
TIMING-SAFE HARDWARE-LEVEL
INFORMATION FLOW CONTROL

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Andrew Ferraiuolo

May 2018

c© 2018 Andrew Ferraiuolo

ALL RIGHTS RESERVED

TIMING-SAFE HARDWARE-LEVEL INFORMATION FLOW CONTROL

Andrew Ferraiuolo, Ph.D.

Cornell University 2018

Developing secure processors has become increasingly important. Recent

advancements in commercial security architectures such as Intel SGX have gar-

nered much attention. The promise of these architectures is compelling; be-

cause the root of trust lies in hardware, the system it protects remains secure

even if low-level software such as the operating system is compromised. Un-

fortunately, hardware is itself complex and error-prone – software-exploitable

vulnerabilities in SGX have already been found, and bugs in hardware have a

long history of causing security vulnerabilities. Even if hardware is correct in

the conventional sense that it conforms to a specification, security is not assured.

Processors still leak secrets through microarchitectural timing channels, and vir-

tually every hardware feature that improves performance has been exploited to

leak secrets.

Information flow security is a promising approach for verifying hardware

systems. Information flow tracks and constrains the movement of data through-

out a system ensuring that confidentiality and integrity are not violated. Infor-

mation flow control can be enforced by a type system embedded in a secure

hardware description language (HDL) with which the hardware is described.

With this approach, the HDL includes features for describing security policies.

The type system of the HDL then statically proves at design-time that the secu-

rity policies are always enforced.

This thesis enables future hardware designs to provide strong assurance

through information flow control. This is achieved through two major thrusts of

research: 1) developing a practical, expressive hardware description language

for enforcing information flow control in hardware designs and 2) designing

secure hardware that is suitable for information flow verification. In particu-

lar, this thesis describes a number of contributions to secure HDLs that were

implemented as extensions to a secure HDL called SecVerilog. It also describes

ChiselFlow, a variant of the HDL, Chisel, for information flow security. This

thesis studies the application of secure HDLs to a prototype implementation of

a commercial security architecture, ARM TrustZone. A novel architecture for

information flow security called HyperFlow is presented to improve upon the

shortcomings of TrustZone by providing more general security policies, con-

straining information release, and defending against timing-channel attacks. A

second novel architecture called Timing Compartments extends HyperFlow to

defend against timing-channel attacks in a multicore processor. A novel mem-

ory scheduling algorithm for preventing timing channel attacks in a shared

memory controller is presented to improve performance. Overall, this thesis

demonstrates that HDL-level information flow control is capable of securing

usable and performant hardware designs.

BIOGRAPHICAL SKETCH

Andrew Ferraiuolo received Bachelors of Science degrees in Computer Engi-

neering and Electrical Engineering (Magna Cum Laude) from the University of

Connecticut in 2012. Shortly afterwards, he began the PhD program in the de-

partment of Electrical and Computer Engineering at Cornell University where

he is advised by G. Edward Suh and works closely with Andrew C. Myers. He

has interned with Microsoft Research Labs in Redmond, Washington. His re-

search lies at the intersection of computer security, computer architecture, and

programming languages.

iii

ACKNOWLEDGEMENTS

I would not have been able to complete a PhD or this thesis without the support

of many people. I have been fortunate to have had many allies in both technical

and non-technical capacities during my academic pursuits.

First, I would like to thank my advisor G. Edward Suh, and my special

committee member Andrew C. Myers, whom I have also worked with closely.

Without the guidance, mentorship, and insight of both of them, the research

described in this thesis would not have been possible. It has been an honor,

privilege, and pleasure to have worked with and known both of them. I would

also like to thank my special committee member Zhiru Zhang for his thoughtful

suggestions and feedback on this research.

I would also like to thank the many other PhD students with whom I have

had the pleasure of working with and have contributed significantly to the re-

search in this thesis. First I would like to thank Danfeng Zhang. Danfeng’s work

on SecVerilog has inspired me to work on securing hardware with information

flow control, and I am grateful to have had the opportunity to build upon his re-

search. I am also grateful for his guidance and feedback while obtaining formal

results for extensions to SecVerilog. I would also like to thank Rui (Chris) Xu for

his effort on the TrustZone prototype processor. Yao Wang also contributed to

the work on timing compartments. I would like to thank Weizhe (Will) Hua for

writing the prototype pipeline for the work on mutable dependent information

flow labels. I would like to thank Yuqi (Mark) Zhao for test-driving an early

version of ChiselFlow and helping to label HyperFlow.

I would also like to thank my mentor and collaborators from my internship

at Microsoft Research, Andrew Baumann, Bryan Parno, and Chris Hawblitzel. I

am grateful to have been a part of the Komodo Project.

iv

The Suh Research Group and Computer Systems Lab have both been won-

derful research communities to have been a part of. The many trips with CSL

students for lunch in collegetown have been a pleasure. I would like to thank

Dan Lo for his mentorship as a senior PhD student and friendship. Dan has

been great to bounce ideas off of and provided guidance about how to navigate

the PhD program. I am also grateful for the many hours not-wasted playing

Netrunner with Dan and Jon Tse. I am glad to have been the benefactor of Shree-

sha Srinath’s expansive knowledge of both computer architecture and new-and-

exciting lunch spots. Our many walks for coffee have helped me through the

most difficult moments over the past few years. I have enjoyed many pleasant

and insightful talks about HDLs with Derek Lockhart. Tayyar Rzayev found

a seemingly limitless number of fun things to do from rock climbing to space

music. I am glad to have played many rounds of Dungeons and Dragons and

other board games with Ji Kim, Chris Torng, KK Yu, Dan Lo, Berkin Ilbeyi, Kyle

Wecker, Jon Tse, and Erik Halberg.

I would like to thank the other wonderful friends I have made during my

PhD. It has been a privilege to have met Joshua Barrom, Samuel Kurland, Jen

Keefe, Carlos Higgins, Preslava Staneva, Aaron Gittleman, Carlos Diaz, Joren

Lauwers, and Austin Henley. Knowing each of them has made my journey

much more enjoyable.

Finally, I would like to thank my family that has supported me during my

academic pursuits and life. My sister Amy and mother have always been caring

and encouraging without exception, and for that I am grateful.

v

TABLE OF CONTENTS

Biographical Sketch . iii
Acknowledgements . iv
Table of Contents . vi
List of Tables . ix
List of Figures . x

1 Introduction 1
1.1 Contributions and Outline . 3

2 Hardware Description Language Based Information Flow Security 12
2.1 Fully-statically checked, dynamic security labels 13
2.2 Heterogeneously labeled data structures 19

2.2.1 Bit vector types . 19
2.2.2 Per-element types . 24
2.2.3 Bundle labels . 25

2.3 Non-malleable downgrading . 28
2.4 Formalism and security results for SIRRTL 31

2.4.1 Syntax . 31
2.4.2 Semantics . 33
2.4.3 Type rules . 35

2.5 Security results for core SIRRTL language 37
2.5.1 Security results with heterogeneously labeled arrays and

bit vectors . 45

3 Information Flow Verification of TrustZone 55
3.1 Background: ARM TrustZone . 55
3.2 Prototype implementation . 57
3.3 Representing security requirements as information flow policies . 60
3.4 Uses of downgrading . 63
3.5 Security bug detection . 66
3.6 Evaluation . 70

4 The HyperFlow Processor: General, Hardware-Enforced Information
Flow Policies 72
4.1 Security Policies in HyperFlow . 75

4.1.1 Confidentiality and integrity policies 76
4.1.2 Lattices via bit vectors . 76
4.1.3 Non-malleable downgrading 78

4.2 The HyperFlow Architecture . 80
4.2.1 Process levels . 81
4.2.2 Information-flow call gates 83
4.2.3 Instruction set extensions 85

vi

4.2.4 Semantic changes to existing instructions 89
4.3 HyperFlow Microarchitecture and Labeling 92

4.3.1 Labels in the core and label bypassing 93
4.3.2 Memory protection and labels 94
4.3.3 Cache labels . 97
4.3.4 Timing-channel protection 98
4.3.5 Virtual memory . 100
4.3.6 Atomic memory operations 100

4.4 Evaluation . 101
4.4.1 Processor features . 101
4.4.2 Developer effort . 103
4.4.3 Uses of downgrades . 104
4.4.4 Uses of dynamic checks . 107
4.4.5 RTL synthesis results . 108
4.4.6 CPI Results . 108
4.4.7 Usability . 109

4.5 Discussion . 117

5 Timing Compartments: Timing Channel Protection for a Multi-Core
Processor 123
5.1 Timing compartments . 124

5.1.1 Objective and scope . 124
5.1.2 Architecture model . 125
5.1.3 Threat model and assumptions 126

5.2 Protection mechanisms . 126
5.2.1 Approach . 126
5.2.2 Timing compartment ID . 128
5.2.3 Private resource protection 128
5.2.4 Timing isolation in memory hierarchy 129

5.3 Performance optimizations . 135
5.3.1 Time-slice coordination . 135
5.3.2 Operation-aware dead time 137

5.4 Evaluation . 140
5.4.1 Methodology . 140
5.4.2 Performance overhead . 141

6 Lattice Priority Scheduling for Shared Memory Controllers 149
6.1 Main-Memory Timing Channels 150

6.1.1 System Model . 150
6.1.2 Threat Model . 151
6.1.3 Timing-Channel Attacks in Memory 153
6.1.4 Temporal Partitioning . 153

6.2 Lattice Priority Scheduling . 157
6.2.1 Dynamic Bandwidth Allocation 158

vii

6.2.2 Dynamic Scheduling . 159
6.2.3 Dead Time Elision . 162

6.3 Lattice Security Model . 163
6.4 Memory Protection under the Lattice Model 166

6.4.1 Generalized Dynamic Scheduling 166
6.4.2 Generalized Dead Time Elision 169

6.5 Hardware Implementation . 171
6.6 Evaluation . 173

6.6.1 Methodology . 173
6.6.2 Performance and Scalability 176
6.6.3 Per-Core Performance . 177
6.6.4 Lattice Policies and Performance 179
6.6.5 Scheduling Decision Time 180
6.6.6 Epoch Length . 181
6.6.7 Impact of Last-Level Cache Size 182

7 Related Work 183
7.1 Gate-level information flow tracking 183
7.2 Hardware description languages for information flow control . . 184
7.3 Information-flow secured processors 186
7.4 Programming Language Based Security 191
7.5 Information-flow tracking architectures 195
7.6 Capability-Based Addressing . 196
7.7 Enclave Architectures . 199
7.8 Timing Channels . 201

7.8.1 Timing Channel Attacks . 201
7.8.2 Timing channel defense in hardware 202

8 Concluson 204
8.1 Summary . 204
8.2 Future Directions . 207

8.2.1 Secure HDLs . 207
8.2.2 Secure Hardware . 207
8.2.3 An Operating System for HyperFlow 208

Bibliography 211

viii

LIST OF TABLES

3.1 Core TrustZone policy expressed as information flow constraints
with downgrades. (C) and (I) represent policy for confidentiality
and integrity, respectively. IP (Intellectual Property) is a hard-
ware module. 60

3.2 Downgrading expressions in our prototype. 63
3.3 Programming overhead (lines of code). 71

4.1 New Instructions Added in HyperFlow. 86
4.2 Instruction invariants enforced by HyperFlow. 90
4.3 Uses of Downgrades in HyperFlow. 104
4.4 Performance results . 109

5.1 Summary of timing channels and protection. Green represents
newly identified ones. 129

5.2 Simulation configuration parameters. 141
5.3 Multiprogram workloads. 142

6.1 Simulator configuration parameters. 174
6.2 Multiprogram workloads. 176

ix

LIST OF FIGURES

2.1 SecVerilog code example. 13
2.2 Implicit downgrading example. 15
2.3 PC during mode switches. 17
2.4 A packet concatenation example. 20
2.5 Extended Type Syntax for Arrays and Bit Vectors. 20
2.6 Typing rules for SecVerilog2 expressions. 22
2.7 A cache code segment. 24
2.8 Heterogeneously labeled bundles in ChiselFlow. 26
2.9 Lattice over labels. 30
2.10 SIRRTL core syntax. 32
2.11 Expression semantics. 34
2.12 Command semantics. 35
2.13 Program semantics. 35
2.14 Type Rules: Expressions. 37
2.15 Type Rules: Statements. 38
2.16 Translation from SecVerilog2 expressions to SIRRTL expressions. 47
2.17 Type-directed translation from SecVerilog2 types to SIRRTL types. 48

3.1 TrustZone prototype implementation. 57
3.2 Security lattice for TrustZone. 61
3.3 A flow from control signals to the NS bit due to resource arbitra-

tion. 65
3.4 A detected access control omission. 67
3.5 Bug 9: memory address change bugs. 70

4.1 Confidentiality ordering over bit vectors. 77
4.2 Integrity ordering over bit vectors. 77
4.3 Representing FLAM labels with hypercube labels. 112
4.4 IPC Example. 113
4.5 System call example. 115

5.1 Baseline multi-core architecture. 125
5.2 TC0’s timing observation. 134
5.3 A bad time multiplexing schedule. 135
5.4 A temporal partitioning schedule with three security classes. . . 137
5.5 Performance Overhead of Timing Compartments. 143
5.6 Performance Breakdown (4 cores). 144
5.7 Norm. STP of TCs as the number of TCs increases. 145
5.8 Benefit of allowing 2 programs to share a TC. 147

6.1 System model . 150
6.2 A Conventional DRAM Channel 151
6.3 A temporal partitioning schedule with three security classes. . . 154

x

6.4 System throughput with off-core protection mechanisms nor-
malized to throughput of insecure baseline. 155

6.5 Dynamic bandwidth allocation example. 158
6.6 Lattice priority example. 161
6.7 Dead-Time Elision. 163
6.8 Example lattice policies. 165
6.9 Tree structure for selecting traversals in the lattice priority

scheduling algorithm. 168
6.10 Security policy for performance evaluation. 175
6.11 Normalized STP as core count increases. 177
6.12 Individual core speedup. 178
6.13 STP with two different policies normalized to the STP of the in-

secure baseline. 179
6.14 Performance impact of elision and turn allocation time. 180
6.15 STP normalized to TP as epoch length changes. 181
6.16 STP of lattice scheduling normalized to TP as cache per thread

changes. 182

xi

CHAPTER 1

INTRODUCTION

Hardware plays an important role in ensuring that computing systems are

secure because they provide security mechanisms such as protection rings, vir-

tual memory support, secure boot, and memory encryption. A more recent

trend among hardware vendors is to provide instruction set extensions that

enable a software module to execute on remote, distrusted machines while

approximating the security of executing that same software on a trusted ma-

chine [17, 8]. Security extensions such as these protect the trusted software from

attacks by a malicious or compromised operating system, and provide attesta-

tion to allow the software to prove that its code and data are trustworthy to re-

mote parties. These architectures are compelling because they approximate the

security provided by cryptographic algorithms that are computationally pro-

hibitive such as fully homomorphic encryption.

Unfortunately, microprocessors often contain vulnerabilities that allow

security-critical software to be compromised by untrusted software. Software-

exploitable vulnerabilities in SGX have already been found [62]. Previous stud-

ies found vulnerabilities in implementations of Intel VT-d [98] and system

management mode (SMM) [97]. Moreover, the recent Spectre [42] and Melt-

down [52] vulnerabilities show that even if the hardware is correct in a con-

ventional sense—that it implements a specification—is not sufficient to ensure

security. Exploiting subtle timing channels in Intel microprocessors, Meltdown

can be used to leak arbitrary kernel data. Therefore, it is important for security

to ensure that hardware implementations are free of timing channels.

Constructing hardware with a security-typed hardware description lan-

1

guage (HDL) [51, 50, 110] can provide strong security assurance. Security-typed

HDLs can statically ensure that the hardware prevents insecure information

flows: untrusted signals cannot affect trusted signals, and secret signals cannot

affect public ones.

Security-typed HDLs are also lightweight. The hardware designer anno-

tates the code with labels to describe a security policy that hardware should

enforce, and the type system statically checks that this policy is implemented.

Type checking is fast and takes place at design time. As a result, it has negligible

impact on chip area, run-time performance, and power consumption.

Information flow type systems can offer formal guarantees, commonly non-

interference. If H is a more restrictive information flow label then L, then nonin-

terference prevents all flows from H to L. Noninterference can enforce both

confidentiality policies and integrity policies. Confidentiality policies prevent

flows from secret values to public ones, whereas integrity policies prevent

flows from untrusted values to trusted ones.

Because HDLs give cycle-level descriptions of hardware, HDLs can enforce

a particularly strong variant of noninterference that precludes timing channels.

Noninterference is typically formulated as a set of pairs of traces. If a system

begins executing from states s1, s2 that agree on values labeled L, and execution

from s1 and s2 emits traces t1 and t2 respectively, then the system is noninter-

fering if those traces appear indistinguishable to an adversary that can view

L values. Often, formulations of noninterference model an adversary that is

incapable of timing measurements, for example, by giving a definition of “in-

distinguishable” that permits traces to differ in the number of consecutive states

that agree on L values. These formulations of noninterference are timing insen-

2

sitive because they do not distinguish the timing of events. As a result, timing

insensitive formulations of noninterference do not prevent timing channels. By

contrast, timing sensitive definitions of noninterference defend against timing

channel attacks and model adversaries that can measure timing. Timing insen-

sitive definitions of noninterference are used in most systems for information

flow control because controlling timing channels is difficult. Prior work has

shown that information flow control HDLs can enforce a timing sensitive vari-

ant of noninterference [51, 50, 110].

1.1 Contributions and Outline

This dissertation makes contributions to both secure hardware description lan-

guages and to hardware architectures that defend against timing-channel at-

tacks and can be statically type-checked with a secure hardware description

language.

Chapter 2 gives background information on secure hardware description

languages and then describes the contributions of this dissertation to secure

HDLs. The novel contributions include support for heterogeneously labeled

data structures, purely statically checked dependent labels, controlled down-

grades of information flow policies, label inference, and information flow con-

trol embedded in a higher-level language. Many of these features are imple-

mented as extensions to the previously proposed secure HDL, SecVerilog.

This dissertation also describes a new secure HDL called ChiselFlow. Chi-

selFlow is the first secure HDL to provide label inference. Label inference au-

tomatically deduces the labels of signals internal to a hardware design. As a

3

result, only ports must be labeled explicitly, so the annotation effort required

by the hardware designer is reduced. ChiselFlow is implemented as an exten-

sion to the embedded DSL for hardware design, Chisel. Chisel is embedded in

a higher-level programming language called Scala, granting it much of the ex-

pressive power of Scala. By extension, ChiselFlow is also expressive, and it is

the first information flow control language to support the synthesis of hardware

from a higher-level language.

This dissertation also presents a way to enforce policies described by de-

pendent labels fully statically. Dependent labels are information flow labels that

depend on the runtime values of variables. Dependent labels can be used to

encode run-time properties of a system as information flow policies. They are

especially important for hardware because they are a way to describe hardware

that can be shared at run-time between different security domains. In this way,

dependent labels allow hardware to be partitioned both spatially and tempo-

rally. However, applying dependent labels to temporally partitioned hardware

can introduce subtle vulnerabilities if not handled carefully, because dependent

labels can change at run time. Prior secure HDLs have supported dependent la-

bels by introducing dynamic checks that convert possible violations of security

into possible functional correctness errors [51, 110]. However, dynamic checks

prevent some common and important hardware designs, and necessitate ex-

tensive functional testing to ensure that these dynamic checks have not created

functional errors. The type system presented in this thesis is both expressive

enough to permit practical hardware designs and enforces security statically,

reducing the testing burden. This thesis also provides a formal security result

that shows that the type system with fully statically-enforced dependent labels

and heterogeneously-labeled data structures enforces a timing-safe variant of

4

noninterference.

Languages for information flow control often intend to enforce noninterfer-

ence [74]. However, noninterference is too restrictive for practical systems. In-

formation computed using secrets may eventually need to be released to the

public and untrusted inputs may be permitted to influence trusted state, for ex-

ample, after the inputs have been sanitized. As a result, all practical systems for

information flow control support downgrading which relaxes information flow

policies. Downgrading that relaxes confidentiality policies is said to declassify

whereas downgrading that relaxes integrity is said to endorse. Because down-

grading weakens noninterference, prior work has examined downgrading sys-

tems to limit the extent to which they might cause harm. This thesis applies

prior approaches to controlling downgrades that allow a useful weakening of

noninterference to be proved. In particular, it applies robust declassification [101],

which prevents untrusted parties from influencing declassification. It also ap-

plies transparent endorsement [10] which only allows a party to endorse informa-

tion that it could have read. This thesis is the first to support downgrades in

a secure HDL. There are also few systems built with constrained downgrades,

and by securing a processor with a system that constrains downgrades, this

thesis provides a data point that suggests that robust declassification and trans-

parent endorsement are expressive enough to permit practical systems while

still ensuring security.

Chapter 3 applies the extended version of SecVerilog to statically checking

the information flow security of a prototype implementation of ARM Trust-

Zone. TrustZone is a commercial security architecture that partitions the hard-

ware into two trust domains: the secure world, and the normal world. This

5

study shows that static information flow security is applicable to practical se-

curity architectures. The results in terms of area overhead and programmer

effort suggest that static information flow security is lightweight. Case studies

in which we replicate real-world vulnerabilities found in real processors sug-

gest that static information flow security also catches real hardware bugs. Our

TrustZone-like prototype is also the first information-flow secured processor to

support the simultaneous protection of both confidentiality and integrity. Prior

information flow secured processors [87, 85, 86, 51, 50, 110] provide two hierar-

chical security domains. As a result, they can protect just one of confidentiality

or integrity. The TrustZone-like prototype provides a confidential and trusted

domain that is incomparable with a public and untrusted domain. However,

because the threat model of TrustZone does not consider timing channels, our

prototype implementation does not defend against timing attacks. The pro-

totype also relies on unconstrained downgrades to permit communication be-

tween worlds.

Chapter 4 presents a novel, secure hardware architecture for information

flow security called HyperFlow. HyperFlow generalizes conventional, purely

hierarchical notions of privilege with lattice model information flow policies,

and it provides memory protection through tags that also represent information

flow policies. Enforcing lattice model policies in hardware has a number of

advantages.

Providing security with physically tagged memory pages both reduces the

software trusted computing base and makes the implementation of HyperFlow

more amenable to static checking with an information-flow-secure HDL. Vir-

tual memory does not in general enforce noninterference because virtual pages

6

in the address spaces of mutually distrusting processes can be mapped to the

same physical page. Further, because the page tables are software-defined, the

security of a particular system configuration cannot be determined purely by

inspecting the hardware implementation.

Because the memory tags in HyperFlow are information flow labels, they are

capable of expressing rich application security policies. Prior work on operat-

ing systems [24, 14, 104] and programming languages [66] for information flow

control suggest that applications require complex security policies that support

communication among mutually distrusting principals. For example, it is often

necessary for an actor, Alice, to send a piece of information to another actor,

Bob, that Alice does not trust. Alice might need Bob to perform some com-

putation on her data, but Alice does not want Bob to be able to send her data

elsewhere. Prior work on decentralized information flow control (DIFC) is ca-

pable of enforcing security policies of this form. Exposing DIFC application

security policies to the hardware simultaneously supports more precise separa-

tion of privilege and provides potential performance benefits to the operating

system because it can reduce the number of privilege changes.

