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Introduction and Background

A vehicle-centric system and low average vehicle occupancies significantly contribute to traffic
congestion and pollution in many urban areas (Schrank et al.,, 2015; Davis et al., 2016).
Consequently, private vehicles generate the largest share of greenhouse gas (GHG) emissions in
the transportation sector (Edenhofer et al., 2014). For many years, transportation engineers,
planners, academics and public agencies have tried to address this issue by developing a number
of strategies from infrastructure to demand management. In most cases, the priority is to
promote active modes and public transit, and increase vehicle occupancy.

Recently, the advent of pooled ridesharing services provides an opportunity to mitigate the
impacts of low occupancy rates, and the revolution brought about by these new service providers
seems to be able to overcome the limitations of decade long pool-type strategy efforts. However,
the ideals have not fully materialized and there is a general lack of research regarding their
effectiveness.

Ridesharing refers to a transportation mode in which people having similar travel itineraries and
schedules share a vehicle for a trip and possibly split the associated costs. Technology and the
shared economy have enabled these services with real-time matching of on-demand requests to
drivers. In many cases, these services have become an additional travel option with no significant
improvements on vehicle miles/hours traveled (VMT/VHT). Some studies even show evidence of
transit demand going to these services (Rayle et al., 2016; Clewlow and Mishra, 2017; Henao,
2017; Alemi et al., 2018). This unintended consequence has important implications, as it affects
the transportation system, in general and public transit, in particular.

Nevertheless, there is still a great deal of interest about the potential of these services to improve
the system. There are a number of urban and rural regions in the U.S. studying and pilot testing
the integration of these services in the multi-modal transport system, specifically as part of
transit access systems. These studies are trying to determine the feasibility and impacts through
partnerships between the agencies and shared mobility providers.

This project builds on previous work (Jaller et al., 2018) evaluating the benefits of a first mile
transit access program using shared mobility services, focusing on the potential demand shifts
from drive alone mode to this program. Specifically, the program is a combination of ridesharing
and pooling where individuals walk to a mutual pick-up and drop-off (PUDO) meeting point and
pool the ride to the transit station.

The authors expanded the previously developed simulation and optimization framework to
evaluate the program, and assess the health impacts. Similarly, the authors conduct a case study
in the San Francisco Bay Area. In general, the new framework has four main components. The
first component includes a macro-simulation of long- and short-term travel decisions using the
Metropolitan Transportation Council Activity-based Travel Model One (MTC-ABM). The second
is an optimization tool that identifies the PUDOs and allocates the demand. The third uses the
Multi-Agent Transport Simulation (MATSIM) model to simulate the movements from origins to
PUDOs, and then to BART stations. Finally, the framework uses the Integrated and Health Impacts
Model (ITHIM) to estimate system-level health impacts.

This study focuses on work and shopping related trips in the study area for specific simulation
time periods. Each of the framework components offers insights into the potential demand for



the integrated first mile transit service. The results show that while there could be a modest shift
to the service, especially from drive alone users, still the impacts are very small, which translates
into almost negligible health impacts. Nevertheless, there could be localized health and emission
impact reductions.

The report is organized as follows. Section 2 provides a succinct literature review on the different
methodologies used to model shared mobility services. Section 3 describes the framework and
data. Section 4 discusses the results of the various analyses. The report ends with a summary of
key findings.



Background and Literature Review

Transit agencies have long realized the efficiency and effectiveness of conventional fixed-route
fixed-schedule services in dense urban areas; however, these services are very expensive and
inefficient in less dense and suburban areas. Feeder systems and other strategies (e.g., Park-and-
Ride) have tried to address the gap for first and last mile access. Park-and-ride and other parking
structures, for instance, are very expensive and usually only provides a temporary solution as
capacity is quickly overrun.

In this sense, the advent of shared mobility services offers a new alternative, and agencies
throughout the country are exploring the integrated services (ridesharing and transit) for the first
and last mile; though with mixed results. In some cases, the private business efforts have not
been able to foster user participation in shared services (while they have been very effective at
attracting “single!” users). In other cases, the integration may add constraints of the transit
service to the equation.

Alemi and Rodier (2018) evaluated the potential demand for the San Francisco and compared
simulated travel times (from MTC-ABM) with those reported by real-time mapping services, and
shared mobility service providers. Other authors have studied the relationship between shared
services and transit, and the use of autonomous vehicles as part of the system (Cervero, 2001;
Martin and Shaheen, 2014; Hoffmann et al., 2016; Rodier et al., 2016; Bischoff et al., 2017a). The
literature discussed here focuses on shared mobility (ridesharing specifically) and optimization
methods to address the problem. While there is a vast literature on transit network design, it is
out of the scope of this project.

Related to ridesharing, most of the studies evaluate decentralized door-to-door services. Agatz
et al. (2011) developed an integer programming optimization model to deal with a single rider
dynamic ridesharing problem with a rolling time horizon where each participant had a time
window and announcement lead-time. Riders own a car and are interested in round-trips. The
proposed optimization approach increased the matching rate, and led to larger system wide VMT
savings compared to a simple greedy algorithm. The approach showed that dynamic ride sharing
has the potential to be successful in urbanized areas even with low participation rates. Later,
Agatz et al. (2012) conducted a comprehensive literature review on dynamic ridesharing
optimization methodologies. Similarly, Furuhata et al. (2013) studied different types of
ridesharing and discussed their characteristics, challenges and opportunities. Several other
studies have developed models and algorithms for the ridesharing problem under different
assumptions (Santos and Santos, 2015; Meng et al., 2016).

Thaithatkul et al. (2016) studied ridesharing considering passenger’s preferences, between
ridesharing and drive alone for single occupancy vehicles. It has a two-step time horizon
framework that uses a travel utility function to match users based on their preferences. Applying
the model to a randomly generated dataset showed an average cost reduction of 45%, but did
not reduce waiting times from the base case

Stiglic et al. (2016) studied matching flexibility, detour flexibility, and scheduling flexibility, on a
single-driver, single-rider ride-sharing system. The objective of the work was to design incentives
programs based on user’s flexibility. It assumed deterministic and static supply and demand

1 Here “single” includes an individual or groups already traveling together.



patterns. The model should establish the matching before a driver’s departure time. Feasible
matches are those in which the difference between the joint individual direct distance and the
total distance of the driver is positive. The major finding was that moderate levels of matching
flexibility, particularly from driver side, is necessary for ridesharing to work effectively even at
high participation rates. Alonso-Mora et al. (2017) solved a dynamic high-capacity ridesharing
problem applicable to shared autonomous vehicle fleets, and tested the proposed model using
taxi data from New York City. The results showed that shared services could reduce the trips by
77%.

