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1. INTRODUCTION 
COVID-19 has proliferated around the world since the start of 2020 and cost lives and damaged economies like 
never before. Highly dense metropolitan areas are the most vulnerable places for the spread of infectious diseases 
(Alirol et al., 2011; Bell et al., 2009). Even with a potential vaccine, there is a serious public concern about the risk 
of epidemic spread in urban areas that impacts planning for cities. Such plans encompass traffic congestion and 
vehicle emissions, which are major issues in large metropolitan areas. Vehicle exhaust emissions are major 
contributors to greenhouse gas (GHG) emissions (US EPA, 2019) and cause negative health issues (Barone-Adesi et 
al., 2015; Batterman et al., 2014; Beelen et al., 2009; Slama et al., 2007). In a post-pandemic era, it is not clear what 
the trade-offs are between traffic congestion, emissions, and policies impacting travel behavior to mitigate the 
spread of COVID-19 including social distancing and working from home. 

New York State set recovery plans in multiple phases (NY, 2020), where Phase 1 reopened only 
construction, agriculture, limited retail, manufacturing, and wholesale trade, while Phase 4 reopened most 
businesses and activities. As New York City (NYC) entered Phase 4 reopening from July 20, 2020, however, it 
became more evident that driving volume might increase post-COVID. With reopening the economy, traffic 
congestion returned to urban areas at varying rates. By late summer, vehicle miles traveled (VMT) was not only 
back to pre-COVID levels but in some areas the number of trips was more than 25% greater than pre-COVID levels 
(Streetlight, 2020). Vehicular traffic volumes at major New York City (NYC) crossings had bounced back to only 
10% below pre-pandemic levels by the week of August 17 (Gao et al., 2020a). Meanwhile, transit trips were up from 
their 90% reduction during early April, but still down by 59% in October compared to 2019 (MTA Transit Data, 
2020). The revenue loss due to transit ridership reduction and its subsequent series of effects are big issues in the 
post-COVID economic reopening. Without enough federal aid, the MTA may consider significant service reductions 
and lay-offs of operating staff, transit riders may face service cuts and decline of the quality of service due to the 
financial loss (MTA plan, 2020). 

Social distancing as required by the Centers for Disease Control and Prevention (CDC) and other health 
authorities presents a new challenge not only for the transit system but also for the entire transport system in post-
pandemic economic reopening. As driving volumes increase in the reopening, higher vehicle mode shares will 
exacerbate congestion and vehicle emissions. Consequently, this will negatively affect public health and climate 
change as long as this phase persists. There has been no strong empirical evidence that transit systems have been 
superspreaders for COVID-19 when social distancing practices are followed (Sam Schwartz, 2020; Sy et al., 2020; 
Tirachini and Cats, 2020). But previous studies do warn of the potential risks of outbreaks through public transit 
systems, especially if social distancing practices are not followed (Sam Schwartz, 2020). 

With the added complexity of social distancing requirements, conventional traffic management policies 
may backfire on public health and hasten the spread of COVID-19. For example, congestion pricing shifts solo 
drivers to shared rides or public transit, which increase potential exposure when social distancing is not followed. 
However, Hu et al. (2020) and Wang et al. (2020) show that if even a fraction of people shift from transit to car 
mode, it will gridlock the streets and impact traffic congestion and emissions disproportionately. One recent report 
shows that pollution and low air quality may cause a higher risk of the pandemic spreading, presenting a 15% 
increase of death in regions with higher air pollution (Conticini et al., 2020). Congestion and emissions already have 
direct impacts on people’s health, economic growth. and social equity, and social distancing further complicates the 
understanding of these impacts. Therefore, understanding the trade-offs between confining the spread of COVID-19 
and traffic congestion and emissions and environmental impacts remains a critical policy objective to prepare 
communities to plan for the post-pandemic transportation system in the near future. 

We propose to explore this research question using NYC as a case study. NYC entered Phase 4 reopening on 
July 20, 2020, but there is uncertainty about people’s mode preference changes, and it is likely that many people 
may continue to work from home before vaccines are distributed throughout the population. Therefore, a traffic 
demand model is needed that is sensitive to individuals’ mode choices and preferences to work from home while 
capturing traffic congestion and emission effects at a citywide level. To accomplish this, we employ agent-based 
travel simulation models built in MATSim (see Chow et al., 2020; Horni et al., 2016) combined with a Post 
Processing Software for Air Quality (PPS-AQ) estimation to evaluate the transportation system in terms of traffic 
congestion, emissions, and social proximity in public transit that can provide insights for transport policies in the 
post-pandemic era. 

Agent-based simulation models are effective in capturing the interactions between agents and transportation 
systems to output the equilibrated simulation results at the agent level. A synthetic population was developed for the 
8M+ population in NYC (Chow et al., 2020; He et al., 2020a) that includes employment in North American Industry 
Classification System (NAICS) industries. Based on the synthetic population along with calibrated transit schedules, 
a multi-agent simulation model, MATSim-NYC (Chow et al., 2020; He et al., 2020b) was developed for NYC. To 



            
  

       
          
  

                
        

       
       

                
                

     
     

 
      

  
 

  
        

           
       

             
    

         
             

          
           

             
           

         
 

 

 
              

 
 
      

           
        

       
   

simulate traffic conditions during the COVID period, the MATSim-NYC model was recalibrated using ridership and 
work-from-home data during the COVID-19 period to update the mode choice utility functions for the synthetic 
population (Wang et al., 2020), resulting in a model called MATSim-NYC-COVID. The calibrated simulation 
model is used to test the network performance measures, including traffic congestion, emissions, and contact risk in 
transit to derive policy guidelines for cities. 

The unique contributions of this study are threefold: (1) we analyze the spatial and temporal impact of 
COVID-19 on network performance for NYC in the post-pandemic era; (2) we evaluate the trade-offs between 
traffic congestion, emissions, and contact exposure in public transit; and (3) we provide insights into policies that 
can benefit the transportation system without sacrificing public health in post-pandemic era. 

The rest of the paper is structured as follows. In section 2 we discuss the impact of COVID-19 on transportation 
and summarize the scenarios that will be evaluated in this paper. In section 3, we introduce the traffic simulation 
models, emissions estimation model, and contact exposure estimation in transit. Section 4 presents the results and 
discussions. Section 5 presents the conclusion and discusses future work. 

2. REVIEW OF THE IMPACT OF COVID-19 ON TRANSPORTATION AND 
POTENTIAL SCENARIOS 

2.1 Impact of COVID-19 on traveler’s mode preference 
COVID-19 is changing people’s travel behavior, with people shifting their mode preferences from shared use modes 
(e.g., public transit, shared taxis, carpooling) to more personal modes (auto, bikeshare, walking). After the outbreak 
of COVID-19, health authorities published guidelines urging people to avoid large crowds and contact with others 
(CDC 2020c; DfT, 2020). However, these are features of transit systems at normal times. Facing this infectious 
disease, people may try to reduce their risk by taking precautionary actions (Sadique, 2007). Many people avoided 
taking public transit as it is difficult to maintain social distance and avoid contact with others. After the severe acute 
respiratory syndrome (SARS) epidemic in 2003, a survey found that 75% of responders reported avoiding public 
transit in response to the perceived threat of the epidemic (Sadique, 2007). In NYC, subway data from the 
Metropolitan Transportation Authority (MTA) shows that transit ridership dropped by 90% during April 2020, the 
height of the first wave of the COVID-19 outbreak in 2020 (Gao et al., 2020b). The estimated impacts of COVID-19 
on mode choices during the shutdown is shown in Figure 1 (Wang et al., 2020). Compared to the pre-COVID 
period, the mode share of transit decreased about 19%, while the mode share of cars increased about 6% in the 
COVID period. 
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Figure 1. Comparison of mode share in the pre-COVID model and the COVID model (source: Wang et al., 

2020). 

