� � �⇤k
1

 4AK

CS(s, 1)
s
p

log d/n.(G.6)

Proof. Recall from Lemma G.5, that on the event E we have that (G.3)
and (G.4) hold, and furthermore 1

n
WTW = ⌃WX,n satisfies the CS condi-

tion. Thus on the event E, we have:

kb�S � �⇤
Sk1 CS(s, 1)
s

 k⌃WX,n(�
⇤ � b�)k1  2�.

To get (G.6), note that by (G.3) we have: kb� � �⇤k
1

 2kb�S � �⇤
Sk1 

4AK�s
CS(s,1)

, and we are done.

Lemma G.7. Let {Xi}ni=1

be an i.i.d. collection of sub-Gaussian random
variables satisfying kXik 

2

 K. Then we have:

P
⇣

|n�1

n
X

i=1

X4

i � EX4

i | � t
⌘


eKk
4

[
p

k/n+ k2/n]k

tk
,

for any k 2 N and some fixed constant eK
4

depending solely on K.

Proof. We make usage of Theorem 1.4 of Adamczak and Wol↵ (2015),
which provides a convenient concentration bound for higher moments of
sub-Gaussian random variables. Using this result it is not hard to check
that: [E|n�1

Pn
i=1

X4

i � EX4

i |k]1/k  eK
4

[
p

k/n + k2/n], where eK
4

is a con-
stant depending solely on K. Consequently, applying Markov’s inequality
we obtain the final conclusion.

APPENDIX H: PROOFS FOR GRAPHICAL MODELS

H.1 Proofs for Graphical Models with CLIME

Proof of Corollary 2. Before we proceed with the proof note that
we are guaranteed to have kv⇤k

1

� (⌃�1

X )
11

� (⌃X,11)�1 � (2K2

X)�1 > 0,
and similarly k�⇤k

1

� (2K2

X)�1 > 0. Hence, max(svkv⇤k
1

, sk�⇤k
1

)kv⇤k
1

k�⇤k
1

log d log(nd)/n =
o(1) implies that

max(sv, s)kv⇤k
1

k�⇤k
1

log d/
p
n = o(1).

We show this result by verifying the conditions of Section 3. To see
Assumption (3.5), we can use Lemma F.4 to argue that kb� � �⇤k

1

=

Op

⇣

k�⇤k
1

s
p

log d/n
⌘

, kbv � v⇤k
1

= Op

⇣

kv⇤k
1

sv
p

log d/n
⌘

provided that

� and �0 are large enough.
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Next we check Assumption 1. To see (3.2), fix a |✓ � ✓⇤| < ✏, for some
✏ > 0. By the triangle inequality:

k⌃n�
⇤
✓ �⌃X�⇤

✓k1  k⌃n �⌃Xk
max

(k�k⇤
1

+ ✏).

The RHS is Op

✓

k�k⇤
1

p

log d/n

◆

, by Lemma F.2. The same logic shows that
�

�

�

�

v⇤T⌃n�⇤
✓ � v⇤T⌃X�⇤

✓

�

�

�

�

= Op

✓

(k�⇤k
1

+ ✏)kv⇤k
1

p

log d/n

◆

, which implies

(3.3). Since the Hessian T in (3.4) is free of � we are allowed to set r
3

(n) =
�0 ⇣ kv⇤k

1

p

log d/n = o(1) (by Lemma F.4). Finally the two expectations
in Assumption 1, are bounded as we see below:

k⌃X�⇤
✓ � eT

mk1 = k⌃X(�⇤
✓ � �⇤)k1  k⌃X,⇤1k1✏  2K2

X✏, kv⇤T⌃X,�1

k1 = 0.

By adding up the following two identities:

p
nOp

⇣

kv⇤k
1

p

log d/n
⌘

Op

⇣

k�⇤k
1

s
p

log d/n
⌘

= op(1),

p
nOp

⇣

kv⇤k
1

sv
p

log d/n
⌘

Op

⇣

k�⇤k
1

p

log d/n
⌘

= op(1),

we get that (3.8) is also valid in this case after a usage of (4.6).
To verify the consistency of e✓ we check the assumptions in Theorem 1.

Clearly the map v⇤T⌃X(�⇤
✓ � �⇤) = (✓ � ✓⇤) has a unique 0 when ✓ = ✓⇤.

Moreover, the map ✓ 7! bvT (⌃n
b�✓ � eT

m) is continuous as it is linear. In
addition, it has a unique zero except in cases when bvT⌃n,⇤1 = 0. However
note that |bvT⌃n,⇤1 � 1|  �0 by (4.4), and hence for small enough values of
�0 there will exist a unique zero.
Assumption 3 is verified in Lemma H.1. Observe that (3.7) is trivial as its

LHS ⌘ 0 in this case. Finally, the fact that b� is consistent for � is verified
in Lemma H.2.

Next, we proceed to formulate a uniform weak convergence result. To this
end, for fixed M > � > 0, define the following parameter space of covariance
matrices:

S(L, s) = {⌃ : ⌃ = ⌃T , 0 < �  �
min

(⌃), k⌃k
max

 M, k⌃�1k
1

 L, max
j=1,...,d

k⌃�1

⇤j k0  s}.

We have the following result in terms of uniform convergence:

Corollary H.1. Let (4.3) holds, and Cov(X) = ⌃X 2 S(L, s). Let ⌦ =
(⌃X)�1 and denote � = ⌦⇤m, and v = ⌦⇤1. Assume there exist two con-
stants V

min

and V
max

such that:

Var(vTXXT�) � V
min

> 0, E(vTXXT�)4  V
max

< 1.(H.1)

Then under the following conditions:

sL3 log(d) log(nd)/n = o(1), s3/
p
n = o(1),(H.2)

we have limn!1 sup⌃X2S(L,s) supt2R |P�(bUn  t)� �(t)| = 0.

imsart-sts ver. 2014/10/16 file: high-d-ee-supplement.tex date: June 11, 2018



23

The conditions in this Corollary are essentially the same as those in Corol-
lary 2. Condition E(vTXXT�)4  V

max

ensures E(vTXXT�)2 < 1 and
Var((vTXXT�)2) = o(n). The only other di↵erence is that the second
condition in (H.2) is stronger than the counterpart in Corollary 2. We need
this condition to apply the Berry-Esseen theorem to control the normal
approximation error uniformly.

Lemma H.1. Under the assumptions of Corollary 2 we have that:��1/2n1/2S(�⇤) 
N(0, 1).

Proof of Lemma H.1. Similarly to Lemma F.1 we will verify Lya-
punov’s condition for the CLT. It su�ces to bound the quantity for some
k > 2:

n�k/2

kv⇤kk
2

k�⇤kk
2

↵
k/2
min

n
X

i=1

E
�

�v⇤TXiX
T
i �

⇤ � v⇤T⌃X�⇤�
�

k
,

where we used assumption Assumption 7. By Cauchy-Schwartz we can
bound the above expression by following (up to a constant factor): n�k/2

Pn
i=1

E
�

�(XiXT
i �⌃X)S

v

,S

�

�

k

F
,

where by subscripting the matrix we mean setting all elements not in the
supports of v⇤ or �⇤ (Sv, and S correspondigly) to 0, and k · kF is the
Frobenius norm of the matrix. Finally using Lemma H.3 we conclude that
we can control the expression above by n�k/2+1(svs)k/2(8kKX)k, and hence
the conclusion follows.

Remark H.1. Using the Berry-Esseen theorem for non-identical random
variables in combination with the bound we derived above, we can further
show:

sup
t

�

�P⇤ ���1/2n1/2S(�⇤)  t
�

� �(t)
�

�  CBEn
�1/2(24KX)3(svs)

3/2 = o(1),

where CBE is an absolute constant.

Lemma H.2. Under the assumptions from Corollary 2, we have that the

plugin estimator b�
P! �.

Proof of Lemma H.2. Note that b� = 1

n

Pn
i=1

(bvTXiXT
i
b�)2�(bvT⌃n

b�)2.
Similarly to the analysis of the first term in Proposition F.1 one can show
that bvT⌃n

b� is consistent for v⇤T⌃X�⇤ under our assumptions. Hence it
su�ces to show that | 1

n

Pn
i=1

(bvTXiXT
i
b�)2 �E(v⇤TXXT�⇤)2| = op(1). We

start by arguing that n�1

 n
X

i=1

(bvTXiX
T
i
b� � v⇤TXiX

T
i �

⇤)2
�

| {z }

I

, is asymptot-

ically negligible.