About the specific topic of this project, Stiglic et al. (2018) addressed the problem of integrating
a ridesharing service with public transit. They implemented a proposed model to a hypothetical
network considering a set of different types of public transit systems (e.g., commuter rail and
urban rapid transit). Their work assumes ridesharing activities, but not necessarily a ridesharing
service. They concluded the integrated mode could increase the matching and reduce detour
distances, particularly if the driver also uses the transit, or if the driver is willing to service more
than one rider.

These works have used different types of optimization concepts and methods. Considering the
scope of the proposed simulation framework, this study focuses on approximation techniques
that could bridge the different types of simulation (large-scale activity based- and agent-based
modeling). Some of these techniques fall under continuous approximation models, which have
been extensively used in transportation, especially for facility location problems. For instance, Li
and Ouyang (2010) modeled a reliable location problem where facilities can fail using continuous
approximation. The objective of the work was to minimize the total cost including the fixed
facility opening cost, penalty cost for rejected customers and transportation cost for served ones,
under the disruption scenarios. Jaller (2011) also used continuous approximation techniques to
identify the optimal location of distribution facilities where individuals had to walk to access the
goods provided. The model estimates the number of facilities, their capacity, and distribution
strategy minimizing total social costs, which include both logistics and external costs.

Similarly, Yushimito et al. (2012) solved a non-capacitated facility location problem considering a
continuous demand function. The authors developed Voronoi-based heuristic and evaluated
different sampling methods to improve the algorithm accuracy.

Tsao et al. (2012) developed an integrated facility-inventory allocation problem minimizing total
transportation and inventory costs. They used a two-stage continuous approximation technique,
and estimated distances in Euclidean norms using Daganzo and Newell (1986) approximations.
Another application of continuous approximation include Huang et al. (2013)’s work on the
vehicle routing problem. They approximate travel time for each vehicle using a slow varying
demand density function and distances. They compared their approximate model with other
routine techniques, and showed their benefits.

Finally, the authors present preliminary findings from this project in Jaller et al. (2019).



Methods and Data

As mentioned before, the updated proposed framework has four main components: 1) Macro-
simulation of travel decisions using the MTC-ABM Model One; 2) continuous location-allocation
optimization model to find the optimal PUDOs; 3) agent-based analysis using MATSIM model;
and 4) health impacts through ITHIM. FIGURE 1 shows the diagram of the framework.

Macro-Simulation (Activity-Based) and Scenario Analysis
This component analyzes the mode and destination choice models in MTC-ABM to identify the
factors influencing choice decisions. This is important to accurately modify the embedded models
in the MTC-ABM to simulate transit access through shared mobility services. The process
modifies the utility functions of using heavy rail (i.e., BART) based on a series of scenarios. The
scenarios test the sensitivity of the choice decision to use the shared service. This helps identify
potential participants for the transit access ridesharing service, or “ridesharing+transit”.
Although the framework is general, in this project, the authors focused on work and shopping
trips during specific periods of the day. For example, the authors concentrated on:

e AM Peak work trips;

e Midday shopping trips; and

e Midday work and shopping trips.
The mode choices in MTC-ABM follow nested logit structures with utility functions consisting of
traveler characteristics, trip purpose, and mode specific variables and skims. The mode choice
models evaluate choices for 18 different travel modes (e.g., drive alone, passenger ride, active,
and a combination of access modes and transit services). The MTC-ABM does not include shared
mobility services, thus the team modified (using proxies) the existing choice models to represent
the ridesharing+transit service. Specifically, the team concentrated on the existing “drive to
heavy rail (i.e., BART).”
Following the work in Jaller et al. (2018), FIGURE 2 shows the values used to modify the utility
functions. For example, the authors assumed a minimum age of 13 to use the service because
ridesharing does not require driving for the passenger. Similarly, using the service does not
require owning a vehicle (households without a car can access the service). The authors assumed
a number of scenarios to simulate transit accessibility by modifying the driving (access) times and
costs. Reducing driving time reflects the convenience of travel without needing to drive.
Considering the service would require out-of-pocket expenses, the authors also assumed cost
increases. In FIGURE 2, “S” refers to the magnitude of change that could produce a significant
shift to this mode. The authors assumed a value of S between 0 and 1 for drive time, and between
0 and 2 for costs. Moreover, there are a few studies evaluating the impacts of Value of Time
(VOT) for passengers compared to drivers and for passenger while traveling in public transit
(Fosgerau et al., 2007; Roman et al., 2007; Batley et al., 2010). The studies showed that passenger
VOT is (perceived) about 65% to 85% that of driver. Finally, having access to transit through
ridesharing eliminates the burden of driving, and changes its perceived in-vehicle value of time
from the drivers’ to the passengers’ perspectives. The authors modeled the scenarios and
compared the results with the 2010 baseline MTC scenario. To isolate the impacts of the
parameter changes, the authors fixed long-term choices for work and school location choice,
auto ownership, and daily activity patterns for each individual.
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FIGURE 1 Proposed Framework (Updated from Jaller et al. (2018))



Base: <16
New: <13

Base: auto ownership >0
New: No restriction

Auto
ownership

Mode choice:
Drive-BART

Base: C*Drive Time [period]
New: S*C*Drive Time [period]

Base: C*(Fare + Distance*CostperMile)
New: S*C*(Fare + Distance*CostperMile)

FIGURE 2 Parameter changes and scenarios

Determining the Location of the PUDOs

When identifying the optimal location of PUDOs for the ridesharing+transit service it is important
to consider the various aspects of the transport activity, such as the concentration of demand,
the relative location of the PUDO to the transit station, the willingness of individuals to walk and
wait, and other travel decisions.

In this work, the optimal location minimizes total travel distance to the PUDO from the users’
origin, f2, and the vehicle distance from its initial location to the PUDO, f". The relationship
between these two distances, converted to time, would affect both the access time, and the
waiting time for service, f*. Moreover, the location should also consider the in-vehicle traveled
distance (or time) from the PUDO to the transit (i.e., BART) station. The waiting time at PUDOQ, as
discussed before, refers to the time an individual may have to wait for the other users or the
vehicle to arrive at the PUDO.

The authors assumed that there are enough vehicles (unlimited supply) in the system to provide
the service, and conducted scenarios analyzing the initial position of such vehicles. Vehicle
positions include the transit station, near or at the PUDO, or somewhere between the station
and the demand point. This evaluation framework assumes that there would be available
capacity to meet the demand, and that service providers will optimize the location of the vehicles
(and repositioning) once they understand demand patterns.