COVID-19 has caused changes in traffic patterns due to social distancing practices, but what is unknown is 
how long these changes will last, and whether these patterns will return to the pre-COVID behavior. As such, it is 
difficult to predict the long-run effects on the transit system. On the one hand, transit ridership may slowly return to 
pre-COVID levels in the future. On the other hand, people’s travel behavior may be changed by a longstanding fear 
of transit. As the community reopens, the changed behavior may exhibit inertia (Cherchi et al., 2014; Chorus and 



           
  

              
      

         
               

                 
           

           
          

          
            

             
              
 
  

       
        

    
         

               
        

           
       

         
        

              
             

            
     

        
           

              
     

         
       

          

        
              

         
   

         
         

      
 

   
            

      
       

           
       
             

          
         

Dellaert, 2009; Srinivasan and Mahmassani, 2000), where travelers continue to behave in a stay-at-home manner 
due to residual caution. 

With more data revealed during the recent reopening, we are seeing a shift to an outright “new normal” for 
transportation. In many cities, transit ridership has rebounded during reopening, but is still lower than before the 
pandemic. Subway ridership from multiple cities in China shows that 85% of pre-COVID ridership levels has been 
restored six months after full reopening. Where a second wave occurred, only 65% of ridership was restored 
compared to pre-COVID levels (Gao et al., 2020a). Ridership on the Tokyo Metro dropped by 60% in April 2020 
during the lockdown period and reached 63% of normal levels by August after reopening (Sam Schwartz, 2020). 
Ridership on the Paris metro system dropped to just 5% of pre-pandemic rates by April 2020 and by late June 2020 
recovered to 55% of pre-pandemic rates (Sam Schwartz, 2020). Transit ridership remains far below pre-COVID 
levels, but car traffic has roared back. Even with more people working from home after the outbreak of COVID-19, 
INRIX has reported that VMT across the United States surpassed 100% of normalized VMT in July 2020 
(Markezich, 2020). In NYC, after the Phase 4 reopening beginning in July 2020, transit ridership was restored to 
41% of normal by October 2020, but VMT was restored to 104% of pre-COVID levels (Streetlight, 2020). 

2.2 Impact of CDC guidelines on transit capacity 
Health authorities across the world have prepared guidelines for people to safely use public transit and prevent the 
spread of COVID-19. For instance, for employees who commute to work using public transportation or ride-sharing, 
the CDC suggested that employers should “offer employees incentives to use forms of transportation that minimize 
close contact with others (e.g., biking, walking, driving or riding by car either alone or with household members)” 
(CDC, 2020b). For people who need to use public transportation, the CDC suggested they “avoid touching the 
surface, practice social distancing, and practice hand hygiene” (CDC, 2020c). Ultimately, social distancing 
guidelines require people to stay at least 6 feet (2 meters) from other people. 

To ensure social distancing, some cities have reduced vehicle capacity for public transit during the shutdown 
and reopening periods. For example, the Metropolitan Transit Authority of Harris County (METRO), Texas, 
reduced seating by 50% by tagging seats as unavailable during the shutdown and the current reopening. When buses 
reach capacity, digital signs advise individuals to wait for the next bus (Houston Metro, 2020). New Jersey Transit 
Corporation (NJ TRANSIT) was ordered to cut capacity to 50% until July 15, 2020, when the state entered 
reopening stage 2, after which full-capacity operations have resumed (NJ TRANSIT, 2020). In NYC, there was no 
transit capacity restriction during shutdown and reopening, although new markings and signage with directional cues 
have been used to help maintain social distancing and overnight subway closures from 1 a.m. to 5 a.m. to disinfect 
stations and trains were instituted (MTA Service, 2020). Maintaining the social distancing required by CDC 
guidelines should impose an effective reduction on transit capacity. However, it is unclear how such a policy will 
impact transit ridership and the contact risk that commuters will face on their daily commutes. 

Although there is no strong empirical evidence that transit systems have been superspreaders for COVID-19 
(Sam Schwartz, 2020; Sy et al., 2020; Tirachini and Cats, 2020), high population density may increase the risk of 
spreading infectious disease (Salathé et al., 2010; Yang et al., 2007). Understanding the daily travel patterns of 
transit passengers to identify hotspots is important for studying virus spreading, especially for large cities like NYC. 
Previous researchers have studied social interaction and disease spreading using “contact networks” (Bóta et al., 
2017; Litvinova et al., 2019; Salathé et al., 2010). A contact network is a network structure used to represent the 
potential physical encounters between individuals. Mo et al. (2020) used smart card data to model disease spread in 
transit in the case of COVID-19. However, it is expensive and time intensive to collect such real data for each 
individual. Furthermore, there are issues of privacy, as explained in the literature (Funk et al. 2010; Nassir et al. 
2012). Therefore, a model that can capture individual space-time trajectories is needed to compute measures of 
proximity like contact networks to evaluate the impact of social distancing policy. 

2.3 The rise of telework and staggered work hours 
Telework is one of the most popular traffic demand management strategies for reducing commuting trips. As a 
public health measure designed to stem the spread of COVID-19, teleworking increased abruptly after the outbreak 
of COVID-19. Before the COVID-19 outbreak, there was a clear difference between the number of people who 
could telework and the number who did so. The impacts of telework on travel behavior, traffic congestion, and 
emissions have been widely studied in previous research (Asgari and Jin, 2017; Choo et al., 2005; Helminen and 
Ristimäki, 2007; Shabanpour et al., 2018). The COVID-19 pandemic has since forced many companies’ employees 
to work from home on a large scale, behavior which may continue once the pandemic subsides (Kramer & Kramer, 
2020). A number of companies have switched to work-from-home (WFH) policies during the pandemic including 



               
         

     
           
           
      

           
  

               
       

            
        

   
               

            
    

       
   

        
      

 
   
             

 
      

        
        

        
            

   
       
         

      
  

 

Amazon, Facebook, Salesforce, Siemens, Microsoft, Twitter, and Aetna (Courtney, 2020). As the spread of the 
COVID-19 continues to slow in Spring 2021, many companies have announced plans to reopen offices, for example, 
Google announced a hybrid return to work plan that including both remote and in office options (Kelly, 2021). The 
study by Dingel and Neiman (2020) estimated that 37% of jobs in the United States could be performed entirely at 
home. Sostero et al. (2020) estimated that the teleworkable rate ranges between 33% and 44% in five European 
Union member states. Higher teleworking rates could in turn reduce traffic congestion and negative transport 
externalities, such as greenhouse gas emissions. For transit, if a fraction of transit riders shifts to working remotely, 
a de-densified transit could be achieved. 

Besides telework, health authorities are encouraging employers to provide flexible work hours that can shift 
some commuting traffic to off-peak periods. This flexibility in work schedules is also called staggered work hours 
(SWHs). The SWHs strategy allows employees to adjust their commuting time away from peak periods, which can 
help lower the number of vehicles on the road during peak times. The COVID-19 guidance for businesses published 
by the New York City Department of Health and Mental Hygiene (NYC Health) suggests employers “Create 
staggered work hours and make work schedules flexible. For example, instead of all staff reporting 9 a.m. to 5 p.m., 
consider changing some work hours to 10 a.m. to 6 p.m. or 8 a.m. to 4 p.m.” (NYC Health, 2020). For transit, SWHs 
can help reduce population density during peak hours, a change that can increase safety while the pandemic exists. 

These trends raise questions as to how telework and flexible work hours might impact traffic performance and 
transit safety. Is the benefit evenly distributed throughout the city? To address this question, we need a travel 
demand model that is sensitive to the industries that commuters are employed by to compute the proportion of 
people that will work from home in the post-pandemic era. 

