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Design Autonomous Vehicle Behaviors in Heterogeneous Traffic Flow 

Jia Li, Di Chen, Michael Zhang 

Department of Civil and Environmental Engineering 

University of California Davis 

{cejli, diichen, hmzhang}@ucdavis.edu 

While much attention was paid to the interactions of human-driven and automated vehicles at the microscopic level in 

recent years, the understanding of the macroscopic properties of mixed autonomy traffic flow still remains limited. In 

this report, we present an equilibrium model of traffic flow with mixed autonomy based on the theory of two-player 

games. We consider self-interested traffic agents (i.e. human-driven and automated vehicles) endowed with different 

speed functions and interacting with each other simultaneously in both longitudinal and lateral dimensions. We propose 

a two-player game model to encapsulate their interactions and characterize the equilibria the agents may reach. We 

show that the model admits two types of Nash equilibria, one of which is always Pareto efficient. Based on this 

equilibrium structure, we propose a speed policy that guarantees the realized equilibria are Pareto efficient in all traffic 

regimes. We present two examples to illustrate the applications of this model. In one example, we construct flux 

functions for mixed autonomy traffic based on behavior characteristics of agents. In the other example, we consider a 

lane policy and show that mixed autonomy traffic may exhibit counterintuitive behaviors even though all the agents are 

rational. In addition, we present empirical evidence concerning the assumptions made in the model. 

Introduction 

The advent of automated vehicles (AVs) can create complications for traffic control and operations, 

because characters of AVs and human-driven vehicles (HVs) may be much different and need to be 

addressed. Their differences range from basic ones such as reaction time, sight or sensing distance, 

and stopping distance, to more sophisticated ones,  such as driving style,  capability to learn and 

drive cooperatively with peers, and the possibility to develop crowd intelligence and self-organize. 

To resolve the complications and explore the full potential of automated driving technologies, it is 

imperative to have a new theory of traffic flow that can capture the characters of heterogeneous 

traffic agents (namely vehicles and/or drivers; referred to as “agents” hereafter), describe how they 

interact, and ultimately, explain and forecast behaviors of mixed autonomy traffic flow. It is 

particularly interesting to have an analytical understanding into macroscopic behaviors of mixed 

autonomy traffic and how these behaviors are shaped by agent characters and interactions. 

Characterizing the equilibrium relationships, either empirically or analytically,  is usually the 

first step towards understanding traffic flow behaviors.  The equilibrium relationships 

encapsulate key information about traffic flow (such as capacity and wave speeds) and 

constitute the foundation of first-order traffic flow models. In this report, we present a new 

approach to model the equilibria of mixed autonomy traffic. We are interested in what 

equilibria can be attained by agents in mixed autonomy traffic flow when they are endowed 

with different behavior characters and interact with each other simultaneously. Our approach is 

intended to be behavior-based and constructive, as opposed to heuristic and descriptive. Our 

quest is related two lines of research. 

Along the first line, dating back to two decades ago, researchers have started developing 

models of mixed human-driven traffic consisting of cars and trucks. One group of models 

extends the classical LWR model by specifying flux functions for the mixed flow without 
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explicitly considering underlying agent behaviors or lane settings. We call such models 

“descriptive mixed flow model”. Some representative models in this group include Wong 

and Wong (2002) and van Lint et al. (2008). The similar idea was also used to model mixed 

autonomy traffic, see e.g., Levin and Boyles (2016). The advantage of the descriptive 

approach mainly lies in the simplicity of flux functions, which can usually be analytically 

defined and offer much convenience in solving a dynamic model. Nonetheless, since these 

equilibrium relations are descriptive in nature and do not explicitly account for how agent 

interact, they fall short when complex agent behaviors or control strategies need to be 

considered. 

In contrast, another group of models explicitly considers agent interactions and lane 

settings and constructs the equilibrium relations of traffic flow from behavior rules. We call 

these models “behavioral mixed flow model”. An early work along this line is Daganzo 

(1997), which considered two classes of vehicles that are endowed with the same triangular 

fundamental diagram and only differ in their priority to access the special lane on a two-lane 

road. One major contribution of Daganzo (1997) is the introduction of the Wardrop’s User 

Equilibrium (UE) principle to describe the behavior of the prioritized vehicles. Based on this 

behavior rule, the equilibrium flow-density relationships (i.e.   flux functions) for the mixed 

traffic were derived.   In this model, the mixed traffic will reach either the so-called 1-pipe or 

2-pipe equilibrium. Several later works pursued the similar basic idea, i.e., analyzing or 

deriving equilibria of mixed traffic from agent behaviors, but considered more general settings 

and further extended this approach. Daganzo (2002a,b) considered the interactions of two 

groups of agents (called “slugs” and “rabbits”) with more sophisticated behaviors on multilane 

freeways and provided explanations to a few phenomena not well explained by the single-class 

theory. Nonetheless, the equilibria of mixed traffic are not explicitly derived. Logghe and 

Immers (2008) considered mixed traffic of cars and trucks, which are endowed with different 

triangular fundamental diagrams. A division factor, which represents the lateral space division 

between the two classes of vehicles, was introduced to model the interaction of the two classes 

of vehicles.  This division factor is heuristically determined by prescribing that either 1-pipe or 

2-pipe equilibrium will be attained. Qian et al. (2017) adopted a similar modeling framework, 

but defined the division factor from a new angle: the inter-class interactions are interpreted as 

frictions between the two traffic streams. Similar to Logghe and Immers (2008), the division 

factor is still heuristically defined so that the mixed traffic attains 1-pipe and 2-pipe 

equilibria in a prescribed way. Jin and Wada (2018) revisited the model of Daganzo (1997) 

and discussed discretization and approximate solvers to the problem. 

Along another line, research was conducted concerning the macroscopic equilibria of mixed 

autonomy traffic. An important character of AVs is that they can change driving modes 

based on the type of leading vehicle. Such a property is the key consideration in a few models. 

For example, Chen et al. (2017) discussed capacity of steady-state mixed autonomous flow on 

multilane freeway under different combination of static lane access policies and how agent 

characters come into play. Ghiasi et al. (2017) derived the capacity of mixed autonomy traffic 

in a similar context, assuming the spatial distribution of mixed flow follows a Markov process, thus 

incorporating the randomness in the mixed autonomy traffic. Both works are focused on traffic 

capacity and did not consider equilibria reached by agents in general situations.  Concerning 

equilibria of mixed autonomy traffic in all regimes, Qin et al. (2021) derived a fundamental 

diagram of mixed autonomy traffic by incorporating the type-dependency of AVs. Nonetheless, 
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their model implicitly assumes that AVs and HVs always have the same speed, which is unlikely in 

multilane settings when traffic is not heavy. We call this a “single-lane” approach as only the 

longitudinal interactions (i.e. car-following) are considered. This approach is limited in that it 

ignores lateral interactions of agents and potential lane policies. Huang et al. (2019) considered the 

micro-macroscopic connection and speed control in mixed autonomy traffic using a mean-field 

game approach. Though their model is a dynamic one, it suggests the equilibria that mixed 

autonomy traffic may attain. In the limiting case, their mean-field game model reduces to the 

classical LWR model. However, the focus of their model is also limited to the longitudinal 

interactions in traffic. 

We draw inspiration from both lines of works. On one hand, the first line of research illuminates 

ways to bridge agent behaviors and macroscopic traffic flow properties, especially when lateral 

interactions are considered, and it was shown that such connections are valuable in understanding 

and controlling mixed traffic. On the other hand, the second line of research pinpoints an important 

character of mixed autonomy traffic, i.e., the dependency of headways on leading vehicle types, 

and also provides great insights into the capacity of mixed autonomy traffic and how longitudinal 

interactions shape mixed autonomy traffic behaviors. 

In this report, we propose a new game theoretic approach to model the macroscopic equilibria of 

mixed autonomy traffic flow, considering simultaneous longitudinal and lateral interactions of self-

interested agents. We are interested in the equilibria that heterogeneous agents can reach in all 

traffic regimes, and ultimately, how agent characters and their interactions determine the macro- 

scopic equilibrium properties of mixed autonomy traffic. We consider a more generalized setting 

compared to existing behavior mixed flow models. Also, unlike the existing approaches where the 

behavior rules usually presume a certain macroscopic equilibrium structure (i.e., when 1-pipe and 

2-pipe equilibriums are attained), our approach is intrinsically bottom-up and the equilibria are 

fully determined from agent characteristics. This makes our approach more coherent and flexible to 

embrace a wide range of agent behaviors and lane policies. Our model also deepens the under- 

standing of mixed autonomy traffic flow: we show that under mild conditions, mixed autonomy 

traffic can reach two types of equilibria, and one of them is always Pareto efficient. This finding 

sheds light on the self-organization of mixed autonomy traffic. 

The report is organized as follows. Our model consists of two parts, which are respectively 

presented in Section 2 and 3. In Section 2, we first define 1-pipe speed of mixed autonomy traffic, 

where agents are endowed with general speed functions and have only longitudinal interactions 

with each other. In Section 3, we formulate a two-player game to capture agent interactions in 
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multilane settings and analyze the equilibria of this game. We also describe a speed policy that 

guarantees the realized equilibrium is Pareto efficient. In Section 4, we show two applications of 

the model and illustrate a counterintuitive phenomenon in mixed autonomy traffic. In section 5, 

we empirically verify the assumption of the scaling parameter that seizes the dependency of 

speed on vehicle types and extends to the mixed autonomy traffic. We also examined the 

existence of 1-pipe speed in mixed traffic. We conclude the paper with remarks on the key 

findings and future works in Section 6. 

1-pipe speed 

In this section we consider a simple scenario, i.e. mixed traffic traveling on a single lane. We 

define the equilibrium traffic speed in this scenario and call it “1-pipe speed”. As will be shown 

shortly, the 1-pipe speed may or may not be the equilibrium speed of mixed traffic in multilane 

settings, but it is a key component to construct equilibrium traffic speeds in more complicated 

scenarios. 

We start from the simplest case, assuming that there are two classes of agents and each class of 

agents is endowed with a nominal speed function, respectively denoted as 𝑢1(𝜌) and 𝑢2(𝜌). This 

assumption means the speed of an agent is completely determined from the density or spacing. 

We also require that the inverse of a nominal speed function is unique. When a speed function 

𝑢(⋅) is not strictly decreasing, we define its inverse as 𝑢−1(𝑦) = sup𝜌{𝜌: 𝑢(𝜌) = 𝑦}. 

Now we consider a single-lane circular road of length 𝐿, with 𝑛1 agents in class 1 and 𝑛2 agents 

in class 2. When this system settles to an equilibrium, all agents move at the same speed, which 

is the equilibrium speed to solve, denoted as 𝑢∗. Since nominal speed functions are strictly 

decreasing, the spacings for agents in the same class must be identical; otherwise, their speeds 

are not the same, meaning the equilibrium isn’t reached yet. Therefore, the equilibrium spacings 

of the agents, denoted as 𝑠1
∗ and 𝑠2

∗, satisfies, 

𝐿 = 𝑛1𝑠1
∗ + 𝑛2𝑠2

∗ =
𝑛1

𝜌1
∗ +

𝑛2

𝜌2
∗ =

𝑛1

𝑢1
−1(𝑢∗)

+
𝑛2

𝑢2
−1(𝑢∗)

       (1) 

Note that in (1), the 𝜌1
∗ and 𝜌2

∗ are interpreted as perceived densities for the two classes of agents, 

which are not equal to their averaged densities 𝜌1 = 𝑛1/𝐿 and 𝜌2 = 𝑛2/𝐿. The variables 𝐿, 𝑛1 

and 𝑛2 can be cancelled from the equation by rewriting (1) as, 

𝜌1

𝑢1
−1(𝑢∗)

+
𝜌2

𝑢2
−1(𝑢∗)

= 1           (2) 

The solution of this equation defines an equilibrium speed 𝑢∗(𝜌1, 𝜌2) for mixed traffic. 

Definition 1 (Equilibrium speed of single-lane mixed traffic flow).  The equilibrium speed 

𝑢∗(𝜌1, 𝜌2) of mixed traffic flow on a single lane is given by (2). 

