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The air quality and health impacts of projected long-haul truck and 

rail freight transportation in the United States in 2050 

Abstract 

Diesel emissions from freight transportation activities are a key threat to public health. This study 

examined the air quality and public health impacts of projected freight-related emissions in 2050 over the 

continental United States. Three emission scenarios were considered: (1) a projected business-as-usual 

socioeconomic growth with freight fleet turnover and stringent emission control (CTR); (2) the application 

of a carbon pricing climate policy (PO); and (3) further technology improvements to eliminate high-

emitting conditions in the truck fleet (NS). The PO and NS cases are superimposed on the CTR case. 

Using a WRF-SMOKE-CMAQ-BenMAP modeling framework, we quantified the impacts of diesel fine 

particulate matter (PM2.5) emissions change on air quality, health, and economic benefits. In the CTR case, 

we simulate a widespread reduction of PM2.5 concentrations, between 0.5-1.5 μg m-3, comparing to a base 

year of 2011. This translates into health benefits of 3,600 (95% CI: 2,400 – 4,800) prevented premature 

deaths, corresponding to $38 (95% CI: $3.5 – $100) billion. Compared to CTR case, the PO case can 

obtain ~9% more health benefits nationally, however, climate policy also affects the health outcomes 

regionally due to transition of demand from truck to rail; regions with fewer trucks could gain in health 

benefits, while regions with added rail freight may potentially experience a loss in health benefits due to 

air quality degradation. The NS case provides substantial additional benefits (~20%). These results support 

that a combination of continuous adoption of stringent emission standards and strong improvements in 

vehicle technology are necessary, as well as rewarding, to meet the sustainable freight and community 

health goals. States and metropolitan areas with high population density and usually high freight demand 

and emissions can take more immediate actions, such as accelerating vehicle technology improvements 

and removing high-emitting trucks, to improve air quality and health benefits. 

Keywords: freight transportation, diesel emissions, air quality, public health, particulate matter.  

1. Introduction 

Diesel engines are often used to power commercial freight transport vehicles such as truck and rail 

locomotives. However, emissions from diesel engines have substantial negative impacts on the 

environment and public health. Diesel exhaust emissions comprise significantly high amounts of 

particulate matter and its precursors, which can cause respiratory and cardiovascular problems (Bell et al., 

2008) and premature death (Woodruff et al., 2006; Krewski et al., 2009; Lepeule et al., 2012). In order to 

reduce these impacts, the United States (US) has initiated several stringent regulatory standards (e.g., US 

EPA Heavy Duty Diesel Rules 2004/2007/2010 to limit emissions of new diesel engines, state laws calling 

on retrofitting older diesel engines (CARB, 2014; TERP, 2001; Craft, 2012), and regional public-private 

partnerships administered by the US Environmental Protection Agency (USEPA)’s National Clean Diesel 

Campaign (USEPA, 2008)). Recently, the California Sustainable Freight Action Plan (CSFAP, 2016) was 
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initiated to improve freight efficiency and shift to zero-emission technologies. In 2015, a dedicated source 

of federal support for improving freight transportation and preserving the environment was included in 

the US Department of Transportation (USDOT)’s Fixing America’s Surface Transportation (FAST) Act. 

Internationally, the Euro I through VI standards have been adopted in European countries to control 

emissions from heavy-duty vehicles, and equivalent standards have sprung up in countries such as China 

(Wu et al., 2017), Japan, and others (DieselNet, 2018; Anenberg et al., 2017). 

Large-scale factors such as population, economic development, industrialization, and international 

trade affect demand for freight services, which has historically grown in proportion to gross domestic 

product (GDP) (Muratori et al., 2017). The GDP factor explained 89% of the variation (R2=0.89) in road 

freight volumes based on a study of 28 countries at different development stages (Bennathan et al., 1992). 

Freight related activities accounted for 33% of industry jobs in California in 2014 (CFAC, 2016). Under 

a high GDP growth rate, freight activities (e.g., vehicle miles traveled (VMT)) are projected to double in 

2050 over the US (Liu et al., 2015). Similar projections were also made by USDOT’s Highway 

Performance Monitoring System (HPMS) and adopted in USEPA’s Motor Vehicle Emissions Simulator 

(MOVES) (USEPA, 2015a). Road freight transportation today are mostly fueled by ultra-low sulfur diesel 

(ULSD). Still combustion of diesel fuel results in emissions of greenhouse gases (GHGs) as well as criteria 

air pollutants, like particulate matter (PM), carbon monoxide (CO), nitrogen oxides (NOx), and air toxics 

such as polycyclic aromatic hydrocarbons (PAHs) that cause cancer (CDC, 2014). 

Due to emission control policies and advancements in vehicle technologies and fuel refinements, 

new diesel truck engines under the latest standards emit 98% less PM and NOx emissions than their pre-

1990 counterparts (ICCT, 2013). These technologies include diesel oxidation catalyst (DOC) to control 

CO and hydrocarbons, diesel particulate filter (DPF) to control PM emissions, and selective catalytic 

reduction (SCR) to control NOx emissions (Resitoglu et al., 2015). Other measures include implementing 

emission testing programs and anti-idling programs, and promoting cleaner fuels like ultra-low sulfur 

diesel (USEPA, 2006). Under these efforts, future diesel pollutant emissions are predicted to decrease 

substantially, despite the surging demand in freight transport. There are other factors that affect the future 

picture and estimation of freight emissions. Emissions from the freight sectors also depend on energy and 

carbon intensities. Climate mitigation policy, such as pricing of GHG emissions (i.e., carbon tax), can 

cause shift of freight to less energy-intensive modes (e.g., switching from truck to rail). In addition, trucks 

often degrade from normal to high-emitting conditions (i.e., super-emitters) as they age (Bond et al., 2004; 

Yan et al., 2011). The relative magnitude of emission factors from normal to high-emitting conditions can 

reach up to 70 times for PM (Liu et al., 2015). Also, Liu et al. (2015) reported that total US long-haul 

freight emissions could be reduced to ~30% with the elimination of super-emitters in 2050. 

Transportation emissions are known to cause significant negative health impacts (USEPA, 2000; 

Tayarani et al., 2016). Total on-road mobile emission sources were estimated to induce ~29,000 premature 

deaths over the US in 2005 (Fann et al., 2013). Several other studies have examined the impact of 

technology development on transportation emissions (Nichols et al., 2015) or air quality (Thompson et al., 

2009, 2011; Nopmongcol et al., 2017), but not many have assessed the resulting health and associated 
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economic benefits. Wolfe et al. (2019) reported that heavy duty diesel sector is the largest emission 

producer, in term of primary fine particulate matter (PM2.5) and NOx emissions, among all the mobile 

source sectors; and rail sector is the fifth largest for primary PM2.5 and second largest for NOx, respectively. 

In this study, we focus on freight transportation sectors (e.g., long-haul trucks and locomotives), and link 

the evolution of freight emissions to air quality modeling and health impact assessment. The year 2050 is 

a substantially far horizon to assess the impacts of significant anticipated changes in fleet composition. 

