RETROSPECTIVE: Design Tradeoffs for the Alpha
EV8 Conditional Branch Predictor

André Seznec! Stephen Felix?

Untel 2Graphcore

I. CONTEXT

This paper was published at ISCA 2002 a year after the
cancellation of the Compaq Alpha EV8 microprocessor project
in its late phase of development. It is very likely that without
this cancellation, the details of the branch predictor would not
have been made public.

The main design decisions that lead to the detailed EV8
branch predictor were made during the summer of 1999.
During that period, André Seznec was spending a one-year
mid-career sabbatical year at Compaq, Stephen Felix was a
senior design engineer at Compaq, Venkata Krishnan had re-
cently joined Compagq after completing his PhD and Yiannakis
Sazeides was spending a few months in industry before joining
academy. Prior to joining Compaq, André Seznec had just
published an Inria research report [019]' which served as the
base of the EV8 branch predictor.

The ambition of the EV8 project was the design of the most
performant processor of its generation. The EV8 processor
was an 8-issue out-of-order simultaneous-multithreaded pro-
cessor featuring a very deep pipeline. Therefore, the EV8’s
performance was highly dependent on the accuracy and the
throughput of the overall instruction fetch mechanism. As a
result, a significant silicon area was invested in the processor’s
front-end (referred to internally in Compaq as IBox). The
EV8’s front-end featured an indirect jump predictor, to the best
of our knowledge EV8 was the first processor featuring such
a type of predictor. Very importantly, the conditional branch
predictor had being allocated a very large area budget to allow
state-of-the art prediction accuracy and prediction throughput.

II. THE ALPHA EV8 FRONT-END

The Alpha EV8 instruction fetch was very aggressive, even
when considering the state-of-the-art 20 years later. EV8 was
capable of fetching up to two consecutive 8-instruction blocks
per cycle: an instruction block ended either at the end of
an aligned 8-instruction block or on a taken branch. Not
taken conditional branches were not terminating the instruction
blocks. Consequently, up to 16 conditional branches have to
be predicted per cycle, with a maximum of two being taken.

Predicting 16 conditional branches with a high accuracy is
quite challenging, even when only a maximum of two of them
can be taken. One possible solution to this problem, is to use
a line predictor [O1] consisting of three direct mapped tables

110..] will refer to the bibliography in the original paper

Venkata Krishnan!

Yiannakis Sazeides®

3University of Cyprus

answering in a single cycle and predicting the addresses of the
next two fetch blocks. The accuracy of such a line predictor
is relatively poor. But this first prediction can be overridden
by a complex PC-address-generation unit that provides in the
next cycles: conditional branch prediction, return and jump
prediction and branch target computation. In the Alpha EVS,
the overriding prediction was completed in two cycles. In some
current generation processors, overriding may happen 3 cycles
or even later in the pipeline.

Therefore, the EV8 conditional branch predictor is deliver-
ing its predictions in two cycles. This enabled to use quite large
(direct mapped) tables containing 2-bit counters and indexed
with complex hashed index, but could not afford other complex
logic (e.g., for updating local branch history).

III. THE "ACADEMIC” PREDICTION SCHEME

Using local branch history to predict up to 16 branch
outcomes per cycle is more than challenging. Therefore, the
EV8 conditional branch predictor only used global branch/path
history components. The EV8 conditional branch predictor
was directly derived from the “academic” 2bcgskew [O19],
but was adapted to the various constraints of the real hardware
design.

2bcgskew is a global history branch predictor featuring
four direct-mapped tables of 2-bit counters (see Fig. 2 in
the original paper). It is a hybrid predictor featuring a meta-
predictor that chooses between two predictions: one from an
e-gskew predictor [O15] and another from a bimodal predictor
[O21]. The bimodal table serves as one of the predictor
sources by itself as well as one of the components used for
e—gskew prediction. With the help of a well-engineered partial
update policy (i.e., not updating always but only when specific
conditions are met), 2bcgskew was achieving state-of-the-art
prediction at the time of its publication.

