
RETROSPECTIVE: Accel-Sim: An Extensible
Simulation Framework for Validated GPU Modeling

Mahmoud Khairy∗
Purdue University

Zhesheng Shen
Intel Cooperation

Tor M. Aamodt
University of British Columbia

Timothy G. Rogers
Purdue University

I. BACKGROUND AND CONTEXT

Accel-Sim emerged onto an existing landscape of GPU
simulation tools. As a PHD student Tor was recruited to
NVIDIA in 2004 and found himself on weekends torn between
going to sunny Monterey or writing up his thesis on “helper
threads” while otherwise spending every waking hour working
as part of the product team developing G80. G80 was a
radical new graphics processor unit (GPU) architecture and the
first with native support for compute (i.e., CUDA). Amdahl’s
Law seemed like it might greatly limit the impact of GPU
computing. However, conversations with John Edmondson at
NVIDIA convinced Tor this “field of dreams” could work out
in the long term. After G80 taped out, having earlier tried
and failed to convince his NVIDIA manager, John Danskin,
to allow him to join the ∼3 full time architects then working
on GPU compute because (to paraphrase) “we have enough
people doing that”, Tor decided to take up the question of
how best to design these architectures from a new perch as
an assistant professor at UBC. However, as GPU Compute
was an entirely new class of architecture, tools for studying
them were not available. This lead in late 2006 to the decision
to begin a team effort developing “GPGPU-Sim” [O5]1, the
predecessor to Accel-Sim. Having worked on “helper threads”
was useful when trying to emulate thousands of threads. Tim
joined Tor’s group in September 2010 after leaving his game
developer job at Electronic Arts where he had been exposed
to GPU shader programming. Over the next several years
Tim largely took over GPGPU-Sim development at UBC.
During this time Tim also was exposed to industry GPU
architecture research via internships at AMD and NVIDIA.
By then chip companies had greatly increased their GPU
Computing development efforts as compelling software use
cases emerged organically in the market. Soon enough Tim
found himself as an assistant professor at Purdue.

The Accel-Sim paper’s journey proper began in the Winter
of 2017 when Mahmoud joined Tim’s newly formed research
group at Purdue. The GPU simulation landscape by that time
was workable but aging. GPGPU-Sim, while significantly
updated in 2011 [O1], lacked support for emerging workloads
and needed updates to model newer microarchitectures. On
the application side, machine learning was exploding as a
driver for industry, with specialized instructions and closed-

*Currently at AMD
1O* denotes a citation from the original paper

source proprietary libraries featuring hand-tuned machine code
becoming the standard. A reliance on emulation-based func-
tional execution of the well-documented virtual ISA PTX
made supporting new applications time-consuming at best and
impossible at worst. The latter resulted from the fact that
many of the most important kernels in machine learning were
starting to be written in NVIDIA’s sparingly documented,
machine ISA known as SASS. From a hardware perspective,
ten years of core and memory system development from Fermi
to Volta needed to be understood and modeled to produce a
credible baseline architecture.

The paper started as an update effort to address the issues
in GPGPU-Sim’s performance model. In 2018, Rogers’ group
worked on two papers quantifying and analyzing the virtual
ISA and older performance model’s effect on correlation and
research ideas [O18, O22]. In retrospect, demonstrating and
analyzing the problem proved much easier than fixing it. A
sizable reverse-engineering and modeling effort pitched in a
paper as an update to GPGPU-Sim was rejected by confer-
ences four times in various stages of development, posted on
arXiv in 2018, and accepted as a poster in ISPASS 2019 [1].
It became clear during this process that the modeling effort
alone was unlikely to have the exposure and impact we hoped
for. However, these intermediate versions of the paper and
reviewer feedback throughout the process helped improve the
quality of what ultimately ended up in Accel-Sim and forced
us to focus on the most important factors where the tool would
have a long-term impact: ease of supporting new programs and
architectures, backed by credible validation.

II. INPUT FROM INDUSTRY AND TRACE-BASED
SIMULATION

More reliably supporting an ever-evolving SASS hardware
ISA was an important aspect of the paper that has allowed it
to have a sustained impact. Support for SASS had a relatively
long history in GPGPU-Sim, dating back to a multi-year
development from Tor’s group in the early 2010s that produced
a functional model for the G80 machine ISA (SM 1.x),
released as PTXPlus. Rogers’ group spent additional time later
in the decade, updating the PTXPlus model to support Pascal
(SM 6.x), which was ultimately never finished nor released. A
joint effort between Purdue, UBC, and Matt Sinclair’s group at
Wisconsin attempted to side-step the machine ISA problem for
workloads with SASS-only kernels like cuDNN, by identifying
equivalent PTX kernels from massive library binaries [O31].

1



These monumental efforts made it apparent that supporting
a functional model of the machine ISA was unsustainable
and began conversations around a workable alternative, which
ended up being trace-based.