One may note that in this definition, the ordering of agents does not influence the equilibrium 

speed. This is because the nominal speed functions of agents do not depend on the type of its 

leading agent. Extending (2) to account for the type-dependency is straightforward. We introduce 

four nominal speed functions in this case, denoted as 𝑢𝑖𝑗(𝜌) (𝑖, 𝑗 = 1,2). Here 𝑢𝑖𝑗(𝜌) represents 
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the speed of a class 𝑖 agent when it follows with class 𝑗 agents, where the spacing between them 

is 𝑠 and density is 𝜌 = 1/𝑠. 

Then we have, 

𝐿 = ∑ ∑ 𝑛𝑖𝑗
2
𝑗=1

2
𝑖=1 𝑠𝑖𝑗

∗ = ∑ ∑
𝑛𝑖𝑗

𝜌𝑖𝑗
∗

2
𝑗=1

2
𝑖=1 = ∑ ∑

𝑛𝑖𝑗

𝑢𝑖𝑗
−1(𝑢∗)

2
𝑗=1

2
𝑖=1       (3) 

which leads to a new governing equation of 𝑢∗, 

∑ ∑
𝜌𝑖𝑗

𝑢𝑖𝑗
−1(𝑢∗)

2
𝑗=1

2
𝑖=1 = 1           (4) 

where 𝜌𝑖𝑗 is the density of agents in class 𝑖 that follows a class 𝑗 agent. 

The equation (4) tells how the way of mixing (i.e. ordering when traffic travels on a single lane) 

influences mixed traffic behaviors, which is a peculiar property stemmed from the dependency of 

speed not only on spacing, but also on vehicle types in the leading-following pair. The vector 
(𝜌11, 𝜌12, 𝜌21, 𝜌22) follows a joint probabilistic distribution, under the only constraints ∑ 𝜌𝑖𝑗𝑗 =

𝜌𝑖, (𝑖 = 1,2). The exact form of this distribution may be derived by considering all possible ways 

of permutations which allocate 𝑛1 + 𝑛2 agents to 𝑛1 + 𝑛2 “slots”, but a simpler way to 

approximate this distribution and obtain the expectation of random vector is as follows. The 

approximation assumes 𝑛1 and 𝑛2 are large numbers. Under this assumption, a slot is filled with 

agent 1 with probability 𝑝1, and filled with agent 2 with probability 𝑞, where 𝑝 = 𝑛1/(𝑛1 + 𝑛2), 
and 𝑞 = 1 − 𝑝 = 𝑛2/(𝑛1 + 𝑛2). In addition, allocation of agents to consecutive slots are 

independent. Then it is straightforward to obtain the probabilities 𝑝𝑖𝑗 =

𝑃(agent 𝑖 follows agent 𝑗) (we omit the details here), and finally the expectation of 

(𝜌11, 𝜌12, 𝜌21, 𝜌22) as 𝐸(𝜌𝑖𝑗) = 𝜌𝑖𝑝𝑖𝑗/∑ 𝑝𝑖𝑗𝑗 , which can be succinctly expressed as 𝐸(𝜌𝑖𝑗) =

𝜌𝑖𝜌𝑗/(𝜌𝑖 + 𝜌𝑗). 

The expected values are now plugged back into (4) to cancel out all 𝜌𝑖𝑗 terms. Then we have a 

new governing equation for 𝑢∗ as follows, 

1

𝜌𝑡𝑜𝑡
∑ ∑

𝜌𝑖𝜌𝑗

𝑢𝑖𝑗
−1(𝑢∗)

2
𝑗=1

2
𝑖=1 =

1

𝜌𝑡𝑜𝑡
∑ 𝜌𝑖
2
𝑖=1 (∑

𝜌𝑗

𝑢𝑖𝑗
−1(𝑢∗)

2
𝑗=1 ) = 1      (5) 

The unknown 𝑢∗ solved from this equation represents the expected mixed flow speed over the 

possible ways of mixing the two classes of agents randomly on a single-lane road. 

For analytical tractability (it turns out this is also a close approximation to empirical data, see 5), 

we look into a special case of the equilibrium speed 𝑢∗ in (5), when it can be analytically solved. 

In this special case, we assume all speed functions have the form, 

𝑢𝑖𝑗(𝜌) = 𝑢(𝜌/𝑎𝑖𝑗),  𝑖, 𝑗 = 1,2         (6) 

 

1 We abuse the notation a bit because the context is clear. In the next section, 𝑝1 and 𝑝2 denote 

players’ bids for road share. 
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where 𝑎𝑖𝑗 is a scaling parameter capturing the dependency of speed on vehicle types (see 

Definition Definition 2 below), and 𝑢(⋅) is a reference speed-density relation. Here we introduce 

a character of agents called type sensitivity. 

Definition 2 (Type sensitivity).  We call the class 𝑖 of agents type sensitive, if 𝑎𝑖𝑗 ≠ 𝑎𝑖𝑗′ for 𝑗 ≠

𝑗′. Otherwise, the class is type insensitive. 

The larger value of 𝑎𝑖𝑗 corresponds to smaller headways at the same speed. Therefore, in 

general, AVs should have larger values of 𝑎𝑖𝑗 than HVs. With this simplification, we have 

𝑢𝑖𝑗
−1(𝑢∗) = 𝑎𝑖𝑗𝑢

−1(𝑢∗) and the equilibrium speed 𝑢∗ with the scaling assumption can be solved 

as, 

𝑢∗(𝜌1, 𝜌2) = 𝑢 (
1

𝜌𝑡𝑜𝑡
∑ ∑

𝜌𝑖𝜌𝑗

𝑎𝑖𝑗

2
𝑗=1

2
𝑖=1 )         (7) 

It is straightforward to check that (7) reduces to 𝑢∗(𝜌1, 𝜌2) = 𝑢(𝜌𝑡𝑜𝑡) when 𝑎𝑖𝑗 = 1 for all 𝑖, 𝑗. 

This means when all agents have the identical speed functions, the mixed flow equilibrium speed 

is only dependent on the total density and does not depend on the composition of traffic flow. In 

this case, the speed function of mixed flow degenerates to single-class speed function. This is 

necessary for (7) to be well-posed. We may interpret the term 
1

𝜌𝑡𝑜𝑡
∑ ∑

𝜌𝑖𝜌𝑗

𝑎𝑖𝑗

2
𝑗=1

2
𝑖=1  in (7) as 

effective density of mixed traffic flow. 

Equilibria on multilane road 

On roads with multiple lanes, agents will have lateral interactions, such as changing lanes and 

overtaking other agents. Such interactions are conceivably more complicated than the 

longitudinal one we discussed, since the latter usually only involves agent decisions that is one-

directional, i.e. an agent can determine its speed from its spacing with one or more leading 

vehicles, but the inverse is not true. In contrast, on the lateral dimension, the decisions of agents 

are mutually dependent. That is, one agent’s decision to choose lane depends on the decisions of 

other agents; meanwhile, its own decision can impact other agents as well. The equilibria thus 

formed are conceivably different (and more complicated) than the 1-pipe equilibrium we 

considered above. It is the purpose of this section to depict the relation of individual agent 

behaviors with the collective equilibria. 

Two-player game model 

We formulate the following two-player game to capture the interactions in mixed autonomy 

traffic. In this game, each player places a bid (respectively 𝑝1 and 𝑝2) for the lateral space, and 

the payoffs to the players are determined as, 

𝑈𝑖(𝜌1, 𝜌2, 𝑝1, 𝑝2) = {
𝑢𝑖(𝜌/𝑝𝑖) if 𝑝1 + 𝑝2 ≤ 1

𝑢1−𝑝𝑖𝑝𝑒(𝜌1, 𝜌2) if 𝑝1 + 𝑝2 > 1
,   𝑖 = 1,2     (8) 

Here (𝜌1, 𝜌2) is the system state, and the bids, which take value in [0,1], constitutes strategies of 

the players. With (8), we have the complete strategic form of a two-player game, and we are 

ready to analyze its equilibrium properties. 
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Nash equilibria of the game 

To derive the Nash equilibria of the game, we first introduce a concept called “minimum road 

share”. 

Definition 3 (Minimum road share).  For agents of class 𝑖, we define minimal road share 𝑝𝑖
∗ as 

follows  

𝑝𝑖
∗(𝜌1, 𝜌2) = inf{𝑝: 0 ≤ 𝑝 ≤ 1, 𝑢𝑖(𝜌𝑖/𝑝) ≥ 𝑢1−𝑝𝑖𝑝𝑒(𝜌1, 𝜌2)}     (9) 

The minimum road share is the minimal lateral share of the road (i.e. percentage of lanes) that a 

class of agents need to maintain the same speed as when they share all the lanes with the other 

class of agents. In another word, the class 𝑖 of agents will maintain the same speed in two 

scenarios: 1) when they share all lanes with the other class of agents with density 𝜌𝑗; and 2) they 

use 𝑝𝑖
∗ of total number of lanes exclusively. In essence, this equivalency reflects the trade-offs 

when inter-class interactions exist. We also note that this definition is independent of the specific 

definitions of 𝑢𝑖(⋅) and 𝑢1−𝑝𝑖𝑝𝑒(⋅,⋅), as long as they all make physical senses. 

We give a simple example here to illustrate the concept of minimum road share. Consider 

identical agents, i.e. agents with the same nominal speed function and 𝑎𝑖𝑗 = 1 for 𝑖, 𝑗 = 1,2, 

following the specification in (6). Then we have the equilibrium speed 𝑢∗(𝜌1, 𝜌2) = 𝑢(𝜌1 + 𝜌2). 
In this case, 𝑝1

∗ = 𝜌1/(𝜌1 + 𝜌2) and 𝑝2
∗ = 𝜌2/(𝜌1 + 𝜌2), and 𝑝1

∗ + 𝑝2
∗ = 1 for all values of 

(𝜌1, 𝜌2). This is a degenerate case of the 1-pipe equilibrium. 

A key property of minimum road share is stated in Lemma 1, which tells that based on the value 

of 𝑝1
∗ + 𝑝2

∗, one can determine whether or not all agents can better off in a fully separate 

configuration compared to the fully mixed configuration. 

An important usage of the minimum road share is to characterize when fully mixed traffic 

Lemma 1 (1-pipe characterization).  There exists 𝑝 ∈ (0,1) such that 𝑢1(𝜌1/𝑝) ≥

𝑢1−𝑝𝑖𝑝𝑒(𝜌1, 𝜌2) and 𝑢2(𝜌2/(1 − 𝑝)) ≥ 𝑢1−𝑝𝑖𝑝𝑒(𝜌1, 𝜌2) if and only if 𝑝1
∗ + 𝑝2

∗ ≤ 1. 

Proof. The “if” part. When 𝑝1
∗ + 𝑝2

∗ < 1, let 𝑝 = 𝑝1
∗ + (1 − (𝑝1

∗ + 𝑝2
∗))/2. It is easy to see 𝑝1

∗ <

𝑝 < 1 and 𝑝2
∗ < 1 − 𝑝 < 1. By the definition of minimum road share and monotonicity of 𝑢1(⋅) 

and 𝑢2(⋅), we have 𝑢1(𝜌1/𝑝) ≥ 𝑢2(𝜌1/𝑝1
∗) = 𝑢1−𝑝𝑖𝑝𝑒(𝜌1, 𝜌2). Similarly, 𝑢2(𝜌2/(1 − 𝑝)) ≥

𝑢1−𝑝𝑖𝑝𝑒(𝜌1, 𝜌2). 

The “only if” part. When such 𝑝 exists, by the definition of minimum road share, 𝑝1
∗ ≤ 𝑝 and 

𝑝2
∗ ≤ 1 − 𝑝. Therefore, 𝑝1

∗ + 𝑝2
∗ ≤ 1. ◻ 

Now we derive the Nash equilibria of the game in below. 