2.4 Scenarios 
We identify factors that may have affected or will affect the transportation system as shown in Figure 2, and design 
scenarios with the aim of simultaneously protecting public health from COVID-19 and alleviating traffic congestion 
and emissions. The four key factors that are studied include: travelers’ mode preference changes due to the 
pandemic, social distancing guidelines and transit operations, the rise of remote work, and flexible work schedules. 

A total of 12 scenarios are designed to address the research questions discussed earlier. Because there is 
uncertainty about the amount of inertia in travel mode choices during reopening (without a vaccine), we run two sets 
of scenarios that assume pre-COVID mode choice and COVID mode choice. The impact on ridership of reduced 
transit operational capacity to maintain social distancing is also unclear. As such, separate scenarios are modeled for 
100% capacity and 50% capacity operations. Finally, three sets of post-pandemic strategies are evaluated: no change 
(100% commuting without telework and SWHs), partial commuting with telework assumed, and 100% commuting 
with SWHs. The scenarios listed in Table 1 are designed to investigate the transportation system in the post-
pandemic era. 



 
     

  
 

           
 

      
         

 
      
      
       
      
      
       
      
      
       
      
      

 
 

  
 
   

     
           

              
       

Figure 2. The impact of COVID-19 on transportation systems. 

Table 1 Scenarios to investigate the changes in the transportation system in the post-pandemic reopening 

Scenarios Mode preference Transit Capacity Commuting 
s0 (Base scenario) pre-COVID level 100% capacity No change (100% 

commuting) 
s1 (PreCOVID-100-Telework) pre-COVID level 100% capacity Telework 
s2 (PreCOVID-100-SWHs) pre-COVID level 100% capacity Staggered work hours 
s3 (PreCOVID-50-No) pre-COVID level 50% capacity No change 
s4 (PreCOVID-50-Telework) pre-COVID level 50% capacity Telework 
s5 (PreCOVID-50-SWHs) pre-COVID level 50% capacity Staggered work hours 
s6 (COVID-100-No) COVID level 100% capacity No change 
s7 (COVID-100-Telework) COVID level 100% capacity Telework 
s8 (COVID-100-SWHs) COVID level 100% capacity Staggered work hours 
s9 (COVID-50-No) COVID level 50% capacity No change 
s10 (COVID-50-Telework) COVID level 50% capacity Telework 
s11 (COVID-50-SWHs) COVID level 50% capacity Staggered work hours 

3. METHODOLOGY 

3.1 The agent-based traffic simulation models 
An agent-based transportation simulation framework—MATSim—is used to simulate large-scale transport on a per-
agent timestep-based level (Horni et al., 2016). MATSim optimizes the daily plans for each agent by iteratively 
running the three main components in MATSim: execution, re-planning, and scoring (Balmer, 2007; Horni et al., 
2016). The objective of MATSim is to optimize the daily plans for each agent by iteratively running the three 



      
    

    
 

     
  

    
               

              
     

          
         

         
                 

    
              

         
         

           
       

 
          

      
            

       
      

       
            

     
 

           
              

           
     

               
   

 

 
                                                                                                                  

            

components. In the execution module, all agents choose one plan and execute their chosen plan. The scoring module 
uses a utility function to evaluate the performance of each agent’s plan in the execution module. The re-planning 
module adjusts the plan elements (e.g., departure time, traffic mode) according to the planned score and adapts plans 
to traffic conditions. 

Agent-based simulation models are effective in capturing the interactions between agents and the 
transportation system to output the equilibrated simulation results at the agent level. A synthetic population of NYC 
was created that incorporates the demographic information and travel patterns of 8.24 million people for the base 
year of 2016 (He et al., 2020a). We extracted people’s travel agendas from 2010/2011 Regional Household Travel 
Survey (RHTS), which was conducted by NYMTC, includes 18,965 households with 143,925 linked trips. We 
assign these travel agendas minus travel mode information to individuals in the synthetic population according to 
their home locations and work or school enrollment status. We also sample from the travel survey agendas to 
replicate agendas for the synthetic population. The result synthetic population includes personal attributes like age, 
gender, school enrollment status, work status, and work industry, and household attributes like income group, 
household size, and number of cars owned. The built synthetic population is validated and fit well with the real data: 
an average 4% difference in the distribution of the employment industry proportions compared to 2016 Longitudinal 
Employer-Household Dynamics (LEHD), and 3% to 9% difference compared to different attributes in the NYMTC 
2040 SED Forecasts. A summary is provided with details of the synthetic population available in He et al. (2020a). 

MATSim-NYC (Figure 3(a)) was developed for NYC at normal conditions (pre-COVID) based on the 
synthetic population along with transit schedules from General Transit Feed Specification (GTFS) data (Chow et al., 
2020; He et al., 2020b). The agent-based simulation tool is used for this study for four reasons: 

1) Work-from-home rates are modeled differently by industry of employment, which can be captured with a 
synthetic population (He et al., 2020a). 

2) MATSim-NYC, the underlying model, is the only citywide travel demand modeling tool that includes 
emergent mobility modes like Citi Bike and Uber/Lyft (He et al., 2020a). 

3) MATSim captures time-of-day sensitivities, which are essential for evaluating dynamic transportation 
systems like public transit with differing schedules or staggered work hours. 

4) The multi-agent simulation can track individual trajectories over time, which makes it possible to compute 
interactions between travelers for potential COVID-19 exposure analysis. 

For the mode choice of the synthetic population, a tour-based nested logit model was estimated for Manhattan 
and non-Manhattan population segments. Since MATSim’s mode utility functions are assumed to follow a flat 
multinomial logit (MNL) structure as opposed to nested structures, the estimated mode choice model was converted 
into an equivalent trip-based MNL structure. The validation of the model was conducted using the 2017 Citywide 
Mobility Survey provided by the New York City Department of Transportation (NYCDOT) and shown to be a good 
fit (He et al., 2020a). 

(a) (b) 
Figure 3. Illustration of the simulation for (a) the pre-COVID model and (b) the COVID model. 



 
   

             
                 

            
    

             
              

     
 

 
      

 
            

          
                
            

             
              

               
    

          
     

     
         

        
     

            
               
          

   
              

     
             

        
                 
                  

       

For the network topology, first the base topology was converted into a network in MATSim from Open Street 
Map (OSM) and then a transit network generated from GTFS data is added (the transit schedule for all scenarios is 
generated from GTFS data on Monday August 3, 2020). The road network is shown in Figure 4 (left), while the 
green layer in Figure 4 (right) shows the transit network. For computational efficiency, MATSim models in other 
cities like Zurich (Balmer et al., 2008) typically use a  population scaled to 10%, because of the size of NYC, the 
population in the simulation is scaled to 4% of the real population (~320K agents) with calibration of the road and 
transit networks. Since a 4% scaled population is used, the model results will need to increase by a factor of 25 to 
match the full population size. 

Figure 4. Input road network (left) and transit network (right) of NYC. 

MATSim-NYC was calibrated to 2016 conditions (Chow et al., 2020; He et al., 2020a; He et al., 2020b). The 
road network is calibrated use 2016 bridges/tunnels volumes data (NYCDOT, 2016) and INRIX (https://inrix.com/) 
speed data from NYCDOT. The average relative difference between the simulated link speed and the INRIX data is 
7.2% on freeways and 17.1% on arterials. A screenline was defined along the East River that consists of Queensboro 
Bridge, Williamsburg Bridge, Queens Midtown Tunnel, Hugh Carey Tunnel, Manhattan Bridge, and Brooklyn 
Bridge. The average difference between the total daily simulated volumes and real volumes is only + 1.8% 
(compared to 2.4% with the NYBPM 2010 model). The validation of the MATSim-NYC trip assignment was 
conducted by comparing the outputs to two data sets: ten stations from the 2016 Average Weekday Subway 
Ridership data and fifteen traffic locations from the 2014-2018 Traffic Volume Counts data. The difference in daily 
ridership among the ten stations is 8%, while the median difference in the traffic volumes among the traffic sites is 
29% (Chow et al., 2020). 