By examining multiple emission scenarios based on varying policy assumptions, we systematically model 

the impacts of future freight emissions on PM2.5 concentrations, and associated changes in health outcomes 

(e.g., premature mortality, morbidities) and economic benefits. To conduct this analysis, we use the 

USEPA Community Multi-scale Air Quality (CMAQ) and Environmental Benefits Mapping and Analysis 

Program (BenMAP) models. Specifically, we examine spatial distributions of health impacts at state and 

county levels, which can help policy-makers to identify regions in need of early regulatory actions.  

2. Methodology 

2.1. Design of the Scenarios 

This study applied several emission scenarios to account for future freight transportation emissions 

under the effect of socioeconomic development, climate policy, and technology evolution. A simplified 

flow chart of the assessment system is presented in Figure 1. Liu et al. (2015) provided the freight 

emissions projections through 2050 by applying a combination of an economic model (Fisher-Vanden et 

al., 2012) and an engineering model (Yan et al., 2011). The economic model seeks supply-demand 

equilibrium across sectors and worldwide regions, and outputs activities (e.g., GDP and fuel consumption). 

The engineering model includes freight demand and emission calculations. We applied the emission 

projection rates to scale the diesel-fueled long-haul truck and rail sectors in the following simulation cases: 

(1) Baseline (BASE) case – This serves as the base case to which future scenarios were compared. Bell et 

al. (2007) reported large seasonal variations of several PM2.5 components in the US (e.g., highest sulfate 

PM2.5 in summer, highest nitrate PM2.5 in winter); other major components, such as organic carbon, 

ammonium, and elemental carbon, generally had much less variations across seasons. Overall, total PM2.5 

concentrations were highest in summer and comparable in winter, spring, and autumn. We used the winter 

month of Jan 2011 as our simulation episode in this study, to provide a relative average estimate of the 

PM2.5 concentrations. 

(2) Stringent Control (CTR) scenario – Stringent emission control policies are continuously applied under 

a high GDP growth rate. Increasingly rigorous rules with varying degrees of stringency (e.g., the US EPA 

2004, 2007, and 2010 standards for heavy-duty vehicles) have been designed and adopted. Generally, 

vehicles manufactured under 2010 standards produce less emissions than those built for previous years 

(except for some pollutants such as NOx). This scenario does not assume further emission control 

standards beyond the 2010 standards, that is, all the new vehicles manufactured after 2010 would follow 

the US 2010 standards.  
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(3) Climate policy (PO) scenario – This has the same GDP growth rate as the CTR scenario, but employs 

a climate policy in the form of a carbon tax to emulate a 450 ppm stabilization scenario. In this scenario 

$30/tonne CO2 in 2010 increases to $130/tonne CO2 in 2050. The carbon tax increases oil prices, causing 

15% of freight fuel consumption to shift from truck to the more energy-efficient rail (Liu et al., 2015). For 

this analysis, the inter-modal shift was represented at the national level. 

(4) No super-emitters (NS) scenario – Representing the phase-out of high-emitting vehicles in the truck 

fleet. Normal vehicles become high emitters at a rate of 5%-7% (Dallmann et al., 2012, Preble et al., 2018). 

The high-emitting conditions consider poor engine maintenance, non-compliance with stricter emission 

standards, or failure of emission control systems. Current regulations set limits on emissions from new 

vehicles, but they do not affect in-use vehicles. This scenario is equivalent to a retrofit policy that controls 

emissions from in-use vehicles. The retrofit policy can restrict emissions not covered by current or 

potential newer vehicle standards. 

Both the PO and NS scenarios are superimposed on the CTR scenario, that is, the same stringent emission 

control in the CTR scenario are applied in the PO and NS scenarios, as depicted in Figure S1. The CTR, 

PO, and NS scenarios are directly adopted from Liu et al. (2015); they are same as the high GDP, high 

GDP combined with climate policy, and no super-emitters scenarios in the reference. 

Figure 1. A simplified flow chart of the air quality and health assessment system. 
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2.2. Emission Inventories 

Anthropogenic emissions inputs were developed using the USEPA National Emissions Inventory 

of 2011 (NEI2011) (USEPA, 2015b; 2015c) as a starting point. These inventories include mobile, point, 

and area sources. Mobile sources included on-road mobile emissions, for which the USEPA Motor 

Vehicle Emissions Simulator (MOVES) (USEPA, 2016a) provided emission factors (EF) look-up tables 

as functions of speed, fuel type, vehicle type, road type, and meteorological conditions. Motor vehicle 

activity data – such as vehicle miles traveled (VMT), population (VPOP), and hoteling hours (Hoteling) 

– were either submitted by state, local, and tribal air agencies, or estimated in-house by the USEPA. The 

on-road mobile emissions were calculated as EF multiply by activity, for each combination of fuel, vehicle, 

and road type. Point sources include electricity generating units (EGUs), oil and gas production processes, 

category 3 marine vessels, and remaining non-EGU industry sources. Area sources include agricultural 

activities, fugitive dust, locomotives, category 1 and 2 commercial marine vessels, oil and gas production 

processes, non-road vehicles, residential wood combustion, and remaining non-point sources. Gridded 

hourly biogenic emissions were estimated using the USEPA Biogenic Emission Inventory System (BEIS) 

(Pouliot and Pierce, 2009). For the baseline freight emissions, both activity and emission factors vary with 

fuel and vehicle types, hence diesel long-haul truck is one subgroup of the on-road mobile inventories. 

The rail sector is a subsector of the area sources. 

A projection by Liu et al. (2015) suggested an approximate 100% to 140% increase of long-haul 

trucks and rail freight activity during 2010-2050. The projection for trucks is similar to the MOVES 

estimate (110%) during the same period, as plotted in Figure S2. Figure S3 plots the emissions of major 

air pollutants in each scenario from the truck and rail sectors, the projections are based on Liu et al. (2015). 

Compared to the base year case, PM emissions in all future year cases decrease substantially, as depicted 

in Figure 3(a) and (b). In the CTR case, the reduction rates are 60-70% for the truck sector and ~80% for 

the rail sector (Figures 3(c) and (d)). Reductions in truck emissions would result from the implementation 

of emission standards, fleet turnover, reduction in fuel intensity (fuel consumption per unit distance), and 

technological improvements. In the US, a majority of long-haul trucks have a lifespan of 4-15 years, as 

depicted in Figure S4. By 2050, almost all older and dirtier trucks built before the 2010 standard are 

projected to be retired. Locomotives have a longer lifetime than trucks and by 2050 most of the rail fleet 

would be built under Tier 4 emission standards. Comparing the PO case with the CTR case, the truck 

sector has a 35% decrease in PM emissions, while the rail sector sees a 25% increase. These reflect the 

effects of climate policy promoting a transition in freight demand from truck to rail, as the average fuel 

intensity of Class I railroads is only about one fifth that of trucks (AAR, 2011). In the NS case, PM 

emissions are significantly reduced (~70%) with respect to the CTR scenario in the truck sector due to the 

phase-out of super-emitters. Thus the potential proliferation of super-emitters must be addressed 

specifically in order to control PM emissions. The relative magnitude of emission factors between high-

emitting and normal-emitting conditions is significantly bigger for PM than other pollutants. So PM has 

a larger reduction after eliminating high-emitting conditions. For the rail sector, emissions remain 

unchanged between the NS case and CTR case. As the truck emissions were calculated as EF multiply by 

activity, the truck emission projection rates in Figure S3 were used to scale EF database, which indirectly 
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changed the truck freight emissions. The rail emission projection rates were directly applied to the rail 

inventories. The other anthropogenic emissions were held constant in the future. 