Theorem 1 (Nash equilibria of the game).  The game has the following two types of equilibria: 

(1) 1-pipe equilibrium: Pair (𝑝1, 𝑝2) satisfying 𝑝1 > 1 − 𝑝2
∗, 𝑝2 > 1 − 𝑝1

∗ and 𝑝1 + 𝑝2 > 1. In 

this case, the payoffs to both players are identical, which is 𝑢1−𝑝𝑖𝑝𝑒(𝜌1, 𝜌2); 

(2) 2-pipe equilibrium: Pair (𝑝1, 𝑝2) satisfying 𝑝1
∗ < 𝑝1 ≤ 1 − 𝑝2

∗ and 𝑝1 + 𝑝2 = 1. In this case, 

the payoffs to the players are respectively 𝑢1(𝜌1/𝑝1) and 𝑢2(𝜌2/𝑝2). 
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Proof. We can verify as follows: 

Case (1): Consider a strategy pair (𝑝1, 𝑝2) satisfying 𝑝1 + 𝑝2 > 1 and 𝑝2 > 1 − 𝑝1
∗. In this case, 

payoffs to the players are, 

𝑢1 = 𝑢2 = 𝑢1−𝑝𝑖𝑝𝑒(𝜌1, 𝜌2)         (10) 

Now suppose the player 1 can better off in another strategy profile (𝑝1′, 𝑝2). Then first, there 

must be 𝑝1′ + 𝑝2 < 1; otherwise by the definition of the game, the payoffs to the players remain 

the same. Given this, the payoffs to the players respectively become 𝑢1(𝜌1/𝑝1′) and 𝑢2(𝜌2/𝑝2). 
That the player 1 will better off means 𝑢1(𝜌1/𝑝1′) > 𝑢1−𝑝𝑖𝑝𝑒(𝜌1, 𝜌2), which implies 𝑝1′ > 𝑝1

∗, by 

the definition of minimum road share. So now there is 𝑝1′ + 𝑝2 ≥ 𝑝1
∗ + (1 − 𝑝1

∗) = 1, which 

conflicts with 𝑝1′ + 𝑝2 < 1 as shown at the beginning. This means the player 1 cannot improve 

its payoff with a new strategy 𝑝1′ as supposed. By symmetry, the similar holds for player 2. 

Therefore, we proved any pair (𝑝1, 𝑝2) satisfying 𝑝1 + 𝑝2 > 1 and 𝑝1 ∈ (1 − 𝑝2
∗, 1] and 𝑝2 ∈

(1 − 𝑝1
∗, 1] is a Nash equilibrium. 

Case (2): Consider a strategy pair (𝑝1, 𝑝2) satisfying 𝑝1 + 𝑝2 = 1 and 𝑝1
∗ < 𝑝1 ≤ 1 − 𝑝2

∗ and 

𝑝2 ∈ [𝑝2
∗, 1 − 𝑝1

∗]. In this case, the payoffs to the players are, 

𝑢1 = 𝑢1(𝜌1/𝑝1),  𝑢2 = 𝑢2(𝜌2/𝑝2)        (11) 

Now suppose the player 1 can better off in another strategy pair (𝑝1′, 𝑝2). Then there must be 

𝑝1′ > 𝑝1; otherwise, because 𝑝1′ + 𝑝2 < 𝑝1 + 𝑝2 = 1, the new payoff is 𝑢1(𝜌1/𝑝1′) and it is 

strictly less than the original payoff 𝑢1(𝜌1/𝑝1). So we have 𝑝1′ + 𝑝2 > 1, and therefore the 

payoff to player 1 becomes 𝑢1−𝑝𝑖𝑝𝑒(𝜌1, 𝜌2). The new payoff is better means 𝑢1−𝑝𝑖𝑝𝑒(𝜌1, 𝜌2) >

𝑢1(𝜌1/𝑝1′), which implies 𝑝1′ < 𝑝1
∗. Meanwhile, we know 𝑝1 ≥ 𝑝1

∗, so 𝑝1 > 𝑝1′, which conflicts 

with 𝑝1′ > 𝑝1 that we show at the beginning. This means player 1 cannot better off with the new 

strategy 𝑝1′. By symmetry, the similar holds for player 2. We thus proved a pair (𝑝1, 𝑝2) 
satisfying 𝑝1 + 𝑝2 = 1 and 𝑝1 ∈ [𝑝1

∗, 1 − 𝑝2
∗] and 𝑝2 ∈ [𝑝2

∗, 1 − 𝑝1
∗] is a Nash equilibrium. ◻ 

Based on the theorem, we further characterize regimes in which the different equilibria are 

attainable. 

Corollary 1 (Attainability of the equilibria).  1-pipe equilibrium can be attained at any density 

𝜌1, 𝜌2 > 0; 2-pipe equilibria can be attained if and only if 𝑝1
∗ + 𝑝2

∗ ≤ 1. 

Proof. Given 𝜌1, 𝜌2 > 0, we have 𝑝1
∗ and 𝑝2

∗ both larger than zero. Then by Theorem 1, (1,1) is 

always an strategy that leads to the 1-pipe equilibrium. 

Regarding 2-pipe equilibria, for corresponding strategies to exist, the condition in Theorem 1 

requires 𝑝1
∗ < 1 − 𝑝2

∗, i.e. 𝑝1
∗ + 𝑝2

∗ ≤ 1. On the other hand, if 𝑝1
∗ + 𝑝2

∗ ≤ 1, we can let. 𝑝1 = 𝑝1
∗ +

1−(𝑝1
∗+𝑝2

∗)

2
 and 𝑝2 = 𝑝2

∗ +
1−(𝑝1

∗+𝑝2
∗)

2
. It can be verified that (𝑝1, 𝑝2) leads to a 2-pipe 

equilibrium. ◻ 

Pareto efficiency of the equilibria 

Theorem 1 and Corollary 1 together suggest that the payoffs to the players are not unique when 

𝑝1
∗ + 𝑝2

∗ ≤ 1, i.e. which roughly says that the traffic is light. In this case, the players may or may 
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not attain the same speed, depending on whether they reach the 1-pipe or 2-pipe equilibrium. 

Nonetheless, when 𝑝1
∗ + 𝑝2

∗ > 1, i.e. when traffic is heavy, the only equilibrium can be reached is 

1-pipe equilibrium, and in this case, the players’ speed must be identical. 

When equilibria are not unique, it is natural to ask which equilibrium is more desirable from a 

system perspective. The Pareto efficiency is a useful notion towards analyzing such problems. In 

plain language, an equilibrium is Pareto efficient if and only if there is no other outcomes that 

make all the players better off. The major result we derived is that 2-pipe equilibrium is always 

Pareto efficient, while 1-pipe equilibrium is Pareto efficient only when 𝑝1
∗ + 𝑝2

∗ > 1. This means 

there always exists at least one Pareto efficient equilibrium for any (𝜌1, 𝜌2). 

Theorem 2 (Pareto efficiency of the equilibria).  We have: (1) The 1-pipe equilibria are Pareto 

efficient when 𝑝1
∗ + 𝑝2

∗ > 1; (2) The 2-pipe equilibria are Pareto efficient when 𝑝1
∗ + 𝑝2

∗ ≤ 1. 

Proof. When 𝑝1
∗ + 𝑝2

∗ > 1, by Theorem 1, 1-pipe equilibria are the only equilibrium and the 

payoffs are always equal to 𝑢1−𝑝𝑖𝑝𝑒(𝜌1, 𝜌2). Therefore, the 1-pipe equilibria are Pareto efficient, 

i.e. (1) is proved. 

When 𝑝1
∗ + 𝑝2

∗ ≤ 1, we first consider an equilibrium strategy (𝑝1, 𝑝2), with payoffs 𝑢1(𝜌1/𝑝1) 
and 𝑢2(𝜌2/𝑝2). If another 2-pipe equilibrium strategy (𝑝1′, 𝑝2′) improves this strategy for both 

players, we have 𝑝1′ ≥ 𝑝1 and 𝑝2′ ≥ 𝑝2 due to the monotonicity of speed functions, and here at 

least one inequality is strict. This leads to 𝑝1′ + 𝑝2′ > 𝑝1 + 𝑝2 = 1. This conflicts with the 

definition of a 2-pipe equilibrium. 

Now suppose a 1-pipe equilibrium improves (𝑝1, 𝑝2) for both players. This leads to 𝑢1(𝜌1/𝑝1) ≤
𝑢1−𝑝𝑖𝑝𝑒(𝜌1, 𝜌2) and 𝑢2(𝜌1/𝑝1) ≤ 𝑢1−𝑝𝑖𝑝𝑒(𝜌1, 𝜌2). Therefore, by the definition of minimum road 

share, 𝑝1
∗ ≥ 𝑝1 and 𝑝2

∗ ≥ 𝑝2. As a result, 𝑝1
∗ + 𝑝2

∗ ≥ 𝑝1 + 𝑝2 = 1. This conflicts with the assumed 

initial condition. So (2) is proved. ◻ 

The theorem suggests that when 𝑝1
∗ + 𝑝2

∗ > 1, no lane policies that split the agents to different 

lanes will improve the speeds of both classes, compared to the 1-pipe equilibrium reached. When 

𝑝1
∗ + 𝑝2

∗ ≤ 1, on the other hand, there are infinite many 2-pipe equilibria, where no equilibrium is 

uniformly better than the others. 

We note that the existence and structure of sets {(𝜌1, 𝜌2): 𝑝1
∗ + 𝑝2

∗ > 1} and {(𝜌1, 𝜌2): 𝑝1
∗ + 𝑝2

∗ <
1} depend on how the 1-pipe speed function is defined. We show two extreme situations. In the 

first example, we let 𝑢1−𝑝𝑖𝑝𝑒(𝜌1, 𝜌2) = max{𝑢1(𝜌1 + 𝜌2), 𝑢2(𝜌1 + 𝜌2)}. This depicts a scenario 

that when agents are mixed, they both adopt the faster speed function. In this case, it can be 

shown that there are always 𝑝1
∗ ≥ 𝜌1/(𝜌1 + 𝜌2) and 𝑝2

∗ ≥ 𝜌2/(𝜌1 + 𝜌2). Therefore, 𝑝1
∗ + 𝑝2

∗ ≥ 1 

for all (𝜌1, 𝜌2), implying that the 1-pipe equilibrium is always Pareto efficient, and all the agents 

are better off when mixing with each other. Similarly, when we let 𝑢1−𝑝𝑖𝑝𝑒(𝜌1, 𝜌2) =

min{𝑢1(𝜌1 + 𝜌2), 𝑢2(𝜌1 + 𝜌2)}, then there is always 𝑝1
∗ + 𝑝2

∗ ≤ 1, and in this case, all the agents 

are always better off in 2-pipe equilibria, compared to adopting the 1-pipe equilibrium. 

Equilibrium speed policy 

We show above that 2-pipe equilibria are not unique and each equilibrium corresponds to a 

different pair of payoffs (see Theorem 1). In contrast, the payoffs corresponding to the 1-pipe 
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equilibrium are unique. In below we discuss behavior scenarios that leads to a unique 2-pipe 

equilibrium, and thus unique equilibrium relationships between density and speed. 

In our model, 𝑝1
∗ + 𝑝2

∗ is the minimum of total lateral space needed so that both players are better 

off compared to the 1-pipe equilibrium. When attaining 2-pipe equilibria, players take their own 

lateral space, and they collectively improve the system from the fully mixed (i.e. 1-pipe) state. In 

this perspective, we may interpret the attaining of 2-pipe equilibria as a form of player 

cooperation (note though, the players are still self-interested, and the collaboration is possible 

because of the Pareto efficiency of the 2-pipe equilibrium). Therefore, we can interpret 1 − 𝑝1
∗ −

𝑝2
∗ as the surplus of road share from the player’s cooperation, and the problem of determining a 

unique 2-pipe equilibrium is reduced to splitting the surplus between the two players. 

We thus define a general class of speed policies, which we call “surplus split policies”, as 

follows, 

{
𝑝1 = 𝑝1

∗ + 𝜆(𝜌1, 𝜌2)𝑠

𝑝2 = 𝑝2
∗ + (1 − 𝜆(𝜌1, 𝜌2))𝑠

         (12) 

where 𝑠 := 1 − 𝑝1
∗ − 𝑝2

∗ is the road share surplus we just mentioned, and 𝜆 ∈ [0,1] is a mapping 

from (𝜌1, 𝜌2) to [0,1], which governs how the road share is divided. Note the road share surplus 

is fully determined when the densities and nominal speed functions of the players are known. 

As some examples, when 𝜆 = 1/2 (it is independent of (𝜌1, 𝜌2) in this case), the road share 

surplus is divided equally between the players; when 𝜆 = 1, the player 1 takes all the road share 

surplus. When sophisticated behavior rules are considered, 𝜆 may necessarily involve implicit 

definitions. For instance, when the players intend to have speeds that are as close as possible, 

then 𝜆 can be defined as, 

𝜆(𝜌1, 𝜌2) = arg min
𝜆∈[0,1]

||𝑢1 (
𝜌1

𝑝1
) − 𝑢2 (

𝜌2

𝑝2
) ||       (13) 

The point here is that by defining the function 𝜆 differently, the model (12) can capture a wide 

range of agent interactions, and albeit the difference, we have the following important property, 

which guarantees the lower bound of speeds for both players. 