I1/2 


n�1

n
X

i=1

(bvTXiX
T
i (b� � �⇤))2

�

1/2

| {z }

I
1

+



n�1

n
X

i=1

((bv � v⇤)TXiX
T
i �

⇤)2
�

1/2

| {z }

I
2

.
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We first handle I2
1

= (b� � �⇤)T n�1

n
X

i=1

XiX
T
i bvbv

TXiX
T
i

| {z }

M

(b� � �⇤). Using

Lemma F.7, we can bound M in the following way:

kMk
max

 max kXiX
T
i kmax

n�1

n
X

i=1

bvTXiX
T
i bv  Op(log(nd))kbvk1kb⌃bvk1.

(H.3)

By the definition of bv we have: kb⌃bvk1  (1 + �0). Hence:

kMk
max

 Op(log(nd))(kv⇤k
1

+ kbv � v⇤k
1

)(1 + �0) = Op(log(nd))kv⇤k
1

,

where we used that �0 ⇣ kv⇤k
1

p

log d/n and kbv�v⇤k
1

= Op(kv⇤k
1

sv
p

log d/n)
which are quantities going to 0 under our assumptions. Thus:

I2
1

 kb���⇤k2
1

kv⇤k
1

Op(log(nd)) = Op

�

kv⇤k
1

k�⇤k2
1

s2 log d/n log(nd)
�

= op(1),

By a similar argument we can show that I
2

is of similar order. Putting
everything together we conclude:

I = Op

�

max(s2vkv⇤k
1

, s2k�⇤k
1

)kv⇤k
1

k�⇤k
1

log d log(nd)/n
�

= op(1).
(H.4)

Next, we argue that n�1

Pn
i=1

(v⇤TXiXT
i �

⇤)2 � E(v⇤TXXT�⇤)2 is small.
Recall that we are assuming Var((v⇤TXXT�⇤)2) = o(n). A usage of Cheby-
shev’s inequality shows that n�1

Pn
i=1

(v⇤TXiXT
i �

⇤)2 �E(v⇤TXXT�⇤)2 =
op(1). Finally note that by the triangle inequality the following two inequal-
ities hold:



n�1

n
X

i=1

(bvTXiX
T
i
b�)2
�

1/2




n�1

n
X

i=1

(v⇤TXiX
T
i �

⇤)2
�

1/2

+ I1/2,



n�1

n
X

i=1

(v⇤TXiX
T
i �

⇤)2
�

1/2




n�1

n
X

i=1

(bvTXiX
T
i
b�)2
�

1/2

+ I1/2.

Observe that n�1

Pn
i=1

(v⇤TXiXT
i �

⇤)2 = E(v⇤TXXT�⇤)2 + op(1) = Op(1).
This completes the proof.

Proof of Corollary H.1. To prove this corollary note that all bounds
we showed in the proof of Corollary 2 hold uniformly in the parameter
set S(L, s). Note that as both v and � are columns of ⌦ we have that
kvk

0

, k�k
0

 s, kvk
1

, k�k
1

 L and M�1  kvk
2

, k�k
2

 ��1. These condi-
tions in conjunction with the assumptions of the present result, can be seen
to imply the conditions from Section A and this completes the proof.

Lemma H.3. Let Rv, R ⇢ {1, . . . , d} with |Rv| = rv, |R| = r. Then we

have the following E
�

�(XXT �⌃)R
v

,R

�

�

k

F
 (rvr)k/2(8kK2

X)k.

Proof. Apply (F.2) to get kXiXjk 
1

 2K2

X . Combined with the trian-
gle inequality it gives us kXiXj � �ijk 

1

 4K2

X . Next simply use Lemma
F.8 for  

1

to complete the proof.
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H.2 Proofs for Transelliptical Graphical Models

In the transelliptical case the lemmas from the CLIME case are no longer
applicable, as the estimator of ⌃ is constructed in a completely di↵erent
manner. Furthermore, the vector X is coming from a nonparanormal family
and need not be sub-Gaussian. Fortunately, Liu et al. (2012a) provide a
concentration result which we state below:

Theorem H.1 (Liu 2012). For any n > 1 with probability at least 1�1/d,
we have

k bS⌧ �⌃k
max

 2.45⇡
p

log d/n.(H.5)

While this theorem is defined within the framework of nonparanormal
models, the proof doesn’t utilize the fact that the family is nonparanormal,
and thus extends to the transelliptical case. As we can see from the theorem,
the rate of Kendall’s tau estimate (H.5), is no di↵erent than the one using
the sample covariance matrix, provided in Lemma F.2.

Proof of Corollary D.1. The proof of this result is the same as
Corollary 2, except we use ⌃ in place of ⌃X , bS⌧ in place of ⌃n, Lemma
H.6 in place of Lemma F.4 and Theorem H.1 in place of Lemma F.2. The
only di↵erent step is the verification of Assumption 3 which we provide in
Lemma H.4. We omit the rest of the details.

Lemma H.4. Under the assumptions of Corollary D.1 we have that��1/2n1/2S(�⇤) 
N(0, 1), where � is defined as in (D.3).

Proof of Lemma H.4. Note that by the mean value theorem we have
the following representation:

n1/2v⇤T
⇣

bS⌧�⇤ � eTm

⌘

= n1/2v⇤T
⇣

bS⌧ �⌃
⌘

�⇤ = n1/2
X

j2S
v

,k2S
j 6=k

v⇤j�
⇤
k

⇣

sin
⇣

b⌧jk
⇡

2

⌘

� sin
⇣

⌧jk
⇡

2

⌘⌘

= n1/2
X

j2S
v

,k2S
j 6=k

v⇤j�
⇤
k cos

⇣

⌧jk
⇡

2

⌘ ⇡

2
(b⌧jk � ⌧jk)

� n1/2

2

X

j2S
v

,k2S
j 6=k

v⇤j�
⇤
k sin

⇣

e⌧jk
⇡

2

⌘⇣⇡

2
(b⌧jk � ⌧jk)

⌘

2

,

where e⌧ij is a number between b⌧ij and ⌧ij. We will first deal with the first
term in the sum above. Since this term is a linear combination of second
order (dependent) U -statistics, we will make usage of Háejk’s projection
method. A similar approach was used in the celebrated paper of Hoe↵ding
(1948). To this end we define the following notations:

⌧ ii
0

jk = sign ((Xij �Xi0j)(Xik �Xi0k))� ⌧jk, ⌧
ii0|i
jk = E[⌧ ii0jk |Xi],

⌧ ijk =
1

n� 1

X

i0 6=i

⌧
ii0|i
jk , wii0

jk = ⌧ ii
0

jk � ⌧
ii0|i
jk � ⌧

ii0|i0
jk ,
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In terms of these notations we therefore have b⌧jk � ⌧jk = 2

n

Pn
i=1

⌧ ijk +
2

n(n�1)

P

1i<i0n w
ii0
jk . This gives us the following identity:

n1/2
X

j2S
v

,k2S
j 6=k

v⇤j�
⇤
k cos

⇣

⌧jk
⇡

2

⌘ ⇡

2
(b⌧jk � ⌧jk) = ⇡n�1/2

X

j2S
v

,k2S
j 6=k

v⇤j�
⇤
k cos

⇣

⌧jk
⇡

2

⌘

n
X

i=1

⌧ ijk

| {z }

I
1

+
⇡

n1/2(n� 1)

X

j2S
v

,k2S
j 6=k

v⇤j�
⇤
k cos

⇣

⌧jk
⇡

2

⌘

X

1i<i0n

wii0

jk

| {z }

I
2

.

We first deal with I
1

which can clearly be represented as a sum of iid mean
0 terms, by verifying Lyapunov’s condition for the CLT. I

1

can be rewritten
as:

I
1

= n�1/2

n
X

i=1

X

j2S
v

,k2S
j 6=k

v⇤j�
⇤
k⇡ cos

⇣

⌧jk
⇡

2

⌘

⌧ ijk

| {z }

Mi

.(H.6)

Construct the matrix ⇥i 2 Rd⇥d given entrywise by

⇥i
jk = ⇡ cos

⇣

⌧jk
⇡

2

⌘

⌧ ijk, hence ⇥i
jj = 0.(H.7)

We can then rewrite Mi = v⇤T⇥i�⇤ = v⇤T
S
v

⇥i
S
v

,S�
⇤
S. Calculating the vari-

ance of Mi gives Var(Mi) = E(v⇤T⇥i�⇤)2 � ↵
min

kv⇤k2
2

k�⇤k2
2

, where the
inequality follows by assumption. We proceed to verify Lyapunov’s condi-
tion for some k > 2 (where we ignore the constant ↵

min

> 0):

n�k/2

kv⇤kk
2

k�⇤kk
2

n
X

i=1

E|Mi|k  n�k/2

n
X

i=1

Ek⇥i
S
v

,SkkF  (svs)k/2(2⇡)k

nk/2�1

= o(1),

where the first inequality follows from Cauchy-Schwartz, and to see the
second one notice that each element of ⇥i is bounded |⇥i

jk|  2⇡, and

hence k⇥i
S
v

,SkkF  (svs)k/2(2⇡)k. This implies that I
1

 N(0,�), with
� = E(v⇤T⇥i�⇤)2.
Next we deal with the second term I

2

, which is mean 0, by showing that
its (standardized) variance goes to 0 asymptotically. Before we compute its
variance we make several preliminary calculations:

E(wii0

jkw
rr0

ls ) = E(⌧ ii0jk ⌧
rr0

ls )� E(⌧ ii0jk ⌧
rr0|r
ls )� E(⌧ ii0jk ⌧

rr0|r0
ls )� E(⌧ ii

0|i
jk ⌧ rr

0

ls ) + E(⌧ ii
0|i

jk ⌧
rr0|r
ls )

+ E(⌧ ii
0|i

jk ⌧
rr0|r0
ls )� E(⌧ ii

0|i0
jk ⌧ rr

0

ls ) + E(⌧ ii
0|i0

jk ⌧
rr0|r
ls ) + E(⌧ ii

0|i0
jk ⌧

rr0|r0
ls ).