2.3. Air Quality Modeling System 

Chemical transport modeling 

We used the USEPA Community Multi-scale Air Quality (CMAQ) model (Byun and Schere, 2006) 

version 5.0.2 to model atmospheric transformation processes. Here, the Carbon Bond 5 (CB05) (Yarwood 

et al., 2005) and AERO6 mechanisms simulate gas and aerosol chemistry, respectively. The CMAQ model 

solves the continuity mass-balance equation and simulates the atmospheric processes of emissions, 

advection, diffusion, dry and wet depositions, and chemistry for a given geographical region by 

discretizing the region into several horizontal, lateral, and vertical grid cells. The major CMAQ 

configuration options are listed in Table S1. In this study, the horizontal resolution of the model 

simulations is 12×12 km. The CMAQ simulation domain has 459×299 grid cells horizontally and 27 layers 

vertically.  

Meteorological fields 

The Weather Research and Forecasting (WRF) model (Skamarock and Klemp, 2008) version 3.7 

provided meteorological fields. The WRF physics options are listed in Table S2. The National Centers for 

Environmental Prediction (NCEP) provided North American Regional Reanalysis (NARR) data 

(Mesinger et al., 2004) used as input for the WRF model. In this study, the meteorological conditions were 

held constant in the future year scenarios. 

Emission modeling 

To process emissions, we used the Sparse Matrix Operator Kernel Emissions (SMOKE) system 

(Houyoux et al., 2000) version 3.6. The SMOKE model performed spatial and temporal allocations and 

chemical speciation to transform annual or monthly county-level inventory data to hourly gridded model 

species. It also provided plume rise estimations to allocate point source emissions vertically. For the 

transportation sector, activity data and rail inventories were spatially allocated using GIS Shapefiles of 

TIGER/Line data for roads, and National Transportation Atlas Data for railways (USEPA, 2015b). These 

spatial surrogates were prepared by USEPA using the Surrogate Tools of the Spatial Allocator system 

(USEPA, 2016b). The SMOKE model took EF (the output from MOVES), county-level monthly activity 

data, and temperature data and produced hourly gridded CMAQ-ready emissions. 

2.4. Health Impact Assessment Tool 

 To evaluate the impact of the various scenarios on health and economic benefits, we used the 

USEPA Environmental Benefits Mapping and Analysis Program (BenMAP) Community Edition version 

1.3 (USEPA, 2017a; Sacks et al., 2018). The health impact calculations in BenMAP are based on 

concentration-response (C-R) functions (a.k.a. health impact functions), typically representing a decrease 
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in adverse health effects with reduction of ambient air pollution concentrations resulting from the 

implementation of emission control policies (Fann et al., 2012, 2013; Kheirbek et al., 2013; Driscoll et al., 

2015). One group of widely used C-R functions are in the log-linear format: 

∆𝑦 = (1 − 𝑒−𝛽∙∆𝑥) × 𝑦0 × 𝑃𝑜𝑝  (1) 

where ∆𝑦 represents the change in the incidence of adverse health effects, 𝛽 the concentration-response 

coefficient, ∆𝑥 change in air quality (e.g. PM2.5 concentrations), 𝑦0 the baseline incidence rates, and 𝑃𝑜𝑝 

the affected population. The concentration-response relationships (i.e.,  𝛽 ) are usually assessed in 

epidemiological studies. The functional form of a C-R function is based on the statistical approach used 

in epidemiological study, and most often a log-linear statistical model is used. Additionally, the BenMAP 

model calculates the economic benefit of avoided premature mortality using a “value of statistical life” 

(VSL) approach, which is the aggregate monetary value that a large group of people would be willing to 

pay to slightly reduce the risk of premature death in the population (USEPA, 2017a; Fann et al., 2013).  

The air quality inputs of the model include a baseline scenario (without control) and a control 

scenario (with emission control policy implemented). In this study, the base year case is the baseline 

scenario and the future year cases represent varying control scenarios. The air quality spatial fields from 

CMAQ model were bias-corrected using the Software for Model Attainment Test - Community Edition 

(SMAT-CE) Version 1.2 (SCUT, 2017) and PM2.5 federal reference methods (FRM) monitoring data. The 

SMAT-CE model typically uses PM2.5 monitoring data in a five-year period to adjust the model spatial 

fields. In our study, the monitoring data for 2009-2013 (winter) were used. As depicted in Figure S5, the 

adjusted baseline model PM2.5 concentrations are about half of the original CMAQ output data. We then 

assessed the changes in premature mortality and a few morbidities (e.g., hospital admissions, emergency 

room visits, and asthma exacerbation) attributable to PM2.5 under various future year scenarios. As an 

extended analysis of the American Cancer Society cohort study, Krewski et al. (2009) included a large 

population (about 500,000 adults, aged over 30) in 116 US cities and reported relative risks of 1.06 (95% 

CI: 1.04 – 1.08) for a 10 μg m-3 increase in PM2.5 concentration for all-cause. These mortality risk estimates 

have been used to assess the health burden attributed to PM2.5 exposure in the US (Punger and West, 2013; 

Li et al., 2016) and globally (Anenberg et al., 2010). In this study, we mainly adopted the C-R relationships 

from Krewski et al. (2009) to quantify the premature mortality change in the future. The baseline incidence 

rates for premature mortality analyses were taken from the Center for Disease Control and Prevention 

(CDC, 2016). The spatial scale for health impact assessment is 12×12 km, same as the air quality 

simulations. Additional details of the selections of health impact functions and source of the input 

parameters are listed in Tables S3 and S4 in Supplemental Information. For the base year population, the 

2010 block-level US Census population data were allocated to our study domain using the PopGrid 

program (USEPA, 2017a). The county-level population growth rates for each year from 2000 through 

2050 were developed by Woods & Poole (2015) and pre-installed in the BenMAP model. 

3. Results 

3.1. Changes in Freight Transportation Emissions  
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An investigation of the distributions of changes in freight emissions will enhance our 

understanding of changes in predicted air quality. Figure 2 plots the distributions of differences in 

emissions between the CTR case and the BASE case. These differences in emissions are only due to 

changes in freight emissions. Here we use elemental carbon as an example, as it is a tracer for diesel 

emissions (Roy et al., 2011; Lane et al., 2007). The predominant changes in long-haul truck emissions 

take place along roadway networks and in large urban areas. The rail sector shows widespread reductions 

in emissions over railway tracks. One notable difference between the two is that the truck sector exhibits 

substantial reductions over metropolitan areas while the rail sector shows relatively high reductions along 

several main line tracks.  

 

Figure 2. Changes in elemental carbon emissions between the CTR case and BASE case (CTR minus 

BASE) from the two freight transportation sectors: (a) truck and (b) rail. Note: the color-bars depict only 

negative/decrease because of the substantial reductions (60-80 %) in emissions in the CTR case. Both 

panels are snapshots and the units “g/s” represent the amount of emissions (in gram) produced per second. 