In order to support incremental adoption of protection using information

flow labels, HyperFlow provides a hybrid protection model in which both

conventional virtualization-based protection and protection with information

flow labels are supported simultaneously. By supporting both memory pro-

tection models, HyperFlow supports systems in which some applications and

libraries are modified to take advantage of protection with information flow la-

bels, whereas unmodified legacy applications can still rely on virtual memory.

By providing both defense mechanisms, HyperFlow also supports the use of

7

virtual memory for reasons other than security. For example, virtual memory

provides a simple mechanism to relocate programs in memory.

HyperFlow improves upon processors which have been information-flow-

secured by supporting communication across security domains in memory for

IPC and through registers for system calls and function libraries. Such commu-

nication is enabled securely through the ISA which includes constrained down-

grading instructions. Downgrading instructions only permit robust and trans-

parent downgrading. By ensuring that downgrades are robust and transparent,

HyperFlow can enforce DIFC policies.

HyperFlow also permits control transfers across security domains which is

necessary for system calls and function libraries. Such control transfers are sup-

ported through a control gate mechanism [76, 96]. Control gates in HyperFlow

tightly couple an entry point (pc value) with an information flow label that de-

notes the privilege of the code at that entry point.

Chapter 5 presents the Timing Compartments architecture. Timing Com-

partments provide timing channel protection among distrusting domains that

share hardware resources in a multicore processor. By relying on simple pro-

tection mechanisms such as spatial and temporal partitioning, timing compart-

ments provide strict noninterference, and are amenable to static checking with

an information flow type system. Performance evaluations in a simulation en-

vironment suggest that straightforward temporal and spatial isolation incurs

moderate performance overhead. We propose two optimizations that improve

the performance compared to straightforward partitioning. We also identify

that memory controller timing channel protection is the performance bottle-

neck.

8

Chapter 6 presents lattice priority scheduling which improves upon timing

channel protection for memory controllers even further by taking advantage of

memory transactions that are governed by lattice model security policies such

as those in the HyperFlow architecture. Our observation is that prior memory

controller protection techniques assume that all security domains are mutually

distrusting. However, in practice, systems for information flow control have

more complex trust relationships. In some cases it is possible for one transaction

to delay another without violating the security policy. By more precisely enforc-

ing these trust relationships, lattice priority scheduling both improves the total

available memory bandwidth, and can more readily respond to the run-time

behavior of applications to improve performance.

Overall, this thesis demonstrates that HDL-level information flow control

is a practical approach to ensuring that hardware implementations are secure.

Through the design and implementation of architectures for information flow

security, this thesis also shows how to construct hardware that provides strong

assurance and eliminates timing channels while still providing good perfor-

mance. The contributions of this dissertation to HDLs for information flow

security include:

• Support for heterogeneously-labeled data structures including arrays, bit

vectors, and records.

• The first type system that supports dynamic information flow labels that

are checked fully-statically at design time

• The first hardware description language with downgrades. In addition,

downgrades are constrained so that declassification is robust [101] and

endorsement is transparent [10]. Recent work has shown that a software

9

language which constrains downgrades to be robust and transparent can

enforce a weakening of noninterference called non-malleable information

flow control (NMIFC) [10].

• The first hardware design language for information flow control to sup-

port label inference.

The contributions of this dissertation to the design of secure hardware include:

• The TrustZone-like prototype is the first information-flow secured pro-

cessor to protect both confidentiality and integrity simultaneously. By

replicating security vulnerabilities found in real processors, we show that

HDLs for information flow security can prevent real attacks.

• HyperFlow is the first hardware architecture to generalize memory protec-

tion and privilege in hardware to general, lattice-model information flow

labels. HyperFlow is also the first information-flow secured processor

to support communication through downgrades that are initiated by un-

trusted and public applications. Such communication is necessary to sup-

port IPC and system calls. HyperFlow also includes more performance-

enhancing features than prior information flow secured processors. The

inclusion of these features is interesting because conventional, insecure

implementations of them would have timing channels.

• Timing Compartments is the first hardware architecture that prevents tim-

ing channels among concurrently executing processes that share the hard-

ware in a multicore. Timing Compartments also proposes several perfor-

mance optimizations.

• Lattice Priority Scheduling improves upon the performance of a memory

controller for timing channel protection. LPS is the first timing-channel

10

free memory scheduling algorithm to enforce lattice model security poli-

cies precisely.

The work presented in Chapter 2 is adapted from [29] and [26]. The work

in Chapter 3 is adapted from [29]. HyperFlow, presented in Chapter 4, is joint

work with Yuqi Zhao, Andrew C. Myers, and G. Edward Suh. Chapter 5 is

adapted from [27], and Chapter 6 is adapted from [28].

11

CHAPTER 2

HARDWARE DESCRIPTION LANGUAGE BASED INFORMATION FLOW

SECURITY

Implementing hardware with security-typed hardware description languages

(HDLs) is a promising approach to ensuring the hardware is secure. HDL-level

information flow control applies techniques from language-based security [74]

to hardware design [110, 50, 51, 26]. Variables in the code that describe the

hardware design are annotated with security labels, L, which are types that

describe restrictions on where information contained in that signal can flow.

The type system then enforces these restrictions. This thesis improves upon

the expressiveness of HDLs for information flow control while ensuring that

security is preserved.

Type systems for information flow security can enforce noninterference [33],

which ensures that a signal with a label L can only be influenced by signals with

labels that are less restrictive than L. For example, if the label public is less

restrictive than the label secret, then a secret signal cannot influence a public

signal. This describes a policy that governs confidentiality because it prevents

secrets from being leaked to the public. Dually, type systems for information

flow control can enforce integrity policies by preventing untrusted signals from

influencing trusted signals.

HDLs for information flow security can enforce a particularly strong, timing-

safe variation of noninterference [110]. HDLs describe hardware at the register

transfer level (RTL) – the code describes new valuations of signals during each

clock cycle. Because HDLs give cycle-level descriptions of hardware, the infor-

mation flow type system can guarantee cycle-level timing-channel freedom.

12

1 reg [31:0] {T} creg, [31:0] {U} untr, [31:0] {T} trst;

2 ...

3 creg <= untr; // not allowed

4 creg <= trst; // allowed

5 ...

6 reg {T} mode;

7 // mode_to_lb(0) = T, mode_to_lb(1) = U

8 reg [31:0] {mode_to_lb(mode)} gpr;

9 ...

10 if (mode == 1’b0) creg <= gpr;

11 ...

Figure 2.1: SecVerilog code example.

Much of the work in this chapter describes work that was implemented as

extensions to SecVerilog, a variant of Verilog for information flow security. Ver-

ilog is a widely used language for hardware design. This thesis also develops a

new variant of Chisel for information flow control called ChiselFlow. Chisel is

an HDL embedded in Scala. ChiselFlow extends Chisel [4], an HDL embedded

in Scala. An advantage of the ChiselFlow implementation is that it gains much

of the expressiveness of Scala. Chisel emits a simpler, compiled intermediate

representation called FIRRTL, which can then be used to produce hardware de-

signs. ChiselFlow emits Secure Intermediate Representation for RTL (SIRRTL),

which extends FIRRTL. The enforcement mechanisms of ChiselFlow operate en-

tirely on SIRRTL. Many of the same techniques are applicable to both languages.

As a result, this thesis discusses these language features using examples from

both ChiselFlow, and an improved version of SecVerilog that this thesis refers

to as SecVerilog2.

2.1 Fully-statically checked, dynamic security labels

Many practical hardware designs cannot be implemented efficiently with

purely static labels. Labeling a component T means it can only be used ex-

13

clusively by one security level. If the same functionality were needed for an-

other security level, the hardware module would have to be duplicated. To

design efficient hardware, it is essential that hardware resources can be shared

among multiple security levels over time. In SecVerilog [110], sharing is per-

mitted through dependent types that express functions of free variables in the

description of the hardware module, such as the label of gpr on line 10. This

label, mode_to_lb(mode), is a function of the signal mode; the label is T when

the mode bit is 0 and U otherwise. Even though the label of gpr depends on the

run-time value of mode, the assignment on line 10 can still be type-checked stat-

ically using a static program analysis. Because the assignment happens under a

branch in which mode is 0, the program analysis can infer that the label of gpr is

mode_to_lb(0) = T in this context.

Unfortunately, dependent types introduce subtle security vulnerabilities

when the variables on which they depend can change. Figure 2.2 illustrates this

problem. The signal shared has dependent label mode_to_lb(v), v is trusted,

and trst and untr are labeled in the same way as before. This code is clearly

insecure; on line 5, an untrusted value is stored in the shared register and this

untrusted value is directly copied into the trusted variable on line 6. These lines

can be executed in sequence over two clock cycles. This type of leakage through

changes in dependent types is known as implicit downgrading [110]. In informa-

tion flow control, secret information may be explicitly downgraded, i.e., released

to the public, when the designer deems this release necessary and secure [75].

However, when downgrading is implicit, it represents a potential security vul-

nerability that the designer is unaware of.

Prior hardware languages for information flow control that support depen-

14

1 // mode_to_lb(0) = T, mode_to_lb(1) = U

2 reg {T} v, {T} trst, {U} untr;

3 reg {mode_to_lb(v)} shared;

4 ...

5 if (v == 1’b1) shared <= untrusted;

6 else trusted <= shared;

7 ...

Figure 2.2: Implicit downgrading example.

dent types prevent implicit downgrading through dynamic code transforma-

tions [50, 110] that convert harmful downgrades of this form into possible func-

tional errors. The code transformations used by SecVerilog are called dynamic

clearing [110] — in this approach, the compiler inserts logic to clear dependently

labeled registers whenever the labels of these registers are changed [109]. Dy-

namic clearing has severe practical limitations. It can cause hard-to-detect func-

tional errors because it adds extra logic in the background that is not specified

in the code. The added clearing logic causes the simulations and synthesized

hardware to differ from what the designer would expect.

Dynamic clearing also makes it impossible to describe many hardware de-

signs. We illustrate these limitations by describing the complications that dy-

namic clearing causes for the design of a widely-used processor feature — a

privileged kernel mode and a user mode. Naturally, the labels for many proces-

sor resources will depend on the control register that indicates the current mode.

General purpose registers (GPRs) should have labels that depend on the mode,

since the trustworthiness of their contents depends on the mode that wrote them

last. The program counter (pc) will also have a label that depends on the mode.

Pipeline registers should have the same mode-dependent labels to reflect the

privilege level of in-flight instructions. When the mode switches from user (U)

to privileged (T), all of these registers would be dynamically cleared—whether

the hardware designer wants this behavior or not.

15

Dynamic clearing prevents legitimate communication between security lev-

els. For example, a system call instruction in the above processor example will

trigger a label change from U (user) to T (privileged). Typically, some of the GPRs

are used to pass information such as a system call number or arguments from

the user mode to the privileged supervisor mode. Automatically clearing the

GPRs during this mode switch breaks the functionality of system calls. Instead,

the secure design language should allow the designer to explicitly downgrade

the label of a register in certain cases so that its value can be preserved on a

label change.

Here, and in other cases, dynamic clearing damages integrity. If the pipeline

registers were automatically cleared on a mode change, in-flight instructions

would likely be converted erroneously into NOPs. More generally, dynamic

clearing can remove secrets and protect confidentiality, but when a trusted reg-

ister is expected to contain a specific value, replacing it with a zero violates

integrity. Ideally, the security type system must be precise enough so that it

only requires explicit handling of label changes only if necessary for security.

Dynamic clearing conservatively erases data on any label change. For example,

a label switch from T to U on a return from a system call is not a concern for

integrity; restoring a PC value from a saved one (in the epc register in MIPS)

should not require explicit downgrading.

The type system described here is expressive enough to describe all of

the above hardware while securely avoiding the implicit downgrading proble.

Communication among security levels in the GPRs is permitted by explicit

downgrading. The type system precisely tracks the direction of label changes

allowing our design to load a trusted value into the pc on entry to the kernel,

16

1 wire com {T} mode_switch;

2 assign mode_switch = decode_out[4];

3

4 reg seq {U} epc;

5 reg seq {T} mode;

6 reg seq {mode_to_lb(mode)} pc;

7 // mode_to_lb(0) = T, mode_to_lb(1) = U

8 always@(seq) begin

9 if (rst) pc <= 16’b0;

10 else if (mode_switch && (next mode == 1’b0))

11 pc <= ‘SYSCALL_PC_VAL; //switch to kernel mode

12 else if (mode_switch)

13 pc <= epc; //return to user mode

14 ...

15 end

Figure 2.3: PC during mode switches.

and restore a saved pc on re-entry to userspace. The new type system permits

design choices. For example, we can think of two correct implementations of

mode switching: 1) pipeline the labels along with the regular pipeline registers,

and 2) stall the pipeline until all in-flight instructions are drained. Our type

system supports both designs.

Our type system securely supports changes in dependent labels 1) by mak-

ing the propagation of signals on clock edges explicit in the syntax, semantics,

and type system, 2) by introducing a syntax for testing labels for the next clock

cycle, and 3) by using the type system to statically establish that registers are se-

curely updated along with their labels. Figure 2.3 shows code for a PC register

that securely handles mode changes in the concrete syntax of SecVerilog2.

Notably, only sequential logic can be implicitly downgraded through label

changes since combinational logic is not stateful [110]. For this reason, combi-

national and sequential logic are separated in the language. In SecVerilog2, se-

quential and combinational variables are explicitly separated through type an-

notations com (on line 1) and seq (on lines 4–6). Sequential and combinational

signals are type-checked differently. For example, an assignment to a trusted

17

combinational signal such as mode_switch defined on line 2 is secure as long as

the value that is assigned is also trusted.

However, sequential signals (registers) such as pc, are type-checked in a dif-

ferent way. The values assigned to registers must be type-checked based on the

new label of the register for the next clock cycle. This ensures that the new label of

the register accurately reflects the security level of its contents. As an example,

for the assignment on line 11 to type-check, the type system must prove that the

label of ‘SYSCALL_PC_VAL is permitted to flow into the new label of pc, which

is dependent upon the value of mode in the next clock cycle. In the example, the

label can be statically determined to be mode_to_lb(0) (T) as we explain in the

following paragraph.

SecVerilog2 supports a new operator, next, which when applied to a vari-

able, gives the value it will take during the next cycle. For example, it is applied

to mode on line 10, where it evaluates to the value of mode during the next cycle.

The branch on line 10 is taken when there is a mode switch and the next-cycle

value of mode is 0, indicating a switch to kernel mode. The type system can thus

infer that on line 11, the label of pc during the next cycle is T, and the assign-

ment is safe as long as ‘SYSCALL_PC_VAL is trusted. On line 13, the branch was

not taken, so the next-cycle label of pc must be U, and the assignment is safe.

When the next operator is applied to registers (declared seq), the next-cycle

value is available from the combinational input to the register. The next opera-

tor is useful both for implementing necessary access controls and assisting the

type system.

Since type checking depends on whether variables are sequential or combi-

national, the syntax and semantics of SecVerilog2 ensure that the com/seq labels

18

are accurate (i.e., that variables labeled com are not sequential). In SecVerilog2,

the clock signal is implicit, and sequential logic is written by describing its com-

binational input, as is done on lines 8–15. In the semantics, the statements de-

scribing sequential logic are treated as the combinational input to a register.

Restrictions are then placed on combinational wires which ensure that they are

in fact combinational: 1) there are no combinational loops, and 2) there are no

inferred latches. A hardware module contains a combinational loop when there

is a cycle in the logic that defines a wire, and the cycle does not include a regis-

ter. A module includes an inferred latch when there is a condition under which

a new value for a combinational signal is not defined.

In ChiselFlow, differentiating between sequential and combinational vari-

ables is straightforward. In ChiselFlow, clock signals are implicit, and assign-

ments to variables that are declared as registers describe the logic at the input to

the register that is latched-in on each clock cycle. The FIRRTL compiler prevents

wires from describing combinational loops or inferred latches.

2.2 Heterogeneously labeled data structures

2.2.1 Bit vector types

Hardware designs often use sequences of bits to describe data structures. For

example, one might construct a packet as a collection of bits describing data,

an address, and possibly other metadata. SecVerilog reasons imprecisely about

individual fields of a packet, since the whole packet must share a single label.

Information about the labels of individual wires is lost once they are grouped.

19

1 wire [0:31] {world(ns)} data;

2 wire [32:41] {PT} addr;

3 wire {PT} ns;

4 wire [0:42] {i -> if (i <= 31) world(ns) PT} packet;

5 assign packet = {ns, addr, data};

Figure 2.4: A packet concatenation example.

Kinds k ::= ` | int⇀ k

Types τ ::= ` | τ1 t τ2 | τ1 t τ2 | x 7→ τ | fx
| if eτ τt τf | case eττ1 . . . τn

Figure 2.5: Extended Type Syntax for Arrays and Bit Vectors.

Figure 2.4 shows an example that creates a packet by concatenating data

with an address a bit, ns, that describes whether the data belongs to a public or

confidential security domain. For now, ignore the security label on line 4, which

uses a new syntax explained later in this section. Grouping variables in this

way makes code clearer and more compact. Unfortunately, SecVerilog cannot

precisely capture the desired label for the resulting packet. In this example, the

address is public, but depending on the value of the ns bit, the data could be

confidential. Thus, the (static) security levels of some of the bits in the packet

depend on the run-time value of other bits.

The upper 11 bits of the packet have a different label than the rest of the

packet, but SecVerilog applies the same label to all bits in a bit vector. Lowering

the type of the entire packet is not a solution because the secrecy of the data

must be protected when id indicates that the data is confidential. Similarly,

raising the entire type to secret does not work because the address is used to

make routing decisions that are observable to both worlds.

Our solution is to enrich what can be expressed using dependent labels, as

shown in braces on line 4. The label expression specifies that the security class

20

of the ith bit depends both on i and on the value of the ns bit. The type of packet

is a function that takes an integer, i, representing an index to the bit vector. If

the index is less than 31, the data is accessed, so it returns a type that depends

on the MSB of the packet that corresponds to the ns bit. Otherwise, the address

or the ns bit is accessed, so the returned type is PT.

Figure 2.5 shows the formal type syntax of SecVerilog2. Crucially, the type

system of SecVerilog2 is extended with types of higher kinds. Kinds, written k,

can either be levels ` ∈ L or partial functions from integers to other kinds. In

the SecVerilog syntax, all types, including dependent types (which are functions

that are fully applied to variables) are of the kind `.

Types (i.e., labels) in the extended syntax, written τ , are pure (side-effect-

free) expressions signifying security levels. The syntax v 7→ τ specifies a map-

ping from a position in the bit vector to the type of the bit at that position, and

is used to specify the type of packet in Figure 2.4. Since v 7→ τ is a form of func-

tion abstraction, types written with this syntax are higher-kinded. Dependent

types may be written by referring to program variables in the type expression.

The syntax if eτ τt τf and case eτ τ1 ...τn describe conditional selection between

security labels. The syntax of eτ describes pure expressions and is omitted be-

cause it is standard. However, notably eτ may contain variables declared in the

program, and therefore, can be used to write dependent types.

At a high level, the type system is extended to track the bit-width of each

variable in addition to its type. Types of kind ` are lifted in the obvious way to

int ⇀ `, so that all types become functions from bit indices to labels. During

assignment checking, the bit-width of both sides of the assignment is used as a

range for quantification.

21

T-CONST
Γ; W; Θ ` n : ⊥, w

T-VAR
Γ(x) = τ W(x) = w

Γ; W; Θ ` x : τ, w

T-LOGICAL

Γ; W; Θ ` e1 : τ1, w Γ; W; Θ ` e2 : τ2, w
Θ ` τ1 : int⇀ ` Θ ` τ2 : int⇀ `

τ = i 7→ (τ1 i) t (τ2 i)

Γ; W; Θ ` e1 bop e2 : τ, w
(when bop ∈ {∨ ∧ ⊕})

T-ARITH

Γ; W; Θ ` e1 : τ1, w Γ; W; Θ ` e2 : τ2, w
Θ ` τ1 : int⇀ ` Θ ` τ2 : int⇀ `

τ = i 7→
⊔

j∈(1,i)

((τ1 j) t (τ2 j))

Γ; W; Θ ` e1 bop e2 : τ, w
(when bop ∈ {+−})

T-CONCAT

Γ; W; Θ ` e1 : τ1, w1 Γ; W; Θ ` e2 : τ2, w2
Θ ` τ1 : int⇀ ` Θ ` τ2 : int⇀ `
τ = i 7→ if(i > w2) (τ1 i− w2 + 1) (τ2 i)

Γ; W; Θ ` {e1; e2} : τ, (w1 + w2)

T-LSHIFT

Γ; W; Θ ` e : τ, w Θ ` τ : int⇀ `
τ ′ = i 7→ if (i > n) (τ i− n+ 1) ⊥

Γ; W; Θ ` e << n : τ ′, w
T-RSHIFT

Γ; W; Θ ` e : τ, w Θ ` τ : int⇀ `
τ = i 7→ if (i > w − n) ⊥ (τ i+ n)

Γ; W; Θ ` e >> n : τ, w

T-ARRINDEX

Γ(x) = τx W(x) = w

Γ; W; Θ ` e : τe, we
Θ ` τx : int⇀ int⇀ `

Θ ` τe : int⇀ `

τ ′e = i 7→
⊔

i∈(1,we)

τe i

Γ; W; Θ ` x[e] : τ ′e t (τx e), w

Figure 2.6: Typing rules for SecVerilog2 expressions.

The type rules of SecVerilog2 expressions are shown in Figure 2.6. In addi-

tion to a standard type environment Γ, a width environment W maps variables to

their bit-widths. The width environment is populated with the declared widths

of variables. Bit-widths are static, finite, and specified with integer constants.

Since Verilog does not support dynamically-sized bit vectors, ranges are easily

determined at compile time. Typing judgments for expressions have the form

22

Θ; Γ; W ` e : τ, w meaning that under context Θ; Γ; W, expression e has type τ and

bit-width w. A kind environment, Θ, is used to make kind judgments of the

form Θ ` τ : k.

The rule T-LOGICAL for logical binary operators checks that the widths of

both expressions are the same and that both expressions have int ⇀ ` types.

The type of the resulting expression is the bitwise join of the types of the

operands. The rule T-ARITH must track the bits that are propagated by carry

bits. The ith bit of the result is affected by all bits below i from both inputs. The

rule for concatenations (T-CONCAT) selects between the type functions of the

original sub-expressions, shifting the upper expression as needed. The rules for

shifting by constants (T-LSHIFT and T-RSHIFT) select the bottom type for the

bits of the resulting expression that are constant. For the remaining parts, the

type function of the non-constant sub-expression is shifted. The rule for indexed

arrays (T-ARRINDEX) is discussed in Section 2.2.2.