IV. ENGINEERING FOR REAL HARDWARE CONSTRAINTS

a) Branch history: Academic studies generally use
global branch history, i.e., each conditional branch inserts a bit
in the global history, or path history, i.e., the history is updated
by each conditional branch. On the Alpha EVS, 0 to 16
branches can be predicted in a single cycle. Such global branch
history scheme is not realistically implementable, since it
requires too complex circuitry for inserting a variable number
(0 to 16 bits) on each history vector update. To overcome this
complexity, we used a combination of branch and path history,

referred to as Ighist. More specifically, we XORed only the
direction of the last branch in the instruction block (first or
second half) with a bit of its PC. Thus, at most a single bit is
inserted per instruction block in Ighist. Using lghist instead of
full branch history was not found to result in any significant
accuracy loss. It also resulted in the use of shorter length
history registers than when using the conventional global
branch history.

b) Three fetch block old history : The conventional way
for predicting a conditional branch is to use the address and
direction of the branch in the current block A to compute the
address of the next block B. However, with a branch predictor
answering in a 2-cycle interval, and fetching two blocks per
cycle, the tables of the branch predictor are indexed with three-
block ahead information, i.e. address A and history up to A are
used to index the tables of the predictor to predict branches in
block D. Using a 3-block Ighist sometimes results in a slight
accuracy loss. To recover this accuracy loss, we exploit the
fact that each instruction block features up to 8 branches, so
the predictor reads 8 contiguous entries from each table. At
the end of the prediction a 8-to-8 permutation is performed
on these entries, the permutation is controlled by 3 bits; one
address bits for each of the 3 intermediate blocks (B, C and
D). This allows recovering the accuracy loss due to the use of
3-block old Ighist.

c) Conflict-free banked structure: The branch predictor is
build with single-ported SRAM. Parallel access to contiguous
predictions for a block is quite straightforward. Predicting two
blocks in parallel would normally require two-ported SRAM
(inducing much higher silicon area, longer access time, higher
energy dissipation, ..) or would result in a loss of bandwidth.
We have banked the predictor and we have developed a
conflict-free access scheme guaranteeing by construction that
any two successive fetch blocks will access two different banks
in the branch predictor (see Section 6 of original paper).

d) Optimizing storage budgets: Although the EVS8 pre-
dictor is using 2 bit-counters, on a correct prediction only
the low order bit is updated. Consequently, each predictor
table consisted of two physical tables, one for the high-order
bit (prediction) and one for the low-order bit (hysteresis). As
these tables are physically distinct, we optimized the design
for different sizes for hysteresis and prediction tables. Finally,
the accuracy obtained with a storage optimized 352 Kbits EV8
predictor stands the comparison with an “academic” 512Kbits
2bcgskew.

V. WHAT IS THE HERITAGE IN 2023

An unfortunate development, the EV8 project cancellation
enabled the publication of the EV8’s predictor organization
in great detail. This design remains the most accomplished
design for the first generation branch predictors that are based
on global branch history and 2-bit counters for prediction
(prediction+hysteresis).

The paper illustrated the successful transfer from an aca-
demic concept to a practical design in industry. The starting
point of the effort was an academic design that we were able

to adapt to constraints that had not been originally anticipated.
Moreover, the EV8 predictor was the first one to demonstrate
that medium long branch history in the 30-bit range had to
be considered to achieve high conditional branch prediction
accuracy. This set the stage for the next generation predictors
that rely on longer global history. Perceptron-based predictors
[1], [2] and TAGE-like predictors [3] have been introduced a
few years later.

Academic predictors, including 2bcgkew, based on meta-
predictions and 2-bit counters, did not remain competitive in
terms of prediction accuracy: at equal storage budgets, the
EVS8 predictor exhibits nearly twice the misprediction rate of
a state of the art TAGE predictor.

Predictors of both new families are able to exploit very long
histories, in the 100’s of branches range, are much more re-
silient to aliasing than the EV8 predictor. However, for nearly
a decade, these predictors were considered as unrealistic by
the academic community because of their very long prediction
latency. At the same time the industry was working at their
adaptation to practical constraints. Nowadays, high—end cores
implement TAGE or perceptron inspired predictors.

This clearly supports that microarchitectural research, under
review for publication, should be judged (may be even with
more weight) for its conceptual contribution rather on how
well it is engineered.

REFERENCES

[1] D. Jiménez and C. Lin, “Dynamic branch prediction with perceptrons,”
in Proceedings of the Seventh International Symposium on High Perform
ance Computer Architecture, 2001.

[2] A. Seznec, “Analysis of the o-geometric history length branch predictor,”
vol. 33, 07 2005, pp. 394 405.

[3] A.Seznec and P. Michaud, “A case for (partially) tagged geometric history
length branch prediction,” Journal of Instruction Level Parallelism, vol. 8,
pp. 1-23, 2006.