3.2. Changes in Air Quality 

We studied CMAQ outputs to examine the spatial patterns of changes in ground-level PM2.5 

concentrations. As illustrated in Figure 3, reductions of PM2.5 concentrations are generally attained over 

the eastern US, similar to the regions demonstrating major reductions of freight emissions. The greatest 

reductions (1-1.5 μg m-3), however, appear in the Midwest and California. The large reduction over the 

Midwest may be the result of several factors. First, temperatures are lower in the north than south. The 

northern US, particularly the Midwest, are frequently impacted by winter cold fronts and high pressure 

systems. As depicted in Figure S6, regions with the lowest surface temperature highly coincide with 

Midwest states experiencing the largest PM2.5 reduction. Due to lower temperatures, the planetary 

boundary layer (PBL) is thinner over these regions, which reduces vertical mixing, and hence the dilution 

rates of PM2.5 species. A similar phenomenon was described by Wang et al. (2014). Second, large 

concentrations of secondary PM2.5 species can be generated under high humidity and reduced advection 

(Walker et al., 2012; Heo et al., 2016). In particular, greater amounts of secondary inorganic aerosols, 

such as nitrate and ammonium, are produced during the cold season (Jeon et al., 2015; Souri et al., 2017). 
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Fine nitrate is produced by the gas-phase reaction of nitric acid (HNO3) with ammonia (NH3). The 

chemistry favors the production of ammonium nitrate (NH4NO3, a component of PM2.5) at low 

temperature and high humidity. The reaction product NH4NO3 is also less volatile in cold weather than in 

hot weather. The regions with higher post-policy difference of pollutant concentration usually coincide 

with those with higher initial concentration. 

Since differences between other policy scenarios (i.e., PO and NS) and the BASE case, as plotted 

in Figure S7, are hard to distinguish from those between CTR and the BASE in Figure 3, we then used the 

CTR as a benchmark, and subtracted CTR from PO and NS to understand the incremental impact of 

climate policy and further technology improvement. As seen in Figure S8, for the relative changes between 

PO and CTR, PM2.5 concentration reductions coincide with areas where the decrease in truck emissions 

larger than the increase in rail emissions (relative emissions changes in Figure S10), causing net reductions 

in PM2.5 concentrations. In contrast, the increase in PM2.5 concentrations in states such as Nebraska and 

North Dakota is due to the net increase in rail emissions in these regions. The positive values outside US 

borders could be due to the atmospheric transport and complex nonlinear atmospheric chemistry. The NS 

case predicts general reduction of PM2.5 concentrations over the US, due to further reduction of truck 

emissions compared to the CTR case. The percentage changes in PM2.5 concentrations between different 

cases are plotted in Figure S9. The percentage changes in air quality are significant smaller than those 

changes in emissions. These are due to the interplay of various atmospheric processes (e.g. emission, 

transport, and chemistry) (Pan et al., 2017). 

 
Figure 3. Changes in PM2.5 concentrations resulting from the changes in freight emissions between the 

CTR case and BASE case (CTR minus BASE). 

3.3. Changes in Premature Mortality, Morbidities, and Economic Benefits 

We studied PM2.5 concentrations from CMAQ air quality simulations of various scenarios over the 

continental US and compared them with the 2011 reference case to assess the health co-benefits for each 

of the future policy/technology scenarios. As depicted in Figure S11 and Table 1, based on the C-R 

relationships from Krewski et al. (2009), emissions reductions from freight transportation provide 

substantial prevented premature mortality, including 3,600 (95% CI: 2,400 – 4,800) cases of avoided early 

deaths in the CTR case and 4,400 (95% CI: 2,900 – 5,800) cases in the NS case. The associated economic 

benefits range from $38 (95% CI: $3.5 – $100) to $45 (95% CI: $4.2 – $120) billion (in inflation-adjusted 

2015 dollars). Compared to the CTR case, the prevented premature mortality and benefits are estimated 
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to be ~9% and ~20% higher in the PO and NS cases, respectively. Liu et al. (2019) reported the prevented 

premature mortality of 2060 cases vis-à-vis 3600 (95% CI: 2,400 – 4,800) cases in this study, due to 

stringent freight emission control. Since both studies used the same C-R relationships from Krewski et al. 

(2009), the differences in health results could be partly resulted from the different approaches in simulating 

air quality. Liu et al. (2019) used a reduced-from air quality model, the Intervention Model for Air 

Pollution (InMAP) (Tessum et al., 2017). While this study used the CMAQ model, a tool for regulatory 

impact analysis recommended by the USEPA. Nevertheless, both models predicted highest freight-

contributed PM2.5 concentrations in the Midwest and West Coast. 

The estimates of prevented premature mortality and benefits using other epidemiological 

references for different age groups are also presented in Table 1. Compared to Krewski et al. (2009), 

estimates using Lepeule et al. (2012) provide higher prevented premature mortality values because they 

report higher C-R coefficients. We also provide the estimates of prevented early deaths for infants based 

on Woodruff et al. (1997). The results are 13 (95% CI: 4.9 – 20) in the CTR case, 14 (95% CI: 5.3 – 22) 

in the PO case, and 15 (95% CI: 5.9 – 24) in the NS case. 

Table 1. Estimates of prevented premature mortality and benefits attributable to freight emission 

reductions in future year scenarios. The unit of Incidence is [Number of Deaths], and the unit of Benefit 

is [Billion Dollars, in 2015 currency year]. 

Epidemiological 

Reference 
 

Stringent 

Control 

Climate Policy 

(carbon tax) 
No Super-emitters 

Krewski et al. (2009) 

(Age: 30-99) 
Incidence 

3,600 

(2,400 – 4,800) 

3,900 

(2,700 – 5,200) 

4,400 

(2,900 – 5,800) 

Krewski et al. (2009) 

(Age: 30-99) 
Benefit 

$38 

($3.5 – $100) 

$41 

($3.8 – $110) 

$45 

($4.2 – $120) 

Lepeule et al. (2012) 

(Age: 25-99) 
Incidence 

8,200 

(4,100 – 12,000) 

8,800 

(4,400 – 13,000) 

9,800 

(4,900 – 15,000) 

Lepeule et al. (2012) 

(Age: 25-99) 
Benefit 

$85 

($7.5 – $240) 

$92 

($8.2 – $260) 

$100 

($9.1 – $290) 

Woodruff et al. (1997) 

(Age: 0; infants) 
Incidence 

13 

(4.9 – 20) 

14 

(5.3 – 22) 

15 

(5.9 – 24) 

Woodruff et al. (1997) 

(Age: 0; infants) 
Benefit 

$0.13 

($0.011 – $0.38) 

$0.14 

($0.012 – $0.42) 

$0.16 

($0.013 – $0.46) 
Notation: (1) the BASE scenario is the baseline case in the BenMAP model, and the future year scenarios are the different 

control cases; (2) In the 3rd to 5th columns, the numbers in parentheses represent 95% confidence intervals, which are resulted 

from a full Monte-Carlo analysis performed by BenMAP, by randomly sampling an uncertainty distribution around the C-R 

coefficients or willingness to pay estimates.  

