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ABSTRACT

Single-stranded nucleic acids (ssNAs) are ubiqui-
tous in many key cellular functions. Their flexibility
limits both the number of high-resolution structures
available, leaving only a small nhumber of protein—
ssNA crystal structures, while forcing solution in-
vestigations to report ensemble averages. A descrip-
tion of the conformational distributions of ssNAs is
essential to more fully characterize biologically rele-
vant interactions. We combine small angle X-ray scat-
tering (SAXS) with ensemble-optimization methods
(EOM) to dynamically build and refine sets of ssNA
structures. By constructing candidate chains in rep-
resentative dinucleotide steps and refining the mod-
els against SAXS data, a broad array of structures
can be obtained to match varying solution conditions
and strand sequences. In addition to the distribution
of large scale structural parameters, this approach
reveals, for the first time, intricate details of the
phosphate backbone and underlying strand confor-
mations. Such information on unperturbed strands
will critically inform a detailed understanding of an
array of problems including protein—ssNA binding,
RNA folding and the polymer nature of NAs. In ad-
dition, this scheme, which couples EOM selection
with an iteratively refining pool to give confidence in
the underlying structures, is likely extendable to the
study of other flexible systems.

INTRODUCTION

For biological macromolecules, knowledge of structure can
be critical for establishing function. A rigid one-to-one view
of biology is however far removed from the true cellular pic-
ture, where molecules sample an array of possible confor-
mations (1-4). Motions can vary from small fluctuations of
proteins about their native state, to bulk movements of do-
mains conferred by linkers or hinges. An extreme example
is the case of single-stranded nucleic acids (ssNAs), which
exist in a broad range of unfolded and highly flexible con-

formations (5-8). In the cell, ssNAs are found in a variety
of locations, such as in telomeric overhangs at the end of
chromosomes, at double stranded DNA breaks and at repli-
cation forks (9,10). Given these diverse contexts, and their
critical biological roles, ssNAs are a prime target for struc-
tural investigation. Unfortunately, capturing the conforma-
tions and properties of ssNAs challenges traditional tech-
niques. Fluorescence measurements such as single-molecule
FRET report both dynamics and inter-dye distances of ss-
NAs with unmatched resolution (7); however, the technique
offers limited global structural information, making the re-
sults difficult to interpret. Atomic force microscopy (AFM)
and similar ‘pulling’ experiments provide mechanical data,
but fail to report detailed molecular conformations (11,12).
Nuclear magnetic resonance (NMR) can reveal intricate dy-
namics and structures for complex RNA molecules (13-15),
however its application to isolated single-strands is both
challenging and length limited (16-18).

Small angle X-ray scattering (SAXS) reports the global
shape and size of molecules in solution, and is sensitive
to the full ensemble of populated conformations (19,20).
Uniquely, SAXS can capture the richness of such highly
flexible systems without added perturbations through dyes
or mechanical linkages, and is therefore ideally suited to
the study of ssNAs. In spite of this, the conformational
averaging of the measurement makes detailed analysis of
the data troublesome. Past interpretations have therefore
relied on assumptions that reduce the ensemble statistics
to means, masking pertinent features. For example, stud-
ies on the stiffness of rUyy and dTy4 assumed a worm-like
chain (WLC) model and constrained the fit with end-to-
end distance measurements from FRET experiments (8).
While self-consistent, this method sacrifices information
gleaned from distributions of parameters. Furthermore, the
WLC assumptions were found to be invalid in certain salt
regimes. Improved schemes model the phosphate backbone
in terms of virtual bonds, trading bulk assumptions in the
WLC model for a coarse-grained view of the ssDNA chains
(6). Although this latter approach has advantages, provid-
ing distributions of some conformational parameters and
adding interaction terms missing from the WLC model,
structural information applicable to real chains is restricted
due to the simplified representation of the backbone. The

“To whom correspondence should be addressed. Tel: +1 607 255 8695; Fax: +1 607 255 7658; Email: Ip26@cornell.edu

" These authors contributed equally to the paper as first authors.

© The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which
permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

€20 8unr g1 uo 1senb Aq /G8€G/Z/999/6/GP/aI0NE/IBU/WOD dNO"DIWSPEOE//:SARY WOl POPEOjUMOQ



e66 Nucleic Acids Research, 2017, Vol. 45, No. 9

assumptions required to model the interaction potentials
also bring additional complexity and uncertainty to the
analysis.

Recent advances in ensemble methods have made it possi-
ble to fit sets of models to experimental SAXS data (21,22),
deconvolving the conformational averaging of the mea-
surement into individual conformers. This approach grants
both a representation of the underlying states and provides
distributions of structural parameters. These ensemble opti-
mization methods (EOM) work by selecting structures from
a pool containing thousands of possible candidates, with
the scattering profiles computed from the selected models
together reconstituting the experimentally measured curve.
The generation of a large and realistic pool is crucial to ob-
taining meaningful results. This method has been applied
with great success to multi-domain proteins (23-26), and
RNA molecules with well-defined secondary structure (27),
but has yet to be applied to ssNAs. In contrast to proteins
and RNA, very few structures of ssNAs are available to
build an extensive pool around. While crystal structures of
bound ssNAs exist, their numbers are few and may be un-
representative of the solution state of the molecule. Theoret-
ical alternatives to chain generation such as molecular dy-
namics, coarse-grained models and fragment analysis have
been applied to predict ssNA conformations and binding
(28-30), but are computationally intensive and not suited
to the on-demand generation of thousands of conformers.
Commonly used approaches and pipelines for RNA model
construction (31-34), while providing viable structures for
complex RNAs, cannot currently provide realistic conform-
ers for molecules completely lacking base-pairing interac-
tions, such as ssNAs.