The reader is referred to Jaller et al. (2018) for a general description of the optimization model.
In general, the model (assuming known travelers’ location) identifies the optimal PUDO in a
region that minimizes:
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Where [ is the set of PUDOs, and P; is the set of demand points assigned to each meeting point i
within the Voronoi cell. d{} is the walking distance from demand point j to meeting point i, and

dfsT is the driving (Manhattan) distance from meeting point i to its closest BART station, s..
tj-“"(d" dﬁ?) is the waiting time of demand j, as a function of the maximum time passenger j has

ji? i
to wait, the time the driver takes to get to the meeting point, and the time the user may have to
wait for the other users to arrive to the meeting point. Eq. 1 assumes vehicles located between
the PUDO and the station. The optimization used an average driving speed of 20 miles/hour, and
average walking speed of 4 feet/second.
In this project, the team refined, and conducted additional analyses to improve the Voronoi-
based solution procedure. FIGURE 3 shows the different steps and component of the solution

algorithm.
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FIGURE 3 Optimization solution algorithm

Specifically, in this project, the team evaluated different assumptions about the demand. For
instance, MTC-ABM provides the number of trips for the different simulation periods in a per
hour basis. The team conducted analyses to discretize the demand in 15-minute intervals.
Moreover, for the selection of the number and location of the meeting points, the team updated
the initial method that creates a grid of equally sized cells to cover the study region. For instance,
the size of the cells could be a function of the relationship between the areas of study region,
estimated the number of meeting points to allocate to each cell based on its demand density,
and randomly distributed the meeting throughout the cell. In this iteration, the team used the
road network information, to locate the demand points, and conducted different procedures for
the spatial distribution.

The team also conducted post-processing of the results to determine the solutions that could not
be feasible based on the resulting distances and times. The team did not include these as
constraints in the model to evaluate the entire set of demand points, and be able to analyze the
need for additional policies or strategies to foster service participation.



Agent-based Analysis using MATSIM Model

The team uses the multi-agent transportation simulation (MATSIM) software to explicitly model
the movement of individuals and vehicles in the network inside the study area. The simulation
requires network attributes and the travelers’ destination, times and mode choices. FIGURE 4
shows a general description of the simulation process (see Horni et al. (2016) for a detailed
description of MATSIM). More importantly, there are a number of models available for this open
software tool. One of them, the “Demand Responsive Transport (DRT)” is able to simulate a
dynamic shared taxi service with online requests. This module handles vehicle dispatching for the
supply side, and evaluates waiting times, trip and total detour lengths, and other characteristics
of the problem (Bischoff et al., 2017b). The research team conducted simulations for the base
case where an individual uses the private vehicle and the ridesharing+transit service described
before.

=B
LJ

FIGURE 4 MATSIM loop (Horni et al., 2016)

Assessing Health Impacts
The team uses the Integrated and Health Impacts Model (ITHIM) to estimate system-level health
effects (Mueller et al., 2015). ITHIM integrates the impacts of physical activity from active travel,
road traffic injuries and fine particulate pollution. Specifically, ITHIM evaluates the changes in the
population disease burden between evaluated scenarios. Woodcock et al. (2009); Maizlish et al.
(2013); Woodcock et al. (2013); Whitfield et al. (2017) discuss the details of the open-source tool.
The tool incorporates several important aspects (see FIGURE 5 for a general representation of
the various components):
e Population attributable fraction (FAF): used in public health to refer to the percent of
disease or injury avoided or reduced when eliminating a risk factor;
O Risk factors—physical activity, fine particulate matter (PM2.5), road traffic injuries
—and the health outcomes for specific causes, and
0 Exposure distribution of the risk factor.
e Disease burden (BD) from shift in the distribution of exposure in comparative scenarios
(Ezzati et al., 2004). The change in DB is calculated by Eq. 2%;

2 The relative risk, RR, at exposure level (x) is weighted by the baseline and alternative population distributions, P(x)
and Q(x), respectively, and summed over all exposure levels.
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e Relative risk (RR) —at exposure level x;

e Population burden expresses in deaths and disability adjusted life years (DALYs);

e DALY: years of living with disability;

e Chronic diseases include cardiovascular diseases (ischemic heart disease, hypertensive
heart disease, and cerebrovascular disease), colon cancer, breast cancer, diabetes,
depression, and dementia;

e Physical activity measured in metabolic equivalent task (MET) hours (Shephard, 2011);

e METs reflect energy expenditures for walking and bicycling at average speeds and for
leisure activities and occupational tasks;

e Distance-based traffic injury model (Elvik and Bjgrnskau, 2017);

e Automobile emissions based on vehicle miles traveled;

e Population-weighted average air pollutant concentrations; and

e Costs of illness and value of statistical life (Haddix et al., 2003; Maizlish and Siegel, 2012);

0 Cost of illness (COl),
0 Willingness to pay.
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FIGURE 5 ITHIM considerations from Maizlish (2016)

ITHIM uses the literature and travel survey data to estimate the effects from physical activity for
different types of populations, an air shed model for the air pollution concentrations, and uses
EMFAC in California to estimate the emission factors per vehicle type. The team used the



California version of ITHIM, which has been successfully implemented in the San Francisco Bay
Area, as well as other locations in Nevada, Southern California, Tennessee and Oregon. FIGURE 6
shows a representation of the modeling process. In this project, the team is using the results from
the MTC simulations to feed as inputs of the ITHIM model. In the ongoing Year 3 project, the
team is working on developing a more robust integration with the activity-based model and
ITHIM.
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FIGURE 6 Scenario development (Center for Health Impact Evaluation, 2018)



Empirical Analyses

As mentioned before, the team developed a number of scenarios to evaluate the impacts in the
Bay Area. The team followed the parameter changes in FIGURE 2, and developed the following
scenarios in addition to the baseline (2010):

e R+T_AAO: Ridesharing+transit with age and auto ownership relaxation
e R+T_10AT: 90% reduction in access time

e R+T _50AT: 50% reduction in access time

e R+T_75AT: 25% reduction in access time

e R+T_50CPM: 50% reduction in cost per mile

e R+T_150CPM: 50% increase in cost per mile

e R+T_200CPM: 100% increase in cost per mile

Moreover, the team focused the analyses on work, shopping, and all trips for different time
periods (EA, AM, MD, PM, and EV), and implemented the various framework components to a
sub-set of these scenarios based on the preliminary findings. TABLE 1 summarizes the type of
scenarios evaluated through the different components.

TABLE 1 Evaluated scenarios

Considered Trips MTC-ABM
All All time periods

Optimization MATSIM ITHIM

Baseline
R4T_10AT

Work

For AM Peak
Baseline
R+T_10AT
R+T_SOAT
R+T_75AT
R+T_50CPM
R+T_150CPM
R+T_200CPM

For AM Peak
Baseline
R+T_10AT?

R+T_75ATH

For AM Peak
Baseline
R+T_10AT®

R+T_25AT

R+T_10AT®

Shopping

For Midday
Baseline
R+T_75AT

All day:
Baseline
R+T_75AT

Work + Shopping

For Midday
Baseline
R4T_75AT

All da'y’:
Baseline
R+T_75AT

All Trips

The team estimated the impact on all trips for all simulation time periods for each of the modes

assuming a reduction of 90% in access time to the “Drive_to_Heavy_Rail” mode.