In addition, the results for prevented morbidities in the future year scenarios are listed in Table S5. 

The morbidities include hospitalizations (from asthma, chronic lung, all respiratory, and all cardiovascular 

(less myocardial infarctions)), emergency room visits, asthma exacerbation (cough, wheeze, shortness of 

breath, and upper respiratory symptoms), and minor effects (e.g., acute bronchitis, work loss days, minor 

restricted activity days, and lower respiratory symptoms). Similarly, these results suggest significant 

health benefits from continuous implementation of emission control standards, further benefits from 
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climate policy, and more from the removal of high-emitting conditions in the truck fleet. All of the future 

scenarios yield considerable health benefits in terms of prevented morbidities, from a few hundred to 

thousands of prevented hospitalizations and emergency room visits, as well as hundreds of thousands to 

several million cases of prevented asthma exacerbation and minor effects over the US. The magnitudes of 

these morbidity results are consistent with those provided in the “Pyramid of Effects” from air pollution 

(USEPA, 2018), suggested by the USEPA. The economic costs of morbidities can be estimated using the 

cost of illness, which includes direct medical costs and lost earnings associated with illness. The economic 

values from morbidity reduction are not provided here as the prevented premature mortality accounts for 

more than 90% of the monetized benefits (USEPA, 2018). 

3.4. Geographic Distribution of Prevented Premature Mortality 

 The spatial distributions of health impacts provide useful information to identify the high impact 

regions of freight emission reductions. The spatial distributions of prevented premature mortality are 

plotted in Figure 4. These are the results at county- and state-levels, respectively. Recalling the formula 

of C-R functions, for a given epidemiological study (Krewski et al., 2009) and a given health endpoint 

(mortality), the corresponding C-R coefficient and the baseline incidence rates are fixed, so the change in 

the incidence of the health endpoint is mainly attributable to the change in air quality and the population 

affected. As illustrated in the county-level map in Figure 4, higher values of prevented premature mortality 

mostly coincide with large metropolitan areas. While the change in air quality can vary significantly across 

the continental United States, as illustrated in Figure 3, metropolitan areas or large cities can benefit from 

a large number of prevented early deaths due to their high population densities (Heo et al., 2017). Some 

examples include: Los Angeles and the San Joaquin Valley, California; Houston and Dallas, Texas; 

Chicago, Illinois; and Phoenix, Arizona. The bar-plots of state-level prevented premature mortality are 

presented in Figure S12. The top five states that have the highest prevented early deaths from freight 

emission reductions are California (1123), Texas (266), Illinois (260), Ohio (169), and Florida (154). 

 
Figure 4. Distributions of the prevented premature mortality due to the changes in freight emissions 

between the CTR case and BASE case (CTR minus BASE). These are the prevented premature mortality 

attributable to PM2.5 at county-level (left panel) and state-level (right panel). 
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 To investigate the health impact of climate policy, we used the CTR case as the baseline case, and 

the PO case as the control case for the input of BenMAP. The result is presented in Figure 5. The health 

impact calculations in BenMAP are based on concentration-response functions, typically expressed as a 

decrease in health incidence (or response) due to a decrease in concentration of air pollutant, and vice 

versa. Thus, the increase in PM2.5 concentrations in Nebraska and North Dakota (Figure S10) would result 

in more premature deaths in the same regions (Figure 5). Climate policy shifts freight from truck to rail, 

which causes reductions in total emissions and health impacts. But the policy also affects public health 

geographically. Table S6 lists the top fifteen counties that have the highest estimates of prevented 

premature mortality in each future year scenario. For each listed county, compared with the CTR case, the 

PO and NS cases estimate a greater number of prevented early deaths. However, the relative efficiency of 

the policy strategies varies across those counties. For instance, implementation of climate policy and 

further technology improvement to remove high-emitting trucks can increase lives saved by 7% and 15% 

in Cook County, Illinois; and such benefit would rise to 10% and 23% in Los Angeles County, California. 

 
Figure 5. Prevented premature mortality due to the changes in PM2.5 concentrations between the PO case 

and CTR case (PO minus CTR) at the county-level. 

4. Discussion and conclusions 

 This study employed an integrated emissions-air quality-health impact assessment system to 

quantify the impact of projected freight transportation emissions (long-haul truck and rail emissions) over 

the US in 2050. Multiple scenarios with varying policy assumptions were considered. In general, the 

findings show that PM2.5 concentrations will decrease by 2050 thanks to reduction in freight transportation 

emissions. The estimated mortality, morbidities, and economic benefits follow the trends in the change in 

PM2.5 concentrations. Large metropolitan areas with high population density would particularly be the 

winners from freight emission reductions. 

 In the scenario with high GDP growth and fleet turnover, relatively strict controls on fuel and 

emissions are assumed. This scenario assumes no new policies on vehicle emissions and fuel quality 

beyond those currently implemented or adopted. The scenario did consider approximately 30% and 25% 

reductions in fuel intensity from 2007 to 2050 for long-haul trucks and locomotives, respectively. These 
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reductions are based on historical trends and projections from the literature (Fulton et al., 2009; Vyas et 

al., 2013). Future fuel intensity reductions, which indirectly lessen emissions factors, reflect the 

development and manufacture of new, highly effective technology. Therefore, in order to achieve 

emission reduction goals and the co-benefit in public health, stringent emission standards and fuel policies 

should be continuously and effectively implemented. In addition, the social benefits of reduced freight 

emissions are expected to largely exceed the implementation costs of such standards/policy. For instance, 

the cumulative costs for compliance with US 2010 or Euro VI standards (compared to US 1994 or Euro 

II) are the same, both at $6,937 (in inflation-adjusted 2015 dollars) per vehicle (ICCT, 2016). Assuming 

an average lifespan of 10 years for long-haul diesel trucks and a complete fleet turnover each decade, that 

is, a population of about (2.0 + 2.5 + 2.8 + 3.2 = 10.5) million (USEPA, 2015a), the total compliance costs 

from 2011 to 2050 would be around $73 billion (about $1.8 billion year-1), which is less than the low-end 

of calculated health benefits ($3.5 billion year-1 based on Krewski et al. (2009)) from this study. Also, the 

compliance costs are one-twentieth of the calculated mean health benefits ($38 billion year-1). Moreover, 

current diesel vehicles still produce much more NOx emissions under real-world operating conditions than 

during laboratory certification testing. Anenberg et al. (2017) estimated that nearly one-third of on-road 

heavy-duty diesel vehicle emissions were in excess of certification limits in global leading markets 

including the US. They suggested that adopting and enforcing newer standards (e.g., more stringent than 

Euro VI for heavy-duty vehicles) could nearly eliminate real-world diesel NOx emissions in these regions. 

Climate policy that shifts freight demand from truck to rail can attain further health benefits 

nationally, but could make certain regions worse off due to geographic variability of freight activities, and 

hence influence health endpoints. With carbon tax of climate policy, regions with fewer trucks could gain 

in health benefits, while regions with added rail freight may potentially cut their local air quality 

improvement in terms of PM2.5 pollution. The climate policy scenario assumes that a 450 ppm CO2 

concentration will be achieved by 2050, which represents the low end of CO2 concentrations in 

Representative Concentration Pathways (RCP) scenarios (i.e., RCP2.6). As the policy scenario favors the 

transition from diesel truck to rail, future investments are required in the rail system and infrastructure. 

