
RETROSPECTIVE:
General-Purpose Code Acceleration with
Limited-Precision Analog Computation

Renée St. Amant Amir Yazdanbakhsh§ Jongse Parkº Hadi Esmaeilzadeh*
Arjang Hassibi** Luis Ceze† Doug Burger‡

§Google DeepMind ºKAIST *University of California San Diego
**Siomyx †University of Washington ‡Microsoft

renee.st.amant@gmail.com ayazdan@google.com jongse@kaist.ac.kr hadi@ucsd.edu
arjang.hassibi@gmail.com luisceze@cs.washington.edu dburger@microsoft.com

When this paper was published in 2014, a large amount of
research was focusing on specialization as a means to deliver
energy efficiency. In this piece of work, we were searching
for an alternative path to deliver significant efficiency gains
while maintaining generality and applicability across domains.
In order to do this, we relaxed some long-standing assumptions
around exact computation and embraced approximation. A
move towards approximation naturally warranted a revisit of
analog computing, which presents an opportunity for energy
efficiency gains of several orders of magnitude over digital
computing when sufficient parallelization exists, though analog
computing brings along many challenges (e.g. physical range
limitations, non-idealities due to process variation, and noise),
which have historically limited general applicability.

One key insight of this work was identifying a synergy
with neural networks, which allowed for a more fixed-
function, parallel design amenable to an analog implemen-
tation while maintaining generality, as neural networks can
serve as universal function approximators. Ultimately, we
took a neural approach to reconcile the application of analog
circuits to general-purpose computing. Our paper proposed a
limited-precision, analog neural accelerator (A-NPU), leverag-
ing an important compile time technique [18] that transformed
approximation-tolerant, general-purpose code sections to neu-
ral accelerator invocations. To improve accuracy given an
analog implementation, we exposed certain analog hardware
limitations to the compiler, which brought the opportunity to
keep any analog-specific restrictions hidden from the program-
mer.

What strikes us most in reflecting on this piece of work is
how the environment in which this paper was written was so
completely different than today’s environment. In nine years,
so much has changed. In an ideal world, with the passage of
time, we would hopefully gain some clarity on whether the
risks we took against consensus thinking were worthwhile.
We are fortunate in this case to have some, but not complete,
validation in the presence of hindsight.

The interesting part of this work at the time was that it

involved not one calculated risk but multiple risks taken at the
same time that were contrary to the consensus approach. First,
the paper was based heavily on the use of machine learning at
a time when machine learning was not yet widely embraced by
the architecture community. Next, it fell on us to make a case
about the role of approximate computing and limited precision.
And finally, we chose to include analog computing, which
is in equal parts promising and challenging to successfully
implement. As we look back on this paper, we can see that
some of these risks were entirely appropriate to be taken, and,
at least in the case of analog, some of the promise has yet to
be fully realized.

I. MACHINE LEARNING

With respect to the inclusion of machine learning, the
first drafts of the paper included much more ML content
than what ultimately appeared in the published paper. An
interesting, behind-the-scenes fact about this paper is that we
did something that would be unheard of today to increase
the paper’s chance of being published - we removed much
of the detailed machine learning content and the references
to it that the work entailed. In reality, much of the difficult
problem solving centered around making machine learning
modifications in training and inference that were amenable to
an analog implementation, for example, limiting connectivity
in the neural architecture, overcoming limitations in imple-
menting the neural activation functions, as well as developing
quantization strategies for use during training. This research
occurred before the widespread integration of efficient acti-
vation functions, before auto-ML tools existed, and before
modern ML frameworks and libraries were available. Looking
back, everything was much more tedious than it would be
today, and it has been impressive to witness how much work
has been done with machine learning in the last nine years.

While we built upon the potential to use neural networks for
efficient general-purpose computing and took steps to enable
this in the analog domain, today we could go as far as to
say that the computing industry has now solidified a second

1

major class of general-purpose computing. While the first
is precise, mostly deterministic code written in imperative
languages to run on CPUs, the second is neural networks
learning semantic hierarchies and patterns from structured
and unstructured data. Nine years ago, it would have been
premature to call this a second general class of computation,
but not anymore. Regardless, the relevance of ML to the
architecture community is now undeniable and remains a
source of continuing innovation in translating compute cycles
to utility.