Here we present a dynamic pool generation and refine-
ment method that enables ensemble optimization of ssNA
structures using SAXS data. The particular challenge en-
countered in modeling ssNAs compared with disordered
proteins is that many more interrelated torsion angles are
involved, and their conformational preferences are expected
to vary significantly depending on base sequence and solu-
tion conditions. For a general sample however, these prefer-
ences are unknown. The main innovation in our approach
allowing us to circumvent this difficulty, is that the tor-
sion angle preferences are empirically refined during mul-
tiple rounds of ensemble optimization. By challenging this
scheme using several test cases, we find that the method
can recover structural motifs and ensemble properties from
ssNA distributions. Additionally, we apply the method to
experimental SAXS data from ssDNA homopolymers with
juxtaposing conformations and stacking propensities, dAjg
and dTj3 (5,35,36). These test cases and experimental exam-
ples show the method to be a robust and versatile way to de-
termine otherwise unobtainable distributions of conforma-
tional parameters in sSNA systems. Furthermore, by pair-
ing EOM selection with an iteratively refining pool, param-
eters from the underlying structures can be inferred that are
beyond the current standard for ensemble methods. These
points highlight SAXS and EOM as the ideal partnership
for studying the solution structure of ssNAs.
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Overview of the method

Before providing an in-depth (fully referenced) description
of the method, we give a general overview outlining the key
steps and ideas of the iterative refinement scheme. To begin,
single ssNA chains are constructed from a sequence of dis-
crete, dinucleotide steps, referred to as suites. Each suite is
drawn from a pre-defined library with an initial statistical
weight. The library we have assembled is based on known
dinucleotide steps derived from both DNA and RNA crys-
tal structure surveys, and is tailored for a specific base. By
drawing steps probabilistically from this library, individual
ssNA chains can be built. Once the chain is checked for
steric clashes, it is added to the structure pool. Iteration
of this procedure populates the pool with a large number
of potential candidates of varying shapes, sizes and suite
compositions. After calculating the theoretical SAXS pro-
files of each chain, we fit the pool to experimental scattering
data using ensemble optimization. This step identifies sets
of models in the pool that best reconstruct the true scatter-
ing profile of the ssNA under study. Once we have identified
the models that best reconstitute the experimental data, we
compare the frequency of each suite in the selected models
to the frequency of suites in the overall pool. Based on this
comparison, the weights of the suites in the library are ad-
justed and a new pool of models subsequently built from
the updated library. This procedure is iterated until conver-
gence is achieved, at which point a final round of selection
yields the interpreted results.

MATERIALS AND METHODS
Ensemble concept in SAXS

We begin by briefly reviewing EOM applied to SAXS. In so-
lution, conformational fluctuations result in the existence
of an ensemble of possible states for any given molecule.
These variations are reflected in the associated SAXS pro-
files at any snapshot in time. The experimental scattering
curve therefore encompasses the many thousands of con-
formations sampled by the molecule during the measure-
ment interval. The ensemble method decomposes the total
scattering curve I(q) into the sum of profiles for each fre-
quented state I,,(¢q), such that:

1
I(q)= NZ:ZIIH(CI)

where NV is the number of states representing the number
of underlying conformations (counting degeneracies sepa-
rately). To keep the problem tractable, the number of states
is kept small (generally N < 50). If the scattering profiles
of potential conformations are known or calculable, a ge-
netic algorithm can be used to derive sets of structures
that best recapitulate the experimental data. These struc-
tures are therefore representative of the solution states of
the molecule. For this method to give meaningful results,
a large pool of potential, but realistic conformers must be
supplied for the genetic algorithm to select from. The gener-
ation of a pool of models from which the scattering profiles
are calculated is thus critical.
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Opverview of chain generation

To build pools of ssNA structures, we begin with the most
basic building block for all nucleic acids: the single nu-
cleotide (Figure 1A). Single nucleotides bind together to
form dinucleotides, which can be described by two param-
eter sets: the torsion angle set which defines the phosphate
backbone (Figure 1B) and the angles defining the two as-
sociated sugars and bases (Figure 1C). The chain building
method we describe is based on the long standing obser-
vation that the torsion angles between adjacent nucleotides
tend to be correlated with one another: in RNA, 46 distinct
sets account for the majority of conformations measured
in high-resolution structures (37-42). While DNA is more
conformationally plastic than RNA, similar clustering ex-
ists for DNA torsion angles (43). Our method uses these
distinct angle sets as the framework for chain generation in
units referred to as suites (37,44). In each suite, a torsion
angle set defining the phosphate backbone is specified, as
well as the sugar pucker and base torsion angles of the two
accompanying bases. Chains of varying size, sequence and
geometries are then built by drawing individual steps prob-
abilistically from a library of representative suites (Figure
1D).

Constructing a library of suites

In contrast to proteins, where the backbone and side chains
have a more uniform molecular composition, the global
shape and scattering of ssNAs is largely determined by the
relatively electron-dense phosphate backbone, rather than
the orientation of the bases. It is therefore especially critical
to select a variety of torsion angle sets when modeling ssNA
data acquired by a low-resolution technique such as SAXS.
To this end we used 12 torsion angle sets with the goal
of capturing conformations readily found in DNA crystal
structures (such as stacked conformations), as well as sam-
pling extended conformations that may rarely be found in
high resolution structures, but are likely present in solution.
The latter we derive from RNA rotamers (37). This assump-
tion is reasonable; given that RNA is more sterically hin-
dered than DNA, the conformations that RNA can assume
presumably represent a subset of those that DNA can form.
This fact is readily observed in nature: DNA can adopt both
A and B-form helices, while RNA can only adopt the for-
mer.