However, the RCP2.6 is an aggressive global greenhouse gas mitigation scenario. Therefore, in the event 

that such stringent climate policy controlling the level of CO2 concentration were not established, that 

would reduce the truck-to-rail shift of freight transportation. Then the changes in air quality and health 

benefits would be between the numbers reported in the CTR case and PO case. Besides carbon tax, other 

forms of policy strategies, such as motor fuel taxes, tolls, other emission-based fees, and tighter truck size 

and weight restrictions, may incentivize a freight modal shift (Brogan et al., 2013). These may lead to 

similar trends of changes in air quality and health effects as those from climate policy. 

The removal of high-emitting trucks provides substantial further reductions in particulate matter 

emissions. Tighter standards for new vehicles alone (i.e., the CTR case) may not sufficiently protect 

environmental quality and public health. The phasing-out of super-emitters (i.e., the NS case) should be 

particularly addressed and accelerated if possible. High-emitting conditions could be eliminated through 

the identification and repair of individual vehicles, or improvements in durability standards. Financial 

resources – the Volkswagen settlement (USEPA, 2017b; NASEO, 2017) as an example – can be used to 
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subsidize technological changes, including vehicle repair/retrofit/replacement, along with the application 

of cost minimization strategies across the fleet (Gao and Stasko, 2009; Stasko and Gao, 2012). We have 

provided an estimation of the costs for fully replacement of super-emitters using new vehicles. Assuming 

an average rate of 6% of super-emitters in the truck fleet (a population of ~0.6 million), the 2015 fleet 

average US truck price was $157,000 (ICCT, 2016), then the costs for high-emitting truck replacement 

from 2011 to 2050 would be around $94 billion. Adding to the $73 billion in CTR case, the total policy 

costs in the NS case would be $167 billion (~$4.2 billion year-1), which is about one-tenth of the calculated 

mean health benefits ($45 billion year-1 based on Krewski et al. (2009)). 

Our results suggest that a complete fleet turnover under the latest emission standards/policies 

would significantly reduce harmful emissions and attain improved air quality and health benefits. Such 

fleet turnover, however, would have to take place over several decades. Before the complete turnover is 

achieved, emissions from long-haul freight transportation would contribute to thousands of premature 

deaths. Therefore, populated states (e.g., California, Texas, etc.) and metropolitan areas (e.g., Los Angeles, 

Houston, Chicago, etc.) should take early actions to control freight emissions. Incentive programs, such 

as California Air Resources Board’s Carl Moyer Program, Proposition 1B, and Low Carbon Fuel Standard, 

can help to accelerate fleet replacement/turnover. 

The findings from the above-mentioned air quality and health assessments of different control 

policies in this study can provide useful information for reducing air pollution from diesel-powered freight 

activities not only in the US but also other countries. For instance, in January 2019, the Ministry of 

Ecology and Environment of China published new guidelines on regulating highly-polluting diesel trucks 

(MEE, 2019). China set goals to substantially increase the compliance rate (at least 90%) of in-use diesel 

trucks by 2020. Highly-polluted regions, such as the northern regions near the capital Beijing, will be 

mandated to implement advanced “China VI” standards starting in July 2019. And more than one million 

outdated diesel trucks in the northern regions will be eliminated by the end of 2020. Thus, similar to the 

stringent control and no super-emitters scenarios in this study, it would be interesting to see how the 

implementation of such strict control policies could impact the air quality and health in China. It would 

be expected to obtain vast health benefits from freight emission control, considering the large population 

densities in Chinese cities and current high pollution levels. In addition, both China and European 

countries expressed their commitments on increasing the rail freight modal share (MEE, 2019; RFFC, 

2018). In this study, we highlighted the potential environmental injustice resulted from the modal shift, 

implying the necessity of rail freight planning under careful environmental impact assessment. 

An alternative approach to mitigating freight emissions is to replace diesel fuel in the trucking 

sector, for example, by adopting alternative fuels or via electrification (Peng et al., 2018). There are recent 

efforts on fuel cell heavy duty. Toyota just deployed a fuel cell tractor-trailer, as did Nikola. Hydrogenics 

recently came up with fuel cell light rail. Electric/fuel cells have significantly higher fuel economy. For 

example, the Argonne National Laboratory’s AFLEET model indicates an electric tractor-trailer with fuel 

economy of 19 mpg, as opposed to 7 mpg for diesel, in diesel gallon equivalent. However, because 

electrification of freight transport would increase energy demands on the electricity generation 
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infrastructure, efforts in renewable or cleaner energy production would also need to be promoted 

(Elgowainy et al., 2010; Tessum et al., 2014). The adoption of electric vehicles may also be impacted by 

factors such as consumer preference, government intervention (Walsh, 2018; Peng et al., 2018), vehicle 

purchase price and operating cost, and technology advancement. Further, other emerging transportation 

innovations, such as the advent of connected and autonomous vehicles (Sperling, 2018), are expected to 

have a vast impact on the current transportation infrastructure, and hence on emissions. Thus, the future 

reduction of emissions from the freight transportation sectors requires a combination of systems actions 

involving the corporate, public, academic, and government. 

It should be noted that this study poses several limitations and uncertainties. One important 

limitation about the climate policy assessment in this study is that the policy was applied at the national 

level, that is, the same fractional changes of emissions (about 25% increase in rail and 35% decrease in 

truck) were conducted over the entire continental US. The emission adjustment factors would be unfixed 

if the inter modal shift were represented either with sub-national or commodity-level detail (Bickford et 

al., 2013). Future air quality and health impact assessments need to consider these points to evaluate a 

more realistic regional-scale emissions change. In addition, the climate policy scenario assumes an 

increase of carbon price from $30 in 2010 to $130 in 2050. A recent energy modeling comparison study, 

the Stanford Energy Modeling Forum (EMF) 32 study, used a set of different carbon price trajectories in 

the US from year 2020 to 2050: $25 to $34, $50 to $67, $25 to $108, and $50 to $216. Their results 

indicate higher reductions in CO2 emissions under more ambitious carbon prices   (McFarland et al., 2018). 

The carbon price path used in our study is halfway between the two more aggressive carbon price paths 

in the EMF 32 study.   

In order to investigate the sensitivity of change in freight emissions within the US, we focused on 

the emissions from the long-haul truck and rail sectors; emissions from other major sectors were fixed to 

their present levels. This may induce some uncertainty in our predictions. For instance, as population 

grows in the urban areas, besides the rising demand of freight activity, the demand for buildings and power 

generation will largely increase, and hence impact on the emission amount of area and point sectors. 