Per-bit checking is done in the type-checking rule for assignments. The check

verifies that the type of each bit of the right side of the assignment (joined with

the program counter) is lower than the corresponding bit on the left. To type-

check an assignment of some expression with type τr to a variable x, with type τl,

both of these types are applied to each integer within (0, W(x)). If the condition

∀i ∈ (0, W(x)).τr(i) t pc(i) v τl(i) holds, the check succeeds. We omit the rules

for commands since they are straightforward. Notably, pc is a bitwise label that

is determined by commands in a straightforward way. Using a bitwise label

for pc is more permissive than alternative rules which might compute the join

over the bitwise labels of expressions, for example, used as conditionals in if-

statements.

23

1 ...

2 reg {public} reg_id [0:1023];

3 reg [0:31] { i -> j -> domain(reg_id[i]) } mem[0:1023];

4 ...

5

6 if(read_id == 1) begin

7 read = (reg_id[read_addr] == 1) ?

8 mem[read_addr] : 32’b0;

9 end else begin

10 ...

Figure 2.7: A cache code segment.

2.2.2 Per-element types

Arrays are commonly used in hardware descriptions. However, prior secure

HDLs had minimal support for labeling arrays; all elements must have the same

type. The code segment shown in Figure 2.7 describes part of the memory array

of a cache that implements reads. The input id is the security id of the device

originating the read request. The output read is the output data, which has a

type that depends on read_id. This code is secure, but cannot be written in

SecVerilog.

Following common practice, the cache is implemented as an array of mem-

ory cells, mem. Another array reg_id stores the id of the last device to write to

each address of the array. Therefore, the label of a particular memory cell at

array position i should depend on reg_id. With support for fine-grained array

labels, the memory cells can be implemented conveniently as an array of bit

vectors.

To support arrays in which each element has a distinct type, array variables

must have kind int⇀ int⇀ ` when they are declared. In the rule for indexed

arrays (T-ARR-INDEX), the type of the array, τx, is applied as a function to the

expression that indexes the array, e. Doing so produces the security label of

24

the selected element of the array. The requirement imposed on the kind of τx

ensures that τx e is int⇀ `, which is a mapping from the bit position to the label

of that bit. Arrays in Verilog may only be indexed by variables and constants

rather than arbitrary expressions, and therefore e can be substituted into τx at

compile time. The label τ ′e is the (bitwise) join over the int⇀ ` label of e. Since

the value of e determines which element of x is selected, each bit of e affects the

value of x[e]. So τ ′e is used to elevate the label of x[e] to reflect that each bit of

e has influenced x[e]

On line 3 of Figure 2.7, mem has an array type that maps the index of the array

to a type that depends on the value stored in reg_ns at the corresponding index.

Although the function does not depend on j, it is still written as a type function

of kind int ⇀ int ⇀ `, so that when the array index is applied, the type can

serve as a mapping from bits to types. To support arrays of bit vectors where

each element has a different mapping from indices to types, the type function

can be written to depend on both i and j.

2.2.3 Bundle labels

Wires in Chisel can also be grouped into a bundle. Bundles behave much like

record types or structs; they consist of a set of field names which are mapped

to data elements. Bundles are useful for describing packets or for grouping

together the signals that correspond to just the subset of a port that accepts re-

quests or just the subset that emits responses. As a result, it is naturally desirable

to annotate different fields with different labels.

ChiselFlow supports heterogeneously labeled bundles as shown in Fig-

25

class DCacheDataReq(val lblParam: Label)(implicit p: Parameters)

extends L1CacheBundle()(p) with ParamLabeled {

val dconf = Bits(hcWidth.W, lblParam)

val dinteg = Bits(hcWidth.W, lblParam)

val wdata = Bits(rowBits.W, hlvl(dconf, dinteg) join lblParam)

val addr = Bits(untagBits.W, lblParam)

val write = Bool(lblParam)

val wmask = Bits(rowBytes.W, lblParam)

val way_en = Bits(nWays.W, lblParam)

val take_dtag = Bool(lblParam)

val sw_dwn = Bool(lblParam)

override def cloneType = (new DCacheDataReq(lblParam)(p)).asInstanceOf[this.type]

def cloneWithLabel(l: Label) = (new DCacheDataReq(l)(p)).asInstanceOf[this.type]

}

class DCacheDataArray(implicit p: Parameters) extends L1CacheModule()(p) {

val io = IO(new Bundle with HCLabeledIn {

val req = Input(ParamValid(new DCacheDataReq(lvl)))

val resp = Output(Vec(nWays, new DCacheDataResp(lvl)))

})

//... the body of the data array is defined here

}

Figure 2.8: Heterogeneously labeled bundles in ChiselFlow.

ure 2.8. This figure shows a bundle that describes a data cache array request

port and part of a data cache array that describes and instantiates its ports. This

example is taken from the HyperFlow processor described in Chapter 4 . The

DCacheDataReq class describes a bundle type because it extends from a descen-

dent of the Chisel Bundle class. As in Chisel, the fields of the bundle are de-

scribed by instantiating members of Chisel data classes such as Bits and Bool.

Members of a bundle can be labeled by passing a Label object to the second

argument of the data element.

The DCacheDataReq is heterogeneously labeled. Most members of the bun-

dle are labeled with a parameter called lblParam. Here, lblParam represents

the level of secrecy that can be observed by measuring the timing of events re-

lated to the request, such as the time that the request is valid. The field, wdata,

however, has a different label because it includes write-back data from either

26

the processor pipeline or the memory hierarchy. The inputs dconf and dinteg

represent dynamic confidentiality and integrity levels for wdata, and the label of

wdata is the join of lblParam and a function hlvl that maps the dynamic levels

to a label.

The class DCacheDataArray is a module that describes the data array for the

data cache. Its port, io, is also a bundle because it is an anonymous class that

extends from Bundle. The IO port includes a DCacheDataReq input wrapped in

a valid interface. The ParamValid class creates a new bundle that adds a valid

signal to its argument. The valid signal is asserted whenever the argument

represents useful data that can be consumed. The IO port also includes a vector

of nWays data cache responses. The type of the responses is described by a class

called DCacheDataResp, which is not shown.

By extending from the trait, HCLabeledIn, the IO port also includes signals

that represent a dynamic timing levels, and a label called lvl that maps these

signals to a label. The requests and responses of the data cache array take label

parameters as arguments. In the IO port, lvl is passed as the label parameter for

both so that that request input and all of the outputs have the same timing label.

The request and response classes both describe types in which all members are

labeled. The signals described by the HCLabeledIn trait are also labeled. As a

result, the IO port describes a well-formed type in which all members of the

port are fully labeled. The port is also labeled heterogeneously because the data

inputs and outputs have labels that differ from the other members.

Fields of a bundle such as DCacheDataArray can be referenced by simply

referencing the member of the class that represents that field. For example, if

cacheReq has type DCacheDataReq, then cacheReq.wdata refers to the data ele-

27

ment of cacheReq. Type declarations, such as the type of IO are emitted by Chi-

selFlow as SIRRTL code and include the labels for each element of the IO port.

The types and labels of expressions, such as cacheReq.wdata are determined by

SIRRTL. Chisel also supports parallel assignments, in which one bundle can be

assigned from another bundle of the same type. For example,

req_pipe1 := cacheReq,

might pipeline an entire cache request. Parallel assignments such as this one are

type-checked by un-rolling the parallel assignment into distinct assignments of

each record.

2.3 Non-malleable downgrading

Noninterference [33] is too restrictive for practical systems. Values com-

puted using secrets need to eventually be released to the public – for example,

an encrypted value can be safely released even though it depends on the encryp-

tion key. Similarly, untrusted values need to be permitted to influence trusted

state, for example, after they have been sanitized. As a result, all practical sys-

tems for information flow control permit downgrades which relax information

flow policies. Downgrading that relaxes confidentiality is called declassification,

whereas downgrading that relaxes integrity is called endorsement [103].

Because downgrades weaken noninterference, effort has been made to con-

strain downgrading to limit its potential to cause harm [75]. SIRRTL constrains

declassification to enforce robust declassification [101]. Roughly, robust declas-

28

sification prevents a low-integrity attacker from influencing what information

is declassified. In label models that incorporate principals [15, 10], more gener-

ally restricts a party to declassifying information that it has sufficient privilege

or authority to write. Dually, we constrain endorsements so that they are trans-

parent [10]. Endorsement is transparent if it does not allow secret data to be

endorsed in a public context. More generally, a principal is permitted to en-

dorse data that it has sufficient authority or privilege to read. Both forms of

constrained downgrading have been shown to prevent attacks [10]. The joint

enforcement of robust declassification and transparent endorsement is known

as non-malleable information flow control [10].

As in prior work on defining robust declassification, authority or privilege

to release information in SIRRTL is represented by integrity [15, 10]. Naturally,

the ability to read, and therefore transparently endorse, a piece of information is

represented by confidentiality [10]. Therefore, the labels of SIRRTL are product

labels that include confidentiality and integrity levels.

SIRRTL levels, `, are therefore pairs of confidentiality and integrity compo-

nents (c, i). Label components include atomic security levels n which form a

lattice. The notation p1 � p2 means that p1 has higher authority than p2. For

confidentiality, c1 � c2 means that c1 is more secret than c2. Dually, for integrity,

i1 � i2 means that i2 is more trusted than i2. For either confidentiality or in-

tegrity components, p1 ∧ p2 denotes the join of p1 and p2, and p1 ∨ p2 denotes

their meet. The greatest and least components in � order are > and ⊥ respec-

tively. The lattice over label components is lifted to a lattice over security labels

that is defined in Figure 2.9

The syntax decl(e, `) and endo(e, `) respectively express declassification and

29

(c1, i1) t (c2, i2) , (c1 ∧ c2, i1 ∨ i2)

(c1, i1) u (c2, i2) , (c1 ∨ c2, i1 ∧ i2)

(c1, i1) v (c2, i2) ⇐⇒ c2 � c1 and i1 � i2

Figure 2.9: Lattice over labels.

endorsement of the expression e to the security level `. The typing rules for

downgrades enforce non-malleable information flow control and are similar to

those used to enforce the same security condition in a recent functional pro-

gramming language [10]. These rules require auxiliary definitions on labels. In

particular, `� is defined (c, i)� , (c,>), and it computes a label that has the

confidentiality of `, but is fully trusted. Similarly, `� is defined (c, i)� , (⊥, i)

and it computes a label that has the integrity of ` but is fully public. The view

of a label, ∆(`) converts the integrity of a label to a confidentiality component,

and is defined by ∆(c, i) , (i,>). Dually, the voice of a label, ∇(`) converts

a confidentiality component to an integrity component, and it is defined by

∇(c, i) , (⊥, c).

To declassify an expression from label `′ to label `, the type system ensures

that

`′� v `� t∆(`′ t pc)

This condition follows directly from prior work on defining robust declassifi-

cation in the context of programming languages [15, 10]. Roughly, it allows

the confidentiality `� of the data being declassified to be “made up for” by the

integrity `� of the data being declassified and the integrity `�cur of the current

process.

Dually, to transparently endorse an expression from label `′ to label `, the

30

type system checks that

`′� v `� t∇(`′ t pc)

This condition sets a maximum confidentiality on endorsements to prevent

opaque writes that could enable attacks. A write is opaque if a principal could

have written data but not read it.

2.4 Formalism and security results for SIRRTL

We now define a syntax, semantics, and type rules for a core subset of SIR-

RTL in order to establish security results about well-typed SIRRTL modules.

Because SIRRTL is responsible for enforcing the security policies described by

ChiselFlow, the same security results are enjoyed by ChiselFlow code. This core

subset is also sufficient to capture the same novel features in SecVerilog2, and

as a result, the security results also hold for the implementation of SecVerilog2.

In particular, we prove that well-typed SIRRTL modules that do not contain

downgrades enforce a timing-sensitive variant of observational determinism.

2.4.1 Syntax

Figure 2.10 shows a core syntax of SIRRTL that we use to establish security

results. The syntax of labels has already been described. Aside from atomic

security levels, the syntax of label components also includes functions f that

are fully applied to some number of free variables ~x in the hardware module.

Components of this form can be used to express dependent labels that change at

run time based on the values of signals. Dependent labels are important for the

31

description of efficient hardware designs that allow the hardware to be shared

by different security domains at run-time. Dependent labels of this form are

similar to those in SecVerilog [110].

n ∈ N atomic principals
x ∈ V variable names

x̄ ∈ V next-cycle symbols
v ∈ N integers

i, c, p ::= n | > | ⊥ | p ∧ p | p ∨ p | f(~x)

` ::= (p, p)

e ::= v | x | x̄ | e⊕ e | decl(e, `) | endo(e, `)

Prog, s ::= skip | s; s | when(e) s else s | x⇐ e

Figure 2.10: SIRRTL core syntax.

The syntax of expressions is mostly standard. Values v are finite bit-vectors.

Variables, denoted x, represent sequential variables that define registers. For

simplicity, the formal syntax of SIRRTL omits combinational variables, though

in doing so it loses no expressive power – combinational variables can simply

be replaced with the expressions that define their values. The implementation

of SIRRTL includes combinational variables. The syntax x̄ represents a special

symbol reserved for storing the next-cycle valuation of x. The symbol x̄ cannot

be written by the programmer; it is an auxiliary symbol used in the semantics

and typing judgments to capture delayed updates to the sequential variables.

Binary operators are denoted e1 ⊕ e2. As has already been described, the syntax

decl(e, `) and endo(e, `) respectively express declassification and endorsement

of the expression e to the security level ` The syntax of statements s is entirely

32

standard except that when denotes a conditional statement. Programs, written

Prog are single commands.

Our full implementation of SIRRTL (and ChiselFlow) also securely supports

record types (bundles), arrays, module declarations and instantiations, and

purely combinational wires, though the typing rules for these features do not

fundamentally change the design of the type system, so we omit them from the

core syntax. The heterogeneous bit vector and array labels described in Sec-

tion 2.2.1 and Section 2.2.2 are interesting features because they represent de-

pendent labels with function bindings. We prove that the core syntax extended

with support for bit vector and array labels enjoys the same security guarantees

as SIRRTL by showing that there is a label-preserving and clearly semantics

preserving translation from the extended language to the core language.

2.4.2 Semantics

The big-step semantics of expressions, shown in Figure 2.10 is entirely standard

aside from the rule for x̄ which is similar to the evaluation of a conventional

variable. The small-step semantics of statements, shown in Figure 2.12 is mostly

standard. Hardware states, σ, are mappings from variables and next-cycle sym-

bols to bit-vectors. Formally, states range over (V + V) → N, or isomorphically,

(V → N) × (V → N); they are are pairs including a function from variables to

values and a function from next-cycle symbols to values. For simplicity, we use

σ(x) and σ(x̄) to denote the valuation of either a variable or next-cycle symbol

in σ. Assignments to a variable x cause updates to x̄ rather than x to model the

fact that updates to registers are delayed until the start of the clock cycle.

33

Variables are updated by the program semantics. As the program is evalu-

ated, the program semantics constructs traces that have the syntax

t ::= ε | (T, σ) | t1; t2

where T is a clock cycle counter represented by a positive integer. The program

semantics operates on configurations of the form 〈T, σ, c, t〉. Transitions between

configurations are denoted by →S , in which S represents the statement that is

the initial syntactic description of the program.

The rule, S − Tick applies when the program has been fully evaluated to

skip. This rule updates the contents of the registers on the new clock cycle. All

variables x1, ..., xn in the program S, are updated to their corresponding next-

cycle valuations stored in σx1, ..., σxn. The cycle counter is incremented, and a

trace event that includes the clock cycle number and the state at the start of the

cycle is emitted. The program re-starts evaluation from S to compute the values

for the next cycle. The rule, S − Eval, applies when s is not skip, and it simply

updates the statement and state according to the semantics of statements.

〈σ, n〉 ⇓ n
S-CONST

σ(x) = n

〈σ, x〉 ⇓ n
S-VAR

σ(x̄) = n

〈σ, x̄〉 ⇓ n
S-VARNEXT

〈σ, e1〉 ⇓ n1 〈σ, e2〉 ⇓ n2 n = n1 ⊕ n2

〈σ, e1 ⊕ e2〉 ⇓ n
S-OP

〈σ, e〉 ⇓ n
〈σ, decl(e, `)〉 ⇓ n

S-DECL

〈σ, e〉 ⇓ n
〈σ, endo(e, `)〉 ⇓ n

S-ENDO

Figure 2.11: Expression semantics.

34

〈σ, x⇐ e〉 −→ 〈σ[x̄ 7→ σ(x)], skip〉
〈σ, skip; s〉 −→ 〈σ, s〉
〈σ, s1; s2〉 −→ 〈σ′, s′1; s2〉 (if 〈σ, s1〉 −→ 〈σ′, s′1〉)

〈σ, when(e) s1 else s2〉 −→ 〈σ, s1〉 (if ¬(〈σ, e〉 ⇓ 0))

〈σ, when(e) s1 else s2〉 −→ 〈σ, s2〉 (if 〈σ, e〉 ⇓ 0)

Figure 2.12: Command semantics.

{x1, ..., xn} = vars(S)
σ′ = σ[x1 7→ σ(x̄1)]...[xn 7→ σ(x̄n)]

〈T, σ, skip, t〉 →S 〈T + 1, σ′,S, t; (T + 1, σ′)〉
S-TICK

s 6= skip 〈σ, s〉 → 〈σ′, s′〉
〈T, σ, s, t〉 →S 〈T, σ′, s′, t〉

S-EVAL

Figure 2.13: Program semantics.

2.4.3 Type rules

Type environments Γ map variables and next-cycle symbols to labels. Because

label components in SIRRTL include functions of program variables, the valu-

ation of components and labels both depend on the state, σ. We use the meta-

syntax C(p, σ) and T (`, σ) respectively to denote the valuations of components

p and labels ` respectively. As in SecVerilog[110], the type rules apply only for

type environments that are well-formed. In a well-formed type environment

1) no label depends on variables with more restrictive labels, and 2) variables

that appear in labels cannot depend on labels. The second condition is more

restrictive than the one in SecVerilog, which allows variables to have labels that

depend on themselves. Let fv(`) denote the free variables in `. Formally, a

type-environment is well-formed, written ` Γ when,

35

Definition 1 (Well-Formedness of Environments)

∀x ∈ V .(∀σ.∀x′ ∈ fv(Γ(x)).

T (Γ(x′), σ) v T (Γ(x), σ)

∧ fv(Γ(x′)) = ∅)

Type judgements for expressions have the form Γ; pc ` e : ` which means

that e is well-typed in typing environment Γ under program counter label pc.

The type rules for expressions are mostly standard aside from next-cycle valu-

ations of variables and for downgrades. The rule T −NextV ar computes the

valuation of the label x on the following clock cycle by substituting each occur-

rence of a free variable in the label with its next-cycle symbol.

Because labels in SIRRTL can depend on the run-time values of signals, SIR-

RTL relies on a static program analysis that that models the run-time behavior

of the hardware. The program analysis uses a predicate transformer semantics

to conservatively approximate the strongest postcondition at each point in the

module. The notation P (η) ⇒ Q means that the program analysis has derived

that the proposition Q holds before executing control-flow graph node η.

The rules for downgrades enforce non-malleable information flow control

and have mostly been described in Section 2.3. In addition to the premises that

have already been described in Section 2.3, the type rules for declassification

and endorsement also require pc v ` to ensure that the downgrades is not influ-

enced by low-integrity values indirectly through control flow, and that implicit

flows are prevented.

The typing rules for commands are standard except that the rule for as-

signments which differs subtly from a standard typing judgement for assign-

36

ment. Assignments to sequential variables describe the values which they

store at the start of the next clock edge. Therefore, the label of the expres-

sion ` should be permitted to flow into the label of the sequential variable

during the next clock cycle `′. This new label may depend on the new val-

ues of other sequential variables. Since the actual values of variables are not

known a priori, `′ is determined by simultaneously substituting each sequen-

tial variable xi in Γ(x) with its corresponding next-cycle value symbol x̄i. Thus,

`′ = Γ(x)[x1 7→ x̄1]...[xn 7→ x̄n] and P (η) must contain sufficient facts to fulfill the

proof obligation that this flow is safe.

T-CONST
Γ; pc ` n : ⊥

T-VAR
Γ(x) = `

Γ; pc ` x : `

T-NEXTVAR
Γ(x) = ` {x1, ..., xn} = fv(Γ(x))

Γ; pc ` x̄ : `[x1 7→ x̄1]...[xn 7→ x̄n]
T-OP

Γ; pc ` e1 : `1

Γ; pc ` e2 : `2

Γ; pc ` e1 ⊕ e2 : `1 t `2

T-DECL

Γ; pc ` e : `′ P (η)⇒ `� = `′� ∧ pc v `
P (η)⇒ `′� v `� t∆(`′ t pc)

Γ; pc ` decl(e, l) : l

T-ENDO

Γ; pc ` e : `′ P (η)⇒ `� = `′� ∧ pc v `
P (η)⇒ `′� v `� t∇(`′ t pc)

Γ; pc ` endo(e, l) : l

Figure 2.14: Type Rules: Expressions.

2.5 Security results for core SIRRTL language

We now prove security results about SIRRTL, namely that well-typed hardware

modules that do not contain downgrades enforce a timing-safe variant of ob-

37

Γ; pc ` skip
T-SKIP

Γ; pc ` s1 Γ; pc ` s2

Γ; pc ` s1; s2

SEQ

Γ; pc ` e : `
Γ; pc t ` ` st
Γ; pc t ` ` sf

Γ; pc ` when(e) st else sf
T-WHEN

Γ; pc ` e : ` {x1, ..., xn} = fv(Γ(x))
`′ = Γ(x)[x1 7→ x̄1]...[xn 7→ x̄n]

P (η)⇒ ` t pc @ `′

Γ; pc ` x⇐ e
T-ASSIGN

Figure 2.15: Type Rules: Statements.

servational determinism. The typing rules for downgrades in SIRRTL also re-

semble those from a recent software type system that enforces a security condi-

tion in the presence of downgrades called non-malleable information flow con-

trol [10]. We first define low-equivalence of hardware states before stating the

main theorems. We define a full-evaluated security label as one which does not

contain sub-components of the form f(x). When two states, σ1 and σ2 are low-

equivalent to an attacker at fully-evaluated security label L we write σ1 ≈L σ2.

Low-equivalence at level L is defined as follows,

σ1 ≈L σ2 , ∀x ∈ V .(T (Γ(x), σ1) v L ⇐⇒ T (Γ(x), σ2) v L)

∧T (Γ(x), σ1) v L =⇒ σ1(x) = σ2(x)

Traces are low-equivalent, written t1 ≈L t2 when for each element of the

trace, the corresponding clock cycle counters are equal, and the states are low-

equivalent.

We now state the observational determinism theorem.

38

Theorem 1 (Observational Determinism) If Γ is a type environment, s is a state-

ment that does not contain downgrades, pc is a label, L is a fully-evaluated security

label, and σ1 and σ2 are states, then

` Γ ∧ Γ; pc ` s ∧ σ1 ≈L σ2∧

〈0, σ1, s, ε〉 −→S 〈n1, σ
′
1, s, t1〉∧

〈0, σ2, s, ε〉 −→S 〈n2, σ
′
2, s, t2〉

=⇒ σ′1 ≈L σ′2 ∧ t1 ≈L t2

Before proving the observational determinism result, we first prove some

useful lemmas. The first lemma states that low expressions other than down-

grades do not contain high variables.