Each torsion angle set was assigned a 2-3-character
mnemonic, as specified in Supplementary Table S1. For the
unstacked, RNA-derived conformations, the first two char-
acters define the region of @/¢ space that the given torsion
sets fall in, as in reference (45), while the third specifies the
range of T (p = gauche+, m = gauche- and t = trans) (46).
For the stacked conformations, the mnemonic reflects the
specific geometry of stack formed, i.e. Al is canonical A-
form (following (43)). In RNA, the precise values in each
torsion angle set are correlated with the sugar pucker (8) of
consecutive bases. For simplicity, we use a single torsion an-
gle set for all allowed values of §. These values were taken
as the average for RNA suites belonging to a particular
(a/¢,Y) group, but having different sugar puckers. This is
not a severe approximation, as the dinucleotides were iden-

Nucleic Acids Research, 2017, Vol. 45, No. 9 e66

tified as the correct RNA suites by the program suitename
(37).

Having established a framework for describing torsion
angle sets, we construct a library of suites around these sets
and weight each to define a probability distribution from
which steps of a chain may be drawn. The chain building
technique is very general, and may be applied to give li-
braries of RNA or DNA suites for constructing models of
arbitrary sequence. For simplicity, we began with libraries
for DNA homopolymers with T or A bases. To extend the
torsion angle sets to suite libraries, we need only determine
the possible values of both sugar puckers and base torsion
angles appropriate for each homopolymer. We can reduce
the number of possible suites in the libraries by looking
to NMR data on dinucleotides. The NMR derived equi-
librium constant between C2’ and C3’ endo sugar puck-
ers (Kendo = Kendo) for dTpdT dinucleotides is 1.9, while
for dApdA it is 24 (47). Such a high sugar pucker constant
for dA dinucleotides implies that the C3’ sugar pucker will
be exceedingly rare. Therefore, suites featuring C3’-endo
sugar puckers were not included in the dA libraries. Fur-
thermore, in accordance with known preferences for purines
and pyrimidines (48), both anti and syn bases were modeled
in poly dA suites, while poly dT suites feature only anti con-
formers. Similarly, a single sugar pucker pair was modeled
for each stacked suite, with the base angle always anti (43).
Therefore, before removal of sterically hindered suites, we
arrive at four suites for each non-stacked torsion angle set
and one suite for each stacked torsion set.

To determine steric clashes in the suites, atoms were as-
signed Van der Waals radii of 1.52 (0), 1.7 (C), 1.8 (P) and
1.55A (N) as in previous discrete models for nucleic acids
(49). A steric clash was defined as a Van der Waals over-
lap >0. 42A for non-bonded atoms (this value was relaxed
slightly from the overlap cutoff of 0. 4A defined in the nu-
cleic acid model validation tool MolProbity (50) to accom-
modate imperfect stacking geometry resulting from binning
sugar pucker and base torsion angles in our reduced suite
definitions). Bond angles and distances were taken from the
XPLOR high-resolution parameter set (51). Steric clashes
in suites were checked between all non-bonded atoms and
suites showing overlap were removed from the libraries.
When building chains with suites, the gamma angle of the
5’-terminal sugar is undefined, and was therefore assigned
the canonical values of 52.5 degrees. Base torsion angles
were adjusted slightly within their allowed ranges to prevent
steric clashes in the stacked dTpdT suites. After removing
steric clashes from the libraries, dTpdT suites totaled 35 (1
suite removed due to steric clashes), while dApdA totaled
32 (2 suites removed due to steric clashes). The torsion an-
gle sets and base/sugar parameters used to build the suite
libraries are summarized in Supplementary Tables S1 and
2. To help visualize these angle-sets, we provide representa-
tions of each of the suites in Supplementary Figures S1-3.

Chain building

In our chain generator, a set of M suites specify all possi-
ble dinucleotide steps, with a chain of length N defined by
a list ¢ of N-I integers between 1 and M, as illustrated in
Figure 2A. As each suite defines both 5" and 3’ sugars, adja-
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Figure 1. (A) The basis for all DNA and RNA structures is the single nucleotide. (B) Torsion angles defining the phosphate backbone in a dinucleotide (e,
B, Y. T, €). (C) Torsion angles defining the two sugar puckers (8) and base orientations (x) in a dinucleotide. (D) A chain built from a series of dinucleotide

steps. Rendered using Pymol version 1.2 (DeLano Scientific LLC).

¢=130,30,30,30,30,30,30,30,30 ]

Step 1 — Initialize conformation
list to a random state (c0).

Step 2 — Perform multiple iterations of a Gibbs sampler
to permute suites at different locations in the chain.

Step 3 — Check for steric clashes between
bases separated by less than 20A .

c0=[18,18,18,18,18,18,18,18,18 ] c=[18,18,18,18,30,30,18,18,18]

f \

c=[18,30,30,18,30,30,18,18,18]

t '

c=(20,18,18,24,18,33,18,20,33 ]

Gibbssampleriteration 1.

Gibbssampleriteration 2.

Sample until ¢ sufficiently differs from cO.