However, the emissions from area and point sectors do not necessarily increase as future projections also 

indicate increase in energy efficiency of the buildings and de-carbonization of the power system (USDOE, 

2015). Another uncertainty not considered is the potential changing weather conditions in 2050, as in this 

study the meteorological factors were kept unchanged across scenarios. The climate impact resulting from 

change in emissions of GHGs due to evolution of freight and other sectors will be likely to alter the future 

weather conditions. In addition, the year 2011 was selected as the reference year because NEI 2011 was 

used as the base inventory. However, the meteorological conditions usually vary year by year and using 

the meteorological input of this limited time period could possibly lead to uncertainty in the simulated 

results for air quality. This uncertainty could be potentially partly reduced in this study from the bias-

correction of the air quality model fields using monitoring data in 2009-2013. It should be noted that the 

uncertainties in air quality modeling system are higher than the freight-induced air quality change in future 

year scenarios. For instance, the differences in simulated PM2.5 concentrations between PO and NS 

compared to CTR are very small (lower than 0.1 ug/m3). Hence, the comparison between CTR and PO 
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can be largely affected by the modeling system associated uncertainties. This becomes a more important 

issue as the health impact estimation is based on the change in concentrations. 

In the health impact analysis, all the PM2.5 species were assumed to have equal toxicity. It is 

possible that certain species are more toxic than others, but there is no adequate data that can be used to 

assess the PM2.5-related health impacts differentiated by speciated components. In addition, the 

concentration-response relationships from epidemiological references were usually developed based on 

long-term average PM2.5 exposure levels (Krewski et al., 2009; Fann et al., 2012; Punger and West, 2013). 

In order to apply these relationships for health impact assessment, one has to use proxies for annual 

average exposure levels. While in this study we conducted one-month winter simulations. So the 

emissions and air quality changes here are only representative of wintertime conditions. Hence, the health 

impacts reported here may be under- or over- estimated regionally, considering the variability of particle 

mass concentrations across seasons. Future studies should at least take the average of four representative 

months (Jan, Apr, Jul, Oct) to proxy for average exposure. Also as reported by Bell et al. (2007) that PM2.5 

concentrations were highest in summer, then the change in PM2.5 concentrations between baseline case 

and control case would possibly also be highest in summer, the subsequent health responses in summer 

would be higher than those calculated using change of annual average concentrations. Thus, the 

assessments using a winter month in this study could avoid an over-prediction of the health outcomes at 

national level. What’s more, even the greatest concentration changes appear in the Midwest (in Figure 3), 

still the population density is a critically important factor in the health impact calculations (or C-R 

functions) that populated states (e.g., Texas, Florida) can obtain substantial health benefits without having 

the largest change in air quality (Figures 3 and 4). Therefore, findings from the cross-scenario comparisons 

and geographic distributions of health impact results can be considered effective given the consistency of 

the assumptions across the scenarios. These findings can provide useful information for policy-makers to 

identify national, regional, and local control strategies to achieve sustainable freight goals noted earlier. 
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Supplemental Information 

S1. Emission scenarios, and the WRF and CMAQ model configuration options 

 

Figure S1. The relationships of the emission scenarios. 
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Table S1. Major CMAQ options. 

CMAQ version v5.0.2 

Chemical mechanism 

CB05 gas-phase mechanism with active chlorine chemistry, 

updated toluene mechanism, sixth-generation CMAQ aerosol 

mechanism with sea salt, aqueous/cloud chemistry 

Horizontal advection YAMO 

Vertical advection WRF omega formula 

Horizontal diffusion Multiscale 

Vertical diffusion Asymmetric Convective Model (ACM) version 2 

Deposition M3dry 

Chemistry solver SMVGEAR 

Aerosol chemistry AERO6 

Lightning NOx emission Included inline 

Cloud option ACM cloud processor for AERO6 

Table S2. WRF physics options. 

WRF version v3.7 

Microphysics Lin et al. scheme 

Long-wave radiation RRTMG 

Short-wave radiation New Goddard scheme 

Surface layer option Monin-Obukhov with Carlson-Boland viscous sublayer scheme 

Land-surface option Unified Noah LSM 

Urban physics None 

Boundary layer YSU 

Cumulus cloud option Kain-Fritsch 

FDDA Grid analysis nudging 

S2. Changes in Freight Transportation Activity, Emissions, and Air Quality 

 
Figure S2. The US long-haul truck population from 1999 to 2050. The population data during 1999-2011 

were derived from registration data from the Federal Highway Administration’s annual Highway Statistics 

report. The data between 2012 and 2050 are projected values from EPA MOVES (USEPA, 2015). The 

population of long-haul trucks would increase by 110% during 2010-2050. 
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Figure S3. Freight emissions in each simulation scenario for particulate matter (PM), carbon monoxide 

(CO), nitrogen oxides (NOx), and total hydrocarbon (THC). (a) Total long-haul truck emissions, (b) total 

rail emissions, (c) the ratio of emissions of each future year case compared to BASE case for long-haul 

truck sector, and (d) similar as (c) but for rail sector. (Acronyms of the names of simulation cases: BASE 

- baseline, CTR - stringent control, PO - climate policy, NS - no super-emitters). These projections are 

based on Liu et al. (2015). 

 
Figure S4. The 2011 age distributions of the US combination long-haul trucks from the EPA MOVES 

model (USEPA, 2015a). Note this figure indicates a typical lifespan of long-haul trucks. The age 

distributions would be different with varying conditions. For instance, under an economic crisis, total 

freight demand and vehicle travel tend to lower, and hence average lifetime periods for trucks would be 

longer. The Tier 4 locomotive is designed for a typical lifetime of 25-30 years. 
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Figure S5. The episode average PM2.5 concentrations in (a) the BASE case, (b) the adjusted BASE case 

(bias-corrected using SMAT-CE), and (c) similar to (b) but at different color scales. 

 

Figure S6. Surface distributions of maximum temperature (left panel) and minimum temperature (right 

panel) on 16th January 2011 (as reported by the National Centers for Environmental Prediction, 

Hydrometeorological Prediction Center, http://www.wpc.ncep.noaa.gov/dailywxmap/index.html), with 

units in ºF. Other days of the month showed generally similar patterns. 

 
Figure S7. Distributions of the change in PM2.5 concentrations due to the change in freight emissions 

between the future cases and the BASE case (future cases minus BASE). 

http://www.wpc.ncep.noaa.gov/dailywxmap/index.html
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Figure S8. Distributions of the change in PM2.5 concentrations due to the change in freight emissions 

between the future cases and CTR case (future cases minus CTR). Note: the color scales in Figure S8 are 

different from those in Figure S7 to show better clarity. 

 
Figure S9. The fractional changes in PM2.5 concentrations between different cases: (a) CTR-BASE, (b) 

PO-CTR, and (c) NS-CTR. 

 
Figure S10. Distribution of the change in elemental carbon emissions between the PO case and CTR case 

(PO minus CTR). 
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S3. Health Impact Functions and Morbidities Results 

The relationship between changes in air pollutant concentrations and incidence of health outcome 

(i.e., 𝛽) are usually assessed in epidemiological studies. These studies have produced a number of C-R 

functions that have been incorporated into the EPA BenMAP model and can be selected by the user. The 

selections of health impact functions and source of the input parameters in this study, listed in Table S3 

and S4, are based on an approach recommended by USEPA (USEPA, 2012; 2017a). Because the health 

impact functions for morbidities were derived from fewer cities or smaller time-scale sample sizes, results 

from multiple epidemiological studies were used to estimate the morbidity risk outcome. 