In the expression above we have taken j 6= k, l 6= s, r 6= i 6= i0 6= r 6= r0 6= i.
Notice now that all elements above are independent and since E(wii0

jk) =
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E(wrr0
ls ) = 0, we conclude that E(wii0

jkw
rr0
ls ) = 0. Following, the same logic,

for j 6= k, l 6= s, i 6= i0 6= r0 6= i:

E(wii0

jkw
ir0

ls ) = E(⌧ ii0jk ⌧
ir0

ls )� E(⌧ ii0jk ⌧
ir0|i
ls )� E(⌧ ii

0|i
jk ⌧ ir

0

ls ) + E(⌧ ii
0|i

jk ⌧
ir0|i
ls )

where all the rest terms are 0, by the same argument as in the first case.
Using iterated expectation by conditioning on Xi it can be easily seen
that all terms become equal to — E(⌧ ii

0|i
jk ⌧

ir0|i
jk ), and we can conclude that

E(wii0
jkw

ir0
ls ) = 0. Since EI

2

= 0, we have:

Var(I
2

)

Var(Mi)
 E(I2

2

)

↵
min

kv⇤k2
2

k�⇤k2
2

=
⇡2

↵
min

kv⇤k2
2

k�⇤k2
2

n(n� 1)2

X

1i<i0n

E

0

B

B

@

X

j2S
v

,k2S
j 6=k

v⇤j�
⇤
k cos

⇣

⌧jk
⇡

2

⌘

wii0

jk

1

C

C

A

2


⇡2

�

n
2

�

36
⇣

P

j2S
v

|v⇤j |
⌘

2

⇣

P

k2S |�⇤
k|
⌘

2

n(n� 1)2↵
min

kv⇤k2
2

k�⇤k2
2

 ⇡218svs

(n� 1)↵
min

= o(1),

where in the next to last inequality we used the trivial bound |wii0
jk| 

|⌧ ii0jk | + |⌧ ii
0|i

jk | + |⌧ ii
0|i0

jk |  6. Thus the term Var(I
2

)

Var(Mi)
= o(1) and therefore,

Chebyshev’s inequality gives us that I
2p

Var(Mi)
= op(1).

Finally we deal with the standardized version of the last term:

1
p

Var(v⇤T⇥�⇤)

n1/2

2

X

j2S
v

,k2S
j 6=k

v⇤j�
⇤
k sin

⇣

e⌧jk
⇡

2

⌘⇣⇡

2
(b⌧jk � ⌧jk)

⌘

2

.(H.8)

As we mentioned previously it’s clear that b⌧jk is a U -statistic, and its ker-
nel is a bounded function (between �1 and 1). Furthermore, we have that
Eb⌧jk = ⌧jk. Thus, we can apply Hoe↵ding’s inequality for U -statistics (see
Hoe↵ding (1963) equation (5.7)), to obtain that:

P(sup
jk

|b⌧jk � ⌧jk| > t)  2d2 exp

✓

�nt2

4

◆

.(H.9)

It follows that selecting t = 9
p

log d/n su�ces to keep the probability going
to 0. Notice that the (H.8) can be controlled by:

n1/2⇡2

p
svs

8✓
min

kv⇤k
2

k�⇤k
2

kv⇤k
2

k�⇤k
2

sup
jk

(b⌧jk � ⌧jk)
2 = Op

✓p
svs log d

n1/2

◆

= op(1).

The last equation is implied by our assumption. This concludes the proof.
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Remark H.2. Using the Berry-Esseen theorem for non-identical random

variables we can strengthen weak convergence statement to supt

�

�

�

P⇤
⇣

I
1p
�

 t
⌘

� �(t)
�

�

�


CBEn

�1/2(svs)3/2 = o(1), where CBE is an absolute constant. Note that we
decomposed our test into I

1p
�

+op(1), and hence this statement is valid more
generally for Corollary D.1.

Proposition H.1. Under the same assumptions as in Corollary D.1, we
have that b�!p �.

Proof of Proposition H.1. Before we go to the main proof, recall
the definition of ⇥i (H.7), where ⇥i

jk = ⇡ cos
�

⌧jk
⇡
2

�

⌧ ijk. Note that in fact
E⇥i = 0, since E⌧ ijk = 0, and thus Var(v⇤T⇥i�⇤) = E(v⇤T⇥i�⇤)2. Similarly

one can note the simple identity: 1

n

Pn
i=1

b⇥i = 0. Thus we will in fact focus

on showing that 1

n

Pn
i=1

(bvT
b⇥i
b�)2 is consistent for E(v⇤T⇥i�⇤)2.

Consider the following decomposition:

1

n

n
X

i=1

(bvT
b⇥i
b�)2 =

1

n

n
X

i=1

[(bvT
b⇥i
b�)2 � (v⇤T

b⇥i
b�)2]

| {z }

I
1

+
1

n

n
X

i=1

[(v⇤T
b⇥i
b�)2 � (v⇤T

b⇥i�⇤)2]

| {z }

I
2

.

Below we show that I
1

is asymptotically negligible. We have:

|I
1

| =
�

�

�

�

(bv�v⇤)T
1

n

n
X

i=1

b⇥i
b� b�T

b⇥i(bv+v⇤)T
�

�

�

�

 kbv�v⇤k
1

kbv+v⇤k
1

kb�k2
1

(2⇡)2,

where we made use of kb⇥ik
max

 2⇡. Thus by Lemma H.6

|I
1

| = Op

⇣

kv⇤k2
1

k�⇤k2
1

sv
p

log d/n
⌘

= op(1),

by assumption. Similarly we obtain |I
2

| = Op

⇣

kv⇤k2
1

k�⇤k2
1

s
p

log d/n
⌘

=

op(1). Next, we inspect the following di↵erence I
3

= 1

n

Pn
i=1

[(v⇤T
b⇥i�⇤)2 �

(v⇤T⇥i�⇤)2]. Before we bound this term recall that we have the following
useful inequality k⇥ik

max

 2⇡. Thus:

|I
3

|  kv⇤k2
1

k�⇤k2
1

4⇡ max
i=1,...,n

kb⇥i �⇥ik
max

.(H.10)

To bound the di↵erence maxi=1,...,n kb⇥i�⇥ik
max

we will use some concentra-
tion inequalities. First, since cos is Lipschitz with constant 1 —

�

�cos
�

⇡
2

b⌧jk
�

� cos
�

⇡
2

⌧jk
�

�

� 
⇡
2

|b⌧jk � ⌧jk|, we have:

|b⇥i
jk �⇥i

jk|  ⇡
�

�

�

cos
⇣⇡

2
b⌧jk

⌘

� cos
⇣⇡

2
⌧jk

⌘

�

�

�

|b⌧ ijk|+ ⇡
�

�

�

cos
⇣⇡

2
⌧jk

⌘

�

�

�

|b⌧ ijk � ⌧ ijk|

 ⇡2|b⌧jk � ⌧jk|+ ⇡|b⌧ ijk � ⌧ ijk|.
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where we used the simple observation that |b⌧ ijk|  2. Next we have:

|b⌧ ijk � ⌧ ijk|  |b⌧jk � ⌧jk|

+

�

�

�

�

1

n� 1

X

i0 6=i

sign ((Xij �Xi0j)(Xik �Xi0k))

| {z }

b✓ijk

�E [sign ((Xij �Xi0j)(Xik �Xi0k)) |Xi]
| {z }

✓ijk

�

�

�

�

This gives us:

|b⇥i
jk �⇥i

jk|  (⇡2 + ⇡)|b⌧jk � ⌧jk|+ ⇡|b✓ijk � ✓ijk|.(H.11)

Next, note since the terms in b✓ijk are iid conditional on Xi, and they are in
the set {�1, 1} by Hoe↵ding’s inequality, integrating Xi out and the union
bound we obtain:

P(max
i,j,k

|b✓ijk � ✓ijk| > t)  2nd2 exp

✓

�(n� 1)t2

2

◆

.