Figure 2. (A) A chain of length N is defined by a vector ¢ of length N-1, containing integers between 1 and M which define a suite in the library. The
simplest case is illustrated, 9 of the same suite in a row (suite 30) to give a chain of 10 bases. (B) Adjacency rule violation: a 5 C3” endo sugar pucker suite
(orange) cannot follow a 3’ C2’ endo sugar pucker suite (green). (C) Correctly overlapping suites with no adjacency rule violation. (D) Illustration of the
procedure to build a single chain. In the first step, an initial conformation is set at random. For simplicity, we chose a ‘random’ conformation consisting
of all the same suite in a row. In step two, multiple iterations of a Gibbs sampler are performed. In each iteration, a random position in the conformation
list is selected and permuted based on statistical weights (first change to ¢y is highlighted in yellow, the second orange). Enough iterations are performed
to make the new state ¢ significantly different from the initial state ¢g. In the third step, the PDB is built and checked for steric clashes.

cent suites overlap. Therefore, neighboring suites must obey
adjacency rules with regards to the sugars and bases (a 5’
C3’ endo suite cannot follow a 3’ C2’ endo suite, Figure 2B
and C). A combination of steric clashes and adjacency rules
severely limit the number of possible suite permutations.
Thus to accelerate structure generation, all chains of length
5 (4 suites) are precomputed and checked for steric clashes
and adjacency rule violations. All possible suite combina-
tions are then stored in a (MxMxMxM) logical matrix

L, which identifies if a given suite permutation is allowed.
Next, each suite in the library is assigned an initial statis-
tical weight t;, equal to the probability for it to occur as
an isolated dinucleotide. These probabilities are generally
unknown, but may be constrained by the frequency each
appears in consensus survey data (37,43). These statistical
weights are stored in a vector w of length M, and are col-
lectively rescaled in order to obtain the correct NMR de-
rived sugar pucker constants, as in previous work (47). We
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express this process as w = w(t,K), where K is the sugar-
pucker equilibrium constant and ¢ a vector containing the
suite weights (the #;’s). Having laid out the definitions of rel-
evant objects, we now proceed to explain the chain building
algorithm. The procedure to build a single chain consists of
3 steps and is illustrated in Figure 2D.

A Monte Carlo procedure is applied to generate chains of
arbitrary length that are free of steric clashes and consistent
with the equilibrium constants for each dinucleotide step.
Initially, a chain conformation ¢y is set randomly. To make
¢g consistent with adjacency rules and steric clashes (defined
by L,), changes to a single position in ¢y are proposed at
random and accepted if the total number of violations, Vy,
decreases or stays the same. V,,, is computed by scanning Ly
across ¢y:

N—4
Viet = Z Ly(co(j),co(f+1),c0(j+2),c0(j+3))
=1

this process is repeated until the number of violations is
zero. Next, a Gibbs sampler is used to modify the chain at
random locations according to the probability derived from
the dinucleotide weights. In each iteration, a location in ¢y is
chosen at random (a random integer » between 1 and N-2).
Two adjacent suites are permuted at a time to allow suites
of any sugar pucker or base torsion angle to be inserted into
the chains. For example, it would be impossible to insert a
C2’-endo sugar pucker suite into a stretch of C3’-endo sugar
pucker suites without permuting two positions simultane-
ously. The sampler generates new values for positions n and
n+ I in ¢y based on the adjacent and the statistical weights.
To begin, all pairs allowed by L are enumerated. The sta-
tistical weight for each pair is computed from the product
of its statistical weight divided by the sum of the weights for
all possible pairs (this is the Gibbs sampling step (52)). The
sampler is iterated until the new trial state ¢ is sufficiently
different from the initial state ¢y. An appropriate number
of iterations will depend on the length and complexity of
the chain being generated. We found that 50 iterations were
sufficient for 30-mer homopolymer chain (/N = 30).

At this stage, ¢ represents a proposed move, however it
may contain long-ranged steric clashes that were not cap-
tured by the Ly matrix. The 3D model is computed from ¢
using the geometric rules for nucleic acid bond angles and
distances. Because ¢ is guaranteed to have no steric clashes
between nucleotides separated by <5 bases, and because
nucleotides have a known maximum size, it is not neces-
sary to compute the pairwise distance between all atoms.
First, pairwise distances between all C1’ atoms are com-
puted for all pairs of nucleotides separated by more than
5 bases along the chain. Next, those nucleotides whose C1’
atoms are within a cutoff distance of 20A (49) are checked
for clashes. If one or more clashes are found, ¢ is rejected,
and the Gibbs sampler is re-run from the previous state, ¢y.
Finally, after a burn-in period of 10 successful iterations, the
3D models are saved in PDB format.
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Figure 3. Our ssNA modeling strategy consists of four steps. The first in-
volves iterating the chain building procedure using a statistically-weighted
dinucleotide suite library to populate a large structure pool. The pool
is populated with 1000 models in each refinement round, while the final
round utilizes 10 000 structures. In the next step, the SAXS profiles for
all models in the pool are calculated. In step 3, the structure pool is fitted
to input experimental SAXS data using ensemble optimization. This step
selects sets of 20 structures from the pool whose calculated scattering pro-
files reconstitute the experimental data. This process is repeated 50 times
in each refinement round, and 500 times in the final round. Finally, the
selected structures are examined against the pool and a new set of suite
weights is defined. This process is iterated until convergence.

Ensemble optimization and iterative refinement of suite
weights

Chains constructed from the initial suite weights likely do
not yet represent the true solution structure of a given ssNA
in a particular salt condition. Multiple rounds of chain
building and suite weight refinement based on fitting exper-
imental SAXS data to the constructed models are required
to achieve good agreement. Each round of refinement (Fig-
ure 3) consists of four steps:

1. Build chains with steps drawn probabilistically from the
suite library to populate a pool of models.

2. Calculate the theoretical SAXS profile for each model in
the pool.

3. Identify the most representative structures by fitting in-
put experimental data using the pool by EOM.

4. Re-estimate the suite weights in the library based on the
frequency of suites in the selected models compared to
the pool.