TABLE 2 shows that the perception of reduced access time (individuals do not have to drive, park,
and walk to the station) shifts demand from other modes to the ridesharing+transit service. Drive




alone includes both toll and free roads, shared ride includes 2+ and 3+ private vehicle passengers,
“Walk Transit” includes local buses, light rail or ferry, BART, express bus, and commuter rail, and
drive transit includes local bus, light rail or ferry, express bus, and commuter rail. The team only
modified the “Drive_to_ Heavy Rail” as it included BARD. Almost 29,000 trips would shift,
generating an increase demand ranging between 14% and 31% to BART. The results show a
decrease in drive alone trips (except in the early morning period), with the AM, MD, PM, and EV
periods reducing 11,962, 9,027, 6,635 and 9,741 trips respectively. However, because of the
number of total trips, these reductions only represent between .2% and .53%. However,
accessibility improvements to this mode have an impact on the number of walk_to_transit trips,
reducing in the range of 0% to 3.3%, and in the drive to other transit between 6% and 13.53%.

TABLE 2 R+T_10AT scenario for all trips, modes and simulation time periods

Time Scenario Drive Shared ride | Walk Drive Drive Total

Period alone transit transit BART

EA Base 277,368 93,598 14,327 2,653 8,766 396,712
R+T_10AT 278,052 94,110 13,855 2,294 11,072 395,383
Diff 684 512 (472) (359) 2,306 2,671
Diff% 0.25 0.55 -3.29 -13.53 26.31 0.67

AM Base 2,755,806 2,308,423 289,985 36,112 73,791 5,464,117
R+T_10AT 2,743,844 2,304,973 285,450 31,836 96,576 5,462,679
Diff (11,962) (3,450) (4,535) (4,276) 22,785 (1,438)
Diff% -0.434 -0.149 -1.564 -11.841 30.878 -0.026

MD Base 3,244,399 2,465,274 159,580 4,503 8,955 5,883,111
R+T_10AT 3,235,372 2,471,520 155,512 4,462 11,254 5,882,120
Diff (9,027) 6,246 (68) (441) 2,299 (991)
Diff% -0.28 0.25 -0.04 -8.99 25.67 -0.02

PM Base 3,513,735 2,646,915 304,127 3,415 4,579 6,472,771
R+T_10AT 3,507,100 2,648,417 300,117 3,197 5,259 6,464,090
Diff (6,635) 1,502 (4,010) (218) 680 (8,681)
Diff% -0.19 0.06 -1.32 -6.38 14 .85 -0.13

EV Base 1,825,080 1,278,012 115,484 343 686 3,227,605
R+T_10AT 1,819,339 1,275,193 118,099 347 782 3,213,760
Diff (9,741) (2,819) (1,385) - 96 (13,845)
Diff% -0.53 -0.22 -1.16 1.17 13.95 -0.43

These are interesting results as they show that even with significant reductions in access time
(drive time to BART), individuals are not as sensitive to switch from drive alone. Moreover, as the
remainder of the analyses focus on a sub-set of trip purposes, the expected results would be
lower in magnitude. There are an estimated 21,4 million trips generated in one day in the Bay
Area, about 95% are either driving alone or are passengers in private vehicles, and only .5% to
1.5% use BART. The drive to BART mode only includes a portion of the BART trips, as many other
trips access the station by walking; the reported BART daily users in 2010 were around 350,000.



Work Trips

TABLE 3 shows the results for all the different scenarios (changes in access time and cost per
mile) for the AM period. The 25% access time reduction (R+T_75AT) scenario shows that the
number of BART users increase by almost 9% or 5,792 new trips. In total, this scenario reduces
the number of drive alone trips in about 3,800, and about a quarter of those (1,007) are switching
to BART. The results for the optimistic scenario of 90% reduction in access time (R+T_10AT) show
a 35% increase in BART trips. For the total BART trips, the results show that 74% were already
users, 4% or 3,341 shifted from drive alone, 6% from private vehicle passengers, and 14% from
other transit.

TABLE 3 Mode share for work trips in the AM period for different scenarios

Scenario Drive alone | Shared ride | Walk transit | Drive transit | Drive BART Total

Base 1,081,554 222,579 140,871 30,203 65,013 1,540,220
R+T_AAO 1,081,429 222,729 140,851 30,151 64,945 1,540,105

Diff (125) 150 (20) (52) (68) (115))

% Diff -0.01 0.07| -0.01 -0.17 -0.10| 001
Base 1,078,735 222,306 142,024 31,055 66,660 1,540,780
R+T_10AT 1,069,351 218,916 139,075 26423 89,528 1,543,293
Diff (9.384) (3,390) (2,949) (4,632) 22 868 2513

% Diff -0.87 -1.52 -2.08 -14.92 3431 016
Base 1,081,586 222,557 140,850 30224 65,014 1,540,231
R+T_S0AT 1077611 221023 139,183 27957 76,056 1541 830
Diff (3,975) (1,534) (1,667) (2,267) 11,042 1,599

% Diff -0.37 -0.69| -1.18 -7.50 16.98 010]
Base 1,078,536 222,118 142,128 31131 66,612 1,540,525
R+T_75AT 1,074,737 221,231 141,359 30,228 72,404 1,539,959

Diff (3,799) (887) (769) (903) 5,792 (566)|

% Diff -0.35 -0.40 -0.54 -2.90 8.70 -004
Base 1,078,575 222114 141857 31035 66,621 1540,202
R+T_S50CPM 1,075,731 221,401 141,343 29683 72,230 1,540,388
Diff (2,844) (713) (514) (1,352) 5,609 186

% Diff -0.26) -0.32 -0.36 -4.36 8.42 001
Base 1,078,036 222,208 142,215 31227 65,906 1,539,592
R+T_150CPM 1,078,603 223,310 143,049 32,160 61,918 1,539,040

Diff 567 1,102 834 933 (3,988) (552)]

% Diff 0.05 0.50 0.59 2.99 -6.05 -004
Base 1,077,636 222,316 142,127 31351 66,812 1,540,242
R+T_200CPM 1,078,565 223970 143 887 33391 58,122 1537,935

Diff 929 1654 1760 2040 (8,690) (2,307)]

% Diff 0.09 0.74| 1.24 6.51 -13.01 -015

FIGURE 7 and FIGURE 8 show the number of trips switching from drive alone to the service, and
the average change in trip times. The figures show that the simulated users are not as sensitive
to changes in cost (both scenarios include age and auto ownership relaxations)
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R+T_10AT

For the R+T_10AT scenarios, the team identified the information (characteristics and trips), for
those individuals that shifted from drive alone. The team used these individuals as the input of
the location-allocation algorithm to find the PUDOs. The model resulted in around 400 common



locations for the 3,341 individuals. There could be more than one PUDO at each of these
locations, determined by the number of individuals assigned to the location, and the vehicles
capacity. For the case where the vehicle originates at the station, TABLE 4 shows the average,
maximum and minimum times for walking, waiting, and driving times. FIGURE 9 shows the
average times for the cases where the vehicles is at the PUDO, at the station, or between the
point and the station. The results only include the drive time of users from the PUDO to the
station, and not the drive time of the empty vehicle. For the vehicle at the point, there is still
waiting times, associated to the individuals that have to walk to the PUDO. However, compared
to the case where the vehicle is at the station, the time decreases from almost 20 minutes to 4,
when the vehicle is ready, or even half when the vehicle is at the midpoint.