This implies that selecting t = 4
p

log(nd)/n, would keep the probabil-
ity converging to 0. Combining this result with (H.9) and (H.11) gives us

maxi kb⇥i �⇥ik
max

= Op

⇣

p

log(nd)/n
⌘

. Hence using (H.10), we get |I
3

| =

kv⇤k2
1

k�⇤k2
1

Op

⇣

p

log(nd)/n
⌘

= op(1), which follows since kv⇤k2
1

k�⇤k2
1

max(sv, s)
p

log d/n =

o(1), implies kv⇤k2
1

k�⇤k2
1

p

log(nd)/n = o(1). To see the last implication it
is su�cient to observe that kv⇤k

1

� ⌦
11

� 1, k�⇤k
1

� ⌦mm � 1. Finally
we assess the di↵erence 1

n

Pn
i=1

(v⇤T⇥i�⇤)2�E(v⇤T⇥i�⇤)2. By Markov’s in-
equality in much the same way as in the last part of the proof of Proposition
H.2, we can show that the expression above is op(1) if Var((v⇤T⇥�⇤)2) =
o(n). Since the elements of ⇥ are bounded by 2⇡ we have |v⇤T⇥�⇤| 
kv⇤k

1

k�⇤k
1

2⇡. Hence since kv⇤k2
1

k�⇤k2
1

max(sv, s)
p

log d/n = o(1), implies
kv⇤k4

1

k�⇤k4
1

= o(n) the proof is complete.

Proof of Corollary D.2. Similarly to the proof of Corollary H.1 we
simply need to note that our conditions imply the conditions required by
Corollary D.1 and also note that the bounds in the proofs hold uniformly.

Lemma H.5. Assume that the minimum eigenvalue �
min

(⌃) > 0 and
s
p

log d/n  (1 � ) �
min

(⌃X)

(1+⇠)22.45⇡
, where 0 <  < 1. We then have that bS⌧

satisfies the RE property with RE bS⌧ (s, ⇠) � �
min

(⌃) with probability at
least 1� 1/d.

Proof of Lemma H.5. Proof is the same as in Lemma F.3, but we use
Theorem H.1 instead of Lemma F.2. We omit the details.

Definition H.1. Define RE(s, ⇠) := RE⌃(s, ⇠) � �
min

(⌃).
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Lemma H.6. Assume that — �
min

(⌃) > 0, sv
p

log d/n  (1�) �
min

(⌃)

(1+1)

2

2.45⇡
,

where 0 <  < 1 and �0 � kv⇤k
1

2.45⇡
p

log d/n. Then we have that
kbv � v⇤k

1

 8�0s
v

RE(sv,1)
with probability at least 1� 1/d.

Proof of Lemma H.6. Proof is the same as in Lemma F.4, but we
use Theorem H.1 instead of Lemma F.2 and we use Lemma H.5 instead of
Lemma F.3. We omit the details.

APPENDIX I: PROOFS FOR THE LINEAR DISCRIMINANT ANALYSIS

Lemma I.1. Under Assumption 8 we have that ↵V
1

+(1�↵)V
2

� V 0
min

(k�⇤k2
2

kv⇤k2
2

+
kvk2

2

).

Proof of Lemma I.1. The proof follows by an elementary calculation
so we omit the details.

Remark I.1. This also shows that � � �(↵�1+(1�↵)�1)kv⇤k2
2

� �(↵�1+
(1� ↵)�1)4K�4

U > 0.

Proof of Corollary 3. We verify the conditions of Section 3. To see
Assumption (3.5), we can use Lemmas I.5 and I.6 to get kb� � �⇤k

1

=

Op

⇣

(k�⇤k
1

_ 1)s
p

log d/n
⌘

, kbv � v⇤k
1

= Op

⇣

kv⇤k
1

sv
p

log d/n
⌘

provided

that � and �0 are large enough, and we used the fact that n
1

⇣ n
2

.
Next we check Assumption 1. To see (3.2), fix a |✓ � ✓⇤| < ✏, for some

✏ > 0. By the triangle inequality:
�

�

�

�

b⌃n�
⇤
✓�⌃�⇤

✓+(X̄�Ȳ )�µ
1

+µ
2

�

�

�

�

1
 kb⌃n�⌃k

max

(k�⇤k
1

+✏)+kX̄�µ
1

k1+kȲ �µ
2

k1.

The RHS is Op

✓

(k�⇤k
1

_1)
p

log d/n

◆

, by Lemma I.3 and bound (I.3). The

same logic shows that r
2

(n) ⇣ kv⇤k
1

(k�⇤k
1

_ 1)
p

log d/n, which implies
(3.3). Since the Hessian T in (3.4) is free of � we are allowed to set r

3

(n) =
�0 ⇣ kv⇤k

1

p

log d/n = o(1) (by Lemma I.6). Finally the two expectations
in Assumption 1, are bounded as we see below:

k⌃�⇤
✓ �⌃�⇤k1 = k⌃(�⇤

✓ � �⇤)k1  k⌃⇤1k1✏  2K2

U✏, kv⇤T⌃�1

k1 = 0.

By adding up the following two identities:

p
nOp

⇣

kv⇤k
1

p

log d/n
⌘

Op

⇣

(k�⇤k
1

_ 1)s
p

log d/n
⌘

= op(1),

p
nOp

⇣

kv⇤k
1

sv
p

log d/n
⌘

Op

✓

(k�⇤k _ 1)
p

log d/n

◆

= op(1),

we get that (3.8) is also valid in this case by assumption.
To verify the consistency of e✓ we check the assumptions in Theorem 1.

Clearly the map v⇤T⌃(�⇤
✓ � �⇤) = (✓ � ✓⇤) has a unique 0 when ✓ = ✓⇤.
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Moreover, the map ✓ 7! bvT (⌃n
b�✓ � (X̄ � Ȳ )) is continuous as it is linear.

In addition, it has a unique zero except in cases when bvT⌃n,⇤1 = 0. However
note that |bvT⌃n,⇤1 � 1|  �0 by (4.4), and hence for small enough values of
�0 there will exist a unique zero.
Next we verify Assumption 3 in Lemma I.2. Finally we move on to show

(3.7). Observe that (3.7) is trivial as its LHS ⌘ 0 in this case.

Lemma I.2. Under the conditions of Corollary 3 we have the following
��1/2

p
nS(�⇤) N(0, 1), where � is defined as in (4.7).

Proof of Lemma I.2. We stat by defining the following quantity:

e⌃n =
1

n

"

n
1

X

i=1

(Xi � µ
1

)(Xi � µ
1

)T +
n
2

X

i=1

(Yi � µ
2

)(Yi � µ
2

)T
#

.(I.1)

We have n1/2v⇤T (b⌃n�⇤�(X̄�Ȳ )) = n1/2v⇤T (e⌃n�
⇤ � (X̄ � Ȳ ))

| {z }

I
1

+n1/2 v⇤T (b⌃n � e⌃n)�
⇤

| {z }

I
2

.

We proceed with showing that the term I
2

is small:

|I
2

|  n1/2kv⇤k
1

k�⇤k
1

kb⌃n � e⌃nkmax

= kv⇤k
1

k�⇤k
1

Op

�

log d/n1/2
�

= op(1),

where we used (I.4) from Lemma I.3 (and made usage of the fact that
n
1

⇣ n
2

). Next we take a closer look at the term I
1

:

I
1

= n1/2v⇤T (e⌃n�
⇤ � (µ

1

� µ
2

)) + n1/2v⇤T (X̄ � µ
1

� Ȳ + µ
2

)

= n1/2v⇤T 1

n

n
X

i=1

✓

UiU
T
i �

⇤ � (µ
1

� µ
2

) +



n

n
1

I(i  n
1

)� n

n
2

I(i > n
1

)

�

Ui

◆

.