Proposition 1.  Under any surplus split policy, both players’ speeds are always lower bounded 

by 𝑢1−𝑝𝑖𝑝𝑒(𝜌1, 𝜌2). 

Proof. Given any surplus split policy, there are always 𝑝1
∗ ≤ 𝑝1 ≤ 1 − 𝑝2

∗ and 𝑝2
∗ ≤ 𝑝2 ≤ 1 − 𝑝1

∗, 

so this proposition holds as a corollary of Theorem 2. ◻ 

Last, we go back to the concept of type-sensitivity and consider its role in a speed policy. Recall 

that in our model this character differentiates the automated vehicles from human-driven 

vehicles. We have that when all agents are type-insensitive, then there is no 2-pipe equilibrium 

that make all the agents strictly better off compared to 𝑢1−𝑝𝑖𝑝𝑒(𝜌1, 𝜌2), i.e. in this case the lower 

bound 𝑢1−𝑝𝑖𝑝𝑒(𝜌1, 𝜌2) is tight. Actually, the 2-pipe equilibria degenerate into 1-pipe equilibria in 

this case. This result implies that in mixed traffic consisting of type-insensitive agents, one 

cannot improve the speeds of both classes of agents by lane policies that separating them into 



 

11 
 

different lanes. In another word, type-sensitivity is necessary for such policies to work. 

Theorem 3 below states this result formally. We omit the proof here for brevity. 

Theorem 3 (Mixed flow of type-insensitive agents).  Consider mixed traffic consists of two 

classes of type-insensitive agents with endowed speed function 𝑢1(⋅) and 𝑢2(⋅) respectively, then 

the 2-pipe equilibria degenerate into 1-pipe equilibrium, and the only equilibrium speed for both 

classes of agents is 𝑢1−𝑝𝑖𝑝𝑒(𝜌1, 𝜌2). 

Example 

The example presented here is a direct application of the model to construct flux of mixed traffic 

from agent characters. We compare two speed policies described in the last section: the base one 

is the 1-pipe equilibrium, and the other one is the surplus split policy with 𝜆 = 0.5. We assume 

both classes of agents are endowed with the Greenshields function as its nominal speed function, 

where the free flow speed is 60 mph (miles per hour) and jam density 200 vpm (vehicles per 

mile), i.e. the nominal speed function reads 𝑢𝐻𝑉(𝜌) = 60 −
60

200
𝜌 for HVs and 𝑢𝐴𝑉(𝜌) =

min (60,60 − 60
50−𝜌

50−200
) for AVs. Interactions of the agents are governed by the four scaling 

parameters 𝑎𝑖𝑗, whose values are set to be (𝑎11, 𝑎12, 𝑎21, 𝑎22) = (1,1,1.2,1.3). This setting 

means HVs are type-insensitive, and AVs take less spacing when following an HV or another 

AV. 

The equilibrium speeds and flows of the base scenario is presented in Figure 1, and those for the 

surplus split policy is presented in Figure 2. We can see that though the behavior rules are 

different, the qualitative patterns of macroscopic equilibria formed in these two scenarios are 

similar: the speed of each class decreases as the density of either class increases (the bottom rows 

in the two figures), and the flow-density relations in all the cases appear concave. 

Again, recall that in the two scenarios, the agent characters (i.e. the speed functions they are 

endowed with) are exactly the same, and this improvement is achieved simply because the better 

Nash equilibrium is attained. 
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Figure 1: Base scenario: 1-pipe equilibrium (upper left: HV flow; upper right: AV flow; bottom 

left: HV speed; bottom right: AV speed). 
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Figure 2: Alternative scenario: equilibrium under surplus split policy, 𝜆 = 0.5 (upper left: HV 

flow; upper right: AV flow; bottom left: HV speed; bottom right: AV speed). 

The major difference of the two scenarios is the equilibrium speeds the agents can attain. We 

show the speed differences of the two classes of agents in the two scenarios in Figure 3. Both 

classes are better off in the second scenario, which verifies the Pareto efficiency property 

described in Proposition 1. In general, compared to the base case, one class receives the most 

significant speed improvement when its density is relatively low, and the density of the other 

class is relatively high. For HVs, the average and maximum of speed improvement are 

respectively 0.28 and 12.73 mph. For AVs, these values are respectively 0.54 and 10.43 mph. 
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Figure 3: Speed improvements in the surplus split policy (left: human-driven vehicles; right: 

automated vehicles). 

 

Figure 4: Flow improvements in the surplus split policy (left: human-driven vehicles; right: 

automated vehicles). 
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We also compare the difference of flows (throughputs) in the two scenarios, which is shown in 

Figure 4. Consistent with the case of speed, we also see flow improvements for both classes of 

agents in the second scenario. Nonetheless, the most significant changes of flow are seen when 

the densities of both classes of agents are intermediate. In addition, compared to HVs, the AVs 

experience more significant flow improvement in the new policy. The largest throughput 

improvements for HVs and AVs are respectively 120 and 208 vph. 

Empirical evidence 

The proceeding secitons of this report are focused on analytical modeling and numerical 

examples, where we made assumptions on agent behaviors (i.e., the speed functions they are 

endowed with) and hypothesized that self-interested agents would reach an equilibrium. It is 

natural to ask empirically whether these assumptions can be verified. In this section, we provide 

initial empirical evidence in this regard. We use the NGSIM data and verify that: (1) the scaling 

property postulated in (6) is a good approximation to real-world data; and (2) 1-pipe equilibrium 

will be attained in high density, aligned with our model predictions. 

Scaling property of speed-density relationships 

Data preparation 

The Next Generation Simulation (NGSIM) Vehicle Trajectories and Supporting Data () from I80 

and US101 is used for the study. The car and truck classes are chosen to study the mixed flow. 

Some criteria are set to retrieve the equilibrium condition: (1) Lanes 2, 3, and 4 are target lanes; 

(3) The maximum density is 400 vpm; (4) The maximum acceleration and deceleration rates are 

1𝑚/𝑠2; (5) The following duration lasts for no less than 60 seconds; (6) A 10 second time 

window is set at the beginning and end of each following process; (7) No lane changes occur 

during the following process. 

In the equilibrium data, the length of the studied freeway section is 544 meters for I80 and 681 

meters for US101. The records have a duration of 93 minutes at I-80 and 46 minutes at US-101. 

Verification method 

Through explorations, we found the speed-density relation possesses an inverted sigmoid shape, 

which makes the logistic model a good fit. A five-parameter logistic speed-density model has the 

form of 

𝑢(𝜌, 𝜃) = 𝑢𝑏 +
𝑢𝑓−𝑢𝑏

(1+exp(
𝜌−𝜌𝑡
𝜃1

))

𝜃2
        (14) 

The parameter 𝑢𝑓 is the free-flow speed, 𝑢𝑏 is the average speed during the trip, 𝜌𝑡 marks the 

point at which the speed-density curve switches from free-flow to congested flow, and 𝜃1 and 𝜃2 

are two parameters that determines the shape of the curve (). We use the logistic speed-density 

function 𝑢(𝜌, 𝜃) (where 𝜃 = (𝜃1, 𝜃2)) as the base speed-density relation. Then the logistic model 

for agent 𝑖 following agent 𝑗 can be written as 
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𝑢𝑖𝑗(𝜌, 𝜃) = 𝑢(𝜌/𝑎𝑖𝑗, 𝜃)         (15) 

Our purpose is to check whether there exists a set of parameters {𝑎𝑖𝑗} such that the fitted model 

is a close approximation to the empirical relations. Here 𝑖, 𝑗 refer to cars and trucks. 

Scaling parameters to capture truck-car interactions 

We first calibrated logistic speed-density models from the data. The problem is reduced to 

minimization under 𝐿1 norm with equality constraints. We consider cars and trucks as two 

independent classes, and there are four corresponding following relations. The parameters of the 

four models are presented in Table 1. 

 

Table 1: Optimized parameters for the logistic speed-density model 

Location Vehicle Class 𝑣𝑏 (mph) 𝑣𝑓 (mph) 𝑘𝑡 (vpm) 𝜃1 𝜃2 MAE (mph) 

I-80 Car-Car 6.7980 71.4365 20.4015 3.0098 0.0844 4.1007 

I-80 Car-Truck 6.6600 67.0689 24.7778 3.1775 0.2756 4.6513 

US-101 Car-Car 13.5693 77.6261 27.5809 5.8921 0.2699 6.1854 

US-101 Car-Truck 12.8181 72.9964 21.9073 0.4808 0.0517 5.3907 

Vehicle class car-car means a car following a car; car-truck means a car following a truck. 

 

Then we proceed to assuming the scaling property holds and estimating scaling parameters 𝑎𝑖𝑗. 

We denote cars as class 1 agents and trucks as class 2 agents, and attempt to estimate 𝑎12. The 

initial value of 𝑎12 is set to be 1. To reduce the complexity of solution, we further set the free-

flow speed to be 65 mph and the jam density to be 200 vpm. The estimated values for 𝑎12 are 

presented in Table 2. Based on these parameters, we plot the three fitted logistic models, namely 

𝑢11(⋅) (base model), 𝑢12(⋅) (non-scaled fit), and 𝑢(⋅/𝑎12) (scaled fit), in Figure 5. From the 

figure, we see that the scaled models well approximate the non-scaled models in both cases (I-80 

and US-101) and both are different from the base model. This indicates the scaling property is a 

reasonable approximation to the empirical observations. 

 

 

Table 2: Scaling parameter 𝑎12 (class 1 agents following class 2 agents) estimated from data 

Location Scaling Parameter MAE (mph) 

I-80 1.9998 4.5586 

US-101 1.9793 4.9082 
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Figure 5: Base, scaled and non-scaled logistic models at I80 (left) and US101 (right) 

Scaling parameters to capture HV-AV interactions 

The scaling property was meant to capture the HV-AV interactions. Though values of the scaling 

parameters cannot be directly estimated from the NGSIM data (where all the vehicles are human-

driven), we can estimate their values based on the relation between headway and flow, namely, 

ℎ =
1

𝑞
=

1

𝜌⋅𝑢(𝜌)
 along with other simplifications as follows. We define class 1 agent following 

class 1 agent as the base case. Assume that the base speed-density relation is linear, 𝑢(𝜌) =

𝑢𝑓 (1 −
𝜌

𝜌𝑗
), where 𝜌𝑗 is the jam density. Then its optimal density is 𝜌∗ =

𝜌𝑗

2
, and therefore 𝜌𝑖𝑗

∗ =

𝑎𝑖𝑗𝜌𝑗

2
 for the relation of class 𝑖 agent following class 𝑗 agent. Also, since ℎ11

∗ =
1

𝜌∗𝑢(𝜌∗)
=

4

𝜌𝑗𝑢𝑓
, we 

have ℎ𝑖𝑗
∗ =

1

(𝑎𝑖𝑗𝜌𝑗/2)(𝑢𝑓(1−(𝑎𝑖𝑗𝜌𝑗/2)(𝑎𝑖𝑗𝜌𝑗)))
=

4

𝑎𝑖𝑗𝜌𝑗𝑢𝑓
=

1

𝑎𝑖𝑗
ℎ11
∗ . Hence, the scaling parameter for 

the pair (𝑖, 𝑗) is determined as, 

𝑎𝑖𝑗 =
ℎ11
∗

ℎ𝑖𝑗
∗ ,  𝑖, 𝑗 = 1,2          (16) 

For the mixed autonomy traffic, we denote HVs as class 1 agents and AVs as class 2 agents. 

Based on (16), we were able to calculate the scaling parameters based on existing assumptions or 

simulation results regarding the optimal headways of AVs in literature. The results are 

summarized in Table 3. The advantage of using a scaling parameter lies in that it is independent 

of specific assumptions on the shape of the speed-density curves and provides a unified ground 

for the comparison of different models. This can simplify the equilibrium modeling and analysis 

substantially. 
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Table 3: Headway assumptions and scaling parameter estimation based on existing literature 

 

Existence of 1-pipe equilibrium 

Next, we verify the existence of the 1-pipe equilibrium from empirical data, which is an 

important qualitative prediction from our model. We verify this by examining class 1 agent 

speeds and class 2 agent speeds at different density levels using box plots, and the result is 

shown in Figure 6. From this figure, we can see that the density level where 1-pipe equilibrium 

starts to occur is 100-120 vpm, which is close to the critical density that is approximately 90 

vpm. This result thus indicates that the assumption holds well, at least in a probabilistic sense. 