Lemma 1 For all fully-evaluated security labels L, states σ, and expressions e that do

not contain downgrades,

` Γ ∧ Γ ` e : ` ∧ T (`, σ) v L

=⇒ ∀x ∈ vars(e).T (Γ(x), σ) v L

Proof. By induction on the structure of expressions. �

The next lemma states that low labels evaluate to the same concrete label in

low-equivalent states.

Lemma 2 If Γ is a type environment, ` is a label, L is a fully-evaluated label, and σ1

and σ2 are states, then

σ1 ≈L σ2∧ ` Γ ∧ T (`, σ1) v L

=⇒ T (`, σ1) = T (`, σ2)

39

Proof. Let ` = (c, i) and L = (c′, i′). By the definition of v, c′ � C(c, σ1) and

C(i, σ1) � i′. We show that C(c, σ1) = C(c, σ2) by induction on the structure

of c. The argument that C(i, σ1) = C(i, σ2) is exactly dual, and the result that

T (`, σ1) = T (`, σ2) follows directly.

Case c = n, c = >, c = ⊥: trivial.

Case c = f(~x): Let xi be some variable in ~x. By assumption, σ1 ≈(c′,i′) σ2. By

` Γ, T (Γxi, σ1) v ` and T (Γxi, σ2) v ` By transitivity of v, T (Γ(xi), σ1) v L and

T (Γ(xi), σ2) v L. By definition of ≈L, σ1(xi) = σ2(xi). The same is true for all

other variables in ~x, and so C(f(~x), σ1) = C(f(~x), σ2)

Case p1 ∧ p2: T (p1 ∧ p2, σ1) = T (p1, σ1) ∧ T (p2, σ2). By assumption T (p1 ∧

p2, σ1) � c′, hence T (p1, σ1) � c′ and T (p2, σ2) � c′. By induction hypothe-

sis, T (p1, σ1) = T (p1, σ2) and T (p1, σ1) = T (p1, σ2). Hence, T (p1 ∧ p2, σ1) =

T (p1 ∧ p2, σ2)

Case p1 ∨ p2: Similar to the case f(~x), by inspection of the free variables in

p1 ∨ p2. �

The next lemma states that low expressions evaluate to the same value in

low-equivalent states.

Lemma 3 If Γ is a type environment, e is an expression, pc is a label, L is a fully-

40

evaluated security label, and σ1 and σ2 are states, then

σ1 ≈L σ2∧ ` Γ ∧ Γ ` e : ` ∧ T (`, σ1,v)L∧

〈σ1, e〉 ⇓ n1 ∧ 〈σ2, e〉 ⇓ n2

=⇒ n1 = n2

Proof. By Lemma 2, T (`, σ2) = T (`, σ1) v L. By Lemma 1, for all x in e,

T (x, σ1) v L and T (x, σ2) v L. Since σ1 ≈L σ2, σ1(x) = σ2x. Since this is

true for all x in e, n1 = n2. �

We now prove that SIRRTL enforces observational determinism for individ-

ual statements.

Theorem 2 (Single-Statement Obsevational Determinism) If Γ is a type envi-

ronment, s is a statement that does not contain downgrades, pc is a label, L is a fully-

evaluated security label, and σ1 and σ2 are states, then

` Γ ∧ Γ; pc ` s ∧ σ1 ≈L σ2∧

〈σ1, s〉 −→∗ 〈σ′1, skip〉 ∧ 〈σ2, s〉 −→∗ 〈σ′2, skip〉

=⇒ σ′1 ≈L σ′2

Proof. Case s1; s2: If s1 =skip, then 〈σ1, s1; s2〉 → 〈σ′1, s2〉 and 〈σ2, s1; s2〉 →

〈σ′2, s2〉 so σ1 = σ′1 and σ2 = σ′2. By assumption, σ1 ≈L σ2 and so σ′1 ≈L σ′2. By the

induction hypothesis, execution of s2 from σ′1 and σ′2 results in low-equivalent

states.

If s1 6=skip, then 〈σ1, s1; s2〉 → 〈σ′′1 , s1′; s2〉 and 〈σ2, s1; s2〉 → 〈σ′′2 , s1′′; s2〉

where 〈σ1, s1〉 → 〈σ′′1 , s1′〉 and 〈σ2, s1〉 → 〈σ′′2 , s1′′〉. By the induction hypothe-

sis σ′′1 ≈L σ′′2 But SIRRTL statements clearly do not diverge, so for some σ′′′1 and

41

σ′′′2 , 〈σ′1, s′1 →∗ 〈σ′′′1 , skip〉 and 〈σ′2, s′1 →∗ 〈σ′′′2 , skip〉. By the induction hypoth-

esis σ′′′1 ≈L σ′′′2 . And since s2 is eventually evaluated from σ′′′1 and σ′′′2 in two

executions, by the induction hypothesis, σ′1 ≈L σ′2

Case x ⇐ e: We have 〈σ1, x ⇐ e〉 → 〈σ1[x̄ 7→ n1], skip〉 and 〈σ2, x ⇐ e〉 →

〈σ2[x̄ 7→ n2], skip〉 Let `′ = ell[x1 7→ x̄1]...[xn 7→ x̄n]. We first consider the case

in which T (`′, σ1) v L. By assumption, σ1 ≈L σ2 and by Lemma 2, T (`′, σ2) =

T (`′, σ1) v L By T-ASSIGN, Γ; pc ` e : ` and ` t pc v `′. By lattice properties,

` v `′ and ` v L. By Lemma 3, n1 = n2. Because σ1[x̄ 7→ n1] = σ′1 and σ1 agree

on values of all variables other than x̄, σ1 ≈L σ′1. Similarly, σ2 ≈L σ′2 and by

transitivity, σ′2 ≈L σ′1.

We now consider the case in which T (`′, σ1) 6v L We first show that

T (`′, σ2) 6v L If T (`′, σ2) v L, then by Lemma 2, T (`′, σ1) v L which violates

our assumption. By ` Γ, x̄ 6∈ fv(Ga(x̄)). Because σ1 and σ1[x̄ 7→ n1] = σ′1 agree

on valuations of all variables other than x̄, T (`′, σ′1) 6v L. Similarly, T (`′, σ′2) 6v L.

Hence, σ1 ≈l σ′1, and σ2 ≈l σ′2, and by transitivity, σ′1 ≈l σ′2.

Case when(e)s1elses2: By T-COND, Γ; pc ` e : `. We first consider the case in

which T (`, σ1) v L. By Lemma 2, T (`, σ2) = T (`, σ1) v L. By Lemma 3, 〈σ1, e〉 ⇓

n and 〈σ2, e〉 ⇓ n for some n. By the semantics, either 〈σ1, s〉 → 〈σ1, s1〉 and

〈σ2, s〉 → 〈σ2, s1〉 or 〈σ1, s〉 → 〈σ1, s2〉 and 〈σ2, s〉 → 〈σ2, s2〉, but both executions

take the same path. If the branch is taken, then by the induction hypothesis,

〈σ1, s〉 →∗ 〈σ′1, skip〉 and 〈σ2, s〉 →∗ 〈σ′2, skip〉 for some σ′1, σ′2 such that σ′1 ≈L σ′2.

It is similar if the branch is not taken.

42

We now consider the case in which T (`, σ1) 6v L. By Lemma 7, T (`, σ2) 6v L.

By T-COND, Γ; pc ` s1. Let pc′ = pc t `. Then pc′ 6v L by lattice prop-

erties. Let x be some variable assigned in s1. By T-ASSGN, pc ′ t `′ where

`′ 6= Γ(x)[x1 7→ x̄1]...[xn 7→ x̄n]. By T-NEXTVAR, Γ(x̄) = `′, and so pc′ v Γ(x̄),

and Ga(x̄) 6v L. The same is true for all other variables assigned in s1 and for

all variables assigned in s2. Let 〈σ1, s1〉 →∗ 〈σ′′1 , skip〉. Because only high vari-

ables are assigned in s1, σ1 and σ′′1 may only disagree on high variables, and so

σ′′1 ≈L σ1. Similarly, σ′′2 ≈L σ2. Because σ1 ≈l σ2, by transitivity twice, σ′′1 ≈L σ′′2 .

�

We now prove that well-typed SIRRTL modules enforce a timing safe variant

of observational determinism

Theorem 1 (Observational Determinism) If Γ is a type environment, s is a state-

ment that does not contain downgrades, pc is a label, L is a fully-evaluated security

label, and σ1 and σ2 are states, then

` Γ ∧ Γ; pc ` s ∧ σ1 ≈L σ2∧

〈0, σ1, s, ε〉 −→S 〈n1, σ
′
1, s, t1〉∧

〈0, σ2, s, ε〉 −→S 〈n2, σ
′
2, s, t2〉

=⇒ σ′1 ≈L σ′2 ∧ t1 ≈L t2

1

Proof. By cases on the semantic rules for programs

Case S-TICK By induction on the value of T . The base case is T = 0, and we

43

have

〈0, σ1, s, ε〉 −→S 〈1, σ′1, s, (1, σ′1)〉∧

〈0, σ2, s, ε〉 −→S 〈1, σ′2, s, (1, σ′2)〉

where

σ′1 = σ1[x1 7→ σ1(x̄1)]...[xn 7→ σ1(x̄n)]σ′2 = σ1[x1 7→ σ2(x̄1)]...[xn 7→ σ2(x̄n)]

Let x̄i be some next-cycle symbol such that xi ∈ {x̄1, ..., x̄n}. If T (Γ(x̄i), σ1) v L

then T (Γ(x̄i, σ2) v L by Lemma 2. By Lemma 3, σ1(x̄i) = σ2(x̄i). The same is

true for all other next-cycle symbols in {x̄1, ..., x̄n}. Since σ′1 ≈L σ2, and σ′2 and

σ′1 agree on low symbols x̄i, σ′1 ≈L σ′2.

We now consider the general case. We have

〈n, σ1, s, t1〉 −→S 〈n+ 1, σ′1, s, t1; (n+ 1, σ′1)〉∧

〈n, σ2, s, t2〉 −→S 〈n+ 1, σ′2, s, t2; (n+ 1, σ′2)〉

By the induction hypothesis, σ′1 ≈L σ′2 and t1 ≈L t2. So t1; (n + 1, σ′1) ≈L

t2; (n+ 1, σ′2)

Case S-EVAL: Follows directly from Theorem 2.

�

44

2.5.1 Security results with heterogeneously labeled arrays and

bit vectors

We now prove that well-typed hardware modules in SecVerilog2 extended with

support for heterogeneously labeled arrays and bit vectors that do not con-

tain downgrades also enforce observational determinism. The proof is accom-

plished by a translation from well-typed programs in the extended language

into well-typed programs in the core language which we still refer to as SIR-

RTL SecVerilog2 vectors are simulated with 1-bit SecVerilog variables and a

corresponding translation of SIRRTL environments into SIRRTL environments.

SecVerilog2 expressions of width w translate into a vector of w SIRRTL expres-

sions. Assignments of w-bit expressions are unrolled into w assignments. The

translation of commands other than assignment statements merely propagate

the translation of assignments. The translation is clearly semantics-preserving,

and the security result is obtained by showing that the translation is also type-

preserving.

The translation splits non-array variables, x, into single-bit representations

x1,...,xn, where xi stores the ith bit of the original variable x. The notation JΓ; W; ΘK

denotes the translation of SecVerilog2 environment Γ; W; Θ into an SIRRTL envi-

ronment Γ′ containing 1-bit variables. Each variable xj ∈ Γ is translated into

W(xj) 1-bit variables whenever Γ(xj) has kind int ⇀ `. Otherwise, Γ(xj) has

kind int⇀ int⇀ `, and xj represents an array, translated into n × W(xj) 1-bit

45

variables where n is the declared length of the array:

JΓ; W; ΘK = J..., xj : τj, ...; ..., xj : wj, ..., ; τj : kj, ...K , {..., Xj, ...}

where Xj =


xj,1 : τj,1, ..., xj,wj : τj,wj if kj = int⇀ `

xj,1,1 : τj,1,wj, ..., xj,n,wj : τj,n,wj if kj = int⇀ int⇀ `

The translation of expressions and assignment statements is shown in Fig-

ure 2.16. The translation for other commands than statements merely prop-

agates the translation of statements. The translation for both statements and

expressions also include Γ, W, and Θ as arguments. For notational convenience,

define WJeKΓ;W;Θ = w ⇐⇒ Γ; W; Θ ` e : τ, w for some τ . Each translation of

a SecVerilog2 expression produces a vector of SIRRTL expressions. The meta-

syntax EJeKΓ;W;Θ(i) selects the ith element of the vector produced by EJeKΓ;W;Θ. The

notation ~e|i∈(n1,n2) constructs a new vector by replacing the free occurrences of i

in e with each integer in the range (n1, n2).

Note that in the rules for logical and arithmetic operators WJe1KΓ;W;Θ =

WJe2KΓ;W;Θ. In the rule for the translation of addition and subtraction, Cn−1, is

a straightforward bit-level representation of the carry-out from the summation

of the digits at n − 1. The translation for arrays produces a nested conditional

assignment that dynamically checks the value of the indexing expression (e) to

select from among n w-size vectors where n is the declared size of the array and

w is the width of each array element. The translation for assignment unrolls the

assignment into separate assignments for each of the 1-bit variables. Although

not shown, integer constants translate into their binary representations.

Figure 2.17 shows the type-directed translation from SecVerilog2 typing

derivations to SIRRTL types. The translation is only defined for types of well-

46

EJxKΓ;W;Θ ,
−−−−−−−→x1, ..., xW(x)

EJe1 bop e2KΓ;W;Θ ,
−−−−−−−−−−−−−−−−−−−−→
EJe1KΓ;W;Θ(i) bop EJe2KΓ;W;Θ(i)

∣∣∣∣
i∈(1,WJe1KΓ;W;Θ)

EJe1 + e2KΓ;W;Θ ,
−−−−−−−−−−−−−−−−−−−−−−−−→
EJe1KΓ;W;Θ(i)⊕ EJe2KΓ;W;Θ(i)⊕ Ci−1

∣∣∣∣
i∈(1,WJe1KΓ;W;Θ)

EJe1 − e2KΓ;W;Θ ,
−−−−−−−−−−−−−−−−−−−−−−−−−−→
EJe1KΓ;W;Θ(i)⊕ ¬EJe2KΓ;W;Θ(i)⊕ Ci−1

∣∣∣∣
i∈(1,WJe1KΓ;W;Θ)

EJ{e1, e2}KΓ;W;Θ ,
−−−−−−−−−−−−−−−→
EJe1KΓ;W;Θ(i− w2 + 1)

∣∣∣∣
i∈(w2,w1+w2)

::
−−−−−−−−→
EJe2KΓ;W;Θ(i)

∣∣∣∣
i∈(1,w2)

(where w1, w2 = WJe1KΓ;W;Θ, WJe2KΓ;W;Θ)

EJe « nKΓ;W;Θ ,
−−−−−−−−−−→
EJeKΓ;W;Θ(i− n)

∣∣∣∣
i∈(1,WJeKΓ;W;Θ−n)

:: 0...0︸︷︷︸
n times

EJe » nKΓ;W;Θ , 0...0︸︷︷︸
n times

::
−−−−−−→
EJeKΓ;W;Θ i

∣∣∣∣
i∈(n,WJeKΓ;W;Θ)

EJx[e]KΓ;W;Θ , EJeKΓ;W;Θ == EJ0KΓ;W;Θ ? −−−−−−−−−−−−→x0,1, ..., x0,WJx[e]KΓ;W;Θ :

EJeKΓ;W;Θ == EJ1KΓ;W;Θ ? −−−−−−−−−−−−→x1,1, ..., x1,WJx[e]KΓ;W;Θ :

...

EJeKΓ;W;Θ == EJn− 1KΓ;W;Θ ? −−−−−−−−−−−−−−−−→xn−1,1, ..., xn−1,WJx[e]KΓ;W;Θ :
−−−−−−−−−−−−−→xn,1, ..., xn,WJx[e]KΓ;W;Θ

(where n = 2WJx[e]KΓ;W;Θ − 1)

EJx = eKΓ;W;Θ ,

begin

EJxKΓ;W;Θ(1) = EJeKΓ;W;Θ(1);

...;

EJxKΓ;W;Θ(WJxKΓ;W;Θ) = EJeKΓ;W;Θ(WJxKΓ;W;Θ);

end

Figure 2.16: Translation from SecVerilog2 expressions to SIRRTL expressions.

47

TTRANS-CONST
T JΓ; W; Θ ` n : ⊥, wK ↪→ ⊥

TTRANS-VAR
Γ(x) = τ W(x) = w

T JΓ; W; Θ ` x : τ, wK ↪→
−−−−−→
T JτK(i)

∣∣∣∣
i∈(1,w)

TTRANS-LOGICAL

Γ; W; Θ ` e1 : τ1, w Γ; W; Θ ` e2 : τ2, w

Θ ` τ1 : int⇀ ` Θ ` τ2 : int⇀ `

τ = i 7→ (τ1 i) t (τ2 i)

T JΓ; W; Θ ` e1 bop e2 : τ, wK
↪→

−−−−−−−−−−−−−−→
T Jτ1K(i) t T Jτ2K(i)

∣∣∣∣
i∈(1,w)

(when bop ∈ {∨ ∧ ⊕})

TTRANS-ARITH

Γ; W; Θ ` e1 : τ1, w Γ; W; Θ ` e2 : τ2, w

Θ ` τ1 : int⇀ ` Θ ` τ2 : int⇀ `

τ = i 7→
⊔

j∈(1,i)
((τ1 j) t (τ2 j))

T JΓ; W; Θ ` e1 bop e2 : τ, wK
↪→

−−−−−−−−−−−−−−−−−−−−−→⊔
j∈(1,i)

(T Jτ1K(j) t T Jτ2K(j))
∣∣∣∣
i∈(1,w)

(when bop ∈ {+−})

TTRANS-CONCAT

Γ; W; Θ ` e1 : τ1, w1 Γ; W; Θ ` e2 : τ2, w2

Θ ` τ1 : int⇀ ` Θ ` τ2 : int⇀ `

τ = i 7→ if(i > w2) (τ1 i− w2 + 1) (τ2 i)

T JΓ; W; Θ ` {e1; e2} : τ, (w1 + w2)K
↪→

−−−−−−−−−−−−−→
T Jτ1K(i− w2 + 1)

∣∣∣∣
i∈(w1,w1+w2)

::
−−−−−→
T Jτ2K(i)

∣∣∣∣
i∈(1,w2)

TTRANS-LSHIFT

Γ; W; Θ ` e : τ, w Θ ` τ : int⇀ `

τ ′ = i 7→ if (i > n) (τ i− n+ 1) ⊥

T JΓ; W; Θ ` e << n : τ ′, wK
↪→

−−−−−−−−−−−→
T JτK(i− n+ 1)

∣∣∣∣
i∈(1,w−n)

:: ⊥...⊥︸ ︷︷ ︸
n times

TTRANS-RSHIFT

Γ; W; Θ ` e : τ, w Θ ` τ : int⇀ `

τ = i 7→ if (i > w − n) ⊥ (τ i+ n)

T JΓ; W; Θ ` e >> n : τ, wK
↪→

⊥...⊥︸ ︷︷ ︸
n times

::
−−−−−−−−→
T JτK(i+ n)

∣∣∣∣
i∈(n,w)

TTRANS-ARRINDEX

Γ(x) = τx W(x) = w

Γ; W; Θ ` e : τe, we

Θ ` τx : int⇀ int⇀ `

Θ ` τe : int⇀ `

τ ′e = i 7→
⊔

j∈(j,we)

τe j

T JΓ; W; Θ ` x[e] : τ ′e t (τx e), wK
↪→(⊔

i∈(1,we)

T JτeK(i)
)
t T Jτx eK

Figure 2.17: Type-directed translation from SecVerilog2 types to SIRRTL types.

48

typed expressions. The rules have the form

P1 ... Pn

T JΓ; W; Θ ` e : τSecVerilog2, wK

↪→
−−−−−→τSIRRTL

where Pi is a premise in a type rule of SecVerilog2, and

T JΓ; W; Θ ` e : τSecVerilog2, wK ↪→ −−−−−→τSIRRTL

denotes that the typing derivation surrounded in brackets translates into the

vector of SIRRTL types −−−−−→τSIRRTL, and the meta-syntax −−−−−→τSIRRTL(i) denotes the ith

element in the vector of types. The notation T JτSecV erliogBLK is used for recursive

translation of types and it denotes −−−−−→τSIRRTL such that

T JΓ; W; Θ ` e : τSecVerilog2, wK ↪→ −−−−−→τSIRRTL

where Γ, W, Θ, and e are all always clear from context. The target-language type

may contain types mentioned in the inference rules of the derivation.

Note that SIRRTL types are a strict subset of SecVerilog2 types, and that

SecVerilog2 types which are not SIRRTL types are abstractions, if-types, and

case-types. The if-types and case-types are straightforwardly translated into

functions fully-applied to program variables (which are SIRRTL types) so these

translations are not shown. Also note that in the translation rules shown in

Figure 2.17, all resulting types have kind ` and are therefore SIRRTL types.

It is straightforward to check that the SIRRTL program after transforma-

tion is semantically equivalent. The soundness result is obtained by showing

that the translation is also type-preserving. That is, well-typed SecVerilog2 pro-

grams that do not contain downgrading translate into well-typed SIRRTL pro-

grams. Since well-typed SIRRTL programs enforce observational determinism,

49

SecVerilog2 programs share the same result. We now show a proof of the type-

preservation result for commands.

In addition to the well-formedness requirements of type environments in

SIRRTL, SecVerilog2 environments also require the following for a SecVerilog2

environment to be well-formed:

Definition 2 (Well-Formedness of Environments) An environment Γ; W; Θ is

well-formed, written ` Γ; W; Θ, if for all x ∈ Γ such that Γ(x) = τ , W(x) = w, and

Θ ` τ : int ⇀ `, we have (τ i) is in the image of τ for all i ∈ (1, w). Otherwise,

Θ ` τ : int ⇀ int ⇀ ` and there is some n such that (τ j) is in the image of τ for all

j ∈ (1, n) and (τ j i) is in the image of (τ j) for all i ∈ (1, w).

Lemma 1 If e is a SecVerilog2 expression, then for all Γ, W, Θ such that ` Γ; W; Θ,

Γ; W; Θ ` e : τ, w ,and Θ ` τ : int ⇀ `, let (τ i) is defined denote that (τ i) is in

the image of τ , then (τ i) is defined and of kind ` for all i ∈ (1, w).

Proof. By induction over the type rules of SecVerilog2

• T-CONST: trivial.

• T-VAR: by the definition of ` Γ; W; Θ

• T-LOGICAL: By typing rule WJeKΓ;W;Θ = WJe1KΓ;W;Θ = WJe2KΓ;W;Θ = w Θ ` τi `

int⇀ ` for i ∈ {1, 2}. By the induction hypothesis, (τi j) is defined for all

j ∈ (1, w) and i ∈ {1, 2}. Therefore, (τ j) is defined for all j ∈ (1, w). By

typing rule τ is of kind int⇀ ` and so its application to i is of kind `.

• T-ARITH: similar to T-LOGICAL.