Next, by n
1

/n+ op(1) = ↵, it is clear that:

I
1

= n�1/2v⇤T
n
1

X

i=1

�

UiU
T
i �

⇤ � (µ
1

� µ
2

) + ↵�1Ui

�

+ n�1/2v⇤T
n
X

i=n
1

+1

�

UiU
T
i �

⇤ � (µ
1

� µ
2

)� (1� ↵)�1Ui

�

+

✓

n

n
1

� ↵�1

◆

| {z }

op(1)

n�1/2

n
1

X

i=1

v⇤TUi

| {z }

Op(1)

+

✓

n

n
2

� (1� ↵)�1

◆

| {z }

op(1)

n�1/2

n
X

i=n
1

+1

v⇤TUi

| {z }

Op(1)

,

where we implicitly used Chebyshev’s inequality and the fact that Var(v⇤TU ) 
2v⇤T⌃v⇤  2��1. Next we verify Lyapunov’s condition. The sum of vari-
ances of the terms above equals:

n
1

V
1

+n
2

V
2

= n(↵V
1

+(1�↵)V
2

)(1+o(1)) � nV 0
min

(k�⇤k2
2

kv⇤k2
2

+kv⇤k2
2

)(1+o(1)),

by Lemma I.1. Without loss of generality let’s assume that ↵�1 > (1�↵)�1.
It follows then from Lemma I.7, that for any k > 2:

E
�

�v⇤TUiU
T
i �

⇤ � v⇤T (µ
1

� µ
2

) + ↵�1v⇤TUi

�

�

k  kv⇤kk
2

(C
1

(svs)
k/2k�⇤kk

2

+C
2

↵�ksk/2v ),
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and similarly:

E
�

�v⇤TUiU
T
i �

⇤ � v⇤T (µ
1

� µ
2

)� (1� ↵)�1v⇤TUi

�

�

k  kv⇤kk
2

(C
1

(svs)
k/2k�⇤kk

2

+C
2

↵�ksk/2v ),

where C
1

and C
2

are some absolute constants depending on k (see the
Lemma for details). Therefore we conclude that the sum in Lyapunov’s
condition, is bounded by:

(svs)k/2

(1 + o(1))nk/2�1

C
1

k�⇤kk
2

+ C
2

↵�k

sk/2

(V 0
min

)k/2(k�⇤k2
2

+ 1)k/2
| {z }

O(1)

= o(1).

This completes the proof.

Remark I.2. We propose the following consistent estimator of �, and
prove its consistency in Proposition I.1.

b� :=
1

n

n
1

X

i=1

⇣

bvT (Xi � X̄)(Xi � X̄)T b�
⌘

2

+
1

n

n
1

X

i=1

✓

n

n
1

bvT (Xi � X̄)

◆

2

+
1

n

n
X

i=n
1

+1

⇣

bvT (Yi � Ȳ )(Yi � Ȳ )T b�
⌘

2

+
1

n

n
X

i=n
1

+1

✓

n

n
2

bvT (Yi � Ȳ )

◆

2

� (bvT (X̄ � Ȳ ))2.

Proposition I.1. Under the same conditions as in Corollary 3, max(kµ
1

k1, kµ
2

k1) =
O(1), and the following additional assumptions:

max(�0sv,�s)kv⇤k
1

k�⇤k
1

p

log(nd) = o(1), Var((v⇤TU )2) = o(n), Var(v⇤TUUT�⇤) = o(n),

E(v⇤TUUT�⇤)2 = O(1),

we have that b�!p �.

Proof of Proposition I.1. Note that � can be decomposed as:

� =↵E(v⇤TUUT�⇤)2 + ↵�1E(v⇤TU )2 + (1� ↵)E(v⇤TUUT�⇤)2

+ (1� ↵)�1E(v⇤TU )2 � (v⇤T (µ
1

� µ
2

))2.

We start from the last term:

(bvT (X̄ � Ȳ ))2
| {z }

I

= [(bvT (X̄ � Ȳ ))2 � (v⇤T (X̄ � Ȳ ))2]
| {z }

I
1

+(v⇤T (X̄ � Ȳ ))2
| {z }

I
2

.

We have |I
1

|  kbv� v⇤k
1

kbv+ v⇤k
1

k(X̄ � Ȳ )(X̄ � Ȳ )Tk
max

. Using Lemma

I.6, we know kbv�v⇤k
1

= Op

⇣

kv⇤k
1

sv
p

log d/n
⌘

. We can apply the concen-

tration inequality (I.3) provided in Lemma I.3 to claim that k(X̄� Ȳ )(X̄�
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Ȳ )Tk
max

 kµ
1

�µ
2

k21+kµ
1

�µ
2

k1Op

⇣

p

log d/n
⌘

, where we used the tri-

angle inequality kX̄�Ȳ k1  kX̄�µ
1

k1+kȲ �µ
2

k1+kµ
1

�µ
2

k1. Finally

due to our assumptions we have |I
1

| = kµ
1

�µ
2

k21Op

⇣

kv⇤k2
1

sv
p

log d/n
⌘

=

op(1).Next we tackle I2 = (v⇤T (X̄ � Ȳ ))2 � (v⇤T (µ
1

� µ
2

))2
| {z }

I
21

+(v⇤T (µ
1

� µ
2

))2
| {z }

I
22

.

In a similar fashion to before, applying inequality (I.3), we can get |I
21

| 
kv⇤k2

1

Op

⇣

p

log d/n
⌘

kµ
1

�µ
2

k1 = op(1). Thus we have shown I = (v⇤T (µ
1

�
µ

2

))2 + op(1). To this end define the following shorthand notations:

IX(v,�) =
1

n

n
1

X

i=1

�

vT (Xi � X̄)(Xi � X̄)T�
�

2

, IY (v,�) =
1

n

n
2

X

i=1

�

vT (Yi � Ȳ )(Yi � Ȳ )T�
�

2

Next we show that IX(bv, b�) + IY (bv, b�) is consistent for E(v⇤UUT�⇤)2.
We begin with the following bound:

1

n

n
1

X

i=1

⇣

(bv � v⇤)T (Xi � X̄)(Xi � X̄)T b�
⌘

2

+
1

n

n
2

X

i=1

⇣

(bv � v⇤)T (Yi � Ȳ )(Yi � Ȳ )T b�
⌘

2

 kbv � v⇤k2
1

Mkb⌃n
b�k1kb�k

1

,

whereM = max
�

maxi=1,...,n
1

k(Xi � X̄)(Xi � X̄)Tk
max

,maxi=1,...,n
2

k(Yi � Ȳ )(Yi � Ȳ )Tk
max

 

.

Note that the random variables Xi�X̄ and Yi� Ȳ are in fact mean 0 sub-
Gaussian variables since e.g. kXi � X̄k 

2

 kXi � µ
1

k 
2

+ kX̄ � µ
1

k 
2


2KU . Thus an application of Lemma F.7, and the fact that n

1

⇣ n
2

⇣ n,
gives us that M = O(log(nd)). Furthermore we have:

kb⌃n
b�k1  �+ kX̄ � µ

1

k1 + kȲ � µ
2

k1 + kµ
1

� µ
2

k1 = Op(1),

by application of (I.3), and the way we select �. Putting the last several
inequalities together with Lemma I.5, Lemma I.6 and the triangle inequality,
we obtain:

|
q

IX(bv, b�) + IY (bv, b�)�
q

IX(v⇤, b�) + IY (v⇤, b�)|  kvk
1

p

k�k
1

sv
p

log(nd) log d/nOp(1).

Applying the same technique we can further show that in fact:

|
q

IX(bv, b�) + IY (bv, b�)�
p

IX(v⇤,�⇤) + IY (v⇤,�⇤)| = op(1).

We proceed to show that IX(v⇤,�⇤)+IY (v⇤,�⇤) is consistent for E(v⇤UUT�⇤)2

and since E(v⇤UUT�⇤)2 = O(1), the latter inequality also shows that
IX(bv, b�) + IY (bv, b�) is consistent for E(v⇤UUT�⇤)2. Define the following

notation fM := maxi=1,...,n kUiUT
i kmax

. For exactly the same reasons as for
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M we have fM = Op(log(nd)). Next we consider the di↵erence:

|IX(v⇤,�⇤) + IY (v
⇤,�⇤)� n�1

n
X

i=1

�

v⇤TUiU
T
i �

⇤�2 |

 kv⇤k
1

k�⇤k
1

V

 

1

n

n
1

X

i=1

|v⇤T (Xi � X̄)||(Xi � X̄)T�⇤|+ 1

n

n
2

X

i=1

|v⇤T (Yi � Ȳ )||(Yi � Ȳ )T�⇤|

+
1

n

n
X

i=1

|v⇤TUi||UT
i �

⇤|
!

,

where

V = max

⇢

max
i=1,...,n

1

k(Xi � X̄)(Xi � X̄)T �UiU
T
i kmax

, max
i=1,...,n

2

k(Yi � Ȳ )(Yi � Ȳ )T �Ui+n
1

UT
i+n

1

k
max

�

.

Note that by the simple inequality |ab|  (a2 + b2)/2, we have, that the
expression in the brackets is bounded by:

 v⇤T (b⌃n + e⌃n)v
⇤/2 + �⇤T (b⌃n + e⌃n)�

⇤/2.

We have that v⇤T
b⌃nv

⇤  kv⇤k
1

kv⇤T
b⌃nk1 = kv⇤k

1

+kv⇤k2
1

Op

⇣

p

log d/n
⌘

.