This loop iterates until the selections converge, at which
point a final round of selection is run to provide interpreted
results.
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The particular implementation of each step during refine-
ment is as follows. In the first step, the chain-building algo-
rithm is iterated to generate a pool 1000 structures. In step 2,
each structure’s SAXS profile is computed using CRYSOL
(53), with a maximum harmonic order of 15, Fibonacci grid
of order 18 and default hydration parameters. Due to its ex-
tensive application to flexible intrinsically disordered pro-
teins (21,22,54-58), the reduced contrast of proteins em-
phasizing hydration models compared to nucleic acids (59),
and the low g-range we utilize, the use of CRYSOL to hy-
drate and compute theoretical scattering profiles for these
flexible ssNAs is well justified. In step 3, EOM is imple-
mented as a genetic algorithm by the program GAJOE 1.3
(21), which fits theoretical SAXS profiles to the input ex-
perimental curve. We use 20 structures per ensemble with
repeat selections allowed to reconstitute the data. For each
refinement round, the algorithm is run for 50 generations.
The EOM process is repeated 50 times to accumulate statis-
tics.

In step 4, the frequency of each suite in the pool (/ye01)
and in the selected ensembles (%) is calculated. A new es-
timate for the suite weights (,,,,) is found that minimizes the
discrepancy between the observed suite frequencies (fouy)
and an expected value for A,y assuming that the frequen-
cies are proportional to the underlying weights (47):

@) C2—end (i)
2 _ E JAG; B pool W (taew, K=" ") [ wopq
o= ens h(/) ) C2—endo )

i ZJ pool w Tnew, Keq Jw W14

where w,, is the vector of suite weights used by the chain
generator to create the pool (the NMR rescaled vector of ).
A vector t,,,, that minimizes x,” is found using the Isqnonlin
function in MATLAB. Having re-weighted the suites in the
library, we can now proceed back to step 1 and start the next
round of refinement.

In general, we run 15 refinements in preparation for the
final round of the loop. The final round differs from the re-
finement rounds in that 10 000 structures are built in step 1,
EOM is run for 500 generations and is repeated 500 times
in step 3. The results of this final round of selection are in-
terpreted as the conformations adopted by the ssNA of in-
terest.

Metrics for convergence

To determine whether the refinements effectively increase
the quality of models in the pool, and to check for con-
vergence, we monitor two metrics at each stage of the re-
finement. First, the goodness of fit x? of each individual
ensemble is assessed by comparing the ensemble (Z.,s) and
experimentally derived (Z.xp) SAXS curves:

Z < exp (qz Clcns (%))2
—1

Oexp (%)

where K is the total number of points in q-space, o .y, is the
experimental error at each ¢ point and ¢ is a scaling factor.
The reduced chi-square is then used to judge the global fit

PAGE 6 OF 13

of all ensembles to the experimental data:

1 N
2 2
XRed = N Z Xj

j=1

here, the summation is over all generated ensembles (/N
equals 50 for each refinement stage and 500 for the final
round of selection). Second, to assess convergence of the re-
finement procedure, we compare the populations of suites in
the pool and ensembles by evaluating the Jensen Shannon
Divergence (JSD) (60). This metric enables the similarity of
two probability distributions to be assessed. In terms of two
probability distributions p; and p;, the JSD is defined as:

1 1 1 1
D=H(=pi+=pr ) —~H(p)— ~H
JS (2171 + 2172) 5 (p1) 3 (p2)

H(p) is the Shannon entropy for a discrete probability dis-
tribution p with states p;:

H(p)=—-)_ pin(p)

The use of two metrics allows us to assess convergence and
increased model quality in complementary ways.

Experimental methods

HPLC-purified DNA oligomers of dT3y and dAsz, were
purchased from Integrated DNA Technologies (Coralville,
IA, USA). Lyophilized powders were resuspended in STE
buffer (10mM TRIS, 50mM NaCl, ImM EDTA, pH 8.0)
and dialyzed four times with 20 mM NaCl, | mM Na
MOPS pH 7.0 using Amicon Ultra-0.5 10 kDa concentra-
tors (EMD Millipore, Billerica, MA, USA). SAXS profiles
were measured at the Cornell High Energy Synchrotron
Source (CHESS) beamline G1, at three strand concentra-
tions: 200, 100 and 50 pwM. Buffer subtracted curves were
matched in the range 0. 15A! < q, for accurate concentra-
tion normalization and were linearly extrapolated to zero-
concentration to remove any inter-particle interference ef-
fects observed at low q The zero-concentration curves were
joined at g = 0.15A~! to the high concentration curve to
provide the final, structure-factor free SAXS profiles. Due
to a slight over-estimation of errors during the SAXS inte-
gration step, a rescaling of the uncertainties was performed.
The inverse fourier transform (IFT) of the experimental
data was calculated with GNOM (61), after which the un-
certainties on the experimental curves were rescaled so that
the chi-square for the IFT fits were equal to 1. All data anal-
ysis was performed with MATLAB using in-house code.

Generation of test cases

Test cases were generated by building structures with the
chain-generating algorithm as described above. Each struc-
tures’ SAXS curve was computed with CRYSOL and, un-
less stated otherwise, the average of at least 2000 structures
was used to provide the synthetic data to test our iterative
refinement scheme.
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Figure 4. (A) Mean Ry (red circles) and range (red bars) of unrefined dT
pools of varying chain lengths. The mean Ry of the pools were fit with
a power law of the form Ry ~ N" (solid red line) that falls in between
the scaling behavior expected for self-avoiding chains (v~0.58) and stiffer
chains (v~0.70). (B) Effect of ensemble size on the quality of data fitting.