Another interesting observation is that, even though the median speeds of the two classes of 

agents tend to be zero when the density is high, the variations of truck speeds remain relatively 

high at larger densities. In contrast, the speeds of cars synchronize better. This could potentially 

result from the better capability of cars to negotiate spaces and thus equilibrate faster 

collectively, but further evidence is needed to prove or disprove this postulation, which is left to 

future studies. 
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(a) Box plot of class-specific speed at different densities 

 

(b) Class-specific flow-density relations 

Figure 6: Synchronization of class-specific speeds after reaching a critical threshold 

Conclusion 

We presented an equilibrium model of mixed autonomy traffic flow based on game theory. 

Human-driven and automated vehicles are modeled as self-interested agents endowed with 

different speed functions. Their simultaneous longitudinal and lateral interactions are modeled as 
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a two-player game. Through this model, we examine the equilibria of mixed autonomy traffic 

and bridge macroscopic equilibrium properties of traffic flow with behavior characters of agents. 

The game theoretic approach presented in this paper is new and advances the existing behavior 

approach of modeling mixed traffic. Thanks to the power of game theory, in our new approach, 

equilibria of mixed autonomous traffic can be fully determined from agent characteristics, 

without presuming a macroscopic equilibrium structure or resorting to heuristic behavior rules. 

As such, this approach is more behaviorally sound and coherent, making it capable to handle 

more sophisticated agent behaviors and lane settings. 

Our model also brings a new understanding of how mixed autonomy traffic may behave. We 

found that the agents in mixed autonomy traffic can in general reach two types of Nash 

equilibria, which may or may not co-exist, depending on traffic regimes. This contradicts the 

existing equilibrium theories of mixed flow, which presume a unique and well-defined 

equilibrium relationship. We also show that there always exists at least one Pareto efficient 

equilibrium for every system state. This implies even when all the agents are self-interested, it is 

still possible for them to self-organize into a more efficient flow pattern. Based on the 

equilibrium structure, we propose a speed policy that define an agreement between agents to split 

the road share surplus. This policy guarantees the attainment of Pareto efficient equilibria. 

We provided two examples. In the first example, we compared the equilibrium speeds and fluxes 

of mixed autonomous traffic in two behavior scenarios, which verified that the Pareto efficient 

equilibrium improves the 1-pipe equilibrium in all traffic regimes. In the second example, we 

introduced an AV-exclusive lane policy and investigated the new traffic equilibria. We found 

discontinuities in the resulted macroscopic equilibrium relations. This suggests that the behaviors 

of mixed autonomy traffic may not always make common sense, even all the agents are rational. 

The intriguing micro-macroscopic connection in mixed autonomy traffic should be handled with 

care when designing AV behaviors. 

Empirically, the scaling property of the equilibrium relation is verified. The property simplifies 

the specification of the flux function since only a nominal speed-density function and associated 

scaling parameters need to be estimated. If the scaling property holds for AVs, then we can 

derive the flux function of AVs from the flux function of HVs, which is connected by scaling 

parameters that are estimable from headway observations or assumptions. In addition, the 1-pipe 

equilibrium is observable when the system density is high, while the mixed traffic can still 

behave differently in a stochastic sense. 

Our model depicts the connection between macroscopic equilibria of mixed autonomy traffic and 

agent characteristics. This connection can serve as a basis for designing AV behaviors in mixed 

autonomy environments. In the future, it is desirable to consider more sophisticated agent 

behaviors and their macroscopic effects. 
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	Design Autonomous Vehicle Behaviors in Heterogeneous Traffic Flow 
	Jia Li, Di Chen, Michael Zhang Department of Civil and Environmental Engineering University of California Davis {cejli, diichen, hmzhang}@ucdavis.edu 
	While much attention was paid to the interactions of human-driven and automated vehicles at the microscopic level in recent years, the understanding of the macroscopic properties of mixed autonomy traffic flow still remains limited. In this report, we present an equilibrium model of traffic flow with mixed autonomy based on the theory of two-player games. We consider self-interested traffic agents (i.e. human-driven and automated vehicles) endowed with different speed functions and interacting with each oth
	Introduction 
	The advent of automated vehicles (AVs) can create complications for traffic control and operations, because characters of AVs and human-driven vehicles (HVs) may be much different and need to be addressed. Their differences range from basic ones such as reaction time, sight or sensing distance, and stopping distance, to more sophisticated ones,  such as driving style,  capability to learn and drive cooperatively with peers, and the possibility to develop crowd intelligence and self-organize. To resolve the 
	Characterizing the equilibrium relationships, either empirically or analytically,  is usually the first step towards understanding traffic flow behaviors.  The equilibrium relationships encapsulate key information about traffic flow (such as capacity and wave speeds) and constitute the foundation of first-order traffic flow models. In this report, we present a new approach to model the equilibria of mixed autonomy traffic. We are interested in what equilibria can be attained by agents in mixed autonomy traf
	Along the first line, dating back to two decades ago, researchers have started developing models of mixed human-driven traffic consisting of cars and trucks. One group of models extends the classical LWR model by specifying flux functions for the mixed flow without 
	explicitly considering underlying agent behaviors or lane settings. We call such models “descriptive mixed flow model”. Some representative models in this group include Wong and Wong (2002) and van Lint et al. (2008). The similar idea was also used to model mixed autonomy traffic, see e.g., Levin and Boyles (2016). The advantage of the descriptive approach mainly lies in the simplicity of flux functions, which can usually be analytically defined and offer much convenience in solving a dynamic model. Nonethe
	In contrast, another group of models explicitly considers agent interactions and lane settings and constructs the equilibrium relations of traffic flow from behavior rules. We call these models “behavioral mixed flow model”. An early work along this line is Daganzo (1997), which considered two classes of vehicles that are endowed with the same triangular fundamental diagram and only differ in their priority to access the special lane on a two-lane road. One major contribution of Daganzo (1997) is the introd
	Along another line, research was conducted concerning the macroscopic equilibria of mixed autonomy traffic. An important character of AVs is that they can change driving modes based on the type of leading vehicle. Such a property is the key consideration in a few models. For example, Chen et al. (2017) discussed capacity of steady-state mixed autonomous flow on multilane freeway under different combination of static lane access policies and how agent characters come into play. Ghiasi et al. (2017) derived t
	their model implicitly assumes that AVs and HVs always have the same speed, which is unlikely in multilane settings when traffic is not heavy. We call this a “single-lane” approach as only the longitudinal interactions (i.e. car-following) are considered. This approach is limited in that it ignores lateral interactions of agents and potential lane policies. Huang et al. (2019) considered the micro-macroscopic connection and speed control in mixed autonomy traffic using a mean-field game approach. Though the
	We draw inspiration from both lines of works. On one hand, the first line of research illuminates ways to bridge agent behaviors and macroscopic traffic flow properties, especially when lateral interactions are considered, and it was shown that such connections are valuable in understanding and controlling mixed traffic. On the other hand, the second line of research pinpoints an important character of mixed autonomy traffic, i.e., the dependency of headways on leading vehicle types, and also provides great
	In this report, we propose a new game theoretic approach to model the macroscopic equilibria of mixed autonomy traffic flow, considering simultaneous longitudinal and lateral interactions of self-interested agents. We are interested in the equilibria that heterogeneous agents can reach in all traffic regimes, and ultimately, how agent characters and their interactions determine the macro- scopic equilibrium properties of mixed autonomy traffic. We consider a more generalized setting compared to existing beh
	The report is organized as follows. Our model consists of two parts, which are respectively presented in Section 2 and 3. In Section 2, we first define 1-pipe speed of mixed autonomy traffic, where agents are endowed with general speed functions and have only longitudinal interactions with each other. In Section 3, we formulate a two-player game to capture agent interactions in 
	multilane settings and analyze the equilibria of this game. We also describe a speed policy that guarantees the realized equilibrium is Pareto efficient. In Section 4, we show two applications of the model and illustrate a counterintuitive phenomenon in mixed autonomy traffic. In section 5, we empirically verify the assumption of the scaling parameter that seizes the dependency of speed on vehicle types and extends to the mixed autonomy traffic. We also examined the existence of 1-pipe speed in mixed traffi
	1-pipe speed 
	In this section we consider a simple scenario, i.e. mixed traffic traveling on a single lane. We define the equilibrium traffic speed in this scenario and call it “1-pipe speed”. As will be shown shortly, the 1-pipe speed may or may not be the equilibrium speed of mixed traffic in multilane settings, but it is a key component to construct equilibrium traffic speeds in more complicated scenarios. 
	We start from the simplest case, assuming that there are two classes of agents and each class of agents is endowed with a nominal speed function, respectively denoted as 𝑢1(𝜌) and 𝑢2(𝜌). This assumption means the speed of an agent is completely determined from the density or spacing. We also require that the inverse of a nominal speed function is unique. When a speed function 𝑢(⋅) is not strictly decreasing, we define its inverse as 𝑢−1(𝑦)=sup𝜌{𝜌:𝑢(𝜌)=𝑦}. 
	Now we consider a single-lane circular road of length 𝐿, with 𝑛1 agents in class 1 and 𝑛2 agents in class 2. When this system settles to an equilibrium, all agents move at the same speed, which is the equilibrium speed to solve, denoted as 𝑢∗. Since nominal speed functions are strictly decreasing, the spacings for agents in the same class must be identical; otherwise, their speeds are not the same, meaning the equilibrium isn’t reached yet. Therefore, the equilibrium spacings of the agents, denoted as 
	𝐿=𝑛1𝑠1∗+𝑛2𝑠2∗=𝑛1𝜌1∗+𝑛2𝜌2∗=𝑛1𝑢1−1(𝑢∗)+𝑛2𝑢2−1(𝑢∗)       (1) 
	Note that in (
	Note that in (
	1
	), the 𝜌1∗ and 𝜌2∗ are interpreted as perceived densities for the two classes of agents, which are not equal to their averaged densities 𝜌1=𝑛1/𝐿 and 𝜌2=𝑛2/𝐿. The variables 𝐿, 𝑛1 and 𝑛2 can be cancelled from the equation by rewriting (
	1
	) as, 

	𝜌1𝑢1−1(𝑢∗)+𝜌2𝑢2−1(𝑢∗)=1           (2) 
	The solution of this equation defines an equilibrium speed 𝑢∗(𝜌1,𝜌2) for mixed traffic. 
	Definition 1 (Equilibrium speed of single-lane mixed traffic flow).  The equilibrium speed 𝑢∗(𝜌1,𝜌2) of mixed traffic flow on a single lane is given by (
	Definition 1 (Equilibrium speed of single-lane mixed traffic flow).  The equilibrium speed 𝑢∗(𝜌1,𝜌2) of mixed traffic flow on a single lane is given by (
	2
	). 

	One may note that in this definition, the ordering of agents does not influence the equilibrium speed. This is because the nominal speed functions of agents do not depend on the type of its leading agent. Extending (
	One may note that in this definition, the ordering of agents does not influence the equilibrium speed. This is because the nominal speed functions of agents do not depend on the type of its leading agent. Extending (
	2
	) to account for the type-dependency is straightforward. We introduce four nominal speed functions in this case, denoted as 𝑢𝑖𝑗(𝜌) (𝑖,𝑗=1,2). Here 𝑢𝑖𝑗(𝜌) represents 

	the speed of a class 𝑖 agent when it follows with class 𝑗 agents, where the spacing between them is 𝑠 and density is 𝜌=1/𝑠. 
	Then we have, 
	𝐿=∑∑𝑛𝑖𝑗2𝑗=12𝑖=1𝑠𝑖𝑗∗=∑∑𝑛𝑖𝑗𝜌𝑖𝑗∗2𝑗=12𝑖=1=∑∑𝑛𝑖𝑗𝑢𝑖𝑗−1(𝑢∗)2𝑗=12𝑖=1      (3) 
	which leads to a new governing equation of 𝑢∗, 
	∑∑𝜌𝑖𝑗𝑢𝑖𝑗−1(𝑢∗)2𝑗=12𝑖=1=1           (4) 
	where 𝜌𝑖𝑗 is the density of agents in class 𝑖 that follows a class 𝑗 agent. 
	The equation (
	The equation (
	4
	) tells how the way of mixing (i.e. ordering when traffic travels on a single lane) influences mixed traffic behaviors, which is a peculiar property stemmed from the dependency of speed not only on spacing, but also on vehicle types in the leading-following pair. The vector (𝜌11,𝜌12,𝜌21,𝜌22) follows a joint probabilistic distribution, under the only constraints ∑𝜌𝑖𝑗𝑗=𝜌𝑖, (𝑖=1,2). The exact form of this distribution may be derived by considering all possible ways of permutations which allocate 𝑛1

	1 We abuse the notation a bit because the context is clear. In the next section, 𝑝1 and 𝑝2 denote players’ bids for road share. 
	1 We abuse the notation a bit because the context is clear. In the next section, 𝑝1 and 𝑝2 denote players’ bids for road share. 

