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ECE4740: 
Digital VLSI Design

Lecture 14: Pass transistors and
transmission gates
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Other CMOS logic styles

Ratio’ed logic

501
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Why do we even care?

• Advantages of static CMOS

– Low static power

– Robust

– Supported by most synthesis & back-end tools

• “Disadvantages” of static CMOS

– For N inputs, requires (at least) 2N transistors

– PUN can be area consuming

– Same function is computed twice
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Ratio’ed logic

• Goal: Reduce # of transistors over CMOS

• Ratio’ed = functionality depends on ratios!
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Image taken from: CMOS VLSI Design: A Circuits and Systems Perspective by Weste, Harris
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Ratio’ed logic with resistive load

• N transistors + load RL

• VOH=VDD

• VOL=RPDN/(RPDN+RL)

• Asymmetric VTC

• Reduced noise margin

• Static power consumption

• tpLH=0.69RLCL

• What is tpHL?
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Pseudo-NMOS w/ active load

• VOH=VDD

• For VOL assume NMOS lin. & PMOS sat.
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Image taken from: CMOS VLSI Design: A Circuits and Systems Perspective by Weste, Harris
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VTC of pseudo-NMOS
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Image taken from: Digital Integrated Circuits (2nd Edition) by Rabaey, Chandrakasan, Nikolic

Disadvantage: Static power

• Static power consumption when output is 
low (direct current through PMOS)

• Assume PMOS is in saturation:

• One would need better loads!

507
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Other CMOS logic styles

Ratio’ed logic

508

Improving loads is critical

• Differential cascode voltage switch logic (DCVSL)
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DCVSL details

• DCVSL has full rail-to-rail swing

• No static power consumption

• Provides complementary signal

• Gate is still ratio’ed! 510
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• PDN1 and PDN2 are 
mutually exclusive

– If PDN1 conducts 
PDN2 is off 

– And vice versa
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DCVSL example: XOR/XNOR
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Why aren’t we always using DCVSL? 

• Advantages of differential cascode voltage 
switch logic (DCVSL) over static CMOS

– Complementary outputs immediately available

– May reduce # of transistors up to 2x

– Keeps values (similar to latches)

• Disadvantages

– Doubles number of wires (affects density)

– Often higher dynamic power dissipation

– Design tools mostly handle only static CMOS
512

Pass-transistor logic

Useful for certain logic gates

513
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Full adder in static CMOS

Cin A B Σ Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1
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• Requires 24+4 (for C and Sum inv.) transistors

Image taken from: Digital Integrated Circuits (2nd Edition) by Rabaey, Chandrakasan, Nikolic

Is there a better way?

• XOR/XNOR gates usually require a large 
number of transistors in static CMOS logic

• Remember: pass transistors
– NMOS switch closes if gate input is high

• But, NMOS pass strong 0 but weak 1
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Pass transistor (PT) logic

• What is this circuit doing?
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• Find truth table

• Is it static (is there 
always a low impedance 
path to both rails)?

• How many transistors 
would you need with 
static CMOS?

AND gate with pass transistors

A B F=A*

B

0 0 0

0 1 0

1 0 0

1 1 1
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• Requires 4 logic gates (needs an inverter)

• CMOS logic would require 6 logic gates

• The gate can be static

• No rail-to-rail swing
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Properties of PT logic

• Gate can be static (if designed properly)

• N transistors instead of 2N

• Usually no static power consumption

• Ratioless

• Gate has no signal directivity, i.e., is 
bidirectional (versus unidirectional)

• Non-inverting logic

518

Complementary PT logic (CPL)

• Also called differential PT logic (DPL)

• Similar to DCVSL
– Input complementary inputs

– Output complementary outputs
519

PT network

A

B

A
B F

inverse PT

network

A
A
B

F

F

F

B



6/8/2018

11

CPL/DPL efficient for XOR etc.

• Pros
– No need for extra inverters (theoretically)

– Static and modular (same topology)

– Simple XOR (good for adders)
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Disadvantages of CPL/DPL

• Cons
– Additional routing overhead (2x)

– Static power dissipation problems

– Bidirectional
521

A

A F=AB

F=AB

BB

XOR/XNOR

A

A
F=AB

A

A

B F=AB

B

B B

AND/NAND

A

A

B F=A+B

B
F=A+B

BB

OR/NOR



6/8/2018

12

CPL/DPL-based full adder

• 20+4*2 = 28 transistors (=static CMOS)

• Why are we using inverters at the output?
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VTC of PT AND gate

• Pure PT logic is not regenerative

– Signal gradually degenerates after passing 
through a number of PTs (use inverters to fix)
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Buffered pass transistor logic

• Buffer needed to recover weak 1

• Body effect makes it even worse
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Image taken from: Digital Integrated Circuits (2nd Edition) by Rabaey, Chandrakasan, Nikolic
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Body effect revisited

• Large VSB when pulling high (B is tied to 
GND and S charged close to VDD)

• Voltage drop at node x is even worse
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• M2 may be weakly conducting forming a 
path from VDD to GND

527

In = VDD

A = VDD
Vx = VDD-VTn

M1

M2



6/8/2018

15

Solution 1: level restorer

• Full swing on node x  no static power

• No static backwards current (restorer only high 
when A is high)

• For correct operation Mr must be sized 
properly  results in ratio’ed logic!
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Solution 1: level restorer (cont’d)

• Ratio’ed logic:

– When node x going from 1 to 0, Mn must be 
stronger than pull up Mr

– Otherwise x never goes below VM of inverter

• Need to size Mn and Mr
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Sizing the level restorer

• Restorer also affects speed and power

– Increases capacitance at node x
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Image taken from: Digital Integrated Circuits (2nd Edition) by Rabaey, Chandrakasan, Nikolic

Transmission gates

Proper way of using pass transistors

531
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Transmission gate

• Full swing bidirectional switch controlled by 
the gate signal C

• NMOS good pull-down; PMOS good pull-up

• Enables rail-to-rail swing
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Resistance of transmission gate

• TG has only mild non-linearity
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TG 2-to-1 multiplexer (MUX)
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XOR gate using transmission gates

• Requires only 6 transistors

• CMOS requires 12 transistors
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XOR gate using transmission gates

• Requires only 6 transistors

• Transmission gate ensures no voltage drop!
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TG-based full adder

• Similar delays for sum and carry
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Image taken from: Digital Integrated Circuits (2nd Edition) by Rabaey, Chandrakasan, Nikolic
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TG-based full adder (cont’d)

• 16 transistors (opposed to 28 for CMOS)

• Full rail-to-rail swing
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Caveat: delay in TG networks
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• Elmore delay of RC chain:
quadratic delay increase 

in number of TGs

Image taken from: Digital Integrated Circuits (2nd Edition) by Rabaey, Chandrakasan, Nikolic

Delay optimization

• Insert buffers into TG network

• Optimum number of buffers:

541

rule of thumb: no more 
than 2-3 TGs in series

Image taken from: Digital Integrated Circuits (2nd Edition) by Rabaey, Chandrakasan, Nikolic


