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ABSTRACT 
Providing all means of travel facilitates people’s access to jobs, healthcare, critical activities, and 
other services. To enable equal multi-modal mobility services to the public, it is important to 
evaluate equity in accessing different travel modes. In this study, we proposed a concept called 
“multi-modal deserts” and developed an approach to identify them. Multi-modal deserts refer to 
areas with limited mobility services that constrain people from accessing services and 
opportunities. Framed under multi-modality, multivariate outlier detection was applied to 
identify areas’ mobility services that significantly deviate from other areas by analyzing road 
network factors and travel modes. Downtown Tampa, Florida, was selected as an empirical case 
to demonstrate the proposed method, and 11 multi-modal deserts were identified among 182 
Census Block Groups. In addition, spider charts were used to illustrate and compare the features 
of these multi-modal deserts. The results show that two multi-modal deserts in central 
Downtown Tampa have the highest poverty ratios and have very limited access to all travel 
modes. For such multi-modal deserts, transit and shared micromobility need to be better served 
in a way to enrich the travel mode choices for low-income residents. Other multi-modal deserts 
are at the edge of Downtown Tampa, which has no access to shared micromobility and limited 
access to transit. The results will help local authorities identify mobility gaps by better allocating 
resources and improving equal access to opportunities for all citizens. 



 

 
 

 
  

 
 

 
 

  
 

 
  

 

 
   

 

 
 

  
 

   
 

 
 

 
 

  
 

 

INTRODUCTION 
Transportation resources are unequally distributed in space, and it has been a convention 

that transport policy and planning practices are centered on automobiles while ignoring other 
road users. These underserved road users generally are low-income minorities, and their travel 
choices rely heavily on transit (1). In recent years, there has been a trend of adopting emerging 
travel modes such as e-scooter- sharing (2) and ride-sourcing (3). However, when distributing 
bikes and e-scooters on streets, the location choice of these emerging programs involves 
selection bias, which raises public debate concerning equity in accessing these shared mobility 
services. Yet, their prices remain unaffordable, and the locations of e-bike and e-scooter stations 
remain inaccessible for low-income populations (4; 5). People living in underserved 
communities continually lose opportunities to access destinations and encounter certain levels of 
socioeconomical segregation. 

This study proposed a concept called “multi-modal deserts,” referring to areas with 
limited mobility options and services. Numerous studies have quantified access to a single travel 
mode (6), and related topics include but are not limited to access to transit (7), shared bikes (4; 
8), etc. However, few studies have incorporated multiple travel modes simultaneously. As a 
transportation system is intrinsically multimodal, evaluating the quality of mobility services in an 
area and all travel modes should be jointly considered. 

Emerging modes such as paratransit provide free services and mitigate mobility 
challenges faced by vulnerable groups. For example, the Sunshine Line in Hillsborough County 
(Florida) provides free door-to-door mobility services for older adult and low-income residents 
and persons with disabilities who cannot physically or economically afford a car. The service 
helps these vulnerable groups access destinations for critical activities such as healthcare, 
grocery shopping, and jobs. Shared micromobility modes also help address gaps in the 
transportation system. In Portland (Oregon) (9) and Baltimore (Maryland) (10), shared e-scooter 
companies are required to allocate at least 20 percent (Portland) or 25 percent (Baltimore) of 
their total fleets to disadvantaged areas. Cities are paying attention to areas with constrained 
mobility services, which echoes the idea of multi-modal deserts. However, to date, there is no 
rigorous method to identify multi-modal deserts. Practitioners need methods and tools to identify 
underserved communities to efficiently allocate resources. Thus, a framework needs to be 
established to help practitioners and decision-makers identify areas that urgently need public 
assistance in improving mobility services. 

Improving mobility service is about facilitating access to different travel modes and 
improving the quality of related services (11). It is important to consider mode access, as it is a 
prerequisite for accessibility to key destinations. Measuring the access of different travel modes 
is related to the supply of infrastructure (12). Multi-modal deserts can be interpreted as areas 
having limited supply for one or multiple type(s) of infrastructure, i.e., the supply of services in 
multi-modal deserts tends to deviate from the majority of areas, making them outliers. Therefore, 
outlier detection methods can be applied to identify multi-modal deserts. 