	The expected values are now plugged back into (
	The expected values are now plugged back into (
	4
	) to cancel out all 𝜌𝑖𝑗 terms. Then we have a new governing equation for 𝑢∗ as follows, 

	1𝜌𝑡𝑜𝑡∑∑𝜌𝑖𝜌𝑗𝑢𝑖𝑗−1(𝑢∗)2𝑗=12𝑖=1=1𝜌𝑡𝑜𝑡∑𝜌𝑖2𝑖=1(∑𝜌𝑗𝑢𝑖𝑗−1(𝑢∗)2𝑗=1)=1      (5) 
	The unknown 𝑢∗ solved from this equation represents the expected mixed flow speed over the possible ways of mixing the two classes of agents randomly on a single-lane road. 
	For analytical tractability (it turns out this is also a close approximation to empirical data, see 
	For analytical tractability (it turns out this is also a close approximation to empirical data, see 
	5
	5

	), we look into a special case of the equilibrium speed 𝑢∗ in (
	5
	), when it can be analytically solved. In this special case, we assume all speed functions have the form, 

	𝑢𝑖𝑗(𝜌)=𝑢(𝜌/𝑎𝑖𝑗), 𝑖,𝑗=1,2         (6) 
	where 𝑎𝑖𝑗 is a scaling parameter capturing the dependency of speed on vehicle types (see Definition 
	where 𝑎𝑖𝑗 is a scaling parameter capturing the dependency of speed on vehicle types (see Definition 
	Definition 2
	Definition 2

	 below), and 𝑢(⋅) is a reference speed-density relation. Here we introduce a character of agents called type sensitivity. 

	Definition 2 (Type sensitivity).  We call the class 𝑖 of agents type sensitive, if 𝑎𝑖𝑗≠𝑎𝑖𝑗′ for 𝑗≠𝑗′. Otherwise, the class is type insensitive. 
	The larger value of 𝑎𝑖𝑗 corresponds to smaller headways at the same speed. Therefore, in general, AVs should have larger values of 𝑎𝑖𝑗 than HVs. With this simplification, we have 𝑢𝑖𝑗−1(𝑢∗)=𝑎𝑖𝑗𝑢−1(𝑢∗) and the equilibrium speed 𝑢∗ with the scaling assumption can be solved as, 
	𝑢∗(𝜌1,𝜌2)=𝑢(1𝜌𝑡𝑜𝑡∑∑𝜌𝑖𝜌𝑗𝑎𝑖𝑗2𝑗=12𝑖=1)         (7) 
	It is straightforward to check that (
	It is straightforward to check that (
	7
	) reduces to 𝑢∗(𝜌1,𝜌2)=𝑢(𝜌𝑡𝑜𝑡) when 𝑎𝑖𝑗=1 for all 𝑖,𝑗. This means when all agents have the identical speed functions, the mixed flow equilibrium speed is only dependent on the total density and does not depend on the composition of traffic flow. In this case, the speed function of mixed flow degenerates to single-class speed function. This is necessary for (
	7
	) to be well-posed. We may interpret the term 1𝜌𝑡𝑜𝑡∑∑𝜌𝑖𝜌𝑗𝑎𝑖𝑗2𝑗=12𝑖=1 in (
	7
	) as effective density of mixed traffic flow. 

	Equilibria on multilane road 
	On roads with multiple lanes, agents will have lateral interactions, such as changing lanes and overtaking other agents. Such interactions are conceivably more complicated than the longitudinal one we discussed, since the latter usually only involves agent decisions that is one-directional, i.e. an agent can determine its speed from its spacing with one or more leading vehicles, but the inverse is not true. In contrast, on the lateral dimension, the decisions of agents are mutually dependent. That is, one a
	Two-player game model 
	We formulate the following two-player game to capture the interactions in mixed autonomy traffic. In this game, each player places a bid (respectively 𝑝1 and 𝑝2) for the lateral space, and the payoffs to the players are determined as, 
	𝑈𝑖(𝜌1,𝜌2,𝑝1,𝑝2)={𝑢𝑖(𝜌/𝑝𝑖)if 𝑝1+𝑝2≤1𝑢1−𝑝𝑖𝑝𝑒(𝜌1,𝜌2)if 𝑝1+𝑝2>1,  𝑖=1,2     (8) 
	Here (𝜌1,𝜌2) is the system state, and the bids, which take value in [0,1], constitutes strategies of the players. With (
	Here (𝜌1,𝜌2) is the system state, and the bids, which take value in [0,1], constitutes strategies of the players. With (
	8
	), we have the complete strategic form of a two-player game, and we are ready to analyze its equilibrium properties. 

	Nash equilibria of the game 
	To derive the Nash equilibria of the game, we first introduce a concept called “minimum road share”. 
	Definition 3 (Minimum road share).  For agents of class 𝑖, we define minimal road share 𝑝𝑖∗ as follows  
	𝑝𝑖∗(𝜌1,𝜌2)=inf{𝑝:0≤𝑝≤1,𝑢𝑖(𝜌𝑖/𝑝)≥𝑢1−𝑝𝑖𝑝𝑒(𝜌1,𝜌2)}     (9) 
	The minimum road share is the minimal lateral share of the road (i.e. percentage of lanes) that a class of agents need to maintain the same speed as when they share all the lanes with the other class of agents. In another word, the class 𝑖 of agents will maintain the same speed in two scenarios: 1) when they share all lanes with the other class of agents with density 𝜌𝑗; and 2) they use 𝑝𝑖∗ of total number of lanes exclusively. In essence, this equivalency reflects the trade-offs when inter-class inter
	We give a simple example here to illustrate the concept of minimum road share. Consider identical agents, i.e. agents with the same nominal speed function and 𝑎𝑖𝑗=1 for 𝑖,𝑗=1,2, following the specification in (
	We give a simple example here to illustrate the concept of minimum road share. Consider identical agents, i.e. agents with the same nominal speed function and 𝑎𝑖𝑗=1 for 𝑖,𝑗=1,2, following the specification in (
	6
	). Then we have the equilibrium speed 𝑢∗(𝜌1,𝜌2)=𝑢(𝜌1+𝜌2). In this case, 𝑝1∗=𝜌1/(𝜌1+𝜌2) and 𝑝2∗=𝜌2/(𝜌1+𝜌2), and 𝑝1∗+𝑝2∗=1 for all values of (𝜌1,𝜌2). This is a degenerate case of the 1-pipe equilibrium. 

	A key property of minimum road share is stated in 
	A key property of minimum road share is stated in 
	Lemma 1
	Lemma 1

	, which tells that based on the value of 𝑝1∗+𝑝2∗, one can determine whether or not all agents can better off in a fully separate configuration compared to the fully mixed configuration. 

	An important usage of the minimum road share is to characterize when fully mixed traffic 
	Lemma 1 (1-pipe characterization).  There exists 𝑝∈(0,1) such that 𝑢1(𝜌1/𝑝)≥𝑢1−𝑝𝑖𝑝𝑒(𝜌1,𝜌2) and 𝑢2(𝜌2/(1−𝑝))≥𝑢1−𝑝𝑖𝑝𝑒(𝜌1,𝜌2) if and only if 𝑝1∗+𝑝2∗≤1. 
	Proof. The “if” part. When 𝑝1∗+𝑝2∗<1, let 𝑝=𝑝1∗+(1−(𝑝1∗+𝑝2∗))/2. It is easy to see 𝑝1∗<𝑝<1 and 𝑝2∗<1−𝑝<1. By the definition of minimum road share and monotonicity of 𝑢1(⋅) and 𝑢2(⋅), we have 𝑢1(𝜌1/𝑝)≥𝑢2(𝜌1/𝑝1∗)=𝑢1−𝑝𝑖𝑝𝑒(𝜌1,𝜌2). Similarly, 𝑢2(𝜌2/(1−𝑝))≥𝑢1−𝑝𝑖𝑝𝑒(𝜌1,𝜌2). 
	The “only if” part. When such 𝑝 exists, by the definition of minimum road share, 𝑝1∗≤𝑝 and 𝑝2∗≤1−𝑝. Therefore, 𝑝1∗+𝑝2∗≤1. ◻ 
	Now we derive the Nash equilibria of the game in below. 
	Theorem 1 (Nash equilibria of the game).  The game has the following two types of equilibria: 
	(1) 1-pipe equilibrium: Pair (𝑝1,𝑝2) satisfying 𝑝1>1−𝑝2∗, 𝑝2>1−𝑝1∗ and 𝑝1+𝑝2>1. In this case, the payoffs to both players are identical, which is 𝑢1−𝑝𝑖𝑝𝑒(𝜌1,𝜌2); 
	(2) 2-pipe equilibrium: Pair (𝑝1,𝑝2) satisfying 𝑝1∗<𝑝1≤1−𝑝2∗ and 𝑝1+𝑝2=1. In this case, the payoffs to the players are respectively 𝑢1(𝜌1/𝑝1) and 𝑢2(𝜌2/𝑝2). 
	Proof. We can verify as follows: 
	Case (1): Consider a strategy pair (𝑝1,𝑝2) satisfying 𝑝1+𝑝2>1 and 𝑝2>1−𝑝1∗. In this case, payoffs to the players are, 
	𝑢1=𝑢2=𝑢1−𝑝𝑖𝑝𝑒(𝜌1,𝜌2)         (10) 
	Now suppose the player 1 can better off in another strategy profile (𝑝1′,𝑝2). Then first, there must be 𝑝1′+𝑝2<1; otherwise by the definition of the game, the payoffs to the players remain the same. Given this, the payoffs to the players respectively become 𝑢1(𝜌1/𝑝1′) and 𝑢2(𝜌2/𝑝2). That the player 1 will better off means 𝑢1(𝜌1/𝑝1′)>𝑢1−𝑝𝑖𝑝𝑒(𝜌1,𝜌2), which implies 𝑝1′>𝑝1∗, by the definition of minimum road share. So now there is 𝑝1′+𝑝2≥𝑝1∗+(1−𝑝1∗)=1, which conflicts with 𝑝1′+𝑝2<1 a
	Case (2): Consider a strategy pair (𝑝1,𝑝2) satisfying 𝑝1+𝑝2=1 and 𝑝1∗<𝑝1≤1−𝑝2∗ and 𝑝2∈[𝑝2∗,1−𝑝1∗]. In this case, the payoffs to the players are, 
	𝑢1=𝑢1(𝜌1/𝑝1), 𝑢2=𝑢2(𝜌2/𝑝2)        (11) 
	Now suppose the player 1 can better off in another strategy pair (𝑝1′,𝑝2). Then there must be 𝑝1′>𝑝1; otherwise, because 𝑝1′+𝑝2<𝑝1+𝑝2=1, the new payoff is 𝑢1(𝜌1/𝑝1′) and it is strictly less than the original payoff 𝑢1(𝜌1/𝑝1). So we have 𝑝1′+𝑝2>1, and therefore the payoff to player 1 becomes 𝑢1−𝑝𝑖𝑝𝑒(𝜌1,𝜌2). The new payoff is better means 𝑢1−𝑝𝑖𝑝𝑒(𝜌1,𝜌2)>𝑢1(𝜌1/𝑝1′), which implies 𝑝1′<𝑝1∗. Meanwhile, we know 𝑝1≥𝑝1∗, so 𝑝1>𝑝1′, which conflicts with 𝑝1′>𝑝1 that we show at 
	Based on the theorem, we further characterize regimes in which the different equilibria are attainable. 
	Corollary 1 (Attainability of the equilibria).  1-pipe equilibrium can be attained at any density 𝜌1,𝜌2>0; 2-pipe equilibria can be attained if and only if 𝑝1∗+𝑝2∗≤1. 
	Proof. Given 𝜌1,𝜌2>0, we have 𝑝1∗ and 𝑝2∗ both larger than zero. Then by 
	Proof. Given 𝜌1,𝜌2>0, we have 𝑝1∗ and 𝑝2∗ both larger than zero. Then by 
	Theorem 1
	Theorem 1

	, (1,1) is always an strategy that leads to the 1-pipe equilibrium. 