Similarly since by (I.4) kb⌃n� e⌃nkmax

= Op

�

log d
n

�

we have that v⇤T
e⌃nv

⇤ 
kv⇤k

1

+ kv⇤k2
1

Op

⇣

p

log d/n
⌘

. Similarly one can show that �⇤T
b⌃n�⇤ 

k�⇤k
1

kµ
1

�µ
2

k1+k�⇤k
1

(k�⇤k
1

_1)Op

⇣

p

log d/n
⌘

, and a similar inequality

for �⇤T
e⌃n�⇤. We next inspect V :

max
i=1,...,n

1

k(Xi � X̄)(Xi � X̄)T �UiU
T
i kmax

 max
i=1,...,n

1

2kXik1kX̄ � µ
1

k1

+ kX̄ � µ
1

k1(kX̄ � µ
1

k1 + 2kµ
1

k1),

and we can similarly bound the other term in V . Note that in Lemma F.7 we
showed that maxi=1,...,n

1

kXik1 = Op(
p

log(nd)), and as we argue in (I.3),

we have kX̄�µ
1

k1 = Op

⇣

p

log d/n
⌘

, and thus V = Op

⇣

p

log d/n
⌘

(
p

log(nd)+

kµ
1

k1 + kµ
2

k1). Hence under our assumptions, we have:

|IX(v⇤,�⇤) + IY (v
⇤,�⇤)� n�1

n
X

i=1

�

v⇤TUiU
T
i �

⇤�2 | = op(1).

Finally we finish this part upon noting that
�

�

�

1

n

Pn
i=1

�

v⇤TUiUT
i �

⇤�2 � E
�

v⇤TUiUT
i �

⇤�2
�

�

�

=

op(1), and that under the assumption Var((v⇤TUUT�⇤)2) = o(n) by Cheby-
shev’s inequality.
Next we turn our attention to the term n

n
1

1

n
1

Pn
1

i=1

�

bvT (Xi � X̄)
�

2

, and

show it’s consistent for ↵�1E(v⇤TUi)2. First note that since
n
n
1

= ↵�1+o( 1
n
),
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and we will show the rest of the expression is Op(1), we will just focus on
the average term. We first show the following di↵erence is small:
�

�

�

�

�

1

n
1

n
1

X

i=1

[
�

bvT (Xi � X̄)
�

2 �
�

v⇤T (Xi � X̄)
�

2

]

�

�

�

�

�

= | (bv � v⇤)T b⌃X (bv + v⇤)T |

 kbv � v⇤k
1

(kbv � v⇤k
1

+ 2kv⇤k
1

)kb⌃Xk
max

.

Using the same technique as in the proof of Lemma I.3, one can show that

kb⌃Xk
max

 k⌃k
max

+Op

⇣

p

log d/n
⌘

. By Lemma I.6 we have kbv� v⇤k
1

=

kv⇤k
1

svOp

⇣

p

log d/n
⌘

, and hence:

1

n
1

�

�

�

�

�

n
1

X

i=1

[
�

bvT (Xi � X̄)
�

2 �
�

v⇤T (Xi � X̄)
�

2

]

�

�

�

�

�

 kv⇤k2
1

svOp

⇣

p

log d/n
⌘

= op(1),

by assumption. Next we control:
�

�

�

�

�

1

n
1

n
1

X

i=1

[
�

v⇤T (Xi � X̄)
�

2 �
�

v⇤TUi

�

2

]

�

�

�

�

�

=

�

�

�

�

�

v⇤T (µ
1

� X̄)
1

n
1

n
1

X

i=1

(2Xi � X̄ � µ
1

)v⇤

�

�

�

�

�

 kv⇤k2
1

kµ
1

� X̄k21 = kv⇤k2
1

Op

✓

log d

n

◆

= op(1).

Thus after using Chebyshev’s inequality upon observing that Var((v⇤TU )2) =
o(n), we have shown the desired consistency. Similarly we can also show

that n
n
2

1

n
2

Pn
2

i=1

�

bvT (Yi � Ȳ )
�

2

is consistent for (↵ � 1)�1E(v⇤TUi)2. This
concludes the proof.

Lemma I.3. The following inequality holds kb⌃n � ⌃k
max

 etU (d, n) +
t2U (d, n), with probability at least 1� 2d2�ecA2

U � 2ed1�cA2

U , where:

tU (d, n) = AUKU

p

log d/min(n
1

, n
2

); etU (d, n) = 4AUK
2

U

p

log d/n.

(I.2)

and AU > 0 is an arbitrary positive constant, c̄ and c are absolute contents
independent of the distribution of U , and KU is as defined in the main
section of the text.

Proof of Lemma I.3. We start by showing a concentration bound on
kX̄ � µ

1

k1 and kȲ � µ
2

k1. By proposition 5.10 in Vershynin (2010) and
the union bound, we have:

P(kX̄ � µ
1

k1 > t)  ed exp

✓

�cn
1

t2

K2

U

◆

.(I.3)

A similar inequality holds for kȲ �µ
2

k1. Select tU (d, n) = AUKU

p

log d/min(n
1

, n
2

),

where AU > 0 is some large constant. The triangle inequality yields kb⌃n �
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⌃k
max

 kb⌃n � e⌃nkmax

+ ke⌃n � ⌃k
max

, where e⌃n is defined as in (I.1).
Next, we have that:

kb⌃n � e⌃nkmax

 n
1

n
k(X̄ � µ

1

)(X̄ � µ
1

)Tk
max

+
n
2

n
k(Ȳ � µ

2

)(Ȳ � µ
2

)Tk
max

 n
1

n
(kX̄ � µ

1

k1)2 +
n
2

n
(kȲ � µ

2

k1)2  t2U (d, n).(I.4)

where the last inequality holds with high probability. Note that by Lemma
F.2 we have:

ke⌃n �⌃kmax

 4AUK
2

U

p

log d/n =: etU (d, n),

with probability at least 1� 2d2�c̄A2

U . Adding the last two inequalities com-
pletes the proof.

Lemma I.4. Assume the same conditions as in Lemma I.3, and assume fur-
ther that the minimum eigenvalue �

min

(⌃) > 0 and s(etU (d, n)+ t2U (d, n)) 
(1 � )�min

(⌃)

(1+⇠)2
, where 0 <  < 1. We then have that b⌃n satisfies the RE

property with REb⌃n
(s, ⇠) � �

min

(⌃) with probability at least 1�2d2�c̄A2

U�
2ed1�cA2

U .

Remark I.3. In fact this event happens on the same event as in Lemma
I.3.

Proof of Lemma I.4. The proof follows the proof of Lemma F.3, but
uses Lemma I.3 instead of Lemma F.2, hence we omit it.

Lemma I.5. Assume that — �
min

(⌃) > 0, s(etU (d, n) + t2U (d, n))  (1 �
)�min

(⌃)

(1+⇠)2
, where 0 <  < 1 and � �

�

etU (d, n) + t2U (d, n)
�

k�⇤k
1

+2tU (d, n).

Then we have that kb���⇤k
1

 8�s
RE(s,1)

with probability at least 1�2d2�c̄A2

U�
2ed1�cA2

U . (see (I.2) for definition of tU and etU )

Remark I.4. In fact this event happens on the same event as in Lemma
I.3.

Proof of Lemma I.5. We start by showing the true parameter ⌦� =
�⇤ satisfies the sparse LDA constraint — kb⌃n�⇤ � (X̄ � Ȳ )k1  � with
probability at least 1� 2d2�c̄A2

U � 2ed1�cA2

U . We have that:

kb⌃n�
⇤ � (X̄ � Ȳ )k1  k⌃�⇤ � (µ

1

� µ
2

)k1
| {z }

0

+kb⌃n �⌃kmax

k�⇤k
1

+ kX̄ � µ
1

k1 + kȲ � µ
2

k1.

Collecting the bounds we derived in Lemma I.3 we get:

kb⌃n�
⇤ � (X̄ � Ȳ )k1 

�

etU (d, n) + t2U (d, n)
�

k�⇤k
1

+ 2tU (d, n).

The last inequality implies that if we select � �
�

etU (d, n) + t2U (d, n)
�

k�⇤k
1

+
2tU (d, n), it will follow that �⇤ satisfies the constraint with probability at
least 1� 2d2�cA2

U � 2ed1�cA2

U .
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The rest of the proof is identical to the proof of Lemma F.4 but instead
of using Lemma F.3 we use Lemma I.4. Thus we omit the proof.

Lemma I.6. Assume that — �
min

(⌃) > 0, sv(etU (d, n) + t2U (d, n))  (1 �
)�min

(⌃)

(1+⇠)2
, where 0 <  < 1 and �0 � kv⇤k

1

(etU (d, n) + t2U (d, n)). Then we

have that kbv � v⇤k
1

 8�0s
v

RE(sv,1)
with probability at least 1 � 2d2�c̄A2

U �
2ed1�cA2

U . (see (I.2) for definition of tU and etU )

Remark I.5. In fact this event happens on the same event as in Lemma
I.3.