This study proposed a framework to detect multi-modal deserts. Procedures include travel 
mode selection, data preparation, outlier detection, and results interpretation. GIS tools were 
used for visualization. Downtown Tampa was selected for empirical analysis. Noted as a Sunbelt 
city, people in Tampa have a high level of car dependency, and transit and other sustainable 
alternatives are unequally distributed in space. These features make Tampa a representative case 
for most U.S. cities that are auto-oriented and shifting towards multi-modal transportation. 



 
 

  

  

 
 

  
  

 
 

 
 

     
     

  
  

    
   

   
 

  
    

  
       
      

  
 

     
  

  
  

     
 

  
  

  
 

  

   

   

   

The contributions of this study are fourfold. First, it defines a new term—multi-modal 
desert—a concept that is important for addressing the emerging needs of multi-modality and 
brings benefits to underserved populations. Second, previous studies on transportation equity are 
unimodal-based; a multi-modal desert considers the quantity and quality of all travel modes 
regarding their supply, which extends inequality of access to different travel modes to a larger 
context. Third, this study conceptualizes a framework to identify multi-modal deserts; this 
approach can be formulated as a tool for identifying underserved areas. Fourth, the empirical 
results serve to inform policies and practices to address mobility challenges in the local 
environment and enhance transportation equity. 

LITERATURE REVIEW 
As noted, the concept of a multi-modal desert is not new; it is an extended form of a 

transit desert. It evaluates the gap in assessing different travel modes and promotes transportation 
equity, and it requires new methods for identification. This section discusses access to different 
travel modes and methods for determining multivariate outliers. 

Access to Different Travel Modes 
The concept of a multi-modal desert is an extended form of a transit desert, which refers to an area that has 

inadequate transit services to the public (13-15). A multi-modal desert extends a single mode from transit to all 
travel modes. 

To identify a multi-modal desert, it is important to quantify access to different travel modes. According to 
Van Wee et al. (12), transportation accessibility has various definitions that can be grouped into infrastructure-
related or activity-oriented approaches. The activity-oriented approach accounts for trip activities (purposes), e.g., if 
people can reach a destination within a certain time threshold. Infrastructure-related approach is adopted in this 
study, it is supply-oriented. Its accessibility is measured by characteristics of infrastructure supplies such as length 
of road network. Considering the supply of transportation modes, the existing literature discusses access to different 
travel modes independently, such as access to private vehicles, public transit, and shared modes such as 
Transportation Network Companies (TNCs), bike sharing, and e-scooter sharing. 

To measure private vehicle access, the share of the population (or households) that owns a car or has a 
driver’s license can be used as an indicator (16). Owning a private car helps economically-disadvantaged 
populations to access jobs (17; 18). Access to transit can be a composite measurement, which is jointly quantified 
with various transit-related features such as capacity of a transit line, headway, hours of operation, speed, distance to 
a bus stop, etc.(19). This measurement can be computed for each bus stop and can be aggregated to larger 
geographic scales (e.g., census zones). This measurement helps evaluate transit services across different zones. With 
regard to shared mobility access, one approach is called coverage-based. Ursaki and Aultman-Hall (4) defined 
coverage/service areas of a bike-sharing station by creating buffers around stations; those who reside within the 
coverage area are assumed to have access to shared bikes. To inform the practice for transportation equity 
improvement, socioeconomic factors within and outside the coverage area have been analyzed (4; 8). Another 
approach uses mean density or the availability of shared bikes within a given area to measure the supply and quality 
of services; areas with higher population density and higher income are related to a higher supply of shared bikes 
(20-22). To measure access to taxi and ride-sourcing services, fleets across spatial spaces can be used as an indicator 
(5). However, ride-sourcing companies (TNCs) such as Uber and Lyft rarely share their operational data with 
researchers. Equity discussions on TNCs are still limited. 