TABLE 4 Walk time, wait time and drive time when vehicle at the station

Walking Time | Waiting  Time | Driving Time
(minute) (minute) (minute)
Average 17 20 30
Maximum 72 88 S0
Minimum 1 0 1
35
30
25
20
15
10
5 l
. ]
AtThePoint AtTheMiddle AtTheStation

B Walk ®Wait ™ Drive

FIGURE 9 Comparative results for different assumptions about vehicle initial location

FIGURE 10 provides additional details on the frequencies for these times considering all the
meeting points. The results clearly show that if users have perceived thresholds for walking,
waiting, and drive times, there would be a significant number of them that will not use the
service. Although, the graphs do not indicate the relationship between the three estimated times
for the same users. Assuming a maximum of 10 minutes for waiting and walking times, there
would be still about a third of the shifting users that would be able to use it.
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The authors used the trip data from MTC-ABM and the PUDO locations from the optimization to
conduct the agent-based simulations. For the simulations, the authors used the information of
all travelers using the driver to BART mode. The authors considered three different scenarios in



the MATSIM simulation (see TABLE 5) and compared the results to a base case where each
individual would drive alone. The simulation does not consider parking cost or capacity
constraints. The simulations assume that when multiple users, the per mile cost drops to half for
each user; however, the simulations do not consider a time-based cost.

TABLE 5 Operating cost
Scenario Vehicle Paying Pick-Up Location | Costs
Occupants
Base Case Personal Single Home $0.18 per mile
Scenario1 | Shared Ride Single Home $1.50 per mile
Scenario 2 | Shared Ride Multiple Home $0.75 per mile
Scenario 3 | Shared Ride Multiple Meeting Point $0.75 per mile

TABLE 6 shows the results for the different scenarios. Scenario 1 shows that only 12% of users
would benefit from using the ridesharing service with an average cost saving of $1.24 per trip.
Scenario 2 improves the cost performance by saving generalized cost for 33% of the trips (with
the average benefit of $1.50 per trip). However, when instead of being picked-up at their origin
(home) locations and they have to walk and wait at the PUDO (scenario 3), only 16% would
benefit, reducing the potential demand by half.

TABLE 6 Change in generalized costs from the base case to the alternative scenarios during the
AM peak period work trips

Generalized Cost: | Scenario 1: Shared-Ride | Scenario 2: Shared- | Scenario 3: Shared-Ride
Change from Base Case | Home Pick-Up Vehicle Home Pick-Up Meeting Pick-Up Point

Trips Gain% 12% 33% 16%
Average $1.24 $1.52 $1.49
Total $11,035.11 $38,979.15 518,847.62
Trips Loss% B8% 67% 84%
Average -58.80 -§3.49 -§11.22
Total -§599,922.76 -§179,529.53 -§722,632.90

These results are consistent with the findings from the optimization, which show that walking
and waiting times could be very high. Consequently, the service would not be attractive to most
of these users. The next results show the analyses for a lower assumption in terms of “perceived”
access time reductions of only 25%.

R+T_75AT

The authors implemented the optimization algorithm to find the optimal meeting points for the
1,077 individuals that “shifted” to the ridesharing+transit service. Each vehicle has a capacity of
four and initiates its trip in middle between the meeting point and its closest BART station. The
model estimated around 555 meeting points.



The results show that the average walking time to the stations is 17 min., average drive time is
20 min., and average waiting time is 7 min. On average, there are 2 travelers per meeting point.
FIGURE 11 shows the distribution for walk time, drive time and wait time.
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The results show that there is a large portion of individuals that could experience a combined
waiting and walking time of more than 20 minutes, up to an hour (without considering the driving



time from the meeting point to the station). However, around 30 to 40% of the travelers could
be between 5 to 20 mins.

Similarly, the authors considered the 1,077 individuals in the MATSIM simulation scenarios.
MATSIM simulates the individual’s movement from origin to BART station comprised of walking
and ridesharing. Time and cost of the rest of the trip from BART station to final work destination
were estimated using BART API data. The authors simulated two scenarios, the base case and the
ridesharing+transit service.

In the base scenario, all the individuals drive their own personal car as a single occupant from
home to the final work destination. Time component consists of drive time from home to work
plus zonal terminal time derived from MTC model demonstrating the average time to travel from
automobile storage location to final destination. Costs include operating costs per mile (of 36
cents per mile according to the MTC model and zonal long term-8 hours- parking cost extracted
from MTC model TAZ data). The general cost includes the time component multiplied by each
individual’s unique value of time (VOT) and the travel cost component.

In the ridesharing+transit scenario, all individuals walk from their home to their predetermined
PUDO, and ride with possibly other individuals to the closest BART station. Then, take BART to
the closest station to their work place, get off at the destination station and walk to the work
place. The time components include walk time from home to work, wait time at the meeting
point for the vehicle, travel time in shared vehicle, wait time for BART, BART travel duration and
zonal terminal time from station to destination. The cost component comprises of rideshare
service cost per mile (75 cents per mile per passenger representing the fare of services such as
Uber in the Bay Area and BART fare). All the BART related parameters as travel duration, wait
time and fare were derived from BART API online service between all stations across all time
period. The general cost includes the time component multiplied by each individual’s unique
value of time (VOT) and the travel cost component.

This scenario assumed a vehicle fleet size of 1,080 cars. According to the waiting time and detour
constraints within MATSIM’s vehicle assighnment algorithm, 66 trips were cancelled. As an
assumption, users with cancelled pick-ups will use their private car to drive to work. The
simulations show that the total distance traveled by the vehicles reduces from 24,607 miles to
7,750 in this scenario from the base case. About half (44%) of the distance (3,442) the vehicles
are empty (just driver). Under this scenario the largest percentage of the trip uses BART. TABLE
7 shows the modeling results. The explicit simulation of the trips shows that, in average, the
program increases the user’s time in about 4 minutes, with an average total trip time of 91 mins.
In terms of cost, 68% of the trips have saved cost by an average of $7 per trip, while the remaining
32% trips lost a total of $4,943. The total estimated general cost is $19,176 for 74% of trips which
is far higher than the total saved amount of $1,426.