50

• T-CONCAT: WJeKΓ;W;Θ = w1 + w2. We show that (τ i) is defined for i ∈ (1, w2)

and for i ∈ (w2, w1 + w2). (τ i) = (τ2 i) for i ∈ (1, w2) and by the induction

hypothesis (τ2 i) is defined and so is (τ i). (τ i) = (τ1 i − w2 + 1) for

i ∈ (w2, w1 + w2), and since i − w2 + 1 ∈ (1, w1) for i ∈ (w2, w1 + w2),

(τ1 i−w2 + 1) is defined and so is (τ i). By typing rule τ is of kind int⇀ `

and so its application to i is of kind `.

• T-LSHIFT: WJe«nKΓ;W;Θ = w. For the case in which n < w we show that (τ ′ i)

is defined for i ∈ (1, n) and for i ∈ (n,w − n). (τ ′ i) = (τ i − n + 1) for

i ∈ (n,w + n) and since i − n + 1 ∈ (1, w) (τ i − n + 1) is defined by the

induction hypothesis. Otherwise (τ ′ i) =⊥. If n >= w, then (τ ′ i) =⊥. By

typing rule τ ′ is of kind int⇀ ` and so its application to i is of kind `.

• T-RSHIFT: Similar to T-LSHIFT.

• T-ARRINDEX: By the definition of ` Γ; W; Θ, there is some n such that (τx j i)

is defined for all j ∈ (1, n) and for all i ∈ (1, w). Though not shown in the

typing rule for conciseness, we require that n is greater than the maximum

number expressible in we bits, so τx is defined over the range from 1 to all

possible valuations of e and τx e is defined over (1, w) By the induction hy-

pothesis, τe is defined over (1, we), and so τ ′e is defined and of kind int⇀ `.

Since τx is applied to e it also of kind int⇀ `, the application of τ ′e t (τx e)

to an i is of kind `.

�

Lemma 2 (Type Preservation of Expressions) If e is a SecVerilog2 expression,

then for all Γ, W, Θ such that ` Γ; W; Θ, Γ; W; Θ ` e : τ, w, Θ ` τ : int ⇀ `, and

there exists a derivation of T JΓ; W; Θ ` e : τ, wK ↪→ −−−−−→τSIRRTL, let EJeKΓ;W;Θ = e1, ..., en

51

and −−−−−→τSIRRTL = τSIRRTL,1, ...τSIRRTL,m, then JΓ; W; ΘK ` e1 : τSIRRTL,1, ..., JΓ; W; ΘK `

ew : τSIRRTL,w

Proof. By induction over the translation rules of expressions using the type

translation rules of SecVerilog2, the type rules of SIRRTL, Lemma 1, the defi-

nition of well-formedness, and the definition of JΓ; W; ΘK. As before, let (τ i) is

defined mean that (τ i) is in the image of τ .

• v: by the definition of JΓ; W; ΘK, TTRANS-VAR, and Lemma 1.

• e1 bop e2: By T-LOGICAL (and T-ARITH) WJe1KΓ;W;Θ = WJe2KΓ;W;Θ = w, and

by Lemma 1, (τ1 i) and (τ2 i) are both defined and of kind ` for i ∈ (1, w).

Since e is well-typed, by TTRANS-LOGICAL or TTRANS-ARITH, the typing

derivation of e translates into
−−−−−−−−−−−−−−−−→
(T Jτ1K(i)) t (T Jτ2K(i))

∣∣∣∣
i∈(1,w)

if bop is logi-

cal or
−−−−−−−−−−−−−−−−−−−−−→⊔
j∈(1,i)(T Jτ1K(j) t T Jτ2K(j))

∣∣∣∣
i∈(1,w)

if bop is arithmetic.In either case

Lemma 2 holds of e1 and e2 by the induction hypothesis. The typing rule

of binary operators in SIRRTL requires that the type of e is the join of the

types of e1 and e2. For both arithmetic and logical operators the translation

is the join of the type of e1 at index i with the type of e2 at index i, and so

Lemma 2 holds of e.

• {e1, e2}: By Lemma 1, (τ1 i−w2+1) is defined and of kind ` for i ∈ (w2, w1+

w2) and (τ2 i) is defined and of kind ` for i ∈ (1, w2). The formal language

SIRRTL does not support concatenations. However, the typing derivation

of e translates into
−−−−−−−−−−−−→
T Jτ1K(i− w2 + 1)

∣∣∣∣
i∈(w1,w1+w2)

::
−−−−−→
T Jτ2K(i)

∣∣∣∣
i∈(1,w2)

which is

the concatenation of the types of e1 and e2 shifted appropriately. By the

induction hypothesis, Lemma 2 holds of e1, and so the bits of e in range

(w1, w1 +w2) are well-typed. Similarly, Lemma 2 holds of e2 and so the re-

maining bits are also well-typed. Since by the definition of EJ{e1, e2}KΓ;W;Θ,

52

the bits of e1 and e2 are concatenated in the same way as their types, each

bit of EJeKΓ;W;Θ is well-typed in SIRRTL by the corresponding bit of T JτK

(by the SIRRTL typing rule of variables and the definition of JΓ; W; ΘK).

• e′«n, e′»n: The formal language SIRRTL does not support shifts. This case

is similar to {e1, e2}, noting that the bits of e which are not bits of e′ are

always zero, and by the SIRRTL typing rule for constants are well-typed

with type ⊥.

• x[e]: By T-ARRINDEX WJeKΓ;W;Θ = we, and the maximum valuation of e is n

as defined in the translation rule. By the definitions of ` Γ; W; Θ and JΓ; W; ΘK

and Lemma 1 (τx j i) is defined and of kind ` for j ∈ (1, n) and i ∈ (1, w),

so P (xi,j) holds for j ∈ (1, n) and i ∈ (1, w). The definition of EJx[e]KΓ;W;Θ

evaluates to some SIRRTL variable xi,j so by the definition of JΓ; W; ΘK and

the typing rule of SIRRTL variables, Lemma 2 holds of x[e].

�

Lemma 3 (Type Preservation) If c is a SecVerilog2 command, Γ is a type context,

and W is a width environment such that Γ; W; Θ ` c, then JΓ; W; ΘK ` c.

Proof. By induction on the translation of commands. The only interesting case

is assignment. Because the translation for expressions is type-preserving when

those expressions have int⇀ ` types (Lemma 2), and all expressions appearing

in commands have such types (by assignment rule), and the SecVerilog2 type

rule applies the type function for both sides of the assignment to each integer

less than the width of the assigned expression, w, then the translation will result

in w separate SIRRTL assignments, which will all type-check. �

53

Theorem 3 (Observational Determinism) If c is a SecVerilog2 command, Γ is a

type context, and W is a width environment such that Γ; W; Θ `: c, then c obeys observa-

tional determinism.

Proof. This theorem follows directly from Lemma 3 and the proof of observa-

tional determinism for SIRRTL. �

54

CHAPTER 3

INFORMATION FLOW VERIFICATION OF TRUSTZONE

This chapter discusses the application of SecVerilog to verify the informa-

tion flow security of an implementation of a simplified, but realistic multi-core

prototype of a processor that resembles the ARM TrustZone architecture. As

a result of this study, we found it necessary to extend SecVerilog with support

for heterogeneously labeled arrays and bit vectors as described in Section 2.2.2

and Section 2.2.1 of Chapter 2. Our experiments suggest that information flow

analysis is efficient, and programmer effort is modest. We also show that HDL-

evel information flow security can detect hardware vulnerabilities, including

several found in commercial processors. Although the processor described in

this Chapter does not include timing channel protection, and its implementa-

tion includes unconstrained downgrades, this study suggests that HDL-level

information flow security can be applied to practical hardware security archi-

tectures.

3.1 Background: ARM TrustZone

ARM TrustZone is a representative security architecture that is used widely in

practice. Its applications include embedded systems and smartphones. Trust-

Zone uses hardware mechanisms to provide an execution environment that iso-

lates high-security software from low-security software. Other commercial se-

curity architectures [17] also aim to provide an isolated execution environment,

so we believe the findings of this study are applicable to other architectures as

well.

55

TrustZone partitions the hardware and software into two security domains,

called the secure world and the normal (non-secure) world. The high-security soft-

ware executes in the secure world, and the remaining software executes in the

normal world. The software executing in the normal world is prevented from

accessing data owned by the secure world. Practical systems need to allow com-

munication between security domains. For this purpose, TrustZone assumes

the secure-world software is trustworthy, and allows it to access data in either

world. The threat-model of TrustZone does not address timing channel attacks,

and the only physical attacks it addresses are simple ones that exploit debug

interfaces.

TrustZone isolates the secure and normal worlds by introducing a security

tag, called the NS bit. TrustZone uses access control mechanisms in hardware

that check the NS bit. Each processing core stores the NS bit in a program status

register (PSR) to indicate which world is currently executing on the core. Each

bus master and slave that may be used in the secure world is also extended with

an NS bit. For example, DMA engines and display controllers may have an NS

bit. A core can switch its security domain by executing trusted software called

the monitor mode which executes with secure world privilige. The monitor mode

is entered by an explicit instruction or through interrupts. The normal world

cannot change any NS bits.

Access to resources is controlled based on the NS bit in order to isolate the

secure world from the normal one. The system (AXI) bus appends the NS bit of

the bus master to each transaction. Bus slaves inspect the NS bit and prevent the

normal world from accessing secure-world resources. The data of each world

is isolated through memory address partitioning, and access controls. For ex-

56

On-chip Network

Access Control + Arbiter

Normal Memory Secure Memory

NS Blk
...

NS Blk
L2

NS

DMA

NS

Debug

Debug
Request

NS I$NSNS

D$NSNSCore 0

CHK

CHK

NS I$NSNS

D$NSNSCore 1

CHK

CHK

AC

AC

Figure 3.1: TrustZone prototype implementation.

ample, main memory (DRAM) is partitioned into secure and normal based on

address ranges, and the NS bit is checked for accesses to the secure-world par-

tition. TrustZone protects debug interfaces by preventing normal-world debug

requests from affecting the secure world. Similarly, normal-world accesses to

secure-world interrupt configuration registers are disallowed. In some imple-

mentations of TrustZone, data from both worlds can coexist in caches. Coex-

istence is permitted by extending each cache line with an NS bit guarded by

access control. Similarly, TLBs can be extended to store address mappings from

both worlds.

3.2 Prototype implementation

TrustZone is an architectural specification that can be implemented in many

ways. Our prototype is designed to study the practicality of verification with

information flow. We implemented key security features for multicore imple-

mentations of TrustZone, but did not include non-essential features.

57

Figure 3.1 shows a block diagram of our implementation of TrustZone. Our

implementation includes two five-stage pipelined MIPS processing cores, pri-

vate L1 caches, a shared L2 cache, a DMA engine, a ring network, and a mem-

ory module. Each core has private L1 instruction and data caches, which are

connected to a shared L2 cache through a ring network. The L2 cache includes

a prefetch buffer. The system includes a DMA engine that can move data be-

tween memory locations. The DMA engine takes requests from processing cores

through a memory-mapped interface connected to the ring network. It also has

an external debug interface. The L2 cache and the DMA engine are connected

to the main memory controller through an arbiter. Our processor was imple-

mented in 16,234 lines of Verilog code. To test the functionality of the processor,

we used unit tests with over 166 test vectors and executed programs including

vector addition, vector multiplication, merge sort, binary search, and a masked

filter.

The prototype implements the security features of TrustZone that are neces-

sary to isolate the secure world from the normal world. The processing cores,

the DMA engine, and the debug interface include an NS bit to indicate the se-

curity domain. The NS bits for the DMA engine and the debug interface can be

changed by a secure-world core through a memory-mapped interface. All bus

transactions, memory requests, and memory response packets carry the NS bit

of the core or DMA engine that initiated the request.

The prototype supports world switches for cores through an instruction.

World-switching is implemented in a way that ensures that the NS bits of in-

flight instructions are not corrupted. The pipeline is stalled until all in-flight

instructions have completed. Then, the NS bit of the core is changed. When

58

the NS bit changes, SecVerilog clears (sets to 0) registers with security labels

that depend on the NS bit. This clearing prevents implicit downgrading [110].

For example, register files and the PC register are cleared. In this design, argu-

ments between the two worlds are passed via memory. A secure-world handler

is located at Address 0. The core changes the PC to the location storing a switch-

to-normal handler if the PC is 0 in the normal world.

The caches allow data from both worlds to coexist. Each line of the L1 and

L2 caches are extended with the NS bit to indicate the world that owns the data.

On a hit, the NS bit of the access is compared to the NS bit of the cache line. If

there is a mismatch, the access is treated as a miss.

The bus slaves use access control. For example, normal-world requests to

the DMA engine are rejected when the DMA engine is in the secure world. The

main memory includes an access control module. A partition control register

in the module partitions the address space between worlds. The partition con-

trol register is memory-mapped and can only be modified by a secure-world

request.

The prototype implements the security features of TrustZone necessary to

protect the confidentiality and integrity of the secure world in a multi-core SoC.

Protection includes support for hardware IP modules (e.g., a DMA engine) and

a debug interface. However, the security worlds in TrustZone are orthogonal to

traditional privilege levels and virtual memory. Our processor does not include

supervisor/user mode or virtual address translation. Also, optional features

such as additional peripherals, coherent accelerators, tightly coupled memory,

and protected interrupts are not implemented.

59

TrustZone Security Policy Information Flow Policy
Label

Downgrading

P1. Normal world core/IP
cannot (C) read or (I) write
secure-world memory/IP

CT for secure world
core/IP/memory
PU for normal world
core/IP/memory
(dependent type based on
the NS bit)

D1-1. Secure world reads/writes to
normal-world memory/IP
D1-2. Timing dependence (common
for all)

P2. (I) Normal world cannot
change NS bits

PT for NS bits D2-1. Secure world writes to an NS bit
D2.2. Legitimate normal-to-secure
NS-bit switches

P3. (I) Normal world cannot
change TrustZone control reg-
isters

PT for TrustZone control
registers

D3-1. Secure-world writes to Trust-
Zone control registers

Table 3.1: Core TrustZone policy expressed as information flow constraints with
downgrades. (C) and (I) represent policy for confidentiality and integrity, re-
spectively. IP (Intellectual Property) is a hardware module.

3.3 Representing security requirements as information flow

policies

This subsection uses TrustZone as an example to show how HDL-level IFC can

verify an isolated execution environment. TrustZone isolates the secure world

from the normal world using access control policies and mechanisms that con-

trol normal-world accesses. As shown in the first column of Table 3.1, the goal

of each access control policy is to protect either the confidentiality (C) or the

integrity (I) of security-sensitive state.

The high-level security goal of TrustZone can be expressed as information

flow constraints that address either confidentiality or integrity requirements.

The confidentiality policies specify that no information can flow from secure-

world processing cores, memory, or hardware (IP) blocks to normal-world mod-

ules. The integrity constraints ensure that no information from a normal-world

core/memory/IP can affect a secure-world core/memory/IP or other trusted

60

co
nfi
de
nti
ali
tyCTPU

CU

PT

integrity

Figure 3.2: Security lattice for TrustZone.

state such as NS bits and TrustZone control registers.

The above information flow constraints can be translated into an informa-

tion flow policy expressed with a security lattice and labels in HDL code. To

express both confidentiality and integrity levels, we define four security levels:

CT, CU, PT, and PU. The first letter represents the confidentiality level (confiden-

tial or public) and the second letter represents the integrity level (trusted or

untrusted). Then, we define a security lattice that prevents confidential infor-

mation from flowing to public and untrusted information from affecting trusted

as shown in Figure 3.2. In the figure, the arrows represent the direction of al-

lowed information flow.

The second column in Table 3.1 shows how the TrustZone implementation

is labeled using the security levels in the lattice. To protect both confidential-

ity and integrity of secure-world state, variables in secure-world processing

cores, memory, and hardware IP blocks are labeled CT while normal-world ones

are labeled PU. Signals that are statically allocated to one world are annotated

with fixed labels. Most hardware resources (e.g., the processing cores) can be

switched between the two worlds. The security labels of time-shared modules

61

use a dependent type and are expressed as a function (world) of the NS bit (ns)

associated with that module. Here, world(ns) maps the value of ns to a se-

curity label: 1 maps to PU and 0 maps to CT. Signals that must be trusted, but

are not confidential, are labeled PT. For example, NS bits and TrustZone con-

trol registers, such as the one that partitions memory among worlds, must be

trustworthy. The clock and reset variables are also labeled PT.

Unfortunately, strict noninterference is too restrictive for practical systems

like TrustZone because it does not allow any communication between security

levels. TrustZone prevents the normal world from acting maliciously, but trusts

the secure world to release information to or accept information from the nor-

mal world correctly. This permitted communication violates noninterference

and causes type errors.

To bridge the gap between noninterference and practical security policies,

we introduce declassification and endorsement so that designers can explicitly

allow exceptions to noninterference. Declassification releases confidential in-

formation to the public. Endorsement changes the security level of untrusted

information so that it is considered trusted. The term downgrading refers to both.

The third column in Table 3.1 shows how downgrading is used to express

the security policy of TrustZone. TrustZone allows the secure world to ac-

cess the normal world (D1-1). The TrustZone threat model does not include

timing-channel attacks, so information flows through timing (D1-2) are allowed.

Secure-world writes to NS bits (D2-1) and control registers (D3-1) are allowed

even though their values may be read by the normal world. TrustZone allows

the normal world to trigger a world switch through a special instruction (D2-2)

even though this causes a flow from the normal world to the NS bit. The next

62

Component Name C → P U → T

Core Pipeline AddrCtrl→ NSB (1)
AddrCtrl→ AddrCtrl (1)

L2 Cache
Data→ CReg (1)

AddrCtrl→ AddrCtrl (2)
AddrCtrl→ NSB (12)

Network AddrCtrl→ AddrCtrl (4)
AddrCtrl→ NSB (1)

DMA Engine AddrCtrl→ NSB (1)

Debug Interface AddrCtrl→ NSB (1)

Memory Arbiter AddrCtrl→ AddrCtrl (2)

Memory
Access Control
Module

Data→ CReg (1)
AddrCtrl→ NSB (4)

Main Memory Data→ Data (1) Data→ Data (1)
AddrCtrl→ AddrCtrl (2)

Table 3.2: Downgrading expressions in our prototype.

section discusses how downgrading is used in the prototype in more detail.

3.4 Uses of downgrading

Our TrustZone implementation passes type checking when analyzed by SecVer-

ilog. Type-checking formally guarantees that, aside from variables which affect

downgraded expressions, there is no violation of the information flow policy

expressed in the code. Downgraded expressions explicitly permit exceptions to

the policy

Table 3.2 summarizes the uses of downgrading in each microarchitecture

component of our implementation of TrustZone. The table categorizes these

downgrading expressions as confidentiality exceptions (C → P), integrity ex-

ceptions (U → T), or both. The downgrade expressions are further classified by

the type of variable – data (Data), address or control (AddrCtrl), NS-bit (NS), or

control register (CReg) – at the source and destination using the notation source

63

→destination. Address or control variables include valid/ready variables in

the network, and instruction decode outputs and stall variables in the cores. The

numbers in parenthesis indicate the number of downgrade expressions of that

form.

SecverilogBL enforces a timing-sensitive security property; however, the

threat model of the architecture under study does not address timing channels.

Timing channels will cause type errors even though they are not considered

threats. Therefore, timing channels must be distinguished from other kinds of

illegal information flows. Categorizing flows based on variable type is useful

for doing so; timing channels in hardware typically originate from an address

or control variable, but are not directly derived from data.

The following paragraphs summarize why downgrading was needed based

on the variable type categorization.

Data→Data TrustZone allows the secure world (CT) to read or write normal-

world (PU) memory, contrary to the lattice policy. When secure world writes

to normal-world memory, confidentiality is violated. Similarly, secure-world

reads from normal-world could violate integrity. The data must be downgraded

to permit the intended behavior. This use of downgrading is safe because the

secure world is trusted.

Data→ CReg Control registers are labeled PT, because they are used to con-

trol both secure-world and normal-world operations. However, control regis-

ters can also be modified by the secure-world. This is a violation of the confiden-

tiality policy (since it is a flow from CT to PT), and must be explicitly permitted

with downgrading. Note that normal world is still prevented from setting con-

64

input {world(ns1)} cpu1_valid;
input {world(ns2)} cpu2_valid;
input {PT} ns1;
input {PT} ns2;
output {PT} ns_out;
...
if (cpu1_valid == 1) ns_out <= ns1;
else if (cpu2_valid == 1) ns_out <= ns2;
...

Figure 3.3: A flow from control signals to the NS bit due to resource arbitration.

trol registers since downgrading is performed only for a write from the secure

world.

AddrCtrl → Data, AddrCtrl → AddrCtrl Illegal flows from address/con-

trol variables to address, control, and data variables are caused by timing in-

terference between security levels. Timing interference leaks information from

address/control variables (AddrCtrl) but not data variables (Data).

AddrCtrl→NSB Resources which are used by both worlds cause flows from

control variables to the NS bit. Figure 3.3 shows a representative example of

this type of flow. It shows a bus arbiter that accepts requests from both cores

that could be executing in either world. The output NS bit becomes the NS

bit of the core that is granted access. Here, the NS bit is labeled PT because its

integrity needs to be protected from the normal world, leading to information

flow from CT/PU to PT. In the core, the NS bit is changed by an instruction with

label world(ns), similarly requiring downgrading. Here, downgrading affects

the timing of the NS bit change, but does not introduce a vulnerability.

The information flow analysis in SecVerilog formally proves timing-sensitive

noninterference. However, explicit uses of downgrading expressions are used

to weaken noninterference. We argue that in our implementation, downgrad-

65

ing is used only under the authority of the secure world, and therefore that

information release cannot be controlled by the normal world. To show that

this is true, we note that information is never downgraded if the secure world

never performs an operation. In other words, downgrading can be removed

if the secure world is hard-coded to not execute. Both Data → Data (secure-

world reads/writes to memory) and Data→ Creg (secure-world writes to con-

trol registers) flows happen under an if condition that checks if an access is

from the secure world. These downgraded information flows never happen if

there is no secure-world access. The flows from AddrCtrl variables cause tim-

ing contention. Downgrading is unnecessary if there is no secure-world access

because ns_out will always be 1 (normal world). Since information is never

downgraded when the secure world is inactive, this suggests that information

release cannot be controlled by the normal world.

3.5 Security bug detection

Here, we study the effectiveness of the proposed information flow analysis at

detecting security bugs. We developed a set of security bugs based on reported

vulnerabilities in commercial products [97, 98] as well as possible mistakes.

Bugs 1-5: Access Control Omission In TrustZone, access control checks en-

sure that trusted/confidential state can only be accessed by the secure world.

If access control checks are left out, security is violated. We model five bugs,

which omit an access control check for 1) the control register that partitions

main memory between worlds, 2) the main memory, 3) the debug interface, 4)

the L2 cache prefetch buffer, and 5) the L2 cache blocks. Bug 3 is inspired by

66

input {PT} ns;
input [dw-1:0] {world(ns)} data_in;

reg [dw-1:0] {PT} part_reg;
...
// Detected bug.
part_reg <= data_in;
...
// Correct code.
if (ns == 0) part_reg <= downgrade(data_in, PT);
...