When measuring the service quality of a transportation mode, the quality of road networks and 
infrastructure also needs to be considered, as they potentially influence people’s mode choice for a trip. For 
example, the availability of sidewalks and bike lanes helps promote active transportation (23), and longer bike lanes 
positively influence ridership of shared bikes (24). A study in Portland found that a disproportionate share of 
bicycling occurs on streets with bike lanes (25). In addition, sidewalks and bike lanes are positively related to the 
use of transit (26). Road intersections and road length are important measurements of network connectivity (26), 
which also influence a mode’s service quality. A well-connected road network has many short links and 
intersections that greatly improve accessibility (27). 



 
 

 
 

 
 

 

 
 

  

 
 

   

 

 

 
 

 

  

 

 
 

 

Outlier detection 
As noted, the quantity of mobility services in a given area is characterized by 

transportation-related features. Multi-modal deserts have limited access to transportation modes 
and supplies, deviating from other areas. Thus, outlier detection methods can be applied to locate 
multi-modal deserts. This section provides a brief overview of popular outlier detection methods. 

Outliers are generally defined as data points that are far outside the norm of variables or 
populations (28-30). They can arise from different mechanisms such as errors in the data (e.g., 
data misreporting) and inherent variability of the data (31). Retaining outliers in data may lead to 
false statistical inferences (32). 

Outlier detection is a hot research topic in statistics and related application fields and can 
be applied to one or multiple variables. Classic approaches for detecting univariate outliers are 
box-plot (33), the Ven der Loo method (34), etc. For multi-dimensional data, many advanced 
outlier detection methods have been developed and can be categorized as statistical models, 
neural networks, or machine learning algorithms (35). A comprehensive exploration of outlier 
detection methods can be found in the existing literature (35-37). Given the tremendous choices 
of outlier detection methods, Hodge and Austin noted that the selected methodology should 
accurately model the data distribution and attribute types of data, scalability, and speed (35). 
Among outlier detection methods, the most classical approach for multivariate outlier detection 
is Mahalanobis distance (38; 39), (40), which measures the number of standard deviations that 
the value of an observation deviates from the mean considering the multivariate covariance 
structure. Applying a Mahalanobis distance assumes that observations follow a multivariate 
normal distribution; thus, the distribution of Mahalanobis distance follows a chi-square 
distribution (41). An outlier is identified by comparing the Mahalanobis distance of an 
observation with a critical value of the 2 distribution with p degrees of freedom; a 97.5 percent 
significance level is often suggested (42). Applying Mahalanobis distance requires the estimation 
of mean and covariance. Classic estimations use all sample data that can be influenced by 
outlying observations (43). Thus, classic estimation based on Mahalanobis distance can be 
unreliable if outliers are presented in the data. To get an unbiased sample mean and covariance, 
robust estimations are needed. A popular robust estimation is using a minimum covariance 
determinant (MCD) estimator (44; 45), which aims to find a subset of observations that have the 
smallest determinant of a sample covariance matrix. Mahalanobis distance also suffers from the 
“curse of dimensionality” caused by high dimensional features, i.e., data are spread through a 
larger volume and become less dense, making it more difficult to discern the outliers in the full 
space rather than its subspace (35; 46; 47). To address this issue, principal component analysis 
(PCA) can be used for dimension reduction (35). PCA creates a linear combination of original 
values, referred to as a dataset, reorganized by a series of principal components (PCs). PCs are 
orthogonal to each other and retain the most variability in the data (48). The distance measures 
(e.g., Mahalanobis distance, score distance, orthogonal distance) (49) can be applied to the first k 
PCs to unmask outlying observations. Similar to the Mahalanobis distance approach, computing 
PCs also requires the estimation of a covariance matrix, and a robust estimation (e.g., MCD) 
must be applied. Prior research compared the results of different robust PCA-based approaches 
using simulated data, and ROBPCA (50) performed the best (49). This study adopted the 
ROBPCA method to detect potential outliers. 