Although not a new idea, both generally and in the context
of GPUs (a never-released, early version of GPGPU-Sim,
predating the development of the CUDA-based PTX functional
model, performed trace-based simulation), simulating machine
ISA traces accomplished four things: (1) new instructions and
architectures did not require a new functional implementation
effort, (2) closed-source programs that only contained SASS
code could be seamlessly simulated, (3) modeling errors
introduced by the high abstraction level of the virtual ISA were
eliminated, and (4) the simulator’s speed was significantly
increased by not emulating the work of tens of thousands of
concurrent threads every cycle. However, there were practical
roadblocks to developing a trace-based frontend. In particular,
contemporary GPUs lacked the dynamic binary instrumenta-
tion needed to trace applications at scale. During our modeling
effort, we began conversations with Steve Keckler and David
Nellans at NVIDIA research about the possibility of NVIDIA
developing and releasing such a tool, which ultimately took
the form of NVBit [O70]. It is probably safe to say that
without NVBit, there would be no Accel-Sim. Developing a
binary instrumentation tool ourselves was intractable without
access to internal information. Likewise, because NVIDIA has
access to internal information, they could have never published
something like Accel-Sim. In retrospect, we believe Accel-Sim
is a good example of industry taking the ball as far as it can
reasonably go, empowering academia to create something that
industry would never be allowed to release or publish.

III. ARCHITECTURAL MODELING EFFORT

In addition to the frontend changes that make the framework
faster and more adaptable, there was also a significant mod-
eling effort to reverse engineer and implement changes to the
timing model that reflected contemporary microarchitecture.
Some of these changes were obvious from white papers and
other public information, while others needed extensive mi-
crobenchmarking to understand what had changed. Although
they were challenging to publish independently, these careful
modeling efforts were still a key contribution of the Accel-Sim
paper, which included updates to GPGPU-Sim’s performance
model, and took significant effort to implement. When drawing
the line between GPGPU-Sim and Accel-Sim, we decided to
keep GPGPU-Sim what it always has been: a detailed GPU
performance model based on functional PTX execution. The
paper’s changes to GPGPU-Sim updated the model and made
the code amenable to operating as a component of the Accel-
Sim framework.

To help make it easier to adapt to variants on known
parameters, a streamlined tuner was introduced to evaluate the
space of unknowns. The tuner makes configuring the existing
knobs of the simulator easier. Still, if you need a new knob (as
is often the case when significant changes are made), nothing
can replace the development effort needed for a completely

new or significantly different machine feature. We argue that
Accel-Sim makes it easier to focus on this important task.

IV. EXTENSIBILITY AND VALIDATION

One of the key claims of the paper is that the framework
makes it much easier to model and validate new baselines
as the state of the industry evolves. With a few years of
perspective, we have been able to see how well this can be
put into practice. Since the official code release of Accel-Sim
in the Summer of 2020, two major generations of NVIDIA
compute-focused GPUs were released, Ampere and Hopper.
Once we got access to the hardware (a difficult task given
the current market), we were able to model Ampere with
reasonable accuracy with just two weeks of engineering effort.

V. CONTINUING LEGACY AND CHALLENGES

Three years after the publication and release of Accel-
Sim, we can start taking stock of its impact and evaluate
its effectiveness. Accel-Sim has received significant adoption
from the GPU architecture community and opened new mi-
croarchitecture, and memory systems research directions for
the most important contemporary workloads. Despite a rapidly
changing hardware and software landscape, the validation
and extensibility elements of Accel-Sim have enabled it to
adapt and live on. The infrastructure continues to evolve with
ongoing efforts from the groups at Purdue, UBC, and others.
However, as with any large piece of infrastructure, supporting
its continued development has challenges.

The tremendous implementation effort led by Mahmoud and
supported by Zhesheng represented a significant portion of
their respective Ph.D. and Masters degrees. As both former
students have moved on to positions in industry (Mahmoud
at AMD Research and Zhesheng at Intel), their ability to
contribute to an open-source GPU simulator has limits. As
with many academic tools, the continued success of Accel-
Sim, and its associated impact on the community, depends on
new groups of students and researchers who will never get
credit for the original paper.

For Tor and Tim, who are still in their academic positions
at UBC and Purdue (Tim was granted tenure in 2022), find-
ing an appropriate way to credit the highly impactful work
of maintaining and modernizing useful tools is an ongoing
challenge. However, we believe that tooling efforts are a great
way for graduate students to learn how things work, make
a meaningful contribution to the community, and can help
generate new and interesting research problems. Infrastructure
work is hard and risky, but Accel-Sim, GPGPU-Sim, and other
academic projects have proven the impact can be well worth
it in the end.

REFERENCES

[1] M. Khairy, A. Jain, T. M. Aamodt, and T. G. Rogers, “A detailed model
for contemporary gpu memory systems,” in 2019 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS),
2019, pp. 141–142.

2