RESULTS AND DISCUSSION
Sampling of conformational space and ensemble size

To correctly implement EOM, two basic criteria must be
met. First, it is crucial that the pool of models is conforma-
tionally broad and adheres to known distribution statistics.
Second, the ensemble size must be large enough to capture
the underlying number of accessible states. These conditions
ensure GAJOE is given realistic conformational variety and
sufficient structure selections to adequately recapitulate the
SAXS data. To test the first requirement, unrefined pools
of dT chains with a variety of lengths were generated. The
mean R, of the pools were fit with a power law of the form
R, ~ NY, which has been previously used to analyze ex-
perimental SAXS data on ssDNA homopolymers of vary-
ing lengths (35). This work showed that v falls in between
a self-avoiding walk (v~0.58) under high-screening condi-
tions, while displaying stiffer behavior (v~0.70) under low-
screening conditions. We checked whether our initial unre-
fined pool of structures could capture this range of behavior.
The derived power law shown in Figure 4A falls in between
these limits, illustrating that the initial pool of structures is
physically reasonable. Furthermore, the range of structures
generated in the initial pools at each length is broad enough
to provide coverage of both extreme chain conformations.
The unrefined pools are therefore well positioned to match
any ionic condition ssNA chains may be in upon subsequent
refinements.

To check the second requirement, the whole iterative re-
finement scheme was run multiple times on synthetic input
data with a 2% uncertainty included on the intensity values.
Each separate implementation utilized a differing ensemble
size. The reduced x° of the ensembles in the final rounds
of selection were used to assess the minimum number of
structures per ensemble required to best fit the data. The fits
(Figure 4B) show a decrease in x ges” from a maximum of
0.95 with one structure per ensemble, before plateauing at
a X red” of 0.04 for an ensemble consisting of 20 members.
These low chi-square values even for one-member ensem-
bles are a result of the synthetic input, and are not realisti-
cally achievable when applied to experimental data. Never-
theless, this test shows that the minimum number of struc-
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Figure 5. Demonstration of the applicability of EOM to the study of ss-
NAs. Two test cases (A and B) with known Ry and R distributions (blue)
were generated and fed to the iterative refinement scheme. The pools gen-
erated in the final chain building rounds are shown (dotted black) along
with the distributions associated with the models selected from these pools
(green) by GAJOE.

tures per ensemble required to fit free nucleic acid systems
is around 20.

Recovery of conformational distributions

The use of EOM to produce R distributions for multi-
domain and intrinsically-disordered proteins is well estab-
lished (21,22). Such behavior however, has not been demon-
strated for flexible linker type molecules such as ssNAs. An-
other intriguing possibility is the extraction of additional
parameters useful in the study of nucleic acids, in particu-
lar the end-to-end distance R. To illustrate that the refine-
ment method is capable of capturing and reporting these
parameters, two test cases with known R, and R distribu-
tions were simulated and used as the input for our scheme.
The results (Figure 5) show the good agreement obtained
between known and EOM-derived distributions, with both
the shape and extent of conformational space recovered. It
is somewhat surprising that the R distributions are repro-
duced, given that EOM only indirectly constrains this met-
ric. These examples establish that the use of the pool re-
finement mechanism paired with EOM is applicable to the
study ssNAs conformations.

Recovery of model parameters

While details of individual models are certainly far from dis-
cernable in a low-resolution technique such as SAXS, en-
semble generalizations relating to specific torsion sets are
extractable. As SAXS is sensitive to the overall shape of
molecules in solution, and because the shape of the chain is
governed by specific sets of torsion angles defining the phos-
phate backbone, some global information about these an-
gles should be recoverable. The refinements in our method
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Figure 6. (A) The effect of refinements on the weight (w) of suite Bl com-
pared to all other suite weights. With each round of selection from the pool
by GAJOE, models are identified which contain a higher content of suite
B1 than the pool average. This suites weight is subsequently increased for
the proceeding round of structure building. This trend continues until the
scheme converges. (B) The mean OCF of ensemble structures (solid colored
lines), is initially far from representing the known half B-form helix (black
circles). Refinements to the suite weights allow structures whose backbone
shape more closely resemble the input data to be generated in the pool.
Eventually the route of the backbone is matched. (C) Evolution of ensem-
ble structures (solid colors) compared with the known input structure (bold
blue) as refinements progress. Structures were aligned with DAMSUP (62)
with enantiomorphs allowed. Note that near the latter refinements, per-
fect overlap of input and ensemble structures occur, and therefore fewer
structures are ‘seen’ as the refinements progress.

allow us to reconstruct the mean shape and suite composi-
tion of chains defining the input SAXS curve. To quantify
the directional persistence of the chain, we calculate the ori-
entation correlation function (OCF), defined as:

< COSQ,']‘ >=< f,’ 'fj >

Here, #; is the normalized bond vector between the ith and
ith+1 phosphate in the chain. The average dot product be-
tween bond vectors is computed as a function of separation
along the chain (li-fl). The average OCF of all members in
the selected ensembles are used to interpret the mean shape
of the molecule for a given condition.

To demonstrate the refinement scheme’s ability to recover
mean chain composition and shape, we generated the most
ordered ssDNA structure one can imagine, a half-canonical
B-form helix (29 instances of dA suite B1) and used the the-
oretical SAXS profile from this conformation as input for
our method. Figure 6A and C show the evolution of suite
weights and selected ensemble structures with refinements
when solving this test case. For presentation purposes, the
ensemble structures shown in Figure 6C were aligned with
DAMSUP (62). Initially, the suite weights are far from rep-
resenting a structure pool containing canonical B-form he-
lices. GAJOE therefore identifies conformers from the pool
that best approximate this state, selecting models that by
chance have a larger composition of the Bl suite than the
pool average (Figure 6C, red-yellow structures). Suite B1 is
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thus re-weighted more heavily in later refinement rounds.
This procedure results in a gradual increase in the weight of
suite B1, until the scheme converges after refinement round
seven, where full B1 helices are represented in the pool (Fig-
ure 6C, blue-cyan). This test provides a further example of
the effect of ensemble size as shown in Figure 4A. While
the input test case is a sole conformation, and our ensemble
size consists of 20 structures, the allowance of repeat selec-
tions results in the same model being chosen multiple times.
Hence the quality of the fit is unaffected as long as the en-
semble size is sufficiently large.