 

 
 

 
 

 
 

 
   

 

   
 

   
 

    
 

    
 

 

  
 

  
 

 
 

   
 

 

 

 
  

 

 
 

METHODOLOGY 
This section includes an introduction to data collection and a detailed description of the 

method. 

Data collection 
Table 1 describes how selected variables were measured or calculated, with data sources 

listed. As shown, most targeted variables were included except TNCs due to difficulty in 
accessing their data. Public transit connectivity is a composite measurements, and calculation of 
the index refers to the work of Mishra, Welch, and Jha (19). 
TABLE 1: Description of Variables 
Variable Description Source 
Road network 

Road centerline 
length 

Total length of road centerline length inside a 
Census Block Group scaled by area size 

City of Tampa 
GeoHub 
(2020) 

Number of 
intersections 

Number of intersections inside a Census Block 
Group scaled by total length of road centerline 

City of Tampa 
GeoHub 
(2020) 

Sidewalk length 
Total length of sidewalks inside a Census Block 
scaled by total length of road centerline 

City of Tampa 
GeoHub 
(2020) 

Bike lane length 
Total length of bike lanes inside a Census Block 
divided by total length of road centerline 

City of Tampa 
GeoHub 
(2020) 

Travel mode-related features 
Car ownership 
percent 

Percentage of households own private vehicles in a 
Census Block Group 

TBRPM (2015) 

Transit 
connectivity 

Connectivity of transit nodes in a Census Block 
Group 

HART (2020) 

Shared bike counts 
Shared bike counts in a Census Block Group 
scaled by population count in the Census Block 
Group 

City of Tampa (2019) 

Shared e-scooter 
counts 

Shared e-scooters counts in a Census Block Group 
scaled by population count in the Census Block 
Group 

Populus (2019) 

Note: Methods to calculate transit connectivity refer to (19) 



 

 

 
 

 
 

   
    

    
 

 
 

  
    

  
  

    

 
 

   

  
  

   
 

 
 

  
  

  

    

Methodology 
The methodological framework adopts four steps to identify multi-modal deserts; the 

process is presented in Figure 1. 

FIGURE 1: Analytical process 

Details of this analytical process are described as follows: 
Step 1: Prepare input data – This step defines mobility data as a matrix, X = (Xi1, Xi2, … 

Xip) for i = 1, … n. The data have n Census Block Groups with p transportation feature 
dimensions, with expected value µ = (µ1, µ2 … µp). 

Step 2: Apply Robust PCA – Computing principal components requires an estimation of 
covariance matrix, and a classic PCA uses covariance of a sample that can be influenced by 
outliers. To overcome this limitation, a robust PCA method called ROBPCA (50) was adopted in 
this study. The ROBPCA algorithm consists of three major steps: 

1) Given 𝑿𝑛,𝑝 is a matrix with n Census Block Groups and p transportation features. The 
first step restricts the feature space up to n by the singular value decomposition (SVD) 
method, the SVD works follows: 

′ 𝑡 𝑿𝑛,𝑝 − 𝟏𝑛 𝝁⏞ = 𝑽 (1)
0 𝑼𝑛,𝑟0

𝑫𝑟0,𝑟0 𝑟0,𝑝′ 

′ ′ Where 𝝁⏞ is the classic mean vector, 𝑟0 = 𝑟𝑎𝑛𝑘(𝑿𝑛,𝑝 − 𝟏𝑛 𝝁⏞ ). Without the loss of 0 0 
information, the dataset becomes 

𝑿𝑛,𝑟0 
= 𝑼𝑫 (2) 

This step is a dimension reduction tool when p ≥ n and also helps remove redundant 
dimensions when the rank of features is less than p. 

