

Feasible Solutions

Electric Shuttle

Mini Electric Shuttle

Fuel-Cell Vehicle

Feasible Solutions

Measurement	Normalized Score			User Dependencies			Final Score			
	ES	MES	SEB	FCV	Min	Weight	ES	MES	SEB	FCV
Range	5	4	4	4	3	3	15	12	12	12
Price	1	3	5	1	1	5	5	15	25	5
Maintenance	2	4	2	1	1	4	8	16	8	4
Safety	5	3	2	5	2	5	25	15	10	25
Flexibility	2	5	5	4	2	3	6	10	10	8
Legality	4	3	0	3	1	2	8	6	0	6
Final							67	74	65	60

Literature Review

Optimization

- Vehicle Routing Problem
- Minimize Total Cost satisfying certain demand level
- Constraints: Charging capacity, Environmental Factors, Service Radius of EV Stations, etc.

Simulation

- Simio Object oriented discrete event simulation
- Graphic modeling enables user to rebuild and present the scenario

Existing Instances

- Drive Electric Northern Colorado (DENC)
- University Charging Stations (Columbia, Stanford, Yale)

Methodology

Collect Information

KnowledgeLiteratureDatabaseProject Docs

Define solution MES

Field WorkObservationImmersionEngagement

Mathematical Modeling

Optimzation

Mixed Integer
LinearProgramming
Input feasibility check
for scenario analysis

Flow Simulation

- TransportationFlow Simulation –Simio
- Bus route modeling
 Vehicle and passenger transportation

Optimal Plan Evaluation

Mathematical Model

investment for each electrical bus:

Set/Indices **Objective Functions** set of nodes in the campus; Min $c = C_{driver} + C_{infra} + C_{nower} + C_{bus}$ set of interchanges in the campus $\sum_{j\in N} X_{0jn} = 1$ for n = 1 to R_{max} , s.t. i,j indices of nodes: $\sum_{i \in N} X_{i0n} = 1$ for n = 1 to R_{max} , route number; n $\sum_{i\in N, i\neq j} X_{ijn} - \sum_{i\in N, i\neq j} X_{jin} = 0$ for $j\in N, n=1$ to R_{\max} , $\sum_{i \in N} X_{ijn} \leq 1$ for $j \in N$, n = 1 to R_{max} , **Parameters** $\sum_{i \in N} X_{iin} \leq 1$ for $j \in N$, n = 1 to R_{max} , average time for stopping at a node; S $\frac{l_{ij}}{v'} \ge \frac{L_{ij}}{v}$ for $i, j \in N, i \ne j$ d_{ii} travel demand from node i to node j; maximum number of routes on the network, i.e., 5; $\frac{\sum_{i,j\in N, i\neq j,} f_n * X_{ijn} * L_{ij} * W}{\sum_{i,j\in N, i\neq j,} X_{ijn} * d_{ij} \text{ for n=1 to R}_{\max},$ bus travel distance between node i and node j; $C_{driver} = \sum_{n=1}^{R_{max}} f_n * h * t * T,$ walking distance between node i and node j; $C_{infra} = \left(\sum_{i,j\in N,n=1}^{R_{max}} X_{ijn} + R_{max}\right) * I,$ average bus travelling speed; v' average walking speed; $C_{power} = \sum_{n=1}^{R_{max}} f_n * t * T * P * r_p,$ rush hour duration per day; $C_{bus} = \left(\sum_{n=1}^{R_{max}} f_n * t + R_{max}\right) * I_c,$ bus service life; power of bus battery; rate of power; hourly wage for drivers; infrastructure investment for each stop;

(1)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Scenario Designs

PROS

- Covers more buildings on Campus
- Covers both central area and surrounding area
- Drives through walkways

CONS

- Inconvenient for transfer
- May need extra walking
- No parking lots near originating stations

Models & Results

Models & Results

Conclusion

Mini Electric Shuttle System

- ✓ Idea
- ✓ Flexibility
 - Reach the walkway, stop nearer to the building entrance
 - High frequency and less waiting time
 - Dynamic scheduling and routing based on time-dependent demand
 - Special dispatches for visitor and events
 - Dismountable battery

Feasibility

- Lower transporter and infrastructure investment
- Based on existing network, stations and parking lots
- A variety of vehicle selections
- Long operation time per charging