FIGURE 12 shows the distribution of travel duration (including wait time when appropriate) for
all modes inside the simulated trips.> Walk times distribute within reasonable ranges (under 20
minutes) and overall individual trips” walk times have a high level of agreement with each other.
On the other hand, BART travel time covers a longer range of values across individual trips with
more trips having travel times longer than 30 minutes. The range of travel time for rideshare
mode is slightly higher than BART mode with lower variations among different trips.

3 Qutliers are removed.



TABLE 7 Modeling results

Rideshare+Transit

Time: Change from Base
Case

Cost: Change from Base
Case

Generalized Cost: Change
from Base Case

Trips Gain% 1% 68% 26%
Average 4 (min) s7 S5
Total 8 (min) $4,943 $1,426
Average 91 (min) S5 $25
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FIGURE 12 Travel time distribution for three simulated modes

FIGURE 13 displays the change in general cost from base to pool case for different categories of
income. Individuals with higher level of income have higher range of increased generalized cost,
while individuals in low-income groups have lower cost increases.
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Shopping and Shopping + Work Trips

As mentioned in TABLE 1, the team conducted the analyses for shopping trips for the midday
time period. This is because this period exhibits the largest number of trips with a shopping
purpose. TABLE 8 compares the results for shopping trips between the base case and the
R+T_75AT scenario. This effort generated mixed results. Shopping trips using transit do not
account for a large number of daily trips (only 1.45%).

Although the number of drive_to_BART users is not significant, this scenario generated shifts
between trips from the different modes. Overall, drive alone and passenger (shared) trips
reduced in almost 2% each, walk to transit gained about 50%, while driving to transit increased
by 30%. From the transit related modes, walk to transit gained the largest number of trips
(around 8,000) during the day, while drive_to_BART less than 250.

Additionally, the team evaluated a combined scenario reducing the drive (access) time to BART
(R+T_75AT) for both work and shopping trips during the midday period. TABLE 9 shows the
results for this combined scenario. The top table shows the changes for shopping trips and the
bottom for work trips. Consistent with the previous results, the net changes in shopping trips is
very modest, while the results for work trips are more positive. One interesting finding from the
results is that changes to the midday time period are larger during the AM and EA trips.
Nevertheless, compared to the total number of trips in a day, these changes are very small.
Affecting the access time during the midday, only increases the total of drive_to_BART work trips
in around 5,000 daily trips (from a total of 2.5 million).



TABLE 8 Results for shopping trips during midday for R+T_75AT

ILn:iid Seenario :II;:i fi:aered Wialk/ e :‘: |'I|:it ::::it z:;er Totsl

EA Base 5239 | 2,273 619 91 - 8| 8230
ReT_75AT | 5111 2,262 643 182 1 s| 8207
Diff (128) (11) 24 91 0 (23)
Diff% 2.44% | -0.48% 3.88% | 100.00% 0.00% | -0.28%

AM Base 151,800 | 71,240| 18419| 3,778 144 265 | 245736
ReT_75AT | 147,631| 71,883| 17.912| 5,409 166 313 | 243314
Diff (4,259) 643 (507) | 1,631 22 a8 | (2,422)
Diff% 2.80% | 090%| -275% | 43.17% | 1528% | 18.11%| -0.99%

MD Base 330,431 | 143,995 | 42,687 | 7,083 181 345 | 524,722
ReT_75AT | 326,316 | 147,376 | 41682 | 9,813 230 428 | 525,845
Diff @115)| 3381 (1005)| 2730 a9 83| 1,123
Diff% 1.25% | 2.35%| -2.35% | 38.54% | 27.07% | 24.06% | 0.21%

PM Base 209,508 | 96,348| 25408| 4,186 104 187 | 335,831
ReT_75AT | 205,852| 98,192|  26027| 6,866 156 244 | 337,337
Diff (3,746)| 1,844 619 2,680 52 57| 1,506
Diff% 179% | 1.91% 244% | 64.02% | 50.00% | 30.48% | 0.45%

EV Base 42,775 | 17,901 4,745 709 15 31| 66,176
ReT_75AT | 41,705| 17,806 5128 | 1,430 22 66| 66,157
Diff (1,070) (95) 383 721 7 35 (19)
Diff% 2.50% | -0.53% 8.07% | 101.69% | 46.67% | 112.90% | -0.03%

Following, the team used the results from the shopping and shopping+work trip scenarios to
estimate the health impacts using ITHIM. ITHIM estimates the impacts comparing the results to
various baseline scenarios. The team used an ITHIM version calibrated to the MTC 2000 travel
patterns, and the team also updated the parameters for the 2010 base case.

TABLE 10 shows the parameters (from MTC-ABM) for the various modes in the Bay Area
simulation. These include average travel times, speeds, and distances per day. As mentioned
before, the results from the simulation only show very small changes in the overall travel patterns
which translate into very small impacts on times, distances and speeds.

Considering that ITHIM uses exposure, traffic incidents, and emission rates that are very small in
a per mile basis, the small impacts of the scenarios did not show any significant health impacts in
the study area (see TABLE 11).

TABLE 12 also show the results for the different diseases and injury changes as percentage for
males and females for the entire population. As shown, the results do not generate any significant
changes, just a small decrease in injuries.



TABLE 9 Results for midday for R+T_75AT combining shopping+work trips

Time Scenario Drive Shared | walk/ Walk Drive Drive Total
Period alone ride Bike transit transit BART
EA Base 5,111 2,262 643 182 1 8 8,207
R+T_75AT 5,040 2,248 589 158 3 12 8,050
Diff (71) (14) (54) (24) 2 4 (157)
Diff% -1.39% | -0.62% -8.40% | -13.19% | 200.00% 50.00% -1.91%
AM Base 147,631 | 71,883 17,912 5,409 166 313 243,314
R+T_75AT 148,044 | 71,844 17,851 5,393 181 324 243,637
Diff 413 (39) (61) (16) 15 11 323
2 Diff% 0.28% | -0.05% -0.34% -0.30% 9.04% 3.51% 0.13%
= | MD Base 326,316 | 147,376 41,682 9,813 230 428 525,845
4 R+T_75AT 325,161 | 147,154 41,454 9,938 227 465 524,435
s Diff (1,155) [ (222) (188) 125 (3) 37|  (1,406)
% Diff% -0.35% | -0.15% -0.45% 1.27% -1.30% 8.64% -0.27%
PM Base 205,852 | 98,192 26,027 6,866 156 244 337,337
R+T_75AT 205,543 | 97,894 26,083 6,852 144 319 336,835
Diff (309) (298) 56 (14) (12) 75 (502)
Diff% -0.15% | -0.30% 0.22% -0.20% -7.69% 30.74% -0.15%
EV Base 41,705 | 17,806 5,128 1,430 22 66 66,157
R+T_75AT 41,571 | 17,800 5,057 1,295 22 53 65,798
Diff (134) (6) (71) (135) 0 (13) (359)
Diff% -0.32% | -0.03% -1.38% -9.44% 0.00% | -19.70% -0.54%
EA Base 152,831 | 62,731 9,387 11,783 1927 6788 245,447
R+T_75AT 153,473 | 62,875 9,013 11,724 1743 6954 245,782
Diff 642 144 (374) (59) (184) 166 335
Diff% 0.42% 0.23% -3.98% -0.50% -9.55% 2.45% 0.14%
AM Base 1,122,010 | 476,802 86,111 185,549 27391 68876 1,967,139
R+T_75AT 1,121,203 | 476,433 85,774 184,034 25522 72818 1,965,784
Diff (807) (369) (337) (1,915) (1,869) 3,942 (1,355)
Diff% -0.07% | -0.08% -0.39% -1.03% -6.82% 5.72% -0.07%
§ MD Base 159,325 | 65,506 14,847 24,758 2782 7387 274,605
= R+T_75AT 159,272 | 65,931 15,214 25,082 2480 7671 275,650
-‘:' Diff (53) 425 367 324 (302) 284 1,045
E Diff% -0.03% 0.65% 2.47% 1.31% | -10.86% 3.84% 0.38%
PM Base 41,186 | 17,057 4,664 6,479 619 1526 71,531
R+T_75AT 41,354 | 17,082 4,439 6,295 556 1719 71,445
Diff 168 25 (225) (184) (63) 193 (86)
Diff% 0.41% 0.15% -4.82% -2.84% | -10.18% 12.65% -0.12%
EV Base 4,662 1,857 567 679 56 140 7,961
R+T_75AT 4,614 1,894 559 702 46 146 7,961
Diff (48) 37 (8) 23 (10) 6 0
Diff% -1.03% 1.99% -1.41% 3.39% | -17.86% 4.29% 0.00%