2) The second step obtains the preliminary subspace of dimension k0 for 𝑿𝑛,𝑟0 
. To estimate 

the subspace, this step first finds h “least outlying” observations by measuring the 
outlyingness of each observation. The computation applies Stahel-Donoho affine-
invariant outlyingness (51; 52). The least h outlying observations are selected, and their 
means and variances are denoted as 𝝁⏞1 and 𝑺0. The covariance matrix 𝑺0is used to decide 
the number of PCs k0 < r0 that can be retained in the further analysis. In detail, the 
spectral decomposition of 𝑺0 is conducted as 

𝑺0 = 𝑷𝟎𝑳𝟎𝑷𝟎
′ （3) 



    
  

  

  

    

     

  

   
 

  

    

  
 

    

 
 

        

    

 
 

  

   

  
  

 
  

 
 

 
 

 
 

where L is the eigenvalue and P is the eigenvectors, the eigenvalues 𝑙𝑗 are sorted in 
descending order and eigenvector is indexed accordingly. The first k0 PCs (𝑷𝑟1,𝑘0

) are 
selected. k0 is chosen by a criterion: 

𝑘0∑𝑗=1 𝑙𝑗 
≥ 90%

𝑟 ̃∑𝑗=1 𝑙𝑗 

Projecting 𝑿𝑛,𝑟0 
to the subspace spanned by the first k0 of 𝑺0 is computed as 

𝑿𝑛,𝑘0

∗ = (𝑿𝑛,𝑟0
− 1𝑛 𝝁⏞

′
)𝑷𝑟1,𝑘0

（4) 
1 

3) This step robustly estimates the mean and variance of scatter matrix of 𝑿𝑛,𝑘0

∗. This step 
first adopts the FAST-MCD algorithm proposed by Rousseeuw and Van Diressen (1999) 

′ ′ ′ to obtain the robustly estimated 𝝁⏞ and 𝑺1. Based on 𝝁⏞ and 𝑺1, mean 𝝁⏞ and covariance2 2 3 

𝑺2 are computed by applying the re-weighted MCD estimator to improve statistical 
efficiency. The spectral decomposition of 𝑺1 can be written as 

𝑺1 = 𝑷𝟏𝑳𝟏𝑷𝟏
′ （5) 

Where 𝑳𝟏 is the diagonal matrix with eigenvalues, and 𝑷𝟏 contains the corresponding 
eigenvectors. The final principal scores are 

𝑇𝑛,𝑘 = (𝑿𝑛,𝑘 − 𝟏𝑛 𝝁⏞
′ 

)𝑷1
（6) 

3 

Step 3: Compute distance – The popular distance measure for detecting outliers is 
Mahalanobis distance. Mathematically, Mahalanobis distance is defined as 

𝑀𝐷𝜇,𝛴 (𝑿𝑖) = √(𝑻𝑛,𝑘 − 𝝁)𝑇𝛴−1(𝑻𝑛,𝑘 − 𝝁) （7) 

Where 𝑻𝑛,𝑘 is the vector of PCs obtained from Step 2, and mean 𝝁 and covariance 𝜮 are 
estimated from PCs. The squared Mahalanobis distance follows a chi-square distribution 
with k degrees of freedom. 
Step 4: Identify the multi-modal desert – Given the Mahalanobis distance of an 

observation (Census Block Group), the outlying area can be identified if 

𝑀𝐷(𝑿𝑖) > √2 （8) 
𝑘;0.95 

Here, a 95% significance level is selected to account for both multi-modal deserts and 
mobility advantaged areas. Based on the selected outliers, the standardized feature values 
are summed for each outlying area. If the sum is lower than 0, the area is considered to be 
a potential multi-modal desert. 

STUDY AREA, RESULTS, AND DISCUSSION 
This section describes the study area, presents statistics of features related to mobility 

services, and discusses multi-modal deserts obtained from the analysis. 

Study area: Downtown Tampa 
Tampa is located in west central Florida (Figure 2) and has a metropolitan (Tampa-St. 