To study the changes in travel behavior due to COVID-19, the synthetic population’s mode choice model and 
MATSim-NYC’s network were recalibrated by Wang et al. (2020) using ridership and work from home data during 
the COVID-19 stay-at-home period (March to May 2020) to update the mode choice utility functions for the 
synthetic population. The population’s agenda was modified to have work-from-home rates to fit to data from 
Dingel and Neiman (2020) and GTFS from that period. The recalibrated model (which is called the MATSim-NYC-
COVID model in Figure 3(b)) captures the effect of COVID-19 on shifts in mode preferences from users during the 
stay-at-home period (Wang et al., 2020). Using this recalibrated model, we can compare the post-pandemic 
reopening scenarios where the population is assumed to continue to exhibit either the same mode preferences or 
some degree of change in their mode preferences. 

As NYC entered Phase 4 reopening from July 20, 2020, we evaluated the performance of the MATSIM-NYC-
COVID model during the post-pandemic era in Wang et al. (2020) using VMT data from Streetlight (Streetlight, 
2020), daily transit ridership data from the MTA (MTA Transit Data, 2020), and Citi Bike trip ratios from Citi Bike 
system data (Citi Bike, 2020). The transit schedule was updated to Monday August 3, 2020 from GTFS data. 
Assuming people’s mode preferences during the crisis are maintained, the trip ratio was predicted for all traffic 

https://inrix.com


     
        

          
            

             
      

           
         

        
         

       
   

   
              

                
       

          
                   

            
               

 
      

 

  

 
 
  

 

 
 

 
 

  
 

 
 

     
          
    
    
     
     
        
    
         
       
       
        
           
            
        
     

 
 

   
               

               
       

                
      

modes assuming all the commuting traffic returns. The predicted VMT restoration from the simulation model is 
137%, while the observed average daily VMT in October 2020 was restored to 104% of pre-COVID levels. The 
observed average daily transit ridership in October 2020 was restored to 41% of pre-COVID level and the predicted 
transit trip restoration was 77%. The observed average Citi Bike ridership in September 2020 was restored to 101% 
compared to 2019, and the predicted Citi Bike trip ratio was 110%. It should be noted that some industries that were 
planned to be fully reopened in Phase 4 did not do so (e.g., universities, indoor dining, etc.). Therefore, predicted 
VMT and transit ridership are higher than the observed data. In addition, the overestimation of the trip ratio in Wang 
et al., (2020) might have arisen because the reopening scenarios failed to capture telework populations, which we 
address in this study by incorporating a telework ratio in the scenario analysis. 

To evaluate the impact of telework during reopening, the WFH rate was calculated based on a real-time survey 
conducted by Fluent Pulse (Fluent Pulse, 2020). Their results showed that “if given the option, 59% of Americans 
currently working from home would continue to do so once restrictions are lifted and offices reopen.” According to 
the classification of teleworkable employment for different industries by Dingel and Neiman (2020), the WFH rate 
during the COVID-19 shutdown was estimated as 44% for NYC by Wang et al. (2020). We assume during 
reopening that 59% of people continue to WFH based on findings from the survey by Fluent Pulse (Fluent Pulse, 
2020). Table 2 shows the estimated WFH rates during COVID-19 based on the classification in Dingel and Neiman 
(2020) and the estimated WFH rates in the post-COVID reopening corresponding to the survey results. 

To test the impact of staggered work hours, we simply assume 50% of people change their departure times to 
one hour earlier and the remaining 50% of people change their departure time to one hour later. The assumptions for 
staggered work hours and telework can be customized in the future when more data is revealed. 

Table 2 Estimated WFH rates during COVID-19 and post-COVID 

ID Industry 

Estimated 
WFH 
rates 
for 

COVID-
19 

shutdown 

Estimated 
WFH 
rates 
for 
post-
COVID 
reopening 

1 Not working 1 0.59 
2 Agriculture, forestry, fishing and hunting, and mining 0.92 0.54 
3 Construction 0.81 0.48 
4 Manufacturing 0.78 0.46 
5 Wholesale trade 0.48 0.28 
6 Retail trade 0.86 0.51 
7 Transportation and warehousing and utilities 0.72 0.42 
8 Information 0.28 0.17 
9 Finance and insurance, and real estate and rental and leasing 0.41 0.24 
11 Professional, scientific, and technical services 0.2 0.12 
12 Management of companies and enterprises 0.21 0.12 
13 Administrative and support and waste management and remediation services 0.69 0.41 
14 Educational services and health care and social assistance 0.46 0.27 
15 Arts, entertainment, and recreation and accommodation and food services 0.83 0.49 
16 Other services, except public administration 0.69 0.41 
17 Public administration 0.59 0.35 

3.2 Emissions and energy simulation 
The PPS-AQ developed by Cornell University is used to estimate the air quality impacts of reopening scenarios. 
PPS-AQ integrates the outputs from the traffic simulator with the emission rates from the US Environmental 
Protection Agency (US EPA) Motor Vehicle Emission Simulator (MOVES), as shown in Figure 5 (Baghestani et 
al., 2020). PPS-AQ first adjusts the vehicle miles traveled and speed on each roadway segment based on the 
observed data for the base condition and according to seasonal and monthly variations. To estimate carbon dioxide 



equivalent (CO2eq) and particulate matter with diameters that are 2.5 micrometers and smaller (PM2.5) emissions 
rates in grams/mile, we tailored US EPA MOVES with local data including source type population, inspection-
maintenance programs, fleet age distribution, average speed distribution, fuel characteristics, and meteorology data. 
MOVES also has the ability to estimate emissions rates based on road types including rural restricted, rural 
unrestricted, urban restricted, and urban unrestricted. The emissions rates are estimated for 16 speed bins from 2.5 to 
75 miles per hour at 5 mph increments. PPS-AQ calculates the emissions by multiplying traffic volume on the 
roadway segments with the emissions rates matched for roadway type and average travel speed for every hour 
during a daily period. Finally, to calculate the total emissions inventory, the PPS-AQ aggregates the emissions on 
roadway segments for the entire roadway network. 

Emission Inventory 

Aggregation and Post-Processing 

Hourly Link Emission 

•Road type distribution 
•Source type population 
•HPMS VMT type 
•Monthly VMT fraction 

•Calculation of VMT •Daily VMT fraction Traffic Volume and Speed MOVES Rates 
•Monthly/Seasonal factors •Hourly VMT fraction 
•HPMS Reconciliation factors •I/M coverage 
•Post-process speed/travel time Tailoring •Source type age distribution Adjusting 

•Average speed distribution 

Traffic Simulator MOVES 

         
             

            
          

       
        

         
     

 

 
    

 
   

        
             

                  
        

               
             

   
             

             
                    

      
          

               
         

 
        

                 
         

                   
   

          
           

          
 

 

 

•Fuel supply 
•Fuel formulation 
•Meteorology data 

Figure 5. Integrated emissions modeling framework. 

3.3 Quantifying contact exposure in transit 
One of the advantages of using a multi-agent simulation is that individual space-time trajectories can be simulated, 
which allows us to compute measures of proximity such as contact networks. The contact network structure is used 
to quantify the number of contacts made by the movement of individuals using transit (Bóta et al., 2017). The output 
from MATSim includes the activity and travel path for each agent. Transit trips can be extracted with a detailed 
commuting pattern at both temporal and spatial levels. The contact network can be used to calculate the number of 
contacts in the transit system as well as to identify hot spot locations that need to be closely monitored for the 
control of disease spreading. 