Proof of Lemma I.6. The proof is identical to the one of Lemma F.4
but instead of using Lemma F.3 we use Lemma I.4, and we use Lemma I.3
instead of using Lemma F.2. We omit the proof.

Lemma I.7. We have the following inequality:

E|v⇤TUUT�⇤�v⇤T (µ
1

�µ
2

)+cv⇤TU |k  2k�1kv⇤kk
2

(k�⇤kk
2

(svs)
k/2(8kK2

U )
k+|c|ksk/2v (

p
kKU )

k).

Proof of Lemma I.7. The argument follows applying standard inequal-
ities, and the details are omitted.

APPENDIX J: PROOFS FOR VECTOR AUTOREGRESSIVE MODELS

Define the following quantities which will be used throughout. Let:

Kd(⌃0

,A) :=
32k⌃

0

k
2

maxj(⌃0,jj)

minj(⌃0,jj)(1� kAk
2

)
, eKd(⌃0

,A) := Kd(⌃0

,A)(2M + 3).

We set

� := eKd(⌃0

,A)
p

log d/T , �0 :=
Kd(⌃0

,A)

2
k⌃�1

0

k
1

⇣

p

6 log d/T + 2
p

1/T
⌘

.

(J.1)

Lemma J.1. Assume that ⌃
0

2 L,A 2 M(s), minj  jj � C > 0 and
max(sv, s) log d = o(

p
T ). Then the following relationships hold:

� = o(1), �0 = o(1),
p
T max(sv, s)k⌃�1

0

k
1

�0� = o(1),

� � C 0 > 0,
�⇤T⌃

0

�⇤

 mm

= o(T ),
kv⇤k2

1

v⇤T⌃
0

v⇤
�0

k⌃�1

0

k
1

= o(1),

where C 0 is some positive constant.

Proof of Lemma J.1. Clearly, sinceM = O(1), k⌃�1

0

k
1

= O(1), Kd(⌃0

,A) =
O(1) and max(sv, s) log d = o(

p
T ), it follows that � = o(1), �0 = o(1),

�0M = o(1) and in addition
p
T max(sv, s)k⌃�1

0

k
1

�0� = o(1).
By the inequality (⌃�1

0

)jj⌃0,jj � 1 it follows that (⌃�1

0

)
0,jj � (maxj ⌃0,jj)�1 �

k⌃
0

k�1

2

� M�1. Hence � =  mmv
⇤T⌃

0

v⇤ �  mm minjj ⌃
�1

0,jj � CM�1 > 0.
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Next, to show that �⇤T⌃
0

�⇤

 mm
= o(T ), it su�ces to see that �⇤T⌃

0

�⇤ =

O(1). To this end note that |�⇤T⌃
0

�⇤|  k⌃
1,⇤kk1kAk

1

 k⌃
1,⇤kk1M .

Next since  = ⌃
0

� ⌃
1

, we have k⌃
1,⇤kk1  maxj ⌃0,jj � minj  jj 

k⌃
0

k
2

, which shows that |�⇤T⌃
0

�⇤| = O(1).

Finally we check kv⇤k2
1

v⇤T⌃
0

v⇤
�0

k⌃�1

0

k
1

= o(1). Note that kv⇤k
1

 k⌃�1

0

k
1

, and

also that v⇤T⌃
0

v⇤ � minj ⌃0,jj � minj  jj � C, hence it su�ces to show
that kv⇤k

1

�0 = o(1). However, evidently kv⇤k
1

 k⌃�1

0

k
1

= O(1) and
�0 = o(1), which shows what we wanted.

Next we summarize several results by Han et al. (2014), which we use in
the later development.

Theorem J.1 (Theorem 4.1. Han et al. (2014)). Suppose that (Xt)Tt=1

from
a lag 1 vector autoregressive process (Xt)1t=�1. Assume that A 2 M(s).

Let bA be the optimizer of (1.6) with the tuning parameter:

� = eKd(⌃0

,A)
p

log d/T .

For T � 6 log d+1 and d � 8, we have, with probability at least 1� 14d�1:
kbA �Ak

1

 4sk⌃�1

0

k
1

�. In fact on the same event (see Lemmas A.1. and
A.2. (Han et al., 2014)), we have:

kS
0

�⌃
0

k
max

 Kd(⌃0

,A)/2
⇣

p

6 log d/T + 2
p

1/T
⌘

,

kS
1

�⌃
1

k
max

 Kd(⌃0

,A)
⇣

p

3 log d/T + 2/T
⌘

.

Proof of Corollary 4. We verify the conditions of Section 3. To
see Assumption (3.5), note that by Theorem J.1 we have kb� � �⇤k

1


4sk⌃�1

0

k
1

�. Next we inspect kbv � v⇤k
1

= Op(svk⌃�1

0

k
1

�0) according to
Lemma J.3. Next we check Assumption 1. To see (3.2), fix a |✓ � ✓⇤| < ✏,
for some ✏ > 0. By the triangle inequality:

kS
0

�⇤
✓ �⌃0

�⇤
✓ � S

1,⇤m +⌃
1,⇤mk1  kS

0

�⇤ � S
1,⇤mk1 + kS

0,⇤1 �⌃0,⇤1k1✏

The RHS is Op(�), by Theorem J.1 and by the fact that kS
0

�⇤�S
1,⇤mk1 

� with probability at least 1� 14d�1, as is seen from the proof of Theorem
J.1 (see Han et al. (2014) for details). The same logic shows that r

2

(n) ⇣
kv⇤k

1

�, which implies (3.3). Since the Hessian T in (3.4) is free of � we are
allowed to set r

3

(n) = �0 = o(1). Finally the two expectations in Assumption
1, are bounded as we see below:

k⌃
0

�⇤
✓ �⌃0

�⇤k1  k⌃
0,⇤1k1✏ = ⌃0,11✏, kv⇤T⌃

0,�1

k1 = 0.

By adding up the following two identities:
p
TOp(4sk⌃�1

0

k
1

�)Op(�
0) = op(1),

p
TOp(svk⌃�1

0

k
1

�0)Op(�) = op(1),

we get that (3.8) is also valid in this case by assumption.
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To verify the consistency of e✓ we check the assumptions in Theorem 1.
Clearly the map v⇤T⌃

0

(�⇤
✓ � �⇤) = (✓ � ✓⇤) has a unique 0 when ✓ = ✓⇤.

Moreover, the map ✓ 7! bvT (⌃
0

b�✓ � S
1

) is continuous as it is linear. In
addition, it has a unique zero except in cases when bvT⌃

0,⇤1 = 0. However
note that |bvT⌃

0,⇤1 � 1|  �0 by (4.4), and hence for small enough values of
�0 there will exist a unique zero.
Next we verify Assumption 3 in Lemma J.2. In addition the fact that b� is

consistent for � is checked in Proposition J.1. Finally we move on to show
(3.7). Observe that (3.7) is trivial as its LHS ⌘ 0 in this case.

Lemma J.2. Under the conditions of Corollary 4, we have that:

��1/2T 1/2S(�⇤) = ��1/2T 1/2v⇤T (S
0

�⇤ � S
1

) N(0, 1),

where the definition of � is given in (4.10).

Proof of Lemma J.2. First, construct the sequence ⇠
1

= 0, ⇠t+1

=
v⇤TXtXT

t �⇤�v⇤TXtXT
t+1

eTmp
(T�1)�

for t = 1, . . . , T � 1. We start by showing that the

di↵erence between the sequence
PT

t=1

⇠t and
p
T�1v⇤T

(S
0

�⇤�S
1,⇤m)p

�

is asymp-
totically negligible. We have:

T
X

t=1

⇠t�
p
T � 1v⇤T (S

0

�⇤ � S
1,⇤m)p

�
=

(
p
T � 1T )�1

p
�

T
X

t=1

v⇤TXtX
T
t �

⇤

| {z }

I
1

� v⇤TXTXT
T �

⇤
p
T � 1

p
�

| {z }

I
2

.