The mean OCFs of the selected structures for each refine-
ment round are shown in Figure 6B. The early rounds of en-
semble optimization yield structures that poorly represent
the true shape of the input backbone (black circles), display-
ing no clear oscillatory features characteristic of strong base
stacking. Upon subsequent refinements, oscillations in the
OCFs emerge that increase in amplitude as a higher compo-
sition of suite B1 appears in the ensemble structures. After
round seven, the OCF remains mostly static (as expected
from the convergence of suite weights) and matches the in-
put B-form helix. Slight variations at the largest phosphate
separations are however still seen, as the end bases make lit-
tle contribution to the global shape of the molecule. Regard-
less, by employing an iteratively refining structure pool, ad-
ditional model parameters relating to the mean suite com-
position and backbone shape can be reconstructed. This is
beyond the standard limitations of traditional EOM, where
the selected models solely provide distributions of R, and
Dmax-

‘We note however, that due to the limited resolution of
SAXS, our method is sensitive to the global shapes and sizes
of the chains under study, as well as the presence of repeat-
ing structural motifs (such as base stacking, chain stiffening
and ion binding pockets) in the phosphate backbone. As
such, the OCF and strongly weighted suite selections are
the safely extractable parameters from this analysis. Less
frequently selected suites present in the refined structures
act to contort the chain into the correct global shape. No
deeper interpretation is given to these subsidiary suites. A
possible extension to improve this resolution would incor-
porate wide angle X-ray scattering (WAXS) data to further
refine the selected ensemble structures, as is routinely ap-
plied in other works (63,64). In this case however, special
care would need to be taken in calculating the theoretical
scattering profiles at high-q, where hydration models be-
come influential (65).

As a second check, three dT chains derived from crys-
tal structures (PDB: 2C62, 4GNX and 4GOP) were used
to provide test cases for the refinement scheme. Figure 7
shows the final selected ensembles (light red) for each case,
together with the input structures (green). Good agreement
is obtained between the selected ensemble structures and the
input for all cases, confirming the refinements are having
the desired effect of recreating the mean backbone shape
when viewed together. Additionally, this confirms that our
method is not just self-consistent, but is flexible enough to
reconstruct real chain geometries that are not defined in
terms of the suites in our library.
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Figure 7. Three poly dT chains derived from crystal structures were used
as test cases for the refinement scheme (solid green sticks) (A) PDB: 2C62
(B) PDB: 4GNX (C) PDB: 4GOP. The EOM derived ensembles (red lines)
clearly show that the mean shape of the backbone is reproduced for each
case. All structures were aligned with DAMSUP with enantiomorphs al-
lowed.

Application to dT3, and dA3,

To experimentally test the method, we chose to focus on
the conformations of dT3, and dAjy at low salt (20mM
NaCl). These molecules display distinct conformational
preferences and have been widely investigated, hence they
are the ideal test subjects for the iterative refinement scheme.
After fifteen rounds of refinement, the final selection re-
sulted in excellent fits to the experimental SAXS data, as
shown in Figure 8. The selected ensembles fit the data with
X red” values of 1.00 and 0.98 for dT3y and dAjz, respec-
tively, improved from the initial round of selection using
the unrefined pools. The evolution of chi-square with re-
finements show a gradual improvement of the fits for both
homopolymers, followed by a plateau after which the fits
to the data do not improve. This trend is echoed in the JSD,
which is initially large when the pool and selected ensembles
suite distributions are disparate. Subsequent refinements
decrease this distance, eventually remaining constant when
the scheme has converged. These metrics indicate that the
refinements have the desired effect of increasing the quality
of models in the pool, and that the method has converged
on a solution well before round 15 of refinement.

From the SAXS curves, the mean radii of gyration for
dT30,and dA3j are measured to be (29.6 +0.3)A and (27.2 +
0.3)A respectively (Supplementary Figure S4). Using the it-
erative refinement scheme, we can further mine these curves
to obtain the distributions of both R, and R for each ho-
mopolymer. To aid in visualizing these distributions with
respect to individual models in the ensembles, we move from
the 1d representation of R, and R histograms previously in-
troduced, to a 2d heat map (Figure 9). In these plots, each
model in the ensembles defines a point in space, located by
its R and R value. The heat on the map is determined by
calculating the number of states within a 2A circle centered
about each point. The bounding models in the pool are now
represented by the purple dashed contours. By comparing
the populated region of conformation space to the extreme
states of the pool, it is clear that both dT3y and dAjy are
only moderately flexible at these low salt conditions; with
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Figure 8. The EOM fits (dashed blue) to the experimental SAXS data
(solid red) with associated experimental errors (gray) and residuals (inset)
for (A) dT3p and (B) dA3g. In the residual plots, we limit the y-axis to en-
able the high-q agreement to be easily seen. The effect of refinements on
the reduced chi-square (X 2req) and Jensen Shannon Divergence (JSD) of
the selected ensembles for each molecule are also shown. The SAXS data
and additional information, such as Kratky and Guinier plots, are available
on SASDBD (dT3p: SASDBD6, dA3p: SASDBES®), and are reproduced in
Supplementary Figure S4.

the largest structures in the pools not selected. The extent of
coverage in conformational space (EoC) also appears to be
roughly equal for both polymers, indicating each is as flexi-
ble as the other in terms of accessible states. This finding is
surprising, given that dAj is generally considered a more
rigid polymer than dTs (5). While the EoC is comparable,
the density of structures in R,-R space is far higher for dAzg
than dTj3g, suggesting that the former has a stronger prefer-
ence for certain conformations than the latter. Despite dif-
ferences in the global size of each polymer as reported by

R,, the mean end-to-end distance for both is 70A. Thus,
while dAj;¢ is on average more compact, its length remains
roughly equivalent to that of dT3y. The associated R distri-
butions echo the conformational preferences as noted ear-
lier, with d T3y much more smeared over many length scales
than the more constrained dAs;.