Peterburg-Clearwater) population that ranks No. 2 in the state; it is one of the most population-
dense metro areas in the US. Tampa provides a variety of mobility options for travelers, 
including transit, bike sharing, e-scooter sharing, streetcar, water taxi, etc. However, as a Sunbelt 



 
 

  

 

 
 

 
 

 

 
 

  

 
 

 

  
 

     
 

     
     

     
     

 
     

     
       

     
 

  

city, people living in Tampa have a high level of car dependency. According to DATA USA 
(2018), for commuting trips, modal splits in Tampa are drive-alone (76.1%), carpool (9.97%), 
and transit (2.47%). This study selected Downtown Tampa for empirical analysis, as it is a 
representative case for most US cities labeled with high car dependency and is a growing metro 
area with new travel options emerging and on track for developing a multi-modal transport 
system. 

Florida state 

FIGURE 2: Study area 

City of Tampa Downtown Tampa 

Variable statistics 
To conduct the analysis, various data were collected. To better match the US census, the 

Census Block Group level was selected as the analytical unit. Matching the census can facilitate 
statistical analysis of disparities in mobility services among different socioeconomic groups. In 
total, 182 Census Block Groups were included in the study. 

Table 2 presents descriptive statistics of the study area, and Figure 3 shows the 
distribution of transportation resources in Downtown Tampa. Areas with red boundaries are the 
selected multi-modal deserts discussed later. As shown, most transportation resources are 
distributed in the central Downtown area, especially bike-sharing and e-scooter-sharing. Features 
such as road centerline, bike lane, and transit resources also present great variation and have 
higher value in the Downtown core, leaving some areas underserved. Car ownership presents the 
opposite variation and is more advantaged around the Downtown edge. People living in central 
Downtown have better transit and shared micromobility services and, thus, are less dependent on 
private cars. 
TABLE 2: Variable Statistics 
Variable Minimum Median Mean Maximum 
Road network 
Road centerline length 92.86 344.90 344.38 968.50 
Number of intersections 1.57 6.18 6.33 12.30 
Sidewalk length 0.02 1.37 1.30 2.96 
Bike lane length 0.00 0.33 0.52 4.20 
Transportation mode-related features 
Car ownership percent 0.44 0.88 0.84 1.00 
Transit connectivity 0.00 105.19 131.85 779.02 
Shared bike counts 0.00 0.00 0.00 0.07 
Shared e-scooter counts 0.00 0.00 0.01 0.20 



 
  

 
 

  
 

  
 

 

   

 
 

FIGURE 3: Spatial distribution of transportation resources 

Results 
By following the methodological framework, 11 multi-modal deserts were identified and 

are presented in Figure 4. As shown, multi-modal deserts are located at both the Downtown edge 
and neighborhoods near the center of Downtown. As transportation services are centered in the 
central Downtown area, people living in the edge areas are generally more reliant on private 
vehicles. Despite central Downtown being equipped with more infrastructure, poor 
neighborhoods near the central Downtown area, which are just a couple of blocks away, face 
difficulties in accessing sustainable alternatives, resulting in multi-modal deserts near the central 
Downtown areas. 

The colored areas in Figure 4 indicate the variation of poverty levels in different Block 
Groups, based on data obtained from the American Community Survey 2019. As shown, both 
rich and poor neighborhoods can be multi-modal deserts, and more than half of multi-modal 
deserts are located in areas with better socioeconomic status. Multi-modal deserts located near 
central Downtown are relatively poor, and multi-modal deserts located near the edge of 
Downtown are neighborhoods with relatively higher socioeconomic status. A detailed analysis of 
these multi-modal deserts is presented in the next section. 



 
 

 
 

 

  

 
 

 

  

 

 
  

 

FIGURE 4: Multi-modal deserts in Downtown Tampa 

Discussion and policy implications 
To inform practice and to better understand features that are correlated with multi-modal 

deserts, the features of each multi-modal desert were plotted in spider charts and are presented in 
Figure 5, corresponding to the 11 multi-modal deserts identified in Figure 4. In the spider chart, 
the value of each feature ranges from 0% to 100%, marked at intervals of 25%, 50%, and 75%. 
Based on socioeconomic status, multi-modal deserts were categorized into three groups, noted as 
High (greater than 50.8%), Medium (between 11.7% to 50.7%), and Low poverty ratios (lower 
than 11.6%). 