	Regarding 2-pipe equilibria, for corresponding strategies to exist, the condition in 
	Regarding 2-pipe equilibria, for corresponding strategies to exist, the condition in 
	Theorem 1
	Theorem 1

	 requires 𝑝1∗<1−𝑝2∗, i.e. 𝑝1∗+𝑝2∗≤1. On the other hand, if 𝑝1∗+𝑝2∗≤1, we can let. 𝑝1=𝑝1∗+1−(𝑝1∗+𝑝2∗)2 and 𝑝2=𝑝2∗+1−(𝑝1∗+𝑝2∗)2. It can be verified that (𝑝1,𝑝2) leads to a 2-pipe equilibrium. ◻ 

	Pareto efficiency of the equilibria 
	Theorem 1
	Theorem 1
	Theorem 1

	 and 
	Corollary 1
	Corollary 1

	 together suggest that the payoffs to the players are not unique when 𝑝1∗+𝑝2∗≤1, i.e. which roughly says that the traffic is light. In this case, the players may or may 

	not attain the same speed, depending on whether they reach the 1-pipe or 2-pipe equilibrium. Nonetheless, when 𝑝1∗+𝑝2∗>1, i.e. when traffic is heavy, the only equilibrium can be reached is 1-pipe equilibrium, and in this case, the players’ speed must be identical. 
	When equilibria are not unique, it is natural to ask which equilibrium is more desirable from a system perspective. The Pareto efficiency is a useful notion towards analyzing such problems. In plain language, an equilibrium is Pareto efficient if and only if there is no other outcomes that make all the players better off. The major result we derived is that 2-pipe equilibrium is always Pareto efficient, while 1-pipe equilibrium is Pareto efficient only when 𝑝1∗+𝑝2∗>1. This means there always exists at lea
	Theorem 2 (Pareto efficiency of the equilibria).  We have: (1) The 1-pipe equilibria are Pareto efficient when 𝑝1∗+𝑝2∗>1; (2) The 2-pipe equilibria are Pareto efficient when 𝑝1∗+𝑝2∗≤1. 
	Proof. When 𝑝1∗+𝑝2∗>1, by 
	Proof. When 𝑝1∗+𝑝2∗>1, by 
	Theorem 1
	Theorem 1

	, 1-pipe equilibria are the only equilibrium and the payoffs are always equal to 𝑢1−𝑝𝑖𝑝𝑒(𝜌1,𝜌2). Therefore, the 1-pipe equilibria are Pareto efficient, i.e. (1) is proved. 

	When 𝑝1∗+𝑝2∗≤1, we first consider an equilibrium strategy (𝑝1,𝑝2), with payoffs 𝑢1(𝜌1/𝑝1) and 𝑢2(𝜌2/𝑝2). If another 2-pipe equilibrium strategy (𝑝1′,𝑝2′) improves this strategy for both players, we have 𝑝1′≥𝑝1 and 𝑝2′≥𝑝2 due to the monotonicity of speed functions, and here at least one inequality is strict. This leads to 𝑝1′+𝑝2′>𝑝1+𝑝2=1. This conflicts with the definition of a 2-pipe equilibrium. 
	Now suppose a 1-pipe equilibrium improves (𝑝1,𝑝2) for both players. This leads to 𝑢1(𝜌1/𝑝1)≤𝑢1−𝑝𝑖𝑝𝑒(𝜌1,𝜌2) and 𝑢2(𝜌1/𝑝1)≤𝑢1−𝑝𝑖𝑝𝑒(𝜌1,𝜌2). Therefore, by the definition of minimum road share, 𝑝1∗≥𝑝1 and 𝑝2∗≥𝑝2. As a result, 𝑝1∗+𝑝2∗≥𝑝1+𝑝2=1. This conflicts with the assumed initial condition. So (2) is proved. ◻ 
	The theorem suggests that when 𝑝1∗+𝑝2∗>1, no lane policies that split the agents to different lanes will improve the speeds of both classes, compared to the 1-pipe equilibrium reached. When 𝑝1∗+𝑝2∗≤1, on the other hand, there are infinite many 2-pipe equilibria, where no equilibrium is uniformly better than the others. 
	We note that the existence and structure of sets {(𝜌1,𝜌2):𝑝1∗+𝑝2∗>1} and {(𝜌1,𝜌2):𝑝1∗+𝑝2∗<1} depend on how the 1-pipe speed function is defined. We show two extreme situations. In the first example, we let 𝑢1−𝑝𝑖𝑝𝑒(𝜌1,𝜌2)=max{𝑢1(𝜌1+𝜌2),𝑢2(𝜌1+𝜌2)}. This depicts a scenario that when agents are mixed, they both adopt the faster speed function. In this case, it can be shown that there are always 𝑝1∗≥𝜌1/(𝜌1+𝜌2) and 𝑝2∗≥𝜌2/(𝜌1+𝜌2). Therefore, 𝑝1∗+𝑝2∗≥1 for all (𝜌1,𝜌2), implying tha
	Equilibrium speed policy 
	We show above that 2-pipe equilibria are not unique and each equilibrium corresponds to a different pair of payoffs (see 
	We show above that 2-pipe equilibria are not unique and each equilibrium corresponds to a different pair of payoffs (see 
	Theorem 1
	Theorem 1

	). In contrast, the payoffs corresponding to the 1-pipe 

	equilibrium are unique. In below we discuss behavior scenarios that leads to a unique 2-pipe equilibrium, and thus unique equilibrium relationships between density and speed. 
	In our model, 𝑝1∗+𝑝2∗ is the minimum of total lateral space needed so that both players are better off compared to the 1-pipe equilibrium. When attaining 2-pipe equilibria, players take their own lateral space, and they collectively improve the system from the fully mixed (i.e. 1-pipe) state. In this perspective, we may interpret the attaining of 2-pipe equilibria as a form of player cooperation (note though, the players are still self-interested, and the collaboration is possible because of the Pareto ef
	We thus define a general class of speed policies, which we call “surplus split policies”, as follows, 
	{𝑝1=𝑝1∗+𝜆(𝜌1,𝜌2)𝑠𝑝2=𝑝2∗+(1−𝜆(𝜌1,𝜌2))𝑠         (12) 
	where 𝑠:=1−𝑝1∗−𝑝2∗ is the road share surplus we just mentioned, and 𝜆∈[0,1] is a mapping from (𝜌1,𝜌2) to [0,1], which governs how the road share is divided. Note the road share surplus is fully determined when the densities and nominal speed functions of the players are known. 
	As some examples, when 𝜆=1/2 (it is independent of (𝜌1,𝜌2) in this case), the road share surplus is divided equally between the players; when 𝜆=1, the player 1 takes all the road share surplus. When sophisticated behavior rules are considered, 𝜆 may necessarily involve implicit definitions. For instance, when the players intend to have speeds that are as close as possible, then 𝜆 can be defined as, 
	𝜆(𝜌1,𝜌2)=argmin𝜆∈[0,1]||𝑢1(𝜌1𝑝1)−𝑢2(𝜌2𝑝2)||       (13) 
	The point here is that by defining the function 𝜆 differently, the model (
	The point here is that by defining the function 𝜆 differently, the model (
	12
	) can capture a wide range of agent interactions, and albeit the difference, we have the following important property, which guarantees the lower bound of speeds for both players. 

	Proposition 1.  Under any surplus split policy, both players’ speeds are always lower bounded by 𝑢1−𝑝𝑖𝑝𝑒(𝜌1,𝜌2). 
	Proof. Given any surplus split policy, there are always 𝑝1∗≤𝑝1≤1−𝑝2∗ and 𝑝2∗≤𝑝2≤1−𝑝1∗, so this proposition holds as a corollary of 
	Proof. Given any surplus split policy, there are always 𝑝1∗≤𝑝1≤1−𝑝2∗ and 𝑝2∗≤𝑝2≤1−𝑝1∗, so this proposition holds as a corollary of 
	Theorem 2
	Theorem 2

	. ◻ 

	Last, we go back to the concept of type-sensitivity and consider its role in a speed policy. Recall that in our model this character differentiates the automated vehicles from human-driven vehicles. We have that when all agents are type-insensitive, then there is no 2-pipe equilibrium that make all the agents strictly better off compared to 𝑢1−𝑝𝑖𝑝𝑒(𝜌1,𝜌2), i.e. in this case the lower bound 𝑢1−𝑝𝑖𝑝𝑒(𝜌1,𝜌2) is tight. Actually, the 2-pipe equilibria degenerate into 1-pipe equilibria in this case. 
	different lanes. In another word, type-sensitivity is necessary for such policies to work. 
	different lanes. In another word, type-sensitivity is necessary for such policies to work. 
	Theorem 3
	Theorem 3

	 below states this result formally. We omit the proof here for brevity. 

	Theorem 3 (Mixed flow of type-insensitive agents).  Consider mixed traffic consists of two classes of type-insensitive agents with endowed speed function 𝑢1(⋅) and 𝑢2(⋅) respectively, then the 2-pipe equilibria degenerate into 1-pipe equilibrium, and the only equilibrium speed for both classes of agents is 𝑢1−𝑝𝑖𝑝𝑒(𝜌1,𝜌2). 
	Example 
	The example presented here is a direct application of the model to construct flux of mixed traffic from agent characters. We compare two speed policies described in the last section: the base one is the 1-pipe equilibrium, and the other one is the surplus split policy with 𝜆=0.5. We assume both classes of agents are endowed with the Greenshields function as its nominal speed function, where the free flow speed is 60 mph (miles per hour) and jam density 200 vpm (vehicles per mile), i.e. the nominal speed fu
	The equilibrium speeds and flows of the base scenario is presented in Figure 
	The equilibrium speeds and flows of the base scenario is presented in Figure 
	1
	, and those for the surplus split policy is presented in Figure 
	2
	. We can see that though the behavior rules are different, the qualitative patterns of macroscopic equilibria formed in these two scenarios are similar: the speed of each class decreases as the density of either class increases (the bottom rows in the two figures), and the flow-density relations in all the cases appear concave. 

	Again, recall that in the two scenarios, the agent characters (i.e. the speed functions they are endowed with) are exactly the same, and this improvement is achieved simply because the better Nash equilibrium is attained. 
	 
	Figure
	Figure 1: Base scenario: 1-pipe equilibrium (upper left: HV flow; upper right: AV flow; bottom left: HV speed; bottom right: AV speed). 
	 
	Figure
	Figure 2: Alternative scenario: equilibrium under surplus split policy, 𝜆=0.5 (upper left: HV flow; upper right: AV flow; bottom left: HV speed; bottom right: AV speed). 
	The major difference of the two scenarios is the equilibrium speeds the agents can attain. We show the speed differences of the two classes of agents in the two scenarios in Figure 
	The major difference of the two scenarios is the equilibrium speeds the agents can attain. We show the speed differences of the two classes of agents in the two scenarios in Figure 
	3
	. Both classes are better off in the second scenario, which verifies the Pareto efficiency property described in 
	Proposition 1
	Proposition 1

	. In general, compared to the base case, one class receives the most significant speed improvement when its density is relatively low, and the density of the other class is relatively high. For HVs, the average and maximum of speed improvement are respectively 0.28 and 12.73 mph. For AVs, these values are respectively 0.54 and 10.43 mph. 

	 
	Figure
	Figure 3: Speed improvements in the surplus split policy (left: human-driven vehicles; right: automated vehicles). 
	 