We define the contact network as a graph �(�, �), which is a set of nodes (�) together with a set of edges 
(�). The nodes in the contact network refer to passengers and the link between them is the edge if two passengers 
were traveling on the same vehicle at the same time. This network is undirected since the relationship is mutual. The 
edge of the network includes three labels: contact start indicates the start time of the contact between two 
passengers, contact duration indicates the length of the contact and vehicle id indicates in which vehicle the contact 
takes place. The "vehicle" here refers to specific car within a train. Since MATSim only provides the number of 
people enter/exit of a subway train, but there are no contact for people in different vehicles, so we will divide the 
total number of contacts by the number of vehicles per train. A typical subway train consists of 8 to 10 vehicles, here 
we assume each train has 10 vehicles. 

The original network can be divided into several subgraphs based on the edge labels. We assume 
passengers are only considered in the contact network if their contact duration is longer than a certain amount of 
time. According to public health guidance from the CDC, individuals who have had close contact (< 6 feet) for 
longer than 15 minutes with an infected person should stay at home and self-monitor for COVID-19 symptoms 
(CDC, 2020c). We define the measure of the number of contacts with duration (�!) longer than 15min as individual 
contact exposures to COVID-19, which is used only as a measure of magnitude without consideration of 
probability or risk (see Jenelius et al., 2006). System-wide contact exposure is the aggregation of individual contact 
exposure. 



             
     

       
           

 	 	              
        

         
      

     	       
 	        

        
          

     
            

  
   

 
         	   

 
 

  
        

            
       

            
             

               
            

          
         

 
    

From the MATSim output, we can obtain the travel path of each individual passenger, so we have the 
information for each passenger � including all transit vehicles on which passenger � traveled, and the boarding time 
and duration for all involved vehicles. Then we can obtain the corresponding contact network for the transit system 
by counting the pairs of contact exposure between each individual (the number of edges between each pair of nodes 
with label �! > 15 ��� ). The sum of those pairs is the system contact exposure. We are not modeling the risk or 
probability of disease spread. A higher contact exposure means there is a higher pool of potential contacts from 
which disease spread may occur. The main objectives here are to evaluate the impact of social distancing 
requirements and to identify transit routes with higher numbers of contacts made. 

The contact network is represented as �"#. Since the entire subway contact network for NYC is very large and 
hard to visualize, the �"# contact network at 9–10 a.m. on a typical day, including 681 nodes and 1,753 links (based 
on the 4% sample population), is illustrated as an example in Figure 6 (results are aggregated over the hour). The 
nodes represent individual agents (passengers) and the edges/links connect passengers that are in the same vehicle at 
the same time. The size of the node represents the number of contacts he/she has, the larger the node, the higher the 
number of contacts. The color of the edge indicates the contact duration, the darker the color, the longer the contact 
duration. 

Figure 6. Contact network at 9–10am for a typical day in the NYC Subway (�"# contact network). 

4. RESULTS AND DISCUSSION 
The increased use of private cars may continue well after the COVID period until vaccines are distributed through 
the population, especially if the perceived risk of public transit remains high. This will undoubtedly affect traffic 
congestion and emissions in the post-pandemic era. In this section, we will analyze traffic congestion, emissions, 
and contact exposure in transit under different reopening scenarios. It should be note that the results reply on the 
scenario settings and assumptions we mentioned in previous discussions, a subsection of limitations will be 
presented in the end of this section. The most recent transit schedule at the time of writing (GTFS on August 3, 
2020) is applied for all scenarios. The simulation model for each scenario was run for 100 iterations (shown to be 
sufficient to reach demand convergence for MATSim-NYC in Chow et al. (2020) and the computation time for each 
scenario was, on average, about 14 hours using an Intel Xeon 2.1 GHz with 64 GB RAM. 

4.1 Trip ratio, mode share, and VMT comparisons 



            
          

     
             
              

               
            

      
     

    
       

              
               

             
   

          
    

          
            

         
      

         
            

    
           

                 
           

            
         

         
       

        
 

 
  

	

	 	

The estimated trip ratio and mode share in different scenarios are shown in Figure 7, while Figure 8 shows the 
estimated VMT in each scenario. Firstly, the change of mode preferences has large impacts on traffic. If the mode 
preferences held during the crisis are maintained during reopening due to behavioral inertia (Scenario 6), the result 
shows that 77% of transit trips, 132% of car trips and 128% VMT will transpire compared to the base scenario. 
Meanwhile, telework (Scenario 7) reduced the number of trips compared to Scenario 6, with car trips reduced from 
132% to 77% and VMT decreased from 128% to 78% (note that observed VMT in October 2020 was 104% of the 
pre-COVID baseline). The SWHs (Scenario 8) only shifts trip demand in peak hours to other times, so the trip ratio, 
mode share, and VMT do not change much compared to the unchanged commuting pattern (100% commuting 
without telework and SWHs). 

With more people back to using transit, transit capacity restrictions could be applied to ensure social distancing 
in transit. In our estimation, with a 50% transit capacity restriction in Scenario 9 compared to Scenario 6, transit 
ridership decreased from 77% to 68%, while car trips only increased by one percentage point (132% to 133%). 
Although NYC has not implemented explicit transit capacity restrictions (like closing off seats) after reopening, data 
from the MTA shows transit ridership was restored to only 41% of pre-COVID levels by October. This suggests that 
transit users are self-enforcing social distancing (and, in effect, transit capacity) even more than the 50% restriction 
analyzed in Scenario 9. Although NYC is in Phase 4 reopening, some industries have not fully reopened (e.g., 
universities, indoor dining, etc.). 

In summary, recent data that shows 41% of transit ridership, 101% of Citi Bike trips, and 104% of VMT 
compared to the pre-COVID period (Citi Bike, 2020; MTA Transit Data, 2020; Streetlight, 2020). The observed 
data shows some mixture between Scenarios 10 and 11, indicating: (1) COVID-19 mode preferences remain in 
effect during reopening, (2) commuters’ self-enforced social distancing is effectively imposing a transit capacity 
reduction, and (3) telework is reducing the number of trips. 

Figure 7(b) shows the change of mode share in each scenario. With changed mode preference in Scenario 6, 
the mode share of transit may decrease from 34% to 26% compared to the pre-COVID period. By adding transit 
capacity restrictions, the mode share of transit further decreases to 23% in Scenario 9. While the mode share of cars 
increases from 31% to 42% due to the changed mode preference, the mode share of cars does not change by adding 
transit capacity restrictions. It does not change because transit capacity restrictions would shift most users to non-car 
modes, e.g., taxis, shared mobility, bikes and Citi Bike (Figure 7(a)). Interestingly, we found the mode share of 
transit and walking increased while the car mode share decreased in scenarios with telework compared to the 
unchanged commuting scenario (without telework and SWHs). This indicates that teleworkable populations are 
more car-based commuters, while non-teleworkable populations are more transit-based commuters, which agrees 
with the findings from Irlacher and Koch (2020). 
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(b) Mode share in each scenario 
Figure 7. The trip ratio and mode share comparison between different scenarios. 

The trip ratio, mode share, and VMT comparisons above show the negative impact of changed mode 
preference and the ability to telework by reducing trip demand (Figure 8). But these results are averaged citywide 
and do not reflect spatial-temporal effects. For example, we found transit capacity restrictions do not shift many 
users to personal cars, but it may have higher impact in regions where transit is the dominant traffic mode (e.g., 
Manhattan). This might bring a flood of new cars to those regions and cause adverse congestion and emissions 
effects. 
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Figure 8. The estimated VMT in each scenario. 