For multi-modal deserts located in areas with a high poverty ratio, two areas were 
identified and are located in neighborhoods near central Downtown, shown in Figure 5 as Desert 
1 and Desert 2. Neighborhoods located in the outskirts of central Downtown are of a historically 
high poverty ratio, and gentrification of the city has shifted most of the disadvantaged areas north 
toward the University area (53). Despite local authorities having spent much effort to improve 
mobility services, challenges remain—households have a low level of car ownership due to 
poverty, and the spatial coverage of shared micromobility options fail to reach these areas. Road 
infrastructure such as sidewalks and bike lanes are generally of low quality, and many streets are 
not well-connected; thus, households in these two Block Groups face challenges in receiving 
mobility services. These areas need special attention from policymakers, as the households are 
generally poor and the mobility constraints suffered in these neighborhoods further discourage 
residents from accessing critical activities, jobs, and educational opportunities to improve their 
quality of life. 

For multi-modal deserts located in areas with a medium poverty ratio, one is in central 
Downtown, and others are located at the edge of Downtown. Desert 3 is the only one located in 
central Downtown, similar to zones with a high poverty ratio, Desert 3 has low mobility, which 
is mainly constrained by low vehicle ownership and limited infrastructure. It has some transit 
service, as it is located in central Downtown, although no shared micromobility is distributed, as 



  
 

 

 
 

 
 

 

 

 

they mainly operate in central Downtown areas. Other deserts are located at the edge of 
Downtown; these areas have relatively higher vehicle ownership and present some infrastructure 
such as bike lanes (Desert 4), road intersections (Desert 5 and 6), and e-scooters (Desert 7). 
Though Desert 7 has shared e-scooter services, the limited bike lane length cannot support this 
mode very well. Overall, these areas lack non-motorized infrastructure and transit services. Lack 
of access to public transit prevents low-income households from seeking job opportunities (54). 

Multi-modal deserts with a low poverty ratio are located at the edge of Downtown. Given 
the higher socioeconomic status of these zones, all have a high vehicle ownership but a limited 
supply of infrastructure for non-motorized transportation and limited access to transit. People in 
these areas might not be constrained by auto travel; however, the lack of public transit 
encourages them to be more auto-dependent and discourages sustainable travel. If bike lanes and 
sidewalks were better developed, they could encourage more physical activity by using active 
transportation (23). 



 
  

 
 

 
 

 

  
   

 

 
  

 

 

FIGURE 5: Spider charts of multi-modal deserts 

To summarize, the identified multi-modal deserts show different patterns in Downtown 
Tampa. Multi-modal deserts with low-socioeconomic status are located near the Downtown core 
and are more constrained for all travel choices. Multi-modal deserts at the edge of Downtown 
generally have a high level of car dependency, and these areas are labeled as multi-modal deserts 
due to lack of infrastructure for active transportation, unconnected streets, and difficulty in 
accessing transit services and shared micromobility. Compared to the existing literature, results 
from this study provide additional insights towards transportation equity and planning. Previous 
studies have shown that shared micromobility targets specific populations with higher incomes 
and more education (4; 8) and are popular in areas with denser population (55). This may not be 
intentional, as most populated areas generally attract more users, incur more trips, and have a 
higher frequency of using public bikes and e-scooters (56). Such practices are related to 
identified multi-modal deserts in the outskirt areas. Figure 6 shows multi-modal deserts without 
considering shared micromobility; the input for multivariate outlier detection excludes the 
distribution of shared e-scooters and shared bikes. In this scenario, multi-modal deserts are 
mostly concentrated near the Downtown core. This indicates that areas that have no access to 
shared micromobility options are relatively disadvantaged in the previous analysis—the results 
can be greatly changed with different consideration of travel modes. An increasing spatial 



 
 

 
 

 
 

 
   

 

 
   

 
  

  

 
    

 

coverage and promoting equitable distribution of shared micromobility options can help mitigate 
challenges resulting from limited mobility services. 