By Lemma J.3, kv⇤TS
0

� e
1

k1  �0 with probability not smaller than
1� 14d�1. Thus we have:

|I
1

|  �0k�⇤k
1

+ |�⇤
1

|
p
T � 1

p
�

 �0M + |�⇤
1

|
p
T � 1

p
�

= o(1),

with probability at least 1�14d�1, where we used the fact that |�⇤
1

| = O(1).
Next observe that EI

2

= 0, and using Isserlis’ theorem and Cauchy-
Schwartz we have:

Var(I
2

) =
1

T � 1

✓

�⇤T⌃
0

�⇤

 mm

+
(v⇤T⌃

0

�⇤)2

v⇤T⌃
0

v⇤ mm

◆

 2

T � 1

�⇤T⌃
0

�⇤

 mm

= o(1).

and hence I
2

= op(1). The last shows that,
PT

t=1

⇠t �
p
Tv⇤T

(S
0

�⇤�S
1,⇤m)p

�

=

op(1), provided that
PT

t=1

⇠t = Op(1), which we show next. Observe that
the sequence (⇠t)Tt=1

forms a martingale di↵erence sequence with respect
to the filtration Ft = �(X

1

, . . . ,Xt) for t = 1, . . . , T , as we clearly have
E[⇠t|Ft�1

] = 0. Furthermore a simple calculation yields that for t � 2 we
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have E[⇠2t |Ft�1

] = (v⇤TXt�1

)

2

(T�1)v⇤T⌃
0

v⇤ . Thus:

�

�

�

�

T
X

t=1

E[⇠2t |Ft�1

]� 1

�

�

�

�

=

�

�

�

�

v⇤T

(T � 1)v⇤T⌃
0

v⇤

T�1

X

t=1

⇥

XtX
T
t �⌃

0

⇤

v⇤
�

�

�

�

 kv⇤k2
1

v⇤T⌃
0

v⇤

�

�

�

�

1

T � 1

T�1

X

t=1

[XtX
T
t �⌃

0

]

�

�

�

�

max

| {z }

I

.

Using Theorem J.1, it is evident that I  Kd(⌃0

,A)/2
⇣

q

6 log d
T�1

+ 2
q

1

T�1

⌘

with probability at least 1� 14d�1, and hence the above quantity converges
to 0 in probability.
Having noted these facts, we want to show that

PT
t=1

⇠t converges weakly
to aN(0, 1) with the help of a version of the martingale central limit theorem
(MCLT) (Hall and Heyde, 1980). Next we show the Lindeberg condition for
the MCLT. For t � 2 and a fixed � > 0 we have:

E[⇠2t 1(|⇠t| � �)|Ft�1

] =
(v⇤TXt�1

)2E[Z21(|Z| > �C)]

(T � 1)v⇤T⌃
0

v⇤ ,

where Z ⇠ N(0, 1) and C =
n

(v⇤TXt�1

)

2

(T�1)v⇤T⌃
0

v⇤

o� 1

2

. Using the properties of

the truncated standard normal distribution we have that E[Z2|Z > c] =
1 + �(c)

�(c)
c, and hence

E[Z21(|Z| > c)] = 2�(c)

✓

1 +
�(c)

�(c)
c

◆

= 2�(c) + 2�(c)c  2�(c)(c�1 + c),

where the last inequality follows from a standard tail bound for the normal
distribution.
Now notice that by the union bound and a standard bound on the normal

cdf we have

P( max
t=1,...,T

|v⇤TXt| > u)  2T exp(�u2/(2v⇤T⌃
0

v⇤)).

Selecting u = 2
p

log(T )v⇤T⌃
0

v⇤ gives maxt |v⇤TXt|  2
p

log(T )v⇤T⌃
0

v⇤

with probability at least 1� 2

T
. Hence on this event we have:

E[⇠2t 1(|⇠t| � �)|Ft�1

]  8 log T�(� eC)((� eC)�1 + � eC)

(T � 1)
,

where eC =
q

T�1

4 log T
, and we used the fact that the function �(x)(x�1 + x)

is decreasing. Summing up over t yields:

T
X

t=1

E[⇠2t 1(|⇠t| � �)|Ft�1

]  8 log T�(� eC)((� eC)�1 + � eC) ! 0.

This shows that the Lindeberg condition holds with probability 1. Hence
by the MCLT we can claim

PT
t=1

⇠t  N(0, 1).
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Proposition J.1. Under the assumptions of Corollary 4 we have b�!p �.

Proof of Proposition J.1. We begin with showing the consistency
of b mm = S

0,mm � b�TS
0

b� is consistent for  mm. First note that  =
⌃

0

�AT⌃
0

A, and thus  mm = ⌃
0,mm � �⇤T⌃

0

�⇤. Then we have:

|b mm � mm|  |S
0,mm �⌃

0,mm|+ |(b� � �⇤)TS
0

b�|+ |�⇤T (S
0

b� �⌃
0

�⇤)|.

Fitstly, by Theorem J.1, we have with probability at least 1� 14d�1:

|S
0,mm�⌃0,mm|  kS

0

�⌃
0

k
max

 Kd(⌃0

,A)

2

⇣

p

6 log d/T + 2
p

1/T
⌘

= �0k⌃�1

0

k�1

1

= o(1).

Secondly:

|(b� � �⇤)TS
0

b�|  kb� � �⇤k
1

(kS
0

�⇤k1 + kS
0

b� � S
0

�⇤k1)

 kb� � �⇤k
1

(kS
0

k
max

k�⇤k
1

+ kS
0

b� � S
1,⇤mk1 + kS

0

�⇤ � S
1,⇤mk1).

On the event of Theorem J.1 we further have:

k� � �⇤k
1

kS
0

k
max

k�⇤k
1

 4sk⌃�1

0

k
1

�[k⌃
0

k
max

+ kS
0

�⌃
0

k
max

]M = o(1).

Furthermore within the proof of Theorem J.1, it can be seen that on the
event of interest we have kS

0

�⇤ � S
1,⇤mk1  �, and hence:

kb� � �⇤k
1

(kS
0

b� � S
1,⇤mk1 + kS

0

�⇤ � S
1,⇤mk1)  2�kb� � �⇤k

1

= op(1).

Lastly,

|�⇤T (S
0

b� �⌃
0

�⇤)|  |�⇤TS
0

(b� � �⇤)|+ |�⇤T (S
0

�⌃
0

)�⇤|
 k�⇤k

1

2�+ k�⇤k
1

[kS
0

�⇤ � S
1,⇤mkmax

+ kS
1,⇤m �⌃

1,⇤mkmax

]

 M3�+MKd(⌃0

,A)
⇣

p

3 log d/T + 2/T
⌘

= o(1),

where the last two inequalities hold on the event of Theorem J.1, and we
used the fact that k�⇤k

1

 M since A 2 M(s).
Next, we show that bvTS

0

bv !p v
⇤T⌃

0

v⇤. Similarly to before we have:

|bvTS
0

bv � v⇤⌃
0

v⇤|  |(bv � v⇤)TS
0

bv|+ |v⇤T (S
0

bv �⌃
0

v⇤)|

For the firs termt we have:

|(bv � v⇤)S
0

bv|  kbv � v⇤k
1

kbvTS
0

� e
1

k1 + |e
1

(bv � v⇤)|  4svk⌃�1

0

k
1

(�0)2 + kbv � v⇤k1
 4svk⌃�1

0

k
1

(�0)2 + k⌃�1

0

k
1

2�0 = o(1),

with the last two inequalities following from Lemma J.3 and holding on the
event from Theorem J.1. Recall that e is a unit row vector.
Finally, for the second term we have:

|v⇤T (S
0

bv �⌃
0

v⇤)|  kv⇤k
1

�0  k⌃�1

0

k
1

�0 = o(1),

and this concludes the proof.
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Lemma J.3. Assume the assumptions in Theorem J.1. Let

�0 = k⌃�1

0

k
1

Kd(⌃0

,A)

2

⇣

p

6 log d/T + 2
p

1/T
⌘

.

Then on the same event as in Theorem J.1, we have kbv�v⇤k
1

 4svk⌃�1

0

k
1

�0.

Proof of Lemma J.3. We first start by showing that v⇤ satisfies the
constraint in the bv optimization problem with high probability. According
to Theorem J.1, we have with probability not smaller than 1� 14d�1:

kv⇤TS
0

� e
1

k1 = kv⇤T (S
0

�⌃
0

)k1  kv⇤k
1

kS
0

�⌃
0

k
max

 kv⇤k
1

Kd(⌃0

,A)

2

⇣

p

6 log d/T + 2
p

1/T
⌘

 �0.

This implies that kbvk
1

 kv⇤k
1

 k⌃�1

0

k
1

, and hence similarly to (F.3) in
Lemma F.4 in the Supplementary Material we can conclude:

kbvSc
v

� v⇤
Sc
v

k
1

 kbvS
v

� v⇤
S
v

k
1

(J.2)

Next we control kbv � v⇤k1. We have:

kbv � v⇤k1 = k(bvT⌃
0

� e
1

)⌃�1

0

k1  k⌃�1

0

k
1

(kbvTS
0

� e
1

k1 + kbvk
1

kS
0

�⌃
0

k
max

)

 k⌃�1

0

k
1

2�0.

Combining the last bound with (J.2), we get:

kbv � v⇤k
1

 4svk⌃�1

0

k
1

�0,

which is what we wanted to show.
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