4.2 Spatial and temporal scenario analysis: congestion, emissions, and contact exposure in 
transit 

4.2.1 Temporal analysis 
To scrutinize the changes in urban transportation networks due to COVID-19, the temporal distribution of the 
congestion index, GHG emissions, and subway contact exposure are compared in Figure 9. The congestion is 
represented by the volume-to-capacity ratio (V/C), which measures the level of congestion on a roadway by dividing 



           
       

        
             

          
        

         
  

               
             

               
       

     
                

              
   

           

 
     

 
                           

traffic volume by the roadway capacity. To better represent the results, we grouped the scenarios into two 
categories. The left column shows the results for scenarios 1–5 (s1–s5) compared to the base scenario (Scenario 0), 
assuming that in s1–s5 people’s mode preference is same as the pre-pandemic mode preference. The right column 
shows results for s6–s11 compared to s0, where s6–s11 assume mode preferences in reopening are the same as 
during the COVID-19 shutdown due to behavior inertia. Under different categories, we use different colors to 
represent commuting strategies, and markers to represent a 50% transit capacity restriction. The orange lines 
represent scenarios with telework, the blue lines are scenarios with SWHs, and black lines are scenarios without any 
changes in commuting. 

The orange lines are lower than other lines in Figure 9, which shows that telework settings explains the 
significant decrease in traffic congestion and emissions as well as contact exposure in transit. The blue lines show 
how SWHs can shift traffic in peak hours to relieve traffic congestion and emissions as well as to reduce social 
contacts in transit during peak hours. The findings from transit capacity restriction scenarios, however, are 
controversial. While these scenarios reduce contact exposure in transit, they increase overall congestion and 
emissions (with a higher increase from the morning peak to the evening peak). The results suggest that the current 
41% transit ridership and 104% of VMT by October 2020, and 101% of Citi Bike trips by September 2020, 
compared to the pre-COVID period are captured by the magnitude between the orange marked lines (self-enforced 
social distancing impacting transit capacity along with telework) and the blue marked lines (from SWHs). 

(a) Average v/c ratio in s1–s5  (b) Average v/c ratio in s6–s10 

(c) GHG emission in s1–s5            (d) GHG emission in s6–s10 



 
                                  

           

 
   

     
       

 
  

            
          

         
             

          
     
   

          
         
       

(e) Subway contact exposure in s1–s5 (f) Subway contact exposure in s6–s10 

Figure 9. Temporal distribution of link volume, GHG emission, and subway contact exposure. 

4.2.2 Spatial analysis 
The effects can also be disproportionally distributed in the spatial domain. We evaluate the spatial impacts of 
different policies on citywide traffic congestion, emissions, and transit contact exposure in this section. 

4.2.2.1 Traffic congestion 
The congestion hot spots can be identified at a spatial level to identify corridors or neighborhoods where the traffic 
congestion is most severe. The map in Figure 10 shows the top 1% of congested road links by volume-to-capacity 
(v/c) ratio during the morning peak in the base scenario (highlighted in red). The area south of 60th street in 
Manhattan is often referred to as the central business district (CBD) with the greatest concentration of economic 
activity. The Manhattan CBD area shows severe congestion compared to other neighborhoods in the city. The 
congestion also extends to transit and commercial hubs, such as downtown Brooklyn and the South Bronx. In 
addition to those busy commercial and transportation hubs, some congested corridors can be identified on the map in 
Brooklyn and Queens, such as Broadway and Northern Boulevard in Queens, and Flatbush Ave. and 4th Ave. in 
Brooklyn. A citywide congested corridors project by New York City Department of Transportation (NYCDOT) 
identified congested corridors that are similar to these results. 



 
             

 

 
             

 
            

      
       

                 

 

 

Figure 10. The top 1% congested links by v/c ratio at 8–9 a.m. in the base scenario. 
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Figure 11. Percentage change of average travel time per car trip Citywide and in the Manhattan CBD. 

The most straightforward impact of traffic congestion is travel time. Travel times increase when more 
people switch from transit or carpool to single-occupancy vehicles. We compare the percentage change of average 
travel time per car trip citywide and in Manhattan separately, based on their home location, in each scenario in 
Figure 11. In s6 to s11, the average travel time increases about 42% to 66% citywide, while higher increases are 



            
             

   
          

           
     

      
         

         
       

               
      

    
       

      
        

               
          

    
      

       
       

 
 

   
         

      
            

       
      

       
           

           
                

      
 

 

 

found in Manhattan, from 60% to around 122%. By comparing scenarios with or without transit capacity restriction 
(s3 and s0, s9 and s6), we find that capacity restrictions have a huge impact on travel times in Manhattan but a much 
smaller impact citywide. 

Figure 7 shows that transit capacity restrictions do not have a big impact on trip ratio and the mode share 
of cars citywide, but Manhattan is different. Manhattan has dense transit stations and a heavy traffic volume, so 
transit capacity restrictions have a higher impact on Manhattan. Both telework and staggered work hours reduce 
travel time citywide as well as in Manhattan. 

Assuming each hour is valued at $18.58, the 2018 national median hourly wage as reported by the Bureau 
of Labor Statistics, we can qualify the increase/decrease of travel time in dollars per day. By comparing s6 to s0, the 
travel time cost increases by $96.58 million citywide and $18.08 million in Manhattan per day due to the impact of 
COVID on behavior change. By adding transit capacity reductions by social distancing requirements (from s6 to s9), 
travel time costs further increase by $10.06 million citywide and $6.89 million in Manhattan per day. With telework 
implemented in s10 compared to s9, $93.2 million in travel time costs can be saved per day citywide and $10.65 
million can be saved in Manhattan. With SWHs in s11 compared to s9, the travel time costs saved per day are 
$19.97 million citywide and $1.63 million in Manhattan. Individual travelers can benefit more from telework. For 
example, an agent from the synthetic population who drives from home (on Staten Island) to work (in Midtown 
Manhattan) takes 54 min. in s6, but it increases to 1h 35min. with transit capacity restrictions in s9 (a 111% increase 
compared to the base scenario). But if they can telework, the travel time becomes 0 min., which saves $28–$59 
round trip per day for this traveler. 

In summary, behavioral inertia makes the already congested road network even worse, and this impact is 
magnified in Manhattan. Adding transit capacity restrictions due to social distancing, causes damaging side effects 
on traffic congestion. When combined with other polices like telework and staggered work hours, the side effects 
can be effectively reduced. 

4.2.2.2 Greenhouse gas and PM2.5 emissions 
The percentage change in total daily GHG emissions is shown in Figure 12. Similar to the finding in the traffic 
congestion analysis, the change of mode preference due to the pandemic increases GHG emissions over the entire 
study area. Without any intervention and only because of changes in mode preference, in Scenario 6, the total daily 
GHG emissions increase by 4.4 million tons (+14%) compared to the base scenario (Scenario 0). Transit capacity 
restrictions exacerbates the emissions increase. Under s9, transit capacity restrictions increase GHG emissions by 
6.84 million tons, a 21% increase compared to the base scenario. Telework reduces GHG emissions in s10 by 8 
million tons (28%) citywide, although Manhattan still sees a rise (20%). The staggered work hours scenario reduces 
traffic congestion and emissions at peak hours but does not show a significant daily emissions reduction because it 
only shifts travel demand to off-peak hours (compare s2 to s0 and s8 to s6). This can also be seen in Figure 9, where 
the SWHs scenarios only suppress the peak values. 

60% 
Citywide Manhattan CBD 49% 49%

Pe
rc

en
ta

ge
 c

ha
ng

e 
of

 G
H

G
 e

m
iss

io
n 

45% 

30% 

15% 

40% 

19% 

36% 

17% 

31% 

14% 
10% 

31% 

14% 
21% 20% 21% 

0% 

-15% 
-2% -3% 

-8% 

-30% 

-45% 
-33% 

-37% 
-31% 

-28% 

-46% 

-60% 

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 
Scenarios 



      
 

 
           

            
      

            
          

             
           

          
         

             
   

 
         

        
 

           
        

              
      

         
      

Figure 12. Percentage change of total daily GHG emissions inventory in each scenario compared to the base 
scenario. 