Moreover, FIGURE 14 shows the changes in disease and injury burden for all users. The positive
values for the shopping+work trip scenario result from the mode shifts due to the reduction in
perceived access time, which generates additional driving miles. These results do not include the
changes in walking from the different service users when they need to walk to the PUDO because
this is not captured by the MTC-ABM.



TABLE 10 ITHIM parameters

Mode Baseline2010 Shopping Shopping and
work
Time walk 8.2 16% 8.2 17% 8.2 16%
(minutes | cycle 0.42 0.01 0.4 1% 0.4 1%
per day) | bus 1.7 4% 1.7 4% 1.7 4%
minibus
train 1.6 3% 1.6 3% 1.6 3%
car driver 28.4 57% 284 57% 28.4 57%
car passenger 9.1 18% 9.1 18% 9.1 18%
mbike 0.3 1% 0.0 0% 0.0 0%
total 49.7 100% 49.5 100% 45.5 100%
Mean | walk 3.0 3.0 3.0
speed | cycle 12.0 12.0 12.0
(mph) bus 9.0 9.0 9.2
minibus
train 25.3 25.3 25.9
car driver 32.4 32.4 324
car passenger 31.1 311 31.2
mbike 32.4 324 32.4
Distance | walk 0.41 2% 0.4 2% 0.4 2%
(mile cycle 0.08 0% 0.1 0% 0.1 0%
per day) | bus 0.3 1% 0.3 1% 0.3 1%
minibus
train 0.7 3% 0.7 3% 0.7 3%
car driver 15.3 65% 15.3 65% 15.4 65%
car passenger 4.7 20% 4.7 20% 4.8 20%
mbike 0.1 1% 0.1 1% 0.1 1%
truck 1.9 1.8 1.8
total 235 100% 234 92% 235 92%
Total Population 7,351,177
Coefficient of var 1.65 1.65 1.65

TABLE 11 ITHIM summary results for different scenarios

Scenario Name Baseline2010 BAU2040 Shopping Shopping and work
Year 2010 2010 2010 2010
Population 7,053,334 7,351,177 7,053,334 7,053,334
Car VMT/y (1,000s) 39,476,408 41,778,999 39,469,660 39,544 480
CO; lbs./mile*® 0.89776 0.89776 0.85776 0.89776
Value Value % Value % Value %
Aggregate CO2 (MMT/y) 16.1 17.0 5.59 16.1 0 16.1 0
Per Capita CO2 (MT/person/yr) 2.3 2.3 0 2.3 0 2.3 0
Mean PMys (ug/m?) 9.3 93 0 93 0




TABLE 12 Results for health impacts from shopping (top) and shopping+work (bottom) scenarios

All-cause

sreastCancer | Colon Cancer | 'SChemicHeart | csion | Dementia | Diabetes stroke "“"'ww mortality

Dl ey Woodcock

Age m L m L3 m T m g m T m T m 1T m 1 m T

15-29| 0% | 0% | 0% | 0% 0% Oh | 0% | O% | 0% | O% | O% | O% | O% | 0% 0.01 | 0% 0%

3044 0% | 0% | 0% | 0% % 0% | O% | 0% | O% | O% | 0% | O% | O% | 0% | 0.01 | 001 | 0% [

45-59| 0% | 0% | 0% | % T 0% | O% | 0% | O% | O% | 0% | O% | 0% | 0% | 0.01 | 001 | 0% %

B069| 0% | 0% | 0% | O% % 0% | O% | 0% | O% | O% | 0% | O% | 0% | 0% | 001 | 001 | 0% %

70-79| 0% | 0% | 0% | 0% [ 0% | O% | 0% | O% | O% | 0% | 0% | O% | 0% | 001 | 001 | 0% [

80+ | O% |O%| 0% | 0% % 0% | O% | 0% | O% | O% | 0% | O% | O% | 0% | 001 | 001 | 0% %

[total 0% % 0% 0% 0% % 1%
All-cause
Breast Cancer | Colon Cancer LRI P Depression | Dementla | Diabetes Stroke e mortality
Disease Injurles

Woodcock

m T ™ T m T m T m T m T m T ™ T m T

gzs 0% | 0% | 0% | 0% 0% 0% | O% | 0% | O% | O% | 0% | 0% | O% | 0% | 0.00 | 0.00 | 0% %
3043 0% |o0% | 0% | 0% [ % | 0% | O% | 0% | 0% | 0% | 0.00 | 0.00 | 0% % |
3559 O% |o0%| 0% | 0% % % | 0% | 0% | 0% | 0% | 0.00 | 0.00 | 0% % |
[6069| 0% | 0% | 0% | 0% 53 % | 0% | O% | 0% | O% | 0.00 | 0.00 | O% % |
[70-79| 0% | 0% | 0% | 0% % 0% | 0% | 0% | 0% | 0% | 0.00 | 0.00 | 0% % |
B0+ | 0% | 0% 0% | 0% [ % | [0% | O% | 0% | O% | 0.00 | 0.00 | 0% | 0% |

total 0% 0% 0% 0%

Deaths Deaths
mm Cardiovascular disease I Cardiovascular disease
| Diabetes - Diabetes
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Depression Depression

Colon Cancer 1 Colon Cancer
Breast Cancer 1 Breast Cancer
Road Traffic Injuries Road Traffic Injuries
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FIGURE 14 Change in disease and injury burden from shopping (left) and shopping+work
scenarios (right)



To understand the potential health impacts, the team analyzed the results for the work trip
scenario under R+T_10AT (which reduces the perceived drive time by 90%). In this scenario, 3,341
individuals switched from drive alone to the service. The team used the information for these
individuals to estimate their impacts. The authors assumed that these individuals would
considerably reduce their drive distance and times, and increase walking. That is, their new
driving distances would relate to the driving from PUDO to the BART station, and the walking
would increase with the distance and time to reach the PUDO. While this is not the complete
information about those individuals’ daily activity, it can provide an indication of the health
impacts associated to their mode shift for this scenario.