To pictorially represent the above conformational spaces,
we show one ensemble of structures for each polymer (Fig-
ure 9, right). The most striking difference between the two
is seen in the route of the phosphate backbone. In dA3, the
strong propensity for base-stacking sets the backbone in a
tortuous wind, juxtaposed to dT3y where a lack of stacking
interactions yields straighter conformations. The ensembles
reveal that while there is a large variety in chains required to
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Figure 9. Conformational spaces (Ry and R) were formed from every selected model in the (A) dT3( ensembles and (B) dA3y ensembles (500 sets of
20 models for a total of 10 000 points) (left). Projections onto 1d Ry and R histograms are also shown. On the right, one of the 500 sets of 20 member
ensembles reconstituting the experimental curves are displayed. These ensemble structures are available on SASBDB, (dT3p: SASDBD6, dA3p: SASDBES®).
The repeatability of the conformational spaces is demonstrated in Supplementary Figure S5.

represent the SAXS data, the structures themselves are dis-
tinctly non-globular, in agreement with previous ab initio
methods of structure determination for DNA homopoly-
mers (35).

To quantify these observations, we examine the mean
number of a given torsion set per structure (Figure 10A). In
this view, d A3 features a high degree of base-stacking, with
large population of the B-form suites B2 and B1. The latter
canonical B-form suite is more favored. In contrast, dTs
shows a strong bias for suites which straighten the phos-
phate backbone, such as the p3 family, with only marginal
base-stacking present through suites B2 and hybrid B2A.
These results agree well with AFM pulling experiments on
dAsp and d T3, where there is little sign of any base-stacking

in dT;, but extensive stacking in dAj (66). Unlike these
experiments, we obtain these metrics for the molecules in
their natural, unextended states at low salt and can quan-
tify the mean number of stacked bases per chain without
referring to the other for a baseline. While on average, d T3
and dAjzy show strong preferences for particular suites, the
range of subsidiary torsion sets selected in both polymers
emphasizes the plasticity of these systems.

Finally, we assess the directional persistence of the phos-
phate backbone for all ensemble structures by looking at the
OCF (Figure 10B). This metric is useful for both identify-
ing structural motifs in the backbone of a collection of mod-
els, and for testing polymer theories. To our knowledge, this
is the first time an OCF has been experimentally derived.
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Figure 10. The mean suite composition (A) and OCF (B) of all selected
models in the ensembles for dT3) (red) and dAsp (blue). We additionally
plot the OCF predicted for a WLC model (dashed green), fit using the pa-
rameters derived from the dT3( ensemble structures and the measured per-
sistence length from (8). The repeatability of both these metrics is demon-
strated in Supplementary Figures S6 and S7.

The OCFs clearly emphasize the differences in backbone
shape and suite selection between dAsy and dT3p. A grad-
ual decay is observed for dT;p with increased separation,
consistent with theories on charged polyelectrolytes where
the chain gradually ‘forgets’ its orientation with increasing
number of monomer steps (67). The trend however is not
well described through a simple exponential decay, as would
be predicted by a WLC model (shown as the dashed green
line). This is unsurprising; given the low ionic strength (20
mM monovalent salt) we would expect repulsion between
distant chain elements to stiffen the polymer at large base
separations, an effect that is neglected in a WLC. dAjp on
the other hand features an oscillatory OCF, a result of the
helical nature of the polymer, where the backbone returns
to its original direction after one helical period. Referring
back to the mean number of suites per structure, we see
that the two stacked conformations B2 and B1 are far more
prevalent than any other suite selected. This results in long
runs of B1 stacks in the selected structures, with occasional
breaks likely being B2 suites. In this way, there is a correla-
tion at large base separations which exceeds that expected in
the conventional polyelectrolyte theory. The fact that most
suites in dA3( are involved in stacks of B1 also explains the
sharper decay of OCF seen at small separations relative to
dT3g. The sharp wind of the backbone in extended B1 runs
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results in a greater decay of the OCF when compared to the
straighter nature of dT3( suite selections.

CONCLUSION

Here we have outlined a dynamic pool generation and iter-
ative refinement scheme for fitting ssDNA structures to ex-
perimental SAXS data. Through test cases and experimen-
tal examples, we have shown that the method is a promis-
ing and flexible way to determine conformational distri-
butions associated with ssDNA’s in solution. Furthermore,
by pairing EOM selection with an iteratively refining pool,
we have shown that differences in mean backbone shape
and chain composition are distinguishable when applied to
homopolymers with disparate stacking propensities. While
this work focused on homopolymers of ssDNA, future ef-
forts will extend the modeling technique to mixed sequence
ssNAs (RNA or DNA). Additionally, the scheme could nat-
urally be reworked to incorporate WAXS data, enabling fur-
ther refining of the model structures. This style of EOM led
structure selection and refinement may also be applicable to
modeling more complex RNA structures and flexible pro-
teins.
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