	Figure
	Figure 4: Flow improvements in the surplus split policy (left: human-driven vehicles; right: automated vehicles). 
	We also compare the difference of flows (throughputs) in the two scenarios, which is shown in Figure 
	We also compare the difference of flows (throughputs) in the two scenarios, which is shown in Figure 
	4
	. Consistent with the case of speed, we also see flow improvements for both classes of agents in the second scenario. Nonetheless, the most significant changes of flow are seen when the densities of both classes of agents are intermediate. In addition, compared to HVs, the AVs experience more significant flow improvement in the new policy. The largest throughput improvements for HVs and AVs are respectively 120 and 208 vph. 

	Empirical evidence 
	The proceeding secitons of this report are focused on analytical modeling and numerical examples, where we made assumptions on agent behaviors (i.e., the speed functions they are endowed with) and hypothesized that self-interested agents would reach an equilibrium. It is natural to ask empirically whether these assumptions can be verified. In this section, we provide initial empirical evidence in this regard. We use the NGSIM data and verify that: (1) the scaling property postulated in (
	The proceeding secitons of this report are focused on analytical modeling and numerical examples, where we made assumptions on agent behaviors (i.e., the speed functions they are endowed with) and hypothesized that self-interested agents would reach an equilibrium. It is natural to ask empirically whether these assumptions can be verified. In this section, we provide initial empirical evidence in this regard. We use the NGSIM data and verify that: (1) the scaling property postulated in (
	6
	) is a good approximation to real-world data; and (2) 1-pipe equilibrium will be attained in high density, aligned with our model predictions. 

	Scaling property of speed-density relationships 
	Data preparation 
	The Next Generation Simulation (NGSIM) Vehicle Trajectories and Supporting Data () from I80 and US101 is used for the study. The car and truck classes are chosen to study the mixed flow. Some criteria are set to retrieve the equilibrium condition: (1) Lanes 2, 3, and 4 are target lanes; (3) The maximum density is 400 vpm; (4) The maximum acceleration and deceleration rates are 1𝑚/𝑠2; (5) The following duration lasts for no less than 60 seconds; (6) A 10 second time window is set at the beginning and end o
	In the equilibrium data, the length of the studied freeway section is 544 meters for I80 and 681 meters for US101. The records have a duration of 93 minutes at I-80 and 46 minutes at US-101. 
	Verification method 
	Through explorations, we found the speed-density relation possesses an inverted sigmoid shape, which makes the logistic model a good fit. A five-parameter logistic speed-density model has the form of 
	𝑢(𝜌,𝜃)=𝑢𝑏+𝑢𝑓−𝑢𝑏(1+exp(𝜌−𝜌𝑡𝜃1))𝜃2        (14) 
	The parameter 𝑢𝑓 is the free-flow speed, 𝑢𝑏 is the average speed during the trip, 𝜌𝑡 marks the point at which the speed-density curve switches from free-flow to congested flow, and 𝜃1 and 𝜃2 are two parameters that determines the shape of the curve (). We use the logistic speed-density function 𝑢(𝜌,𝜃) (where 𝜃=(𝜃1,𝜃2)) as the base speed-density relation. Then the logistic model for agent 𝑖 following agent 𝑗 can be written as 
	𝑢𝑖𝑗(𝜌,𝜃)=𝑢(𝜌/𝑎𝑖𝑗,𝜃)         (15) 
	Our purpose is to check whether there exists a set of parameters {𝑎𝑖𝑗} such that the fitted model is a close approximation to the empirical relations. Here 𝑖,𝑗 refer to cars and trucks. 
	Scaling parameters to capture truck-car interactions 
	We first calibrated logistic speed-density models from the data. The problem is reduced to minimization under 𝐿1 norm with equality constraints. We consider cars and trucks as two independent classes, and there are four corresponding following relations. The parameters of the four models are presented in Table 
	We first calibrated logistic speed-density models from the data. The problem is reduced to minimization under 𝐿1 norm with equality constraints. We consider cars and trucks as two independent classes, and there are four corresponding following relations. The parameters of the four models are presented in Table 
	1
	. 

	 
	Table 1: Optimized parameters for the logistic speed-density model 
	Location 
	Location 
	Location 
	Location 
	Location 

	Vehicle Class 
	Vehicle Class 

	𝑣𝑏 (mph) 
	𝑣𝑏 (mph) 

	𝑣𝑓 (mph) 
	𝑣𝑓 (mph) 

	𝑘𝑡 (vpm) 
	𝑘𝑡 (vpm) 

	𝜃1 
	𝜃1 

	𝜃2 
	𝜃2 

	MAE (mph) 
	MAE (mph) 



	I-80 
	I-80 
	I-80 
	I-80 

	Car-Car 
	Car-Car 

	6.7980 
	6.7980 

	71.4365 
	71.4365 

	20.4015 
	20.4015 

	3.0098 
	3.0098 

	0.0844 
	0.0844 

	4.1007 
	4.1007 


	I-80 
	I-80 
	I-80 

	Car-Truck 
	Car-Truck 

	6.6600 
	6.6600 

	67.0689 
	67.0689 

	24.7778 
	24.7778 

	3.1775 
	3.1775 

	0.2756 
	0.2756 

	4.6513 
	4.6513 


	US-101 
	US-101 
	US-101 

	Car-Car 
	Car-Car 

	13.5693 
	13.5693 

	77.6261 
	77.6261 

	27.5809 
	27.5809 

	5.8921 
	5.8921 

	0.2699 
	0.2699 

	6.1854 
	6.1854 


	US-101 
	US-101 
	US-101 

	Car-Truck 
	Car-Truck 

	12.8181 
	12.8181 

	72.9964 
	72.9964 

	21.9073 
	21.9073 

	0.4808 
	0.4808 

	0.0517 
	0.0517 

	5.3907 
	5.3907 




	Vehicle class car-car means a car following a car; car-truck means a car following a truck. 
	 
	Then we proceed to assuming the scaling property holds and estimating scaling parameters 𝑎𝑖𝑗. We denote cars as class 1 agents and trucks as class 2 agents, and attempt to estimate 𝑎12. The initial value of 𝑎12 is set to be 1. To reduce the complexity of solution, we further set the free-flow speed to be 65 mph and the jam density to be 200 vpm. The estimated values for 𝑎12 are presented in Table 
	Then we proceed to assuming the scaling property holds and estimating scaling parameters 𝑎𝑖𝑗. We denote cars as class 1 agents and trucks as class 2 agents, and attempt to estimate 𝑎12. The initial value of 𝑎12 is set to be 1. To reduce the complexity of solution, we further set the free-flow speed to be 65 mph and the jam density to be 200 vpm. The estimated values for 𝑎12 are presented in Table 
	2
	. Based on these parameters, we plot the three fitted logistic models, namely 𝑢11(⋅) (base model), 𝑢12(⋅) (non-scaled fit), and 𝑢(⋅/𝑎12) (scaled fit), in Figure 
	5
	. From the figure, we see that the scaled models well approximate the non-scaled models in both cases (I-80 and US-101) and both are different from the base model. This indicates the scaling property is a reasonable approximation to the empirical observations. 

	 
	 
	Table 2: Scaling parameter 𝑎12 (class 1 agents following class 2 agents) estimated from data 
	Location 
	Location 
	Location 
	Location 
	Location 

	Scaling Parameter 
	Scaling Parameter 

	MAE (mph) 
	MAE (mph) 



	I-80 
	I-80 
	I-80 
	I-80 

	1.9998 
	1.9998 

	4.5586 
	4.5586 


	US-101 
	US-101 
	US-101 

	1.9793 
	1.9793 

	4.9082 
	4.9082 




	 
	 
	Figure
	Figure 5: Base, scaled and non-scaled logistic models at I80 (left) and US101 (right) 
	Scaling parameters to capture HV-AV interactions 
	The scaling property was meant to capture the HV-AV interactions. Though values of the scaling parameters cannot be directly estimated from the NGSIM data (where all the vehicles are human-driven), we can estimate their values based on the relation between headway and flow, namely, ℎ=1𝑞=1𝜌⋅𝑢(𝜌) along with other simplifications as follows. We define class 1 agent following class 1 agent as the base case. Assume that the base speed-density relation is linear, 𝑢(𝜌)=𝑢𝑓(1−𝜌𝜌𝑗), where 𝜌𝑗 is the jam d
	𝑎𝑖𝑗=ℎ11∗ℎ𝑖𝑗∗, 𝑖,𝑗=1,2          (16) 
	For the mixed autonomy traffic, we denote HVs as class 1 agents and AVs as class 2 agents. Based on (
	For the mixed autonomy traffic, we denote HVs as class 1 agents and AVs as class 2 agents. Based on (
	16
	), we were able to calculate the scaling parameters based on existing assumptions or simulation results regarding the optimal headways of AVs in literature. The results are summarized in Table 
	3
	3

	. The advantage of using a scaling parameter lies in that it is independent of specific assumptions on the shape of the speed-density curves and provides a unified ground for the comparison of different models. This can simplify the equilibrium modeling and analysis substantially. 

	 
	Table 3: Headway assumptions and scaling parameter estimation based on existing literature 
	 
	Figure
	Existence of 1-pipe equilibrium 
	Next, we verify the existence of the 1-pipe equilibrium from empirical data, which is an important qualitative prediction from our model. We verify this by examining class 1 agent speeds and class 2 agent speeds at different density levels using box plots, and the result is shown in Figure 
	Next, we verify the existence of the 1-pipe equilibrium from empirical data, which is an important qualitative prediction from our model. We verify this by examining class 1 agent speeds and class 2 agent speeds at different density levels using box plots, and the result is shown in Figure 
	6
	. From this figure, we can see that the density level where 1-pipe equilibrium starts to occur is 100-120 vpm, which is close to the critical density that is approximately 90 vpm. This result thus indicates that the assumption holds well, at least in a probabilistic sense. Another interesting observation is that, even though the median speeds of the two classes of agents tend to be zero when the density is high, the variations of truck speeds remain relatively high at larger densities. In contrast, the spee

	 
	Figure
	(a) Box plot of class-specific speed at different densities 
	(a) Box plot of class-specific speed at different densities 
	(a) Box plot of class-specific speed at different densities 


	 
	Figure
	(b) Class-specific flow-density relations 
	(b) Class-specific flow-density relations 
	(b) Class-specific flow-density relations 


	Figure 6: Synchronization of class-specific speeds after reaching a critical threshold 
	Conclusion 
	We presented an equilibrium model of mixed autonomy traffic flow based on game theory. Human-driven and automated vehicles are modeled as self-interested agents endowed with different speed functions. Their simultaneous longitudinal and lateral interactions are modeled as 
	a two-player game. Through this model, we examine the equilibria of mixed autonomy traffic and bridge macroscopic equilibrium properties of traffic flow with behavior characters of agents. 
	The game theoretic approach presented in this paper is new and advances the existing behavior approach of modeling mixed traffic. Thanks to the power of game theory, in our new approach, equilibria of mixed autonomous traffic can be fully determined from agent characteristics, without presuming a macroscopic equilibrium structure or resorting to heuristic behavior rules. As such, this approach is more behaviorally sound and coherent, making it capable to handle more sophisticated agent behaviors and lane se
	Our model also brings a new understanding of how mixed autonomy traffic may behave. We found that the agents in mixed autonomy traffic can in general reach two types of Nash equilibria, which may or may not co-exist, depending on traffic regimes. This contradicts the existing equilibrium theories of mixed flow, which presume a unique and well-defined equilibrium relationship. We also show that there always exists at least one Pareto efficient equilibrium for every system state. This implies even when all th
	We provided two examples. In the first example, we compared the equilibrium speeds and fluxes of mixed autonomous traffic in two behavior scenarios, which verified that the Pareto efficient equilibrium improves the 1-pipe equilibrium in all traffic regimes. In the second example, we introduced an AV-exclusive lane policy and investigated the new traffic equilibria. We found discontinuities in the resulted macroscopic equilibrium relations. This suggests that the behaviors of mixed autonomy traffic may not a
	Empirically, the scaling property of the equilibrium relation is verified. The property simplifies the specification of the flux function since only a nominal speed-density function and associated scaling parameters need to be estimated. If the scaling property holds for AVs, then we can derive the flux function of AVs from the flux function of HVs, which is connected by scaling parameters that are estimable from headway observations or assumptions. In addition, the 1-pipe equilibrium is observable when the
	Our model depicts the connection between macroscopic equilibria of mixed autonomy traffic and agent characteristics. This connection can serve as a basis for designing AV behaviors in mixed autonomy environments. In the future, it is desirable to consider more sophisticated agent behaviors and their macroscopic effects. 
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