FIGURE 6: Multi-modal deserts without considering shared micromobility 

To address multi-modal deserts in Downtown Tampa, several practices could be 
implemented: 

• Infrastructure – The identified multi-modal deserts generally lack non-motorized 
infrastructure, which greatly reduces the feasibility of implementing related plans and 
discourages individuals from using sustainable alternatives. Policymakers should 
continually provide non-motorized infrastructure to promote multimodal transportation 
and ensure street connectivity, spatial coverage, and safety. 

• Shared micromobility – Shared micromobility is an efficient way of providing 
alternatives. Unlike planning for bus routes, which is highly dependent on density and 
requires more investment, shared micromobility options can be deployed to 
disadvantaged areas quickly. In practice, policymakers could encourage shared 
micromobility companies to better serve disadvantaged neighborhoods (Desert 1 and 2) 
by reducing e-scooter application/permit fees; this practice has been implemented in 
cities such as Portland (9); findings suggest a positive effect on overall e-scooter use. To 
ensure affordability by low-income households, incentives and subsidies should be 
optimally provided to low-income users. 

• Transit – Increasing the spatial coverage and frequency of transit services depends on 
many external factors, but a well-functioning transit network is important for reducing 
multi-modal deserts. Policymakers should investigate the demand for transit, specifically 
paying attention to disadvantaged groups; however, encouraging more compact 
development is key to a successful transit system. 



 
 

  

  

 

 
 

 

  

  
 

 
 

 
 

 

   
 

 
  

 
 
 

 
      

          
   

 
 

CONCLUSIONS 
Mobility is essential for people to participate in socioeconomic activities and obtain 

opportunities. The inequitable distribution of mobility resources leaves some areas lacking 
services, resulting in negative impacts on disadvantaged populations. To advocate for 
transportation equity, this study proposed the term “multi-modal desert” to describe areas with 
limited access to mobility services. A methodological framework was developed to identify 
multi-modal deserts and adopts an outlier detection method that uses robust PCA and distance 
measures to identify them. This can be used by policymakers to identify disadvantaged 
communities and develop solutions to optimally satisfy their mobility needs. 

By applying the described methodological framework, this research successfully 
identified several multi-modal deserts. One group of multi-modal deserts has a high poverty ratio 
and poor infrastructure and does not provide easy access to any travel modes. These areas need 
special attention from policymakers; a systematic transportation planning approach could address 
the needs. Other multi-modal deserts have relatively higher degrees of vehicle ownership but 
generally lack the infrastructure to support active transportation. To promote health and 
sustainability, more bike lanes and sidewalks are needed to promote non-motorized travel in 
these areas. Transit services are generally poor in all identified multi-modal deserts. However, 
successful transit operation is conditioned on density. Future planning could initiate more high-
density developments into such areas to keep a balance between promoting equity and ensuring 
the cost-effectiveness of the use of public funds. 

This research could be extended in several aspects. First, this study adopted the 
Mahalanobis distance-based outlier detection; other methods such as k-nearest neighbor (57) and 
k-means (58) could be used, and results obtained from different analyses could be compared to 
enhance the robustness of the results. Second, future study could include more travel modes such 
as TNCs and paratransit, which are also popular options in metropolitan areas. This research did 
not include them due to lack of data, which may produce biased results; future research can 
incorporate TNCs and paratransit if the data are available and accessible. Third, this study 
considers transportation supply level/quality as a measure for transportation accessibility; other 
definitions of transportation accessibility that consider travel activities or affordability of using a 
transportation mode could be considered, especially when the result is targeted for interpretation 
for equity implications (59). Fourth, this study uses walk length and bike lane length to indicate 
the level of active transportation; there have been composite indices (60-62) for measuring how 
walkable/ bikeable a community is, and these indices are more comprehensive but require 
additional data sources (e.g., network distance to diverse destinations) for computation. Future 
studies could experiment with these indices if additional data can be obtained. 
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