We evaluate the impacts of transit capacity restrictions and telework on PM2.5 emissions and changes in the 
spatial pattern of the emissions, due to health concerns about exposure to such emissions (Requia et al., 2018). To 
analyze the impacts at a disaggregate neighborhood level, the percentage change of PM2.5 is compared to the base 
scenario by Neighborhood Tabulation Area (NTA) zone citywide (s3, s4, s9, and s10 in Figure 13). Manhattan is 
the borough hardest hit by transit capacity restrictions in s3 and s9. Similarly, high increases in PM2.5 can be seen for 
other neighborhoods at transit and commercial hubs (e.g., downtown Brooklyn). Telework is one of the key 
strategies to curb these negative impacts; s4 and s10 show visible reductions in PM2.5 for different neighborhoods in 
Figure 13. This finding highlights the spatial heterogeneity of the trade-offs: with telework and social distancing in 
transit in place, there are significant PM2.5 emissions savings for some communities (some of Queens, most of 
Brooklyn, and all of Staten Island) but not so for others (Manhattan, Bronx). 

Figure 13. Percentage change of total PM2.5 emission inventory per area with/without transit capacity 
restrictions and transit capacity restrictions combined with telework (24 hours). 

As to the areas most impacted by transit capacity restrictions in s3 and s9, the top two impacted neighborhoods 
are found to be the same in both scenarios and both are located in Manhattan: Stuyvesant Town-Cooper Village 
(NTA code: MN50) and Battery Park City-Lower Manhattan (NTA code: MN25). Table 3 shows the percentage 
change of total PM2.5 compared to the base scenario in those two neighborhoods. If the mode preference is assumed 
to be the same as during the pre-COVID period, total PM2.5 increases 62% in MN50 and 61% in MN25 due to 
transit capacity restrictions. Telework in s4 lowers emissions compared to the base scenario. In s9, however, the 



           
  

 
  

                
             

              
        

  
 

        

    
 

    
 

      
      
      
      

 
 

 
        

      
 

           
                

          
         

            
      	      

             
          

           
             

  
                

      
         

total PM2.5 increases by as much as 235% in MN50 and 140% in MN25. Telework in s10 reduces (relative to s9) 
PM2.5 emissions to 129% in MN50 and 42% in MN25. 

4.2.2.3 COVID contact exposure in the subway network 
The simulation model can identify transit trips with higher contact exposure. Figure 14 shows the number of 
passengers of the subway trip with the highest contact exposure in the base scenario: the southbound A line 
departing at 6:13 a.m. The x-axis shows the station stops of this route; it is clear that passenger density is 
disproportionally distributed in different locations, where the Manhattan CBD and downtown Brooklyn have higher 
passenger volume. 

Table 3 Percentage change of total PM2.5 compared to the base scenario 

Scenarios MN50: Stuyvesant Town-Cooper 
Village 

MN25: Battery Park City-Lower 
Manhattan 

s3 (PreCOVID-50-No) 62 percent 61 percent 
s4 (PreCOVID-50-Telework) -9 percent -26 percent 
s9 (COVID-50-No) 235 percent 140 percent 
s10 (COVID-50-Telework) 129 percent 42 percent 

Figure 14. Number of passengers on a southbound A line trip, which has the highest contact exposure among 
all subway trips in the base scenario. 

For each scenario, we computed the number of G15 (contact duration > 15min) contact exposures compared to 
the base scenario (Table 4). The changes in mode preference in Scenario 6 decrease contact exposure to 83.9% of 
that in the base scenario (Scenario 0). Under s9, transit capacity restrictions reduce contact exposure to 72.54% of 
that in the base scenario. Telework (s10) reduces contact exposure to 36.19% of the base scenario and SWHs (s11) 
reduces contact exposure to 69.8% of that in the base scenario. The percentage of contact exposure is computed by 
dividing the number of passengers with contact exposure (�! > 15 ���) by the total ridership (Table 4), which is 
around 3%. In other words, this means only three passengers per hundred have contact with others longer than 15 
min. in the subway, to say nothing of the presence of masks, PPE, etc. We identified the subway trip with the 
highest contact exposure found in each scenario in Table 4, noting the direction and departure times. Subway lines 
2, 5, and A top each scenario as they are all busy subway lines in NYC. Also, the departure times are mostly during 
peak hours. 

Data from the MTA shows only 41% transit ridership was restored by October 2020 (this is closest to s10). 
When more people come back to transit, route-based or station-based transit strategies can be implemented, such as 
limiting the number of passengers entering at stations with higher passenger volume, or implementing other transit 



            
           

      
 

            
  

 

 
    
  

 

   
   

 

  
  

  
  

 

    

        

        

      

        

        

 
  

          
           
            

       
         

    
     
         

           
          

      
      

          
             

        
         
             

       
        

 
       

 

  
 

  
  

  
 

  
  

 
 

 

 
 

  

 

 
 

      

capacity restrictions on certain routes and stations (such as lines 2, 5, and A at peak hours in Manhattan). Crowd 
density information in transit is important for passengers to avoid crowds, which would help make transit systems 
more attractive in the post-pandemic period. 

Table 4 Contact exposure comparison and subway trips with the highest number of 
contact exposures 

Scenarios 
Number of contact 

exposures compared to 
s0 

Percentage of contact 
exposures (divided by 

ridership) 

Subway trips with the 
highest contact 
exposures (line, 

direction, departure 
time) 

s0_PreCOVID_100_no 100.00 percent 3.14 percent A, South, 6:13AM 

s6_COVID_100_no 83.90 percent 3.20 percent A, South, 6:13AM 

s9_COVID_50_no 72.54 percent 3.08 percent 5, North, 08:05AM 

s10_COVID_50_Telework 36.19 percent 2.37 percent A, South, 6:18AM 

s11_COVID_50_SWHs 69.80 percent 3.00 percent 2, South, 7:22AM 

4.3 Discussion 
COVID-19 affects travel behavior and consequently congestion and emissions from traffic. At some point, traffic 
emissions may be reduced due to increased remote working and business and school closures. Transit capacity 
restrictions due to social distancing enforcement increases traffic congestion and emissions while reducing contact 
exposure. More importantly, we find that not all areas are impacted equally by congestion and emissions increases. 
Areas such as Manhattan that rely heavily on public transit are hit hardest and see a spike in traffic congestion and 
emissions; even the effects of telework do not scale back these impacts to the base condition. 

The trade-offs between traffic congestion, emissions, and subway contact exposure are summarized in Table 5 
(estimated per day). The impact of COVID on behavior change (s0 -> s6) increases travel time costs by $96.58 
million citywide and $18.08 in Manhattan, while GHG emissions increase by 26.54 million tons citywide and 1.31 
million tons in Manhattan. With fewer people using transit in s6 due to behavior change, contact exposures decrease 
40% compared to the base scenario. By adding transit capacity reductions due to social distancing (s6 -> s9), travel 
time costs further increase by $10.06 million citywide and $6.89 million in Manhattan, while GHG emissions 
increase by 2.37 million tons citywide and 0.76 million tons in Manhattan, but contact exposure reduces by 16%. In 
search of solutions, we studied alternative scenarios with telework and staggered work hours. By implementing 
telework (s9->s10), $93.2 million of travel time costs can be saved citywide and $10.65 million can be saved in 
Manhattan, while 15.23 million tons of GHG emissions can be saved citywide and 1.23 million tons can be saved in 
Manhattan. Telework can also benefit public health, with contact exposure decreased by 75% in s10 compared to s9. 
Staggered work hours (s9->s11) will save travel time costs of $19.97 million citywide and $1.63 million in 
Manhattan, while not having large effect on GHG emissions and contact exposure. 

