Radar backscatter properties of the Dragonfly landing site L. E. Bonnefoy¹, R. D. Lorenz², A. G. Hayes³, A. Lucas¹, D. Lalich³, V. Poggiali³, S. Rodriguez¹, A. Le Gall⁴

¹Université de Paris, Institut de physique du globe de Paris, CNRS, Paris, France, ²Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA, ³Department of Astronomy, Cornell University, Ithaca, NY, USA, ⁴Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), UVSQ /CNRS/Paris VI, UMR 8190, 78280 Guyancourt, France

INTRODUCTION

The Dragonfly mission, selected as the next New Frontiers mission by NASA, will send a rotorcraft to Titan in the mid-2030s (launching in 2027). The chosen

landing site (Lorenz et al., 2021), in the Shangri-la dune field near the geologically young Selk crater (6.5°N, 161.5°E), has been observed by several instruments onboard the Cassini spacecraft (in orbit around Saturn from 2004 to 2017), with the Radar in Synthetic Aperture Radar (SAR) mode providing the highest resolution data (up to $\sim 300 \text{ m/pixel}$).

METHOD

Measured backscattered radar signal (the normalized radar cross-section σ^0) depends on: ¹⁰ Figure from Wye (2011)

- Surface roughness
- Subsurface roughness and structures
- (cracks,
- layers, grain
- sizes)

- •Composition (dielectric constant, probed depths)
- Surface slopes (which modify incidence) angles)

RESULTS

Resolved SAR observations of Selk crater have been acquired during six Cassini flybys, with incidence angles that vary between 20° and 70°.

We mapped four terrain units in the immediate vicinity of Selk crater and constructed their **backscatter curves**, revealing variations in the composition and structure of the medium.

Click on the Zoom button to talk to me about my poster Available: April 23rd 2:15-2:45 pm EDT

DISCUSSION

The **dunes** are radar-dark, especially at high incidence angles, similar dunes in Belet, Shangri-la, and Fensal (e.g., Lucas et al., 2019), indicating a smooth and absorbing surface consistent with organic, fine-grained sand.

presents:

High 2.2-cm scale surface roughness Multiple subsurface scattering on organized structures (cracks, layering) A radar-transparent material like water ice (allowing for multiple scattering) The impact excavated the icy bedrock and created a rough, blocky, cracked surface.

PERSPECTIVES

Current and future work include: Analysis of distant radar scatterometry to complete the backscatter curve Analysis of radar altimetry over nearby

- terrains
- et al., 2019)

REFERENCES [1] Lorenz, R. D. et al., Planetary Science Journal, 2021 [2] Wye, L. C., PhD thesis, 2011 [3] Lucas, A. et al., J. Geophys. Res.: Planets (2019)

The radar-bright **Selk crater rim** likely

Application of physical models to constrain surface properties (e.g., Lucas Comparison with similar craters over Titan