Figure 3.4: A detected access control omission.

a back door in the Actel ProASIC3 [79], Bug 4 models a vulnerability found in

an AMD processor [35], and Bug 5 models a privilege escalation attack in Intel

processors that support SMM mode [98]. Figure 3.4 shows how omitted access

control checks for the partition register are detected. data_in has the label CT

when ns is 0 and PU when ns is 1. The code on line 7 is detected as a bug because

the type system cannot prove that data_in is trusted. The correct code on line

10 adds a check to ensure that the ns bit is 0, implying that data_in is trusted in

this context. Bugs 2-4 are detected and fixed similarly.

Bug 5: Cache Poisoning We emulate and detect a subtle vulnerability found

in Intel processors [98]. The vulnerability allows a user-mode process to exe-

cute arbitrary code in System Management Mode (SMM), the highest privilege

level. SMM mode is only used to execute SMM handlers – interrupt handlers re-

quiring such high privilege. In the vulnerable processor, the region of physical

memory which stores SMM handlers is protected by access control in the mem-

ory interface. A control register can mark this region as un-cacheable, and it

does so by default. However, the control register can be modified without SMM

privilege, allowing an attacker to make the SMM memory cacheable. Then, the

attacker can write to the address of an SMM interrupt handler, and change the

67

handler code in a cache. Subsequent executions of the handler address will hit

in the cache and execute the attacker’s code. We modeled this vulnerability in

our processor by removing the NS-bit tags and access control from the L2 cache

while keeping checks at the memory interface. We added a control register that

sets cache-ability for the secure world, which can be modified by either world.

The bug is detected because the cache lines can receive data that is from either

world, but no access control is present.

Bug 6: NS-bit Flip Memory requests are transmitted with an NS bit that

indicates the security level of the request. This bug inverts the NS bit so that

a memory request from a normal-world core is interpreted as a secure-world

access. This bug is detected because flipping an NS bit changes the type of de-

pendently typed variables. In the network, the input and output data variables

both have types that depend on the NS bit. If the input and output NS bits do

not match, the security labels of the input and output data will also not match

causing an error. Even if the bit is flipped in multiple places, the error will be

detected because eventually the input and output types will not match. This

demonstrates the benefit of information flow analysis, which tracks the propa-

gation of data throughout the design.

Bug 7: Network Routing Bug This bug models a network implementation

that leaks secrets by incorrectly routing a response from the secure-world mem-

ory to a normal-world core. In our TrustZone implementation, the bug is pre-

vented by the memory response access control checks and the L1 cache tags. To

test the bug, we removed the access checks and used an L1 cache that keeps

data from only one security domain at a time. This bug is detected at the in-

terface between the L1 caches and the on-chip network. Without the checks at

68

the response ports, the type system cannot prove that the NS bit of a response

matches the NS bit of a cache.

Bug 8: World Switch Bug For a world switch (i.e., context switch) from nor-

mal world to secure world, the processor pipeline must complete all in-flight

instructions before changing the NS bit. Otherwise, in-flight normal-world in-

structions will execute with escalated privilege. We model a vulnerable mode

switch by omitting the pipeline drain step. This bug is detected because chang-

ing the NS bit causes the labels of the dependently typed registers to change.

SecVerilog prevents label changes from leaking information by dynamically

clearing register contents.

Bug 9: Memory Address Change Bug To understand the limitations of

HDL-level IFC, we constructed two bugs that change the memory address at

the memory interface. Figure 3.5 illustrates the bugs. In both cases, the address

is changed from the secure-world region to the normal-world region so that a

write into secure-world memory gets stored in normal-world memory. This al-

lows the normal world to read data that should be stored in the secure-world

memory. Bug 9-1 is not detected, because downgrading allows the secure-world

access to write data into the normal-world memory. On the other hand, Bug 9-2

is detected, because the change in the secure-world memory address is triggered

by a normal-world variable (normal_world_trigger). The examples show that

functional bugs in the secure world may lead to undetected bugs through down-

grading, but only if there is no influence from the normal world. Vulnerabilities

that do not affect downgraded variables are always detected.

Other Bugs Hicks et al. [35] proposed SPECS, a run-time bug detector. They

evaluated it by implementing 14 bugs in the OpenRISC processor. The bugs in-

69

// 0x0000-0x8000 is the secure-world memory.
// the rest is the normal-world memory.

// Code common to both bugs
wire [0:31] {world(ns)} addrout, addrin;
wire [0:31] {world(ns)} datain;
reg [0:31] {CT} data_sec;
reg [0:31] {PU} data_norm;
always@(*) begin

if((ns == 0) && (addrout > ’h8000))
data_norm = downgrade(datain, PU);

else
data_sec = datain;

end
// Bug 9-1: not detected
assign addrout = (addrin <= ’h8000) ?

addrin + ’h8000 : addrin;
// Bug 9-2: detected
wire {PU} normal_world_trigger;
assign addrout = (normal_world_trigger ?

addrin + ’h8000 : addrin;

Figure 3.5: Bug 9: memory address change bugs.

cluded privilege escalation, register target/source redirection, interrupt-register

contamination, interrupt disabling, code injection, jump instruction disabling,

and others. While we could not implement those bugs in our processor ar-

chitecture (e.g., our prototype does not have protection rings or an MMU), we

reviewed the HDL code studied for SPECS. These bugs all allow a user-mode

process to change supervisor-mode variables. Therefore, these bugs should all

be detected by information flow analysis if user-mode variables are labeled PU

and supervisor-mode variables are labeled CT.

3.6 Evaluation

Programming Overhead Table 3.3 shows the number of lines of code for the un-

verified version of our processor (Unverified) and the verified version with se-

70

Component Unverified Verified Percentage
Top-Level Module 1391 1412 1.5%
Processor 3474 3504 0.86%
L1 Cache 1250 1308 4.6%
Access Control 0 75 N/A
On-chip Network 2122 2557 1.7%
L2 Cache 2976 3093 3.9%
DMA controller 525 549 4.6%
Debug interface 350 369 5.4%
Main memory 974 1015 4.2%
Library Modules 2780 2818 1.4%
Total 16234 16700 2.9%

Table 3.3: Programming overhead (lines of code).

curity labels (Verified). We emphasize that the verification procedure is purely

static and performed at compile time. However, the implementation changes

slightly 1) to add extra variables specifically for encoding dependent types and

2) to aid the program analysis phase that estimates the run-time values of de-

pendent types. The code increases by 2.9%.

Area, Power, and Performance Overheads The processor was synthesized

using Cadence Design Compiler using a standard 90nm library to obtain per-

formance, area, and power results. The clock frequency and CPI were identical

for the verified and unverified versions. The area and power overheads are

negligible (0.37% and 0.32%).

71

CHAPTER 4

THE HYPERFLOW PROCESSOR: GENERAL, HARDWARE-ENFORCED

INFORMATION FLOW POLICIES

This Chapter presents HyperFlow, a processor architecture and implemen-

tation designed for information-flow security that is verified with ChiselFlow

at design time, providing strong security assurance about its design and imple-

mentation. ChiselFlow is described in Chapter 2. The HyperFlow architecture

is carefully designed to remove disallowed information flows between security

levels, including timing channels, and the information flows within the design

are statically verified using a security type system. HyperFlow is also imple-

mented as an extension of a fully-featured processor that is capable of running

an OS.

HyperFlow security policies. Beyond being a practical, realistic processor,

HyperFlow also innovates in the security policies it enforces. Unlike prior pro-

cessors with verified information flow, which only supported simple, fixed 2-

point or 4-point policy lattices, HyperFlow can enforce complex application-

defined security policies directly in hardware, in line with work on information-

flow security in operating systems and programming languages which suggests

that real applications need rich lattice policies that can capture complex trust re-

lationships among mutually distrusting principals [66, 24, 104, 14].

We show how to encode complex and dynamic security policies involving

both confidentiality and integrity even for applications built from communi-

cating processes serving mutually distrusting principals. By enforcing security

policies in hardware, the software component of the trusted computing base is

minimized, and strong security assurance is obtained. While practical tagged

72

architectures have previously been built with the ability to encode information

flow policies [106, 22], they do not handle timing channels, and their implemen-

tations have not been secured with an information flow HDL.

HyperFlow represents rich lattice policies in hardware by introducing hy-

percube labels, in which software-level labels are mapped to points in a hyper-

cube. Hypercube labels enable efficient comparisons between security levels

directly in hardware, and they are amenable to static checking in the security-

typed HDL.

Controlled downgrading. To be practical, systems based on information-

flow security must allow exceptions to noninterference [33]. For example, ap-

plications must be able to release the results of computing on secrets. This can be

accomplished by downgrading, a mechanism for relaxing information-flow poli-

cies. Uncontrolled downgrading is dangerous, so the HyperFlow ISA provides

instructions for controlled downgrading. Downgrading of confidentiality poli-

cies (declassification) is permitted only when it is robust [101]—secrets can be

released only if the downgrade can be influenced only by the owners of these

secrets. Dually, downgrading of integrity policies (endorsement) is permitted

only it when it is transparent [10]: that is, if the party providing the endorsed

data could have read it. Together, these conditions ensure that information flow

is nonmalleable. Nonmalleable information flow is enforced not only at the ISA

level but also at the HDL level, providing similarly strong assurance about the

implementation.

Secure interprocess communication. Another novel and challenging fea-

ture of HyperFlow is its support for secure communication across trust do-

mains. HyperFlow allows but constrains interproness communication (IPC) via

73

shared memory. It also supports the secure communication via registers for

passing arguments and return values on system calls. System calls and shared

function libraries present another challenge that HyperFlow addresses—both

scenarios require a mechanism by which untrusted code can invoke trusted

code. HyperFlow introduces an information-flow secure call gate [76, 96] mech-

anism to make cross-domain control transfers secure.

Memory protection. Conventional systems use virtual memory to isolate

pages that belong to different applications. However, hardware support for vir-

tual memory is complex and its correctness also depends on other mechanisms

such as cache coherence, which is notoriously difficult to implement correctly.

HyperFlow replaces conventional memory protection with security tags associ-

ated with each physical page (or frame) of memory. Security tags are mapped to

hypercube labels using a mapping defined by the operating system; accesses to

memory are then mediated using hypercube labels. The security of this mecha-

nism is checked in the HDL code at design time. Despite its novel mechanism

for memory protection, HyperFlow also provides a virtual-memory interface to

support existing operating systems and applications.

Prototype implementation. We implement HyperFlow as an extension to

the RISC-V Rocket processor, and HyperFlow supports a complete RISC-V ISA.

Our implementation allows conventional virtual-memory protection to interop-

erate with HyperFlow’s information flow protection. HyperFlow implements

performance-critical features that were absent in prior processors secured with

an IFC HDL. The prototype implementation shows that the new security fea-

tures in HyperFlow add moderate area overhead, largely due to the additional

storage for security tags, and moderate performance overhead due to timing-

74

channel protection. The HyperFlow implementation is also more fully-featured

than prior information-flow secured processors. The timing-safe implementa-

tions of these features also type-checks with ChiselFlow, providing strong as-

surance that the implementation is secure.

The rest of this chapter is organized as follows. Section 4.1 describes the

security policies enforced by HyperFlow. Section 4.2 describes the instruction

set architecture of HyperFlow. Section 4.3 describes the microarchitecture of

our prototype implementation of HyperFlow and how the implementation is la-

beled and type-checked with ChiselFlow. Section 4.4 evaluates the performance,

power, and area of our prototype implementation as well as the expressiveness

of our ISA. Section 4.5 describes implementation and design trade-offs as well

as the process of implementing information-flow secure hardware.

4.1 Security Policies in HyperFlow

HyperFlow enforces information flow security policies directly in hardware.

Prior work on label models for information flow security support rich policies

allowing mutually distrusting principals to communicate [66, 24, 104, 14]. These

label models represent policies using lattices of information flow labels. Hy-

perFlow can enforce policies described in these models because it can enforce

general lattice-based policies.

75

4.1.1 Confidentiality and integrity policies

Information flow labels in HyperFlow support reasoning about both confiden-

tiality and integrity. An information flow label ` = (c, i) in HyperFlow is a pair

of a confidentiality level c and an integrity level i. Confidentiality and integrity

levels in HyperFlow both form lattices that are ordered by vC and vI respec-

tively. The ordering on confidentiality levels specifies constraints on secrecy; if

c vC c′, then c is no more confidential than c′. Similarly, if i vI i′, then i is at least

as trustworthy as i′. The ordering of integrity levels and confidentiality levels is

dual: high confidentiality levels are more restrictive than low ones, whereas low

integrity levels are more restrictive than high ones. The orderings on confiden-

tiality and integrity levels are lifted to a lattice of labels v; if c vC c′ and i vI i′

then (c, i) v (c′, i′). We write C(`) and I(`) to denote just the confidentiality or

integrity part of the label respectively.

4.1.2 Lattices via bit vectors

In order to support efficient computations and comparisons of labels in hard-

ware, HyperFlow represents lattices over bit vectors. We first explain the order-

ing of confidentiality levels. Levels are mapped to a point in a hypercube, which

is expressed using a bit vector. A bit vector b is split into d ∈ D dimensions, each

of K bits. Bit vectors are then functions from [1, D] to [0, 2K − 1], and the nota-

tion b(i) represents the value in the ith dimension of b. Bit vectors b1 and b2 are

ordered in the confidentiality lattice, written b1 vC b2 if each dimension of b1 is

numerically less than or equal to the corresponding element of b2. The join (tC)

and meet (uC) of two confidentiality components are respectively computed by

76

b ∈ B = [1, D]→ [0, 2K − 1]

b1 vC b2 , ∀d ∈ [1, D].b1(d) ≤ b2(d)

(b1 tC b2)d , max{b1(d), b2(d)}
(b1 uC b2)d , min{b1(d), b2(d)}

Figure 4.1: Confidentiality ordering over bit vectors.

b ∈ B = [1, D]→ [0, 2K − 1]

b1 vI b2 , ∀d ∈ [1, D].b1(d) ≥ b2(d)

(b1 tI b2)d , min{b1(d), b2(d)}
(b1 uI b2)d , max{b1(d), b2(d)}

Figure 4.2: Integrity ordering over bit vectors.

taking the maximum or the minimum over the corresponding dimensions of

each vector. The lattice over bit vectors is defined more formally in Figure 4.1.

As an example, if b1 and b2 are each bit vectors of 4, 2-bit dimensions, and b1 is

10100111 and b2 is 10010010, then b2 vC b1. It is straightforward to check that

this order has lattice properties (i.e., it is a transitive, reflexive, and antisym-

metric partial order). The ordering in the integrity lattice is exactly dual to the

ordering in the confidentiality lattice as shown in Figure 4.2.

We write (c, i)t (c′, i′) , (ctC c′, itI i′) and (c, i)u (c′, i′) , (cuC c′, iuI i′) to

denote the join and meet over labels respectively. We use > and ⊥ to denote a

sequence of all 1’s and all 0’s respectively. In the confidentiality order,> and⊥

are completely secret and completely public respectively. In the integrity order,

> and ⊥ are completely trusted and completely untrusted respectively. The

labels (⊥,>) and (>,⊥) are the least and most restrictive labels in information

flow order (v).

77

Other representations of lattices in computer systems have been studied in

the past [32]. Because HyperFlow uses information flow labels for access control

and timing-channel protection, lattice comparisons and computations need to

be done throughout the implementation, and the ability to efficiently update

and compare labels directly in hardware is particularly important in designing a

processor with strong information flow security. Prior representations of lattices

such as adjacency lists and matrices are less space-efficient. Other approaches

that rely on caching require software intervention on each lattice operation. The

hypercube lattice is most similar to the skeletal representation, also known as

the Fidge and Mattern vector clock [40]. However, vector clocks have not been

used to represent lattices in hardware in prior work.

4.1.3 Non-malleable downgrading

Systems for information flow control are often intended to enforce noninterfer-

ence, which prevents all information flows that violate lattice policies. How-

ever, noninterference is too restrictive for practical systems. For example, data

computed using secrets may eventually need to be released publicly. Noninter-

ference may be weakened through downgrading which relaxes information flow

labels. Downgrading that weakens confidentiality is said to declassify whereas

downgrading that weakens integrity is said to endorse [103].

Because downgrading weakens noninterference, effort has been made to

constrain downgrading to limit its potential to cause harm [75]. In this work, we

permit communication that weakens noninterference as long as the downgrad-

ing it causes is nonmalleable [10]. Nonmalleable information flow subsumes

78

two security conditions, robust declassification and transparent endorsement.

These security conditions have not been enforced by previous hardware mech-

anisms.

Robust declassification [101] only permits information to be downgraded by

parties that have authority over that information. As in prior work on defin-

ing robust declassification [15, 10], authority (trust, privilege) is represented by

integrity; only a principal at least as trusted as I(p) can declassify data with

confidentiality C(p). This constraint is useful for decentralized systems such as

microkernels. A principal A can declassify its data to a principal B, and as long

as B does not have integrity I(A), B can observe A’s data but is prevented from

releasing it elsewhere.

In HyperFlow, a process with label `cur can declassify a label ` to `′ only if

the following holds:

C(`) vC C(`′) tC
(
I(`cur) tI I(`)

)
.

This condition follows directly from prior work on defining robust declassifica-

tion in the context of programming languages [15, 10]. Roughly, it allows the

confidentiality C(`) of the data being declassified to be “made up for” by the

integrity I(`) of the data being declassified and the integrity I(`cur) of the cur-

rent process. In other words, low-integrity processes cannot influence whether

or not secrets are declassified. When ` can be robustly declassified to `′ by a

process with label `cur, we write ` C−−→
`cur

`′. Notably, the condition includes a

confidentiality join involving an integrity label component; this is well-defined

because tC is an operation defined over bit vectors and it is agnostic to whether

the vectors represent integrity or confidentiality values.

The dual of robust declassification is transparent endorsement [10]. It sets a

79

maximum confidentiality on endorsements to prevent opaque writes that could

enable attacks. A write is opaque if a principal could have written data but not

read it. In HyperFlow, a process with label `cur can endorse a label ` to `′ if,

I(`) vI I(`′) tI
(
C(`cur) tC C(`)

)
.

This condition follows directly from work on defining transparent endorsement

for a functional programming language [10]. When ` can be transparently en-

dorsed to `′ by a process with label `cur, we write ` I−−→
`cur

`′. When `
I−−→

`cur
`′ and

`
C−−→
`cur

`′ we say that ` can be nonmalleably downgraded to `′ by a process with

label `cur and we write ` −−→
`cur

`′ [10].

4.2 The HyperFlow Architecture

HyperFlow is realized as a tagged architecture where security labels are explic-

itly represented as hardware tags for a process, registers, and memory pages.

HyperFlow compliments conventional memory protection enforced by virtual

memory with security tags that are associated with each physical page (or

frame) of memory. Tagged physical memory enables static checking of infor-

mation flow with a type system. Virtual memory does not ensure noninterfer-

ence; it is possible for the same physical page to be mapped to virtual addresses

owned by distrusting processes. Even if the mapping did ensure noninterfer-

ence, it would not be possible to prove that noninterference is established purely

by inspecting the hardware design, since the mapping is software-defined. The

tagged physical memory can also be used to reduce the software trusted com-

puting base by removing the need to rely on virtual memory for process isola-

tion.

80

The security tags in HyperFlow are information flow labels. By enforcing

information flow labels in hardware, HyperFlow can permit isolation among

multiple principals that are mutually distrusting, yet communicate. Nonin-

terference precludes communication among mutually distrusting principals, so

the information that they are communicating must be downgraded. However,

HyperFlow constrains these downgrades by ensuring that they are nonmal-

leable [10]. In doing so, HyperFlow ensures that processes cannot leak informa-

tion that they do not have authority over. Enforcing non-malleability requires

the ability to inspect the integrity and confidentiality of the information being

downgraded as well as the principal initiating the downgrading. This is accom-

plished by making the information flow labels visible in hardware.

4.2.1 Process levels

Processes executing in HyperFlow are associated with a level, `cur. The level

C(`cur) represents the highest level of secrecy that the process can observe, and

I(`cur) represents the most trusted level of information it can affect. In order

for the currently executing process to read a page of memory, m, we require

M`(m) v `cur, where M` is a mapping from pages to their information flow

labels. Similarly, to write to m, we require that `cur vM`(m).

HyperFlow also associates security labels with registers to facilitate two

kinds of communication that are needed in processors: 1) communication be-

tween userspace applications and the operating system during system calls, and

2) interprocess communication in memory. During system calls, arguments and

return values are communicated between the application and system call han-

81

dler via registers. HyperFlow permits communication using registers by asso-

ciating labels with registers and through instructions that downgrade registers’

labels. Assuming the application is untrusted, the trusted call handler can en-

dorse the registers storing the arguments after inspecting them. At the end of

the system call, the call handler can declassify the registers storing the return

values before re-entering the public application.

Because information flow labels are used to enforce security, HyperFlow

must ensure that the labels accurately reflect the security of the data they pro-

tect. General-purpose register r has security label `r. Normally, to store the

content of r to an address in m, we require `r v M`(m). Similarly, loading a

word from m into r requiresM`(m) v `r.

Though secure, these invariants sometimes prevent necessary communica-

tion among distrusting principals. HyperFlow permits interprocess communi-

cation among distrusting principals via shared memory so that it provides a fa-

miliar software interface. Writes to and reads from shared memory that would

violate noninterference require downgrading. Pages can be downgraded; how-

ever, downgrading an entire page is too imprecise for many applications. Hy-

perFlow supports downgrades at the granularity of an individual word with

downgrading load and store instructions. These instructions work just like con-

ventional loads and stores except that they downgrade the source data while it

is copied. HyperFlow also supports page downgrades for zero-copy sharing of

entire pages.

Processes in HyperFlow are also protected against information flow viola-

tions caused by the instructions that are fetched by the currently executing pro-

cess. The active process should not execute low-integrity instructions because

82

this would allow adversaries that the process does not trust to influence the

code that the process executes. Similarly, branching conditions that depend on

secrets can cause secrets to be released through the instructions that HyperFlow

executes. Information leaks through control flow are called implicit flows.

HyperFlow prevents implicit flows because `cur also represents the security

label of the fetched instruction and control flow decisions Branches cannot de-

pend on a register r unless `r v `cur. Similarly, for all instructions that write to a

register r, HyperFlow requires `cur v `r to ensure that the label of `r accurately

reflects the process that influenced it.

4.2.2 Information-flow call gates

The restriction on branch conditions and on writes to registers together pre-

vent an untrusted or secret process from invoking code that is trusted or public.

However, untrusted applications need to be able to call trusted code when mak-

ing system calls, and secret applications need to be able to call public functions

from libraries. HyperFlow securely supports control transfers of this form with

a mechanism that is analogous to call gates that originated in Multics [76]. Call

gates in HyperFlow tightly couple the entry point (program counter) that initi-

ates the code with an information flow label that represents the privilege level

of that code. A process at level `cur can register a call gate at level `′ as long

as `cur v `′. Another process can then invoke a call gate, at which point the

program counter is set to the entry point of the gate and `cur is set to the level

at which the gate was registered. To allow protected returns from call gates,

invoking a call gate also pushes the previous program counter value and level

83

of `cur onto a hardware stack. The executing process can then invoke a return

instruction to pop the stack, jumping to the old pc value and privilege level.