TABLE 13 and FIGURE 15 show the results for the 3,341 individuals (assuming population’s
demographic characteristics). The results show that the disease burden would reduce between
2 and 8%, and the road injuries by more than 10%. FIGURE 15 shows the expected decrease in
DALYs per individual. While, the numbers for the entire bay area mask these results, there are
health benefits by increase active travel for the shifting individuals. Nevertheless, every system
user has different levels of exposure.

TABLE 13 Results for health impacts for work AM trips (R+T_10AT)

All-cause
Ischemic Heart Road Traffic mortality
Breast Cancer | Colon Cancer Disease Depression | Dementia Diabetes Stroke Injuries Woodcock
Ara m i m i m f m f m i m i m i m i m i
15-29 0% -1% | -1% -1% -B% -9% -1% | -1% | -2% | -3% | -7% | -B% | -B% -9% -11% -11% -1% -1%
30-44 0% -2% | -2% -2% -9% -9% -2% | -3% | -2% | -3% | -B% | -B% | -9% -9% -11% -11% -1% -1%
45.59 0% -1% | -2% -1% -0% -B% 2% | -2% | -3% | -2% | -B% | -B% | -9% -B% -11% -11% -1% -1%
60-69 0% -2% | -2% -2% -9% -9% 2% | -3% | -3% | -4% | -B% | -B% | -9% -0% -11% -11% -1% -2%
70-79 0% -2% | -2% -2% -7% -B% 2% | 4% | -3% | 5% | -6% | -B% | -T% -B% -11% -11% -2% -3%
B0+ 0% -3% | -3% -3% -B% -6% 3% | -5% | 4% | -6% | -7T% | -5% | -B% -6% -11% -11% -2% -5%
total -2% -2% -8% -2% -5% -8% -8% -11% -2%
aths DALYs
] i

— Dt —
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FIGURE 15 Change in disease and injury burden for work AM trips (R+T_10AT)



Discussion and Conclusions

This study evaluated a first mile transit access program using ridesharing. Specifically, the
program allocates travel demand to pick-up and drop-off locations (PUDOs) where users access
by walking, then ridesharing vehicles drive them to the closest BART station. The authors
developed a simulation and optimization framework combining different modeling schemes such
as activity-based modeling, a location-allocation optimization tool, agent-based modeling, and
health impacts modeling. For the activity-based modeling, the team developed simulation
scenarios using the MTC-ABM model one, MATSIM for agents, and ITHIM for health.

The MTC-ABM scenarios focused on a series of parameter changes and travel assumptions to be
able to simulate the ridesharing+transit service. The optimization algorithm used continuous
approximation techniques to find the optimal PUDOs that minimized users’ travel, access, and
waiting times. The team developed a dedicated simulation in MATSIM, and modified ITHIM to
account for the program characteristics and study area.

Overall, the team concentrated on purpose specific trips and simulation time periods.
Specifically, work and shopping related trips. The time periods included AM and midday. The
basic premises of the scenarios considered that the use of ridesharing to access transit would
overcome age driving and car ownership limitations. Moreover, for users further away from
transit stations, ridesharing could have different perceived access times and costs. The authors
assumed perceived differences that ranged between 90% reductions up to a 100% increase for
some of the cost and access time parameters.

In general, even for aggressive reductions in access time and costs, the resulting changes in
system wide travel patterns are modest.

For example, assuming a 25% perceived reduction in drive time to BART resulted in an 8%
increase in AM work trips using BART for a total of 72,404. From the 5,792 new BART trips, 1,077
trips switched from Drive-alone mode. For the 1,077 the results of the optimization showed an
average walking time of 17 min., drive time of 20 min., and waiting time of 7 min. Around 60% of
the travelers could have a combined walk and wait time between 5 to 20 mins, although there is
a large portion of individuals that could experience more than 20 minutes, up to an hour of delay.
The MATSIM time and cost estimation revealed a large portion of trips with significant travel time
increase that contributed to increases in general cost for 74% of trips as well. The trip cost
(excluding the time cost) reduced for almost 68% of trips with a total value of around $5,000.
From the vehicle perspective, total vehicle VMT decreased dramatically; however, 45% of the
rideshare vehicle mileage is empty. Moreover, the optimistic 90% access time reduction for AM
work trips only reduced overall VMT by 0.2% — 0.5% in peak hours.

In terms of health impacts, evaluating the combined shopping and work trip scenarios showed
very small results, which are mostly determined by the small changes in travel activity. The
program is not necessarily attractive for the largest segments of the population, and is not able
to induce a mode shift from personal vehicles to transit. Consequently, there are not significant
health impacts. However, when evaluating the direct impacts to the individuals shifting from
drive alone to the ridesharing+transit service, the results show health and injury benefits
between 2% and 11% (different reductions for the various evaluated diseases).

More importantly, the embedded behavioral models in MTC-ABM limited the study assessments.
As a consequence, these models, their coefficients and elasticities affected the expected



behaviors to parameter changes. The empirical analyses showed that a percentual change in
access time generated a larger change in behavior compared to the same change in cost.
There are other aspects that affect the ridesharing+transit program:

e Users locations (e.g., distance/access to BART);

e Origin-destination pairs (e.g., outside of BART service area);

e Trip purpose (e.g., work vs. shopping); and,

e Travelers’ preferences and characteristics (e.g., income and other socio-demographic

variables affecting travel choices).

Although the agent-based modeling results show mileage and cost reductions, increases in travel
delay by almost all the trips seems to be a serious operational issue for encouraging demand to
this mode. Improving the performance of transit lines and rideshare services through travel and
wait time reductions can help mitigate the issues. Moreover, providing subsidies to those with
high percentages of time lost may play an important role towards an effective long-term
sustainable mobility. Better vehicle and demand allocation algorithms can also be an efficiency
improvement with the aim of empty vehicle mileage reduction.
Overall, additional strategies are needed to foster transit and active transportation if the goal is
to promote a sustainable environment. Ridesharing services, if they want to be a contributor to
this goal, they have to avoid becoming a private vehicle alternative and seek to promote pooled
ridership and complement other efficient modes.
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