Table 5 Trade-offs between traffic congestion, emissions, and subway contact exposure 

Scenarios 

Total travel 
time costs 

(million dollar 
per day) 

Total travel 
time costs 

(million dollar 
per day) 

GHG emissions 
(million tons per 

day) 

GHG emissions 
(million tons 

per day) 

Subway 
contact 

exposure 
(percent 
change) 

Citywide Manhattan Citywide Manhattan 



  
        

 
 

   
      

 
  

   
      

 
  

   
      

 

 
       

         
      

                 
            

  
            

 
         

           
      

        
         

     
    

     
       

        
       

               
      

         
     

              
               
               

           
                   

  
 

  
            

        
     

         
                  

  
             

    
            

            

Mode preference 
change (s0 to s6) +96.58 +18.08 +26.54 +1.31 -40 percent 

With transit 
capacity reduction 
(s6 to s9) 

+10.06 +6.89 +2.37 +0.76 -16 percent 

Implementing 
telework 
(s9 to s10) 

-93.20 -10.65 -15.23 -1.23 -75 percent 

Implementing 
SWHs 
(s9 to s11) 

-19.97 -1.63 -0.33 0.00 -3 percent 

The already very popular telework strategy is found to be one of the most effective ways to reduce traffic 
congestion, emissions, and contact exposure in transit. When evaluating the impact of telework, we assumed 59% of 
Americans working from home during closure are continuing to do so during reopening (Fluent Pulse, 2020). Table 
5 shows that without telework and SWHs, the travel time costs can increase up to $106.64 million citywide, GHG 
emissions increase up to 28.91 million tons. While under this telework assumption, we see significant benefits from 
telework, which can save millions of dollars and hours for the city by saving travel time. The COVID-related 
telework situation is keep changing with the situation of COVID and the company’s polices, but even fewer people 
telework than we assumed in the future reopening, telework can still save travel time cost up to $93.2 million 
citywide and GHG emission up to 15.23 million tons per day. Staggered work hours make a positive impact by 
reducing traffic congestion as well as contact exposure in transit at peak hours, but the strategy only shifts travel 
demand to off-peak hours, so it has very little impact on total trip demand and daily traffic emissions. Providing 
telework and staggered work hours are highly dependent on the type of work and will need support from employers.. 
Policymakers wishing to simultaneously improve traffic and control contact exposure on the transit system may 
consider further promoting telework and flexible work hours for commuters. 

Having transit capacity restrictions is found to be effective in reducing contact exposure, but it has higher 
negative impacts on Manhattan and neighborhoods at transit and commercial hubs. When combined with telework, 
daily GHG emissions decrease by 28% citywide but increase by up to 20% in Manhattan compared to the base 
scenario. Neighborhoods near transit and commercial hubs also experience higher PM2.5 emissions, which can 
directly impair people’s health. The top two impacted neighborhoods are found to be Stuyvesant Town-Cooper 
Village (NTA code: MN50) and Battery Park City-Lower Manhattan (NTA code: MN25). Our findings suggest that 
policymakers should plan accordingly to accommodate those local effects, perhaps planning for bike lanes, 
considering the use of other forms of micromobility like e-scooters in those locations, and employing demand 
management strategies like congestion pricing. 

We computed the percentage of contact exposure for the subway trips with highest exposure in Table 4, which 
is around 3%. This suggests the opportunities for transmitting COVID are fairly low, especially if social distancing 
practices are followed. Interestingly, subway lines 2, 5, and A running at peak hours are found to have the highest 
contact exposure. Route-based or station-based transit strategies can be implemented to ensure social distancing at 
those sites. The results rely on the input transit schedules, future analysis should always update to the latest transit 
settings or customized ones. 

4.4 Limitations 
We provide methodologies for using such tool to model COVID-19 related events, such as traveler’s mode 
preference change, telework rate, flexible work hours, and their impact on transit usage, traffic congestion, 
emissions, and the way to use the existing tool to estimate the potential contact exposure in transit. To analyze these 
various scenarios, we made specific assumptions to help model each scenario. Nonetheless, how the real traffic 
would be like in the post-COVID is a more complex question and there are many uncertainties in the reopening 
process. 

It should be note that the results and policy recommendations will be limited by the assumptions. The 
transit schedule in this study was set to be consistent with MTA GTFS data on Monday August 3, 2020. However, 
transit revenue loss and its subsequent series of effects are big issues in post-COVID reopening, which may result 
service reductions and lay-offs of operating staff, and transit riders may face service cuts and decline of the quality 
of service. Moreover, the COVID-related telework situation is also keep changing as the spread of the COVID-19 



           
          

     
              

  
          

        
 

            
       

 
  

           
  

      
             

           
             

    
          

    
              

             
        

       
       

   
            

       
           

    
                  

  
 

                  
      

         
       
      

          
        

        
                

           
       

 
 

          
          

        
           

                
               

 
 

continues to slow in Spring 2021. In addition, a key assumption in this study is that the mode preference during the 
reopening phases mirrors what was observed during the pandemic period due to behavioral inertia. This assumption 
can be conservative and should be treated as worst-case scenarios for transit because people’s attitude towards 
transit is also changing as the ease of COVID-19. There are other factors that are not discussed in this paper but are 
quite important that may change the travel pattern, such as the influence of people moving out of NYC during 
pandemic, whether downtown Manhattan will remain to the financial sector and potential impact of shopping 
behavior on retail industry. Therefore, the scenario results only reflect the scenario settings and assumptions used in 
this paper, more insights can be obtained with appropriate modification of the scenarios and assumptions. In 
summary, the individual level dynamic system allows MATSim and similar multiagent simulation models to study 
various scenarios of interest that can help evaluate and inform policy. 

5. CONCLUSIONS 
While NYC has entered Phase 4 of reopening from COVID-19, many new challenges for economic reopening 
remain unanswered. The simulation models proposed in this study are designed to evaluate the impact of COVID-19 
on traffic systems, with special attention to the trade-off of transit density with traffic congestion and emissions. 
Since NYC entered Phase 4 reopening in July 2020, the health authorities have provided many guidelines for public 
transportation, ranging from work-from-home polices to staggered work hours for businesses (CDC, 2020c; NYC 
Health, 2020). Until this study, there has been no answer for how those polices can impact the transport system. The 
key contributions of this study include: 

• A tool to evaluate trade-offs between traffic congestion, transit contact exposure, and traffic emissions 
(including GHG and PM2.5 emissions) for different reopening policies. 

• Quantifying the factors that explain the current observations of 41% transit ridership and 104% VMT in 
October 2020 and 101% Citi Bike trips in September 2020 in NYC compared to the pre-COVID period: 

o Lower transit ridership is explained by a combination of behavioral inertia, self-enforced social 
distancing (translating to effective transit capacity restrictions), and teleworking. 

o The 104% VMT is explained by a combination of behavioral inertia and self-enforced social 
distancing, offset by teleworking and staggered work hours. 

• Telework reduces GHG and PM2.5 emissions citywide, but in Manhattan they remain higher due to the 
magnitude of behavioral inertia and social distancing. These impacts can be mitigated with more traffic-
and demand-management policies like congestion pricing in lower Manhattan combined with more 
offerings of bike lanes and micromobility solutions. 

• COVID contact risk on subways is relatively low, with the greatest hot spots on certain lines: the 2, 5, A at 
peak hours. 

The findings of this study concur with ongoing policies and operational strategies deployed by the city. As we 
have done in nowcasting the scenarios, we can continue to adjust our recommendations in real time alongside 
NYC’s reopening (“Nowcasting” often used in economics that means the prediction of the present, the very near 
future, and the very recent past state of an economic indicator). In particular, we can use the outcome of this model 
to help monitor the degree to which people revert back over time (pre- and post-vaccine) to pre-COVID behavior, 
and the self-enforcement of social distancing on transit. This will also enable us to monitor the cumulative savings 
and costs in terms of traffic congestion and GHG emissions, both temporally and spatially. Further studies should 
look at other cities to compare impacts, perhaps even providing an assessment of local policies employed in 
different countries. The impact of revenue loss and its subsequent series of effects would be another future work, 
such as the impact analysis of service reductions. Moreover, the 4% sample population is used in the current model 
due to the large computation time, which need to be improved as a future work. 
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