Call gates in HyperFlow are unique in that conventional hierarchical privi-

lege levels are replaced with more general lattice-model information flow labels.

By generalizing privilege levels, HyperFlow securely supports control transfers

with fewer privilege changes than in a conventional processor while simulta-

neously providing more fine-grained separation of privilege. For example, in a

system managed by a microkernel running on HyperFlow, a network driver can

register a call gate at a security level `net that is incomparable with other compo-

nents of the microkernel. When an application wishes to send a packet over the

network, it can directly invoke the call gate transferring immediately to `net. In

a conventional processor, the network driver can either run in supervisor mode,

in which case the application must implicitly trust the entire kernel, or the net-

work driver can run in userspace. In the second case, the application must first

make a system call causing a transition to supervisor mode before the kernel

delegates to the userspace driver. In this case, the application must both trust

the kernel to delegate to the driver, and there is a performance penalty because

of the extra privilege changes.

Using just a single level, `cur, for a given process is often sufficient for ap-

plications – particularly legacy applications that do not use information flow

labels internally. However, other applications require the ability to operate on

data within a space of information flow labels. To permit flexibility with the

label of executed instructions, HyperFlow allows the active process to move the

level of `cur within a space of labels bounded by `lwr and `upr. When setting

the value of `cur, we require `lwr v `cur v `upr. For a process executing with a

84

space of labels, C(`upr) and I(`upr) represent the most secret and most trusted

information that the process can observe and affect respectively. On the other

hand, C(`lwr) and I(`lwr) represent the least secrecy the process can claim it has

observed and the least trustworthy information that it can be influenced by.

4.2.3 Instruction set extensions

HyperFlow introduces new instructions as well as new control and status reg-

isters. Security levels in HyperFlow are represented as a pair of confidential-

ity and integrity components as described in Section 4.1. Levels `lwr, `cur, and,

`upr are each stored in control and status registers (CSRs) and are accessed with

conventional CSR instructions. The registers that store `lwr and `upr define the

bounds for a process. To prevent a process from circumventing its own bounds,

the bounds can only be modified when the processor is in the most public and

trusted level, that is `cur = (⊥,>). However, `cur can be modified as long as

`lwr v `cur v `upr.

The new instructions are summarized in Table 4.1. The first column de-

scribes the instruction name and operands, the second column describes restric-

tions that must be satisfied when executing instructions, and the third column

describes what the instruction does if the restrictions are satisfied. We overload

the notation r to denote the value stored in register r. As before, `r denotes

the label associated with r andM`(a) denotes the label of the page containing

address a.

The instructions DECLREG and ENDOREG downgrade registers. The DECLREG

instruction declassifies the value stored in r1 to the confidentiality level stored

85

Instruction Restrictions Behavior

DECLREG R1, R2

`cur v (r2, I(`r1))

`r1
C−−−→

`cur

(r2, I(`r1))

`r2 −−−→
`cur

(⊥,>)

C(`r1)← r2

ENDOREG R1, R2

`cur v (C(`r1), r2)

`r1
I−−−→

`cur

(C(`r1), r2)

`r2 −−−→
`cur

(⊥,>)

I(`r1)← r2

RSTLREG R1 None.
`r1 ← `cur

r1 ← 0

LWDWN R2, IMM(R1)
M`(r1 + IMM) −−−→

`cur

`r2

M`(r1 + IMM) −−−→
`cur

`cur
r2 ←M(r1 + IMM)

SWDWN R2, IMM(R1) `r2t`cur −−−→
`cur

M`(r1 + IMM) M(r1 + IMM)← r2

SETMEM R2, IMM(R1) `cur = (⊥,>)
M`(r1)← r2

M(r1)← 0

DECLMEM R2, IMM(R1)

`cur v (r2, I(M`(r1 + IMM)))

M`(r1 + IMM)
C−−−→

`cur

(r2, I(M`(r1 + IMM)))

`r2 −−−→
`cur

(⊥,>)

`r1 −−−→
`cur

(⊥,>)

C(M`(r1))← r2

ENDOMEM R2, IMM(R1)

`cur v (C(M`(r1)), r2)

M`(r1 + IMM)
I−−−→

`cur

(C(M`(r1 + IMM)), r2)

`r2 −−−→
`cur

(⊥,>)

`r1 −−−→
`cur

(⊥,>)

I(M`(r1))← r2

REGLGATE R1, R2

(`cur t `r1 t `r2) v r2
`r2 −−−→

`cur

(⊥,>)

`r1 −−−→
`cur

(⊥,>)

T [r1]← r2

LCALL IMM None.
S ← S :: (pc + 4, `cur, `lwr, `upr)

pc← pc + IMM

`cur ← T [pc + IMM]

LCALL IMM(R1) `r1 −−−→
`cur

(⊥,>)

S ← S :: (pc + 4, `cur, `lwr, `upr)

pc← r1 + IMM

`cur ← T [r1 + IMM]

LRET None.
(pc, `cur, `lwr, `upr)← tail(S)

S ← head(S)

SETBOUNDS `cur = (⊥,>)

`cur ← `ncur

`lwr ← `nlwr

`upr ← `nupr

Table 4.1: New Instructions Added in HyperFlow.

in r2, but it permits the declassification only if it is robust. The first restriction

prevents implicit flows by ensuring that `cur can write to the new level of r1.

The second restriction ensures that r1 can be robustly declassified from `r1 to

(r2, I(`r1)).

86

The last restriction is more subtle – it prevents potential information flow vi-

olations that might be caused by the use of r2 as an argument. The register labels

and memory labels are fully public and fully trusted. In most work on secure

information flow, labels are public and trusted; otherwise, merely inspecting

the labels releases information, and if the labels are not trusted, it is hopeless to

rely on them for security. Because this instruction allows the value stored in r2

to influence a label, it must be permitted to influence fully public and trusted

data. A natural way to ensure this is to simply require that `r2 = (⊥,>). How-

ever, this restriction would often require extra instructions to first downgrade

r2 before downgrading r1. Instead, we enforce a less restrictive, but equally

secure condition—it must be possible to downgrade r2 to (⊥,>) using robust

declassifications and transparent endorsements. This relaxed restriction does

not weaken security because when the restriction on the label of r2 holds, it is

always possible to first downgrade the label of r2.

The instruction RSTREG allows a process to reclaim a register without down-

grading by setting the level of the register r1 to `cur. In order to avoid possibly

downgrading the value stored in r1, r1 is cleared. Because this instruction takes

no arguments other than r1, and it happens unconditionally, no restrictions on

this instruction are necessary. This instruction is useful for easily resetting the

labels of registers because it does not impose any restrictions.

The LWDWN instruction works like a normal load word instruction, but it re-

laxes the restrictions on information flow labels. It permits the load if the value

of the page from which the data is loaded could be downgraded to the label

of the destination register, and to `cur. Similarly, SWDWN works like a store in-

struction that permits the store if the register contents could be downgraded to

87

the label of the destination page. Both instructions are useful for interprocess

communication via shared memory.

The memory levels can be reset by totally trusted and public software

through a SETMEM instruction, which takes two arguments: the page-aligned

physical address in register r1 and confidentiality and integrity components in

r2. SETMEM setsM`(m) to the value stored in r2. The SETMEM instruction can only

be executed when `cur = (⊥,>). Trustworthy software that uses this instruction

should clear the contents of the page to prevent implicit downgrades.

Entire pages can also be declassified/endorsed by user-space applications

through the DECLMEM and ENDOMEM instructions, which are similar to SETMEM ex-

cept that they require the changes in memory levels to be robust/transparent as

in DECLREG and ENDOREG. As with DECLREG and ENDOREG, information flow vio-

lations through labels are also prevented by requiring that the arguments that

influence labels can be downgraded securely.

The REGLGATE instruction registers a new call gate with a pc value of r1 and a

label of r2 by adding it to a table T , that stores call gates by mapping pc values to

labels. The first restriction, (`cur t `r1 t `r2) v r2, checks that the process creating

the gate and the arguments from which the gate is constructed are no more

secret and are at least as trusted as the label of the gate. The entries in the call

gate table are public and trusted (though the labels of individual gates may be

more restrictive), because processes that attempt to use call gates must be able

to see whether or not they exist. Therefore, the last two restrictions check that

the active process can downgrade the register arguments to public and trusted

because they influence the creation of a call gate entry.

88

The LCALL and LCALLR instructions execute a call gate and have the same

instruction formats as conventional JAL and JALR instructions. The LCALL in-

struction specifies the call-gate entry point with an immediate that is added to

the current pc value, whereas the LCALLR instruction specifies the entry point by

adding an immediate to a register argument. For both instructions, if the spec-

ified entry point is found in the call gate table, the address of the instruction

following the call and the value of `cur prior to the call are pushed to a hardware

stack S for return addresses and labels. The processor then sets the pc value to

the entry point of the gate and sets `cur to the label of the gate. The instruction

LRET pops the stack S and returns to the most recent pc value and label.

Finally, the SETBOUNDS instruction permits software that is fully public and

fully trusted to set the label bounds. There are CSRs called `ncur, `nlwr, `nupr that

privileged software can read and write normally. The SETBOUNDS instruction

atomically copies these CSRs to `cur, `lwr, and `upr respectively in a single cycle.

This instruction is necessary, because writing to an individual bound register

might otherwise temporarily violate the invariant, `lwr v `cur v `upr.

4.2.4 Semantic changes to existing instructions

In addition to the new instructions, HyperFlow also changes the semantics of

existing instructions in order to ensure that the policies described by the infor-

mation flow labels are enforced. To enforce these polices, a set of invariants must

hold for each instruction that is executed. The invariants depend on the kind of

instruction being executed. For example, different invariants hold for arithmetic

instructions and memory instructions. Table 4.2 summarizes these invariants.

89

Instruction Type Invariant

Load instructions `ra tM`(m) t `cur v `rd
∧M`(m) v `cur

Store instructions `ra t `rv t `cur vM`(m)

Execute unit `rs1 t `rs2 t `cur v `rd

Value-dependent branches `rs1 t `rs2 v `cur

All instructions M`(mi) v `cur

Table 4.2: Instruction invariants enforced by HyperFlow.

The invariants serve two purposes: 1) to implement memory protection, and 2)

to ensure that the labels of the registers and memory pages accurately capture

the secrecy and integrity of the data they protect.

Memory protection is enforced by ensuring that when a process with label

`cur loads from a page m, M`(m) v `cur, to prevent reads that would violate

security. This is explicitly enforced on loads. On stores to m, we require `cur v

M`(m) which is subsumed by the invariant enforced by store instructions listed

in the table.

For all instructions regardless of type, HyperFlow must enforce the condi-

tion M`(mi) v `cur, where mi is the memory page where the instruction is

fetched from. This prevents information from leaking to the process via the

fetched instruction.

The rest of the invariants preserve the accuracy of the information flow la-

bels. For load instructions, condition

`ra tM`(m) t `cur v `rd

must also hold, where ra is the source register that contains the base address

90

and m is the page which contains the data being loaded. This invariant ensures

that the level of the destination register accurately reflects the level of the data

it stores. Similarly, store instructions require

`ra t `rv t `cur vM`(m)

where rv is the register that contains the value being written, and m is the page

being written to. This invariant ensures that the policy described by the level

of the page being written to is also not violated by the data being written to the

page or by the address.

Computation instructions such as arithmetic and logical instructions, multi-

plication and division, and floating-point instructions, perform a computation

on arguments and write the result back into a destination register. For these

instructions,

`rs1 t `rs2 t `cur v `rd

must hold, where rs1 and rs2 are the source registers and rd is the destination

register. The data is influenced by the values of both the source registers (which

are bounded by `rs1 and `rs2) as well as the process causing the instruction to

execute (which is bounded by `cur).

Value-dependent control-flow instructions such as conditional branches

must enforce the invariant

`rs1 t `rs2 v `cur.

Because `cur represents the security level of the current control flow (program

counter) as well as the security level of a process, a change to the program

counter can only be affected by information that can flow into `cur. This in-

variant prevents branch instructions that would violate the information flow

policy.

91

When the restrictions on the new HyperFlow instructions or the invariants

on existing instructions are violated, there are multiple ways of preventing in-

secure flows. A natural choice is to cause exceptions that can be handled by

software. However, causing exceptions can, in general, also cause information

flow violations [63]. To avoid the posibility of nested exceptions, the proto-

type implementation of HyperFlow converts instructions that would otherwise

cause information flow violations into NOP instructions.

4.3 HyperFlow Microarchitecture and Labeling

This section describes the microarchitecture extensions necessary for Hyper-

Flow and how they are labeled in the secure HDL. The HyperFlow instruction

set architecture can be realized by many implementations and microarchitec-

tures. Here, we discuss our prototype implementation based on the RISC-V

Rocket Chip processor. The HyperFlow implementation includes many mi-

croarchitecture features such as a pending store buffer, pipelined caches, branch

prediction, virtual memory, and atomic memory operations, which were not

studied in previous information-flow-secured processor designs.

Every signal in the HDL implementation has a label, though many of them

are inferred. The ISA-visible security tags of registers and memory locations and

`cur that have already been described in Section 4.2 also represent type system

level information flow labels in ChiselFlow. The remaining type-system level

labels that protect other signals in the implementation must be consistent with

the ISA-visible labels.

HDLs for information flow control prevent information flow violations

92

through explicit changes in data values such as the storage of a value in a regis-

ter or memory location, and through the timing of events such as the assertion of

a valid or ready signal. In the remaining discussion in this section, we coarsely

separate labels in the HDL syntax into data labels that protect values, and timing

labels that protect the timing of events. Examples of data labels include register

labels and bypass value labels. The valid bits of data cache entries have timing

labels. We also note that this is a coarse characterization; timing flows cannot be

cleanly separated from other kinds of information flows in hardware. For exam-

ple, the values of the data operands of a conventional multiplier influences the

time that the multiplication is done executing. We also note that not all labels in

the type system are represented by separate physical signals in the hardware as

many are functions of the same signal.

Section 4.5 provides more details on the design trade-offs we that consid-

ered to make the HyperFlow implementation pass the information flow security

analysis performed by the type system, and how the process of implementing

hardware with a security-typed HDL differs from that of conventional hardware

designs.

4.3.1 Labels in the core and label bypassing

In the processing core, the security label of the current process (`cur) is stored

in a new control status resister (CSR). The confidentiality and integrity com-

ponents, C(`ri) and I(`ri), of general purpose registers ri are stored in register

banks adjacent to the registers. These label registers can be modified only by the

DECLREG and ENDOREG instructions, which are guarded by logic that checks the

93

non-malleability conditions, and the RSTLREG instruction which can only set the

label of a register to `cur.

The HyperFlow core supports data bypassing. To function correctly, the se-

curity labels must be bypassed with the data. For immediate values, the by-

passed label is `cur. For a value from a register or a cache, its label travels with

the bypassed data. The bypassed labels are themselves labeled with `cur because

they might be stalled or updated by the current process.

4.3.2 Memory protection and labels

The memory page labels (M`(m)) are stored in an on-chip table that maps page

numbers to labels. The current security label (`cur) is attached to each memory

transaction so that information flow and downgrading can be checked in the

memory system. When returning data from the memory, the label of the page

being read is fetched from the table and appended to the memory response

transaction. The label of the accessed data is used to enforce the invariants per-

taining to load instructions. Write transactions that modify data in memory are

similarly appended with a label that protects the data being stored. The label

of this data payload is generated from the processing core initiating the request.

The label of the data in a write transaction is compared against the label of the

destination page which is stored in the memory label table. Write transactions

that would cause information flow violations are dropped.

For a system with large off-chip memory, it may be preferable to store the

memory labels in memory along with the data. We have also implemented and

tested an alternative design that stores memory labels off chip. In this alterna-

94

tive design, memory labels are stored in a reserved region of memory that is

not exposed to software as part of the available physical address space. When

servicing a memory transaction, the state machine stores the transaction in a

buffer, and issues an additional request to fetch the memory labels. Once the la-

bels have been fetched, the original memory transaction is issued unless it was

a write transaction that would cause an information flow violation.

There is a trade-off between these two implementations; storing labels in

memory is more efficient in terms of area because DRAMs are more space-

efficient than SRAMs. However, the state machine issues a second memory

transaction to fetch labels for every last-level cache miss, effectively doubling

the last-level cache miss penalty. Naturally, labels can be stored in an additional

label cache between the last-level cache and the memory to reduce the cache

miss penalty and the cost of additional area. However, this cache may introduce

new timing channels. Because memory transactions are issued by software that

executes with label `cur, the labels of the data payloads are `cur and are not in

general public. Therefore, label cache accesses might cause timing channels in

the same way as conventional caches. The label cache would therefore need

to be flushed on a label change or partitioned. Our prototype implementation

of in-DRAM labels does not include a label cache, and our off-chip memory is

relatively small, so we use the memory label table for our experiments.

Initially, every page is mapped to the most public and trusted label C(⊥) ∧

I(>). The SETMEM, DECLMEM, and ENDOMEM instructions issue memory transac-

tions that modify the labels. In the table-based implementation these instruc-

tions update the table, whereas the state-machine implementation issues addi-

tional memory transactions. The table and state-machine implementations are

95

boot-strapped differently. In the table-based implementation, the table entries

are simply initialized to the public and trusted label on reset. When labels are

stored in-DRAM, the labels cannot be reset. Instead, an on-chip bootrom must

explicitly issue instructions to initialize each label of memory.

Mapping pages to public and trusted initially is secure in our threat-model

because the software that runs initially is trusted and public, and we do not in-

tend to address physical attacks. A design in which memory pages are initially

public and untrusted is also possible, and offers some defense against off-chip

memory that has been tampered with physically. If the initial memory labels

are all public and untrusted, the initial instructions cannot be stored in memory

because `cur is initially public and trusted, and executing untrusted instructions

would clearly cause an information flow violation. Instead, the initial software

needs to be stored in an on-chip bootrom that is public and trusted.

Our prototype implementation of HyperFlow provides memory protection

at the granularity of memory pages. However, alternative implementations

might provide protection at smaller granularity, such as individual words or

cache lines (64B) of memory.As with any hardware-enforced memory protec-

tion mechanism, there is a trade-off between protection granularity and mem-

ory overhead [96]. By providing distinct labels for each word, HyperFlow could

support pointer-based data structures that are labeled heterogeneously. Fine-

granularity protection could also be used to thwart attacks that are common in C

programs such as buffer overflows by preventing untrusted data from influenc-

ing trusted instructions [82, 20]. For our prototype implementation, we chose to

use page-granularity labels to reduce memory overhead. Changing the granu-

larity of protection does not change the overall approach or impose challenges

96

to type-checking. Prior architectures for dynamic information flow tracking

propose a multi-granularity protection approach [82, 106] in which fine-grained

tags are used when needed, but a single tag can be applied to the entire page

when they are not needed. A multi-granular approach would apply naturally

to the HyperFlow architecture, though it is less clear if type-checking would be

straightforward because the policy can change at run-time.

4.3.3 Cache labels

In the data cache, a data label is added to each cache line to track the mem-

ory label for the physical address stored in the cache line. The memory label

is appended to a cache refill transaction from memory. The data cache in our

prototype is blocking, so memory tags are always brought into the cache before

any data is modified or returned to the core. For a load, the cache only returns

data if the data label of the accessed cache line flows to `cur. The core updates

the destination register only if the label of the returned cache data flows to the

label of the destination register. The security of a store is enforced by checking

that the label of a pending store buffer entry flows to the label of the cache line,

and that the label of a memory transaction flows to the memory page label.

The LWDWN instruction may be used to load a value with downgrading and

performs three non-malleability checks. The cache checks that the value can be

downgraded to `cur, which an input signal to the cache. Then, the core checks

that the data label of the cache response can be downgraded to the destination

register’s label; two checks are added, one near the bypassed data and the other

near the register file write-back.

97

4.3.4 Timing-channel protection

`cur is also used as a timing label to prevent timing channels through microarchi-

tectural state. That is, C(`cur) is an upper bound on the level of secrecy that the

process is permitted to observe by measuring timing. Any microarchitectural

state that influences the timing of instructions is protected by `cur. Cache en-

tries, in-flight instructions and cache transactions, translation-lookaside buffer

(TLB) and page table walker (PTW) entries, and branch predictor state are exam-

ples of state that influences instruction timing. Because the security type system

in ChiselFlow enforces timing-sensitive non-interference, timing channels must

be removed for the hardware to type-check.

When the value of `cur moves downwards in the lattice, the level of secrecy

that the process can observe is decreasing. HyperFlow must prevent secrets

owned by the previous level of `cur from leaking to the new one. The processor

pipeline is drained to prevent high instructions from stalling low instructions

as well as other subtle timing channels through register bypassing. In-flight

transactions in pipelined caches are also drained when `cur is lowered.

The pending store buffer in the data cache also introduced a subtle timing

channel that we did not initially expect. Outstanding cache-write requests in

the pending store buffer are serviced opportunistically when there is no in-flight

read request. The store buffer can cause a stall either when the content of the

buffer might have a read-after-write hazard or when the buffer is full. To pre-

vent a timing channel, we enforce that all entries of the pending store buffer

must have the same label, and the buffer is drained before lowering `cur.

Caches may also cause timing channels when they are shared among secu-

98

rity levels. For instruction caches, the timing channel can be removed by simply

clearing and invalidating cache lines when lowering `cur. However, in the data

cache, dirty cache lines must be written back when they are evicted, and can-

not be simply invalidated. In our implementation, we require software to issue

a cache flush instruction to write-back dirty cache blocks before executing an

instruction to lower `cur. When `cur is lowered, the data cache is invalidated

in a single clock cycle. Note that the flush is required for correctness, but not

security.

While our prototype implementation uses flushing to remove cache timing

channels, cache partitioning can also be used to lower the flushing overhead on

a label change. With partitioned caches, each partition can have a register for

its own security label. Then, the logic for a cache read only searches partitions

with labels `P such that `P v `cur. When the security label of a partition changes

downwards in the lattice, only that partition will need to be invalidated.

HyperFlow has both branch prediction, which predicts whether or not

branches are taken, as well as branch target prediction. The branch target pre-

dictor (BTB) in HyperFlow is fully-associative. The branch history table (BHT)

has two-bit states per index and a global history register. Prior work has demon-

strated that both forms of branch prediction create timing channels that are ca-

pable of leaking secrets from Intel SGX enclaves [46]. To prevent timing chan-

nels, when `cur moves downward, the BTB is invalidated and cleared, the BHT

is cleared, and the global history register is reset.

99

4.3.5 Virtual memory

The HyperFlow implementation includes support for virtual memory. While

HyperFlow protects memory using memory labels, the virtual memory system

provides a familiar interface with a view of private and contiguous memory and

permits legacy application software to run on HyperFlow unmodified. Virtual

memory support includes instruction and data TLBs as well as a hardware page

table walker (PTW). TLBs influence timing because they are caches of recently

used Level-1 (L1) page table entries (PTEs). L1 PTEs store mappings from vir-

tual to physical addresses. The PTW serves as a cache of L2 PTEs, which store

pointers to L1 PTEs. The TLB and PTW state are labeled with `cur, and the state

is cleared when `cur moves downward in the lattice.