Table S3. The health endpoints quantified in this study and the risk estimates from epidemiological studies. 

Health Endpoint 
Start 

Age 

End 

Age 
Risk Estimate, β  

Epidemiological 

Reference 

Mortality, All Cause 30 99 0.00583 Krewski et al., 2009 

Mortality, All Cause 25 99 0.01310 Lepeule et al., 2012 

Mortality, All Cause 0 0 0.00392 Woodruff et al., 1997 

Hospital Admissions (HA), 

Asthma 
0 64 

0.00200 

0.00332 

Babin et al., 2007 

Sheppard, 2003 

HA, All Respiratory 65 99 
0.00070 

0.00207 

Kloog et al., 2012 

Zanobetti et al., 2009 

HA, Chronic Lung Disease 18 64 0.00220 Moolgavkar, 2000 

HA, All Cardiovascular (less 

Myocardial Infarctions) 
65 99 

0.00080 

0.00068 

0.00071 

0.00189 

Bell et al., 2008 

Peng et al., 2008 

Peng et al., 2009 

Zanobetti et al., 2009 

HA, All Cardiovascular (less 

Myocardial Infarctions) 
18 64 0.00140 Moolgavkar, 2000 

Emergency Room Visits, Asthma 0 99 

0.00392 

0.00560 

0.00296 

Glad et al., 2012 

Mar et al., 2010 

Slaughter et al., 2005 

Acute Bronchitis 8 12 0.02721 Dockery et al., 1996 

Asthma Exacerbation, Wheeze, 

Cough, Shortness of Breath 
6 18 

Wheeze: 0.00194 

Cough: 0.00099 

Shortness of Breath: 0.00257 

Ostro et al., 2001 

Asthma Exacerbation, Wheeze, 

Cough, Shortness of Breath 
6 18 

Cough: 0.01906 

Shortness of Breath: 0.01222 
Mar et al., 2004 

Work Loss Days 18 64 0.00460 Ostro, 1987 

Minor Restricted Activity Days 18 64 0.00741 Ostro and Rothschild, 1989 

Upper Respiratory Symptoms 9 11 0.00360 Pope et al., 1991 

Lower Respiratory Symptoms 7 14 0.01901 Schwartz and Neas, 2000 

 

 



 

26 

 

Table S4. The baseline incidence rates used in the health impact functions. 

Health Endpoint Parameter Incidence Rates Source 

Mortality, All Cause 
Daily or annual mortality 

rate 

Age-, cause-, and 

county- specific rate 

Centers for Disease Control 

and Prevention, 2016 

Hospital Admissions Daily hospitalization rate 
Age-, cause-, and 

county- specific rate 

Agency for Healthcare 

Research and Quality, 2007 

Emergency Room Visits, 

Asthma 

Daily emergency room visit 

rate 

Age-, cause-, and 

county- specific rate 

Agency for Healthcare 

Research and Quality, 2007 

Acute Bronchitis 
Annual bronchitis incidence 

rate, children 
0.043 

American Lung 

Association, 2002 

Asthma Exacerbation, Wheeze, 

Cough, Shortness of Breath 

Incidence among asthmatic 

African-American children: 

daily wheeze 

daily cough 

daily shortness of breath 

 

 

0.173 

0.145 

0.074 

Ostro et al., 2001 

Work Loss Days 

Daily incidence rate per 

person: 

Aged 18-24 

Aged 25-44 

Aged 45-64 

 

 

0.00540 

0.00678 

0.00492 

Adams et al., 1999 

Minor Restricted Activity Days 
Daily incidence rate per 

person 
0.02137 Ostro and Rothschild, 1989 

Upper Respiratory Symptoms 
Daily incidence rate among 

asthmatic children 
0.3419 Pope et al., 1991 

Lower Respiratory Symptoms 
Daily incidence rate among 

children  
0.0012 Schwartz et al., 1994 

 

Table S5. Estimates of prevented PM2.5-induced morbidities in the future year scenarios. 

Health Endpoint 
Stringent 

Control 

Climate Policy  

(carbon tax) 
No Super-emitters 

Hospital Admissions (HA), Asthma 64 69 77 

HA, All Respiratory 704 763 850 

HA, Chronic Lung Disease 159 172 192 

HA, All Cardiovascular (less Myocardial Infarctions) (65-99) 664 720 801 

HA, All Cardiovascular (less Myocardial Infarctions) (18-64) 291 316 352 

Emergency Room Visits, Asthma 1,660 1,800 2,000 

Acute Bronchitis 4,720 5,120 5,660 

Asthma Exacerbation, Wheeze, Cough, Shortness of Breath 101,000 109,000 121,000 

Work Loss Days 418,000 453,000 502,000 

Minor Restricted Activity Days 2,470,000 2,680,000 2,960,000 

Upper Respiratory Symptoms 86,200 93,400 103,000 

Lower Respiratory Symptoms 60,200 65,200 72,100 
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S4. Changes in Premature Mortality at National-, State- and County- Level 

 
Figure S11. Estimates of prevented premature mortality and benefits attributable to PM2.5 reductions in 

the future year scenarios. These are based on the concentration-response functions from Krewski et al. 

(2009). 

 
Figure S12. The state-level prevented premature mortality in the CTR case (sorted by number of 

prevented deaths, from highest to lowest; listed here are states with numbers > 40). The top five states are 

California (1123), Texas (266), Illinois (260), Ohio (169), and Florida (154). 

Table S6. The fifteen counties that have the highest estimates of prevented premature mortality 

attributable to PM2.5 reductions in the future year scenarios. 

County, State 
Incidence 

CTR 

Rank-

CTR 

Incidence 

PO 

Rank-

PO 

Efficiency 

PO 

Incidence 

NS 

Rank-

NS 

Efficiency 

NS 

Los Angeles, California 305 1 336 1 10% 374 1 23% 

Orange, California 127 2 142 2 12% 156 2 23% 

Riverside, California 115 3 130 3 13% 146 3 27% 

Cook, Illinois 110 4 117 4 7% 126 4 15% 

San Bernardino, California 98 5 108 5 10% 122 5 24% 

San Diego, California 89 6 99 6 12% 112 6 26% 
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Fresno, California 67 7 74 8 11% 78 8 17% 

Maricopa, Arizona 65 8 77 7 19% 91 7 40% 

Kern, California 55 9 60 9 9% 65 9 17% 

Harris, Texas 42 10 47 10 11% 52 10 23% 

Clark, Nevada 38 11 44 11 16% 51 11 34% 

Sacramento, California 30 12 32 12 7% 35 13 16% 

Tarrant, Texas 28 13 31 13 10% 34 14 21% 

Dallas, Texas 28 14 30 14 7% 35 12 25% 

Will, Illinois 28 15 29 15 4% 32 15 15% 

Notation: (1) the unit of Incidence is [Number of Deaths]; (2) we first sorted the US counties in the Stringent Control scenario 

by incidence results (from highest to lowest), then the counties in other scenarios were listed using the same order; (3) For each 

future year sensitivity case ii, 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝑖𝑖 = 100% × (𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒𝑖𝑖 − 𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒𝐶𝑇𝑅)/𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒𝐶𝑇𝑅. 
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