II. APPROXIMATE COMPUTING AND LIMITED PRECISION

Another risk that we took involved having to make the
case for approximate computing, including limited precision
computation. We had a vision that approximate computing
could someday be practically adopted in general-purpose
applications. These applications include not only machine
learning-based prediction applications but also other applica-
tions from many different domains (e.g., image processing,
finance, robotics, etc.). We focused on approximate computing
at the application level applied to general-purpose imperative
code, which was, in some ways, the most extreme position
to explore. We took that route because it offered the largest
potential benefit for energy savings across the widest range
of computing applications. At the time, the capabilities of
limited-precision machine learning were largely unexplored,
designs were over provisioned by default, and there was
very little work looking at limited-precision approaches for
regression tasks in particular (as opposed to classification
tasks).

Today, approximation is an essential part of machine learn-
ing acceleration, and limited precision is one key effort. The
use of approximation in cases where some level of imprecision
can be tolerated is now a well-traveled approach to gain energy
efficiency. And, in our opinion, the utility of approximation as
a fruitful design path has also been validated.

III. ANALOG

The last significant risk that we took was the use of analog
computing to maximize gains in energy efficiency. In the pres-
ence of sufficient parallelism and/or efficient analog storage,
the move from digital computation to analog computation
presents an opportunity for gains in energy efficiency on the
order of 100x. Our work in this paper did not fully deliver on
the available gains due to immaturity in analog storage options
and the resulting overheads associated with digital-to-analog
and analog-to-digital conversions, which, unsurprisingly, lim-
ited the gains that we were able to realize at the time by
an order of magnitude. While we have seen investment and
industry efforts in analog implementations of machine learning
hardware, this component is the one that is most likely to be
seen as still playing out and yet to be fully validated.

Although we took a calculated, neural approach to transcend
the analog challenges associated with programmability, pro-
grammability remains an ongoing challenge for the successful

incorporation of analog circuits into general-purpose comput-
ing. In some ways, we are in the same position today as we
were nine years ago with analog. That is, despite its enormous
potential, analog remains hard to pull off and perhaps the jury
is still out on whether a return on investment in this area is
imminent. While progress in this area is moving slower and
all of the necessary pieces haven’t yet fallen into place, we
hope to see this thread eventually realize its full potential.

IV. CONCLUSION

Looking forward, we may find that the capabilities en-
abled by large-scale machine learning models allow a more
aggressive, wholesale application of the techniques in this
paper to general-purpose code at even larger granularities.
Furthermore, efficiency continues to be a huge and growing
imperative. Under our current ML trajectory, we may create
large models exceeding the number of connections in the
human brain, but we are nowhere near the energy efficiency
of the human brain and won’t be without a shift in direction
- possibly towards analog. As such, the goalpost that we
used nine years ago along with the call for questioning
assumptions is still a guiding goalpost today when the primary
concern is energy efficiency. We anticipate decades more of
architecture+algorithmic work ahead. Some of that may move
into the analog domain (where the neocortex already lives) or
it may not due to the process gap and challenges with analog
hardware.

While neural networks can serve as “universal function
approximators,” it’s important to note that a “function” is
not limited to a function call, but rather can refer to a
higher-level problem to be solved. In the digital NPU work
that introduced the idea of a compile-time transformation
from general-purpose, imperative code to a neural accelerator
invocation [18], as well as in our efforts undertaken while
doing the research for this publication, we aimed to make
this “function” as large as possible to maximize the available
potential efficiency gains. Moving forward, we might see
this further expand across the compute stack. As a visual
reference, consider Yale Patt’s classic compute stack image,
which illustrates the stack layers between the topmost layer,
i.e. the problem, and the bottommost layer, i.e. the electrons
moving around to solve it. In the future, we may find that
image being redrawn with ML compressing layers in a way
that introduces more approximation and significantly improves
energy efficiency (hopefully not at the expense of interpretabil-
ity).

Thank you to the ISCA program committee members who
selected this work as representative of how research in com-
puter architecture has progressed over the last 25 years. And
thank you to those researchers who continue to challenge the
architecture community’s long-standing assumptions and con-
sensus approaches. We look forward to seeing how continued
challenges to specific assumptions will shape the field in the
next 25 years.

2