Because the TLB and PTW state is labeled with `cur, PTEs must be stored in

a memory page with a label that flows to `cur. This restriction must be satisfied

by the software that manages the page tables. One simple option is to label the

memory pages for page tables with (C(⊥), I(>)), which is the least-restrictive

information-flow label. The page table can also be stored in pages with more

restrictive labels as long as they flow into the processes that use the page table.

4.3.6 Atomic memory operations

Like the baseline processor it extends, HyperFlow supports atomic memory op-

erations (AMOs). AMOs are critical for operating system implementations be-

cause they are needed to implement synchronization primitives. AMOs are im-

plemented by buffering both operands into different slots of the pending store

buffer in the data cache before buffering the result back into the first slot of

100

the pending store buffer. Implementing AMOs securely is challenging because

the operands of the AMO arrive at the buffer over multiple clock cycles, mean-

ing the operands might have different timing labels, and because the operands

might also have different data labels. Because both AMO operands are buffered-

in by the same instruction, both operands have the same timing label. To reduce

the number of ports in the AMO execution unit, both operands, and therefore

the output, are required to have the same label.

4.4 Evaluation

We developed a prototype implementation of HyperFlow as an extension to

a single-core configuration of the RISC-V Rocket Chip processor. This is a

more fully-featured processor than those previously implemented with stati-

cally checked information-flow [51, 50, 110, 29]. The prototype implementation

label-checks with ChiselFlow and successfully runs all of Rocket Chip’s ISA and

application unit tests.

4.4.1 Processor features

The processor is pipelined, with branch prediction and branch target prediction.

The branch history table has 2 bits of state per entry and a global history register.

The branch target predictor is fully associative. The execution units include an

ALU, a multi-cycle multiplier, and a floating-point unit (FPU).

The FPU is implemented as an independent coprocessor that receives in-

structions from the main processor, but it has its own independent instruction-

101

decode unit, floating-point register file, and pipeline. The FPU sends requests

to the memory hierarchy independently of the main processor.

The processor has four hierarchical protection rings, and a 32-bit virtual ad-

dress space divided into 4KB pages. The baseline processor has L1 instruction

and data caches each with 64 sets and 4 ways and 64B cache blocks. Both L1

caches have 2 pipeline stages. The data cache has a two-slot pending store

buffer. Both caches are virtually indexed and physically tagged. The caches

include cache controllers. Separate instruction and data TLBs store level-1 page

table entries for each cache. A single hardware page-table walker refills both

TLBs on misses and caches recently-used level-2 page-table entries.

Many of these micro-architectural features are absent in prior information-

flow secured processor implementations. To the best of our knowledge, Hyper-

Flow is the first to include TLBs, a PTW, branch and branch target prediction,

and a pending store buffer. Most of these features introduce subtle timing chan-

nels that we address, and needed to address in order to satisfy the type system.

HyperFlow is also the first to include data bypassing with fine-grained infor-

mation flow labels. This necessitates dynamic label bypassing, which we must

also label-check. The prototype implementation of HyperFlow includes all of

the aforementioned features as well as the ISA and microarchitectural exten-

sions described in Sections 4.2 and 4.3. The HyperFlow prototype does not

include hardware accelerators and relies on a hard-wired memory controller on

an FPGA for offchip DRAM accesses.

102

4.4.2 Developer effort

HyperFlow was implemented by a single developer over a period of eight

months. While the existing Chisel implementation of the RISC-V Rocket chip

provides most of the hardware functionality described above, it contains many

timing channels. The majority of the development effort was spent on modify-

ing the microarchitectural design to eliminate these timing channels, especially

in the instruction and data cache pipelines, virtual memory hardware, and mul-

tiplier. Aside from timing channels, some other hardware features, such as by-

passing, required rewriting of the HDL code to make it more amenable to pro-

gram analysis. The labeling support provided by ChiselFlow was essential for

removing timing channels correctly. By contrast, it was straightforward to ex-

tend the architecture with new instructions for managing labels, downgrading,

and call gates – label-checking these features did not pose significant challenges

beyond those of conventional hardware implementation. Label-checking many

other features already present in RISC-V imposed no additional effort for label-

checking; for example, the instruction expansion units and additional decode

logic for compressed instructions label-check trivially.

Label inference significantly reduced required developer effort. However,

inferred labels were initially difficult to debug because they are often less intu-

itive than those that a human would write explicitly. Feedback on inference led

to changes to the ChiselFlow label implementation to improve the debug-ability

of inferred labels.

103

When is Information Downgraded Number of Downgrades What is Downgraded
1 On Reset 1 Register tags (for initialization)
2 FPU to Int instructions 1 Values copied from the FPU to integer registers
3 `cur lowers 2 Presence of one outstanding finish transaction
4 Memory instructions 1 Address is downgraded to `cur
5 CSR file writes 1 Data written to CSR file is downgraded to `cur
6 DECLREG, ENDOREG 7 (1 + 3 each) Register contents, control signals, arguments
7 LWDWN 2 RF writeback data, dcache bypass data
8 SWDWN 1 P-store buffer data
9 DECLMEM, ENDOMEM 9 (1 + 4 each) Page contents, control signals, arguments
10 RSTLREG 1 Control signal
11 REGLGATE 8 Control signals, arguments, pipelined data labels
12 LCALL, LCALLR 3 Control signal, arguments, pc value
13 LRET 1 Control signal
14 MMIO Responses 1 MMIO response transaction data

Table 4.3: Uses of Downgrades in HyperFlow.

4.4.3 Uses of downgrades

The RTL code for HyperFlow performs downgrades at various points; these

downgrades are checked for nonmalleability by the ChiselFlow type system.

Our formal results imply that insecure information flows can only arise because

of these downgrades, which should therefore be inspected carefully. All but

one downgrade is statically checked to be nonmalleable by the type system. Ta-

ble 4.3 summarizes the uses of RTL-level downgrades. The first column shows

the ISA-visible event to which the downgrade is tied, the second column states

the number of downgraded expressions in the RTL code, and the third gives a

brief description of what is downgraded. For all downgrades other than down-

grades of data caused by explicit downgrade instructions, both an endorsement

and a declassification happen.

We expand upon these descriptions here. When the processor resets (1), the

register file tags are all initialized to (⊥,>), and the contents are initialized to

zero. This initialization requires explicit writes to the tags because the register

file labels are implemented as a sequential memory that can be synthesized as

104

a BRAM block on an FPGA. However, this initialization is secure because the

processor is initially public and trusted and boots public and trusted code. This

downgrade is an artifact of the prototype implementation and not fundamental

to the architecture. The BRAMs used in the implementation require explicit

initialization, necessitating this downgrade. By contrast, flip-flops could simply

reset to the intended values.

For convenience, copies from the FPU to the integer register file (2) are au-

tomatically downgraded if the labels of the data coming out of the FPU can be

nonmalleably downgraded. When `cur moves downwards in the lattice (3), it

is possible for a single outstanding cache coherence transaction to remain in a

pending transaction buffer, causing timing interference. We resolve this with

a downgrade, but nothing is leaked if the software is written as described in

Section 4.2: prior to lowering `cur, the software should issue a cache flush in-

struction to flush any buffered coherence transaction. When a memory transac-

tion is issued (4), the data used to compute the address is downgraded to `cur

because the address affects the timing of the cache transaction; this downgrade

is for convenience because the address can otherwise be downgraded with an

instruction. The label of the address is still protected by the data label, and so

the store invariant in Table 4.2 is enforced by the data label. To permit the use

of performance counters, writes to the CSR file (5) are downgraded to `cur.

The downgrading instructions (DECLREG, ENDOREG, LWDWN, SWDWN, DECLMEM,

and ENDOMEM) downgrade the stored data and the arguments to the instructions

(6–9). These downgrades are done under a conditional statement that checks

that these values are downgraded nonmalleably. As described in Section 4.2,

the arguments are also downgraded to (⊥,>) because the arguments influence

105

changes to public and trusted labels – this downgrade is also guarded by a non-

malleability check. The labels of the arguments are also bypassed, and bypassed

labels are labeled `cur. Because the bypassed labels are inspected by the non-

malleability check, which influences whether or not the downgrade happens,

the labels of the bypassed labels are also downgraded from `cur to (⊥,>). The

control signals that induce the downgrades are also downgraded to (⊥,>) – this

downgrade is always non-malleable because these control signals are labeled

`cur. The LWDWN instruction downgrades the data in two places in the core: the

bypass data from the cache and the register file write-back data from the cache.

The SWDWN instruction downgrades the stored data from the label in the pending

store buffer to the label indicated by the memory tags that are stored in the

cache. Neither LWDWN nor SWDWN changes the valuation of any labels, so these

instructions do not induce downgrades of control signals or arguments.

Similarly, for instructions RSTLREG, REGLGATE, LCALL, LCALLR, and LRET (10–

13), control signals are downgraded because these instructions affect public and

trusted state. The REGLGATE instruction also includes a non-malleability check

on pipelined labels. The LCALL and LCALLR instructions store the old pc value in

a public and trusted stack, so the pc is downgraded from `cur to (⊥,>).

Finally, one downgrade endorses and declassifies data from memory-

mapped IO devices (14). This downgrade is not in general non-malleable be-

cause we do not provide protection for or from memory-mapped IO devices.

106

4.4.4 Uses of dynamic checks

Dynamic checks are alternatives to downgrades. They are dynamic label com-

parisons that prevent an information flow violation, are expected to never be

violated at runtime, and convert an information flow violation into a correct-

ness violation. They are preferable to downgrades because they do not weaken

security. However, care must be taken because dynamic checks should only

be used when it is expected that the invariant can never be violated. Dynamic

checks are used in HyperFlow to establish that `lwr v `cur. This invariant is

established in the control and status register (CSR) file where those registers

are stored. However, the fact that this invariant is true is not visible in other

components outside the CSR file. Another use of dynamic checks is to prevent

timing channels caused by floating-point computation. Because the FPU com-

putes on register values, and the time taken to finish a floating-point computa-

tion is data-dependent, the stall signals from the FPU are also data-dependent.

The pipeline register stall signals in HyperFlow are labeled with `cur. We use a

dynamic check that hides the stall signals from the FPU when the data values

do not flow to `cur. Another dynamic check is used to convince the type sys-

tem that the bypass value from the data cache does not cause timing channels;

this dynamic check forces the bypass value from the cache to 0 if the timing la-

bel from the data cache response does not flow to `cur, but permits the actual

data value to be returned otherwise. In practice, this dynamic check does not

cause a functional error because when `cur is lowered, the data cache pipeline

is stalled and cannot emit responses. Both the regular data cache bypass value

and a downgraded bypass value produced by LWDWN are covered b the dynamic

check.

107

4.4.5 RTL synthesis results

We synthesized the baseline processor and HyperFlow using Vivado v2016.2

targeting the 7z020clg484-1 FPGA found on the Zedboard Zynq 7000 develop-

ment board. The baseline processor uses 34,508 LUTs (64.9%) on the FPGA,

whereas HyperFlow uses 40,205 LUTs (75.6%), a LUT utilization overhead of

16.5%. The baseline processor uses 13 (9%) of the block RAM tiles whereas Hy-

perFlow utilizes 19.5 (14%). The majority of the utilization overhead is due to

the security tags stored with each cache entry, the tag table that associates tags

with memory pages, and dynamic label comparisons, which are used for either

access controls or dynamic checks. For both the baseline processor and Hy-

perFlow, Vivado is able to meet a target clock frequency of 25MHz. For both

designs, the critical path is through the FPU multiplier, so we expect that the

minimum clock period is the same for both designs.

4.4.6 CPI Results

Although HyperFlow has no clock frequency overhead, there is performance

overhead for timing channel protection. We measured the cycles per instruction

(CPI) for HyperFlow when executing the RISC-V benchmark suite compared

to the baseline Rocket Chip processor. For the HyperFlow processor, the pro-

cessor executes with the same security level during the entire execution of the

program. The results are summarized in Table 4.4. HyperFlow incurs a perfor-

mance penalty because unlike Rocket Chip, the multiplier unit always executes

in the worst case number of cycles. This performance penalty can be removed

by disallowing multiplications of operands with data labels that do not flow to

108

Benchmark name HyperFlow CPI RISC-V CPI Percent Overhead
mm 1.089 1.063 2.4%
spmv 1.748 1.678 4.2%
median 1.631 1.284 27%
multiply 1.899 1.115 69%
qsort 1.542 1.531 0.7%
towers 1.052 1.030 2.14%
vvad 1.161 1.094 6.12%
dhrystone 1.206 1.187 1.6%

Table 4.4: Performance results

`cur. The mm benchmark is matrix-matrix multiply, spmv is double-precision

sparse matrix vector multiply, median is a median filter, multiply does multi-

plications, qsort does quicksort on an array of integers, towers solves a towers

of Hanoi puzzle, vvad adds two vectors, and dhrystone is the classic synthetic

benchmark. The benchmark with the highest overhead is multiply, naturally.

The geometric mean overhead is 12.4%.

HyperFlow also introduces performance overhead through hardware state

that is flushed or invalidated on label changes, but these occur infrequently—

when the active process changes via a context switch. The time between con-

text switches is on the order of tens of milliseconds, so this overhead should be

amortized over execution.

4.4.7 Usability

HyperFlow intends to support necessary communication among mutually dis-

trusting principals in an environment managed by an operating system. Hyper-

Flow also supports the expressive information flow label models that have been

proposed for prior operating systems and languages for information flow con-

109

trol. In this section, we demonstrate that HyperFlow supports shared memory

interprocess communication, communication through registers for system calls,

and enforcement of rich information flow policies.

We demonstrate how labels represented in the FLAM [2] model can be

expressed as hypercube labels and enforced. The flow-limited authorization

model (FLAM) is a recent model that supports decentralized security poli-

cies [2]. To illustrate the usability of the HyperFlow architecture, we imple-

mented a simple application with a decentralized information flow control

(DIFC) policy expressed in FLAM. DIFC policies allow communication among

mutually-distrusting principals [66, 24, 104, 14].

The application emulates a tax-preparation service where a user (“Bob”)

sends data to a tax preparer and gets the result back. Both the tax preparer

and the user are distrusting. Even though the tax-preparer process is allowed to

perform computation on the user’s data, HyperFlow prevents it from sharing

the user’s data or any values derived from it to any party other than the user.

In our implementation, the tax-preparer process and the user process commu-

nicate through shared memory via IPC. Both processes are managed by trusted

software implemented as a single system call that manages labels for the two

parties. The application is implemented as assembly that runs in RTL simu-

lations of our information-flow verified processor prototype. This result sug-

gests that the HyperFlow ISA and prototype are sufficient to enforce complex

application-defined information flow control policies with IPC and system calls.

Section 4.4.7 provides background on FLAM. Section 4.4.7 demonstrates

how FLAM labels can be represented with the hypercube labels of HyperFlow.

Section 4.4.7 demonstrates how IPC works in HyperFlow, and Section 4.4.7

110

demonstrates how system call handlers can be implemented. Section 4.4.7 dis-

cusses how we use the IPC and system call primitives to construct the tax prepa-

ration application.

Background: The FLAM Label Model and Downgrading

FLAM unifies authorization and information flow polices. Principals p can del-

egate to each other; given principals p and q, if p acts for q, written p � q, then

p trusts q. Compound principals can be constructed from primitive principals.

The conjunctive principal p∧ q, denotes the combined authority of both p and q.

Similarly, the disjunctive principal, p ∨ q, represents the authority of either p or

q. Principals together with � form a lattice, and p ∧ q � p � p ∨ q for any p, q.

In FLAM, principals are also information flow labels. The confidentiality of

p is written p�, and intuitively represents the authority to observe secrets owned

by p. The integrity of p, written p�, represents the authority to affect information

owned by p. A second ordering on principals, defines permitted information

flows. The statement p flows to q, written p v q, denotes that information is per-

mitted to flow from p to q. The ordering v forms another lattice over principals,

which is orthogonal to the authority lattice. The meet and join in the informa-

tion flow order are written u and t. Any FLAM principal can be represented

as a conjunction of a confidentiality projection and integrity projection p� ∧ q�.

Labels of this form are said to be in normal form.

111

BJpK , (bp, bp)

BJp�K , (BcJpK, bmax)
BJp�K , (bmin,BiJpK)
BJp ∧ qK , (maxb{BcJpK,BcJqK},maxb{BiJpK,BiJqK})
BJp ∨ qK , (minb{BcJpK,BcJqK},minb{BiJpK,BiJqK})
BJp t qK , (maxb{BcJpK,BcJqK},minb{BiJpK,BiJqK})
BJp u qK , (minb{BcJpK,BcJqK},maxb{BiJpK,BiJqK})

Figure 4.3: Representing FLAM labels with hypercube labels.

Mapping FLAM Labels to Hypercube Labels

FLAM labels are easily represented in the hypercube model using bit vectors.

FLAM labels in normal form map directly to confidentiality and integrity com-

ponents of hypercube labels. Primitive principals p are mapped to numeric

constants, bp. For example, if there are four 1-bit dimensions and p and q are

mutually distrusting, one might map p to 1000 and q to 0100. Figure 4.3 shows

how compound principals can be mapped to hypercube labels. Here, BJpK de-

notes the representation of p as a pair of its hypercube label components. The

confidentiality component is the first in the pair, and the integrity component

is the second. BcJpK denotes the confidentiality component of p and BiJpK is the

integrity component. The values bmin and bmax are the lowest and greatest bit

vectors that can be represented with the width of a label; they are respectively

a sequence of all 1s and a sequence of all 0s. Here, maxb is a function that com-

putes the dimension-wise maximum of two hypercube labels, and minb simi-

larly computes a minimum. For example, if there are three, four-bit dimensions,

then mboxmaxb(0x203, 0x302) = 0x303 and mboxminb(0x202, 0x202) = 0x202.

112

Set Page Labels. cur_lvl: {\bot-> & \top <-}

li x1, 0x84 # {B-> & P<-}

li x2, 0x48 # {P-> & B<-}

la x3, prep_to_bob

la x4, bob_to_prep

setmem x1, 0(x3)

setmem x2, 0(x4)

...

Bob Sends. cur_lvl: {B}

la x5, bob_to_prep

swdwn x6, 0(x5) #decl {B} to {P-> & B<-}

...

TP Receives. cur_lvl: {(B&P)-> & P<-}

la x5, bob_to_prep

lwdwn x6, 0(x5) #endo {P-> & B<-} to {(B&P)-> & P<-}

Figure 4.4: IPC Example.

Interprocess Communication

Figure 4.4 shows an example of how messages are communicated among pro-

cesses in the tax-preparer application, and more generally, shows how shared

memory IPC works in HyperFlow. In the example, 0x80 represents the prin-

cipal Bob (B), and 0x04 represents the Tax Preparer principal (P). A page of

memory is allocated for Bob to send messages to Preparer with label B� ∧ P�,

and for Preparer to send messages to Bob with label P�∧B�. Public and trusted

code initializes the labels of the pages used for IPC. In the code segment shown,

Bob has a `cur label of B. Because the Tax Preparer is an instance of the tax

preparation service specifically for handling Bob’s requests, it has a `cur label of

(B ∧ P)� ∧ P� so that it can see Bob’s data. For Bob to send a message to Pre-

parer, it simply performs a SWDWN instruction on a register with label B which

downgrades the register contents to the label of the destination page (P� ∧B�).

This downgrade is robust because Bob has sufficient integrity to remove the B�

113

component of the label. The P� component of the label can be added because

this increases the restrictiveness of the label. The Preparer receives the message

by doing a LWDWN instruction which endorses the integrity of the message to P�.

In some cases, it is possible to receive a message through IPC by first down-

grading a register and then doing a conventional load instruction to the down-

graded register. However, this example demonstrates that this is not always

possible, and that the LWDWN instruction is necessary for expressiveness of the

ISA. The tax preparer cannot endorse the integrity of a register to B� because

its label does not flow to B�. However, it can endorse the P� ∧ B� data to P�,

so it can receive the data with a LWDWN instruction.

In this example, we used two separate pages for communication in each di-

rection. However, it is more conventional for processes to share a single page

that both processes can both read and write. The label model of HyperFlow is

also expressive enough to support bi-directionally shared pages—a single page

could be labeled B ∨P . With this label, both B and P can write to the page, and

both process can read from the page by endorsing it. However, with the afore-

mentioned numerical representations of B and P , B ∨ P computes to the fully

public and fully distrusted label, which any other process can read and write as

well. By representing B as 0b01001 and P as 0b00101, B ∨ P becomes the more

restrictive label, 0b00001. Therefore, by adding an extra bit, we can represent

disjunctions in a way that is distinct from the bottom label. Because this has a

one-bit overhead in the size of labels, we chose to use the more compact label

encoding and use two pages for communication. Other representations are also

possible. For example, using 2-dimensional, rather than 4-dimensional hyper-

cubes offers a compact encoding while retaining unique disjunctions, however,

114

Gate Registration: cur_lvl {\bot-> & \top<-}

la x1, switch_process

li x2, 0x0F # {\bot-> & \top<-}

reglcall x1, x2

Bob. cur_lvl: {B-> & B<-}

... # compute form, store in shared page

li x4, 0x0

la x3, swith_process

declreg x1, x4 # Flag to choose Bob or Preparer

declreg x2, x4 # Address to jump to after call

lcallr 0(x3)

Process Switch Call: cur_lvl {\bot-> & \top<-}

switch_process:

li x4, 0xF

endoreg x1, x4 # Flag to choose Bob or Preparer

endoreg x2, x4 # Address to jump to after call

... # Set labels, jump to target

Figure 4.5: System call example.

it reduces the total number of physical principals.

System Calls

In the tax preparer, a single trusted system call is used to manage Bob and the

Preparer. This system call starts a new process by initializing the labels for the

process and then jumping to the entry point of the process. This system call is

implemented as a call gate. Figure 4.5 shows a small segment of the call gate

as well as how the gate is registered and called, and by extension, the exam-

ple shows how system calls can be implemented in HyperFlow more generally.

Initially, fully trusted and fully public code registers the call gate at address

switch_process and with label ⊥� ∧ >�. The call gate takes two arguments.

One describes whether labels should be initialized for Bob or the Preparer, and

the other is the PC value that is the entry point for the next process. When Bob

is done computing, it executes the call gate. Before doing so, it must declassify

115

the confidentiality of the two arguments from B� to ⊥�. It then simply calls the

gate with an LCALLR instruction.

At the start of the call gate, the handler must endorse the integrity of the two

arguments from B� to >� because the system call handler is fully trusted, and

it takes a conditional branch based on the value of the argument. The call gate

handler then sets the tags of all registers and the levels of `nlwr, `ncur, and `nupr

to values that depend on the next principal to execute. It then does a SETBOUNDS

instruction before jumping to the entry point of the next process.

In conventional processors, system calls work by first jumping to trusted

code that contains a system call handler table – the particular call handler to ex-

ecute is selected by using a register argument that contains the call number. This

model is also supported by HyperFlow. However, because HyperFlow replaces

conventional privilege modes with lattice model information flow labels, the

call gates of HyperFlow are more general and can both improve performance

and the precision with which access controls are enforced.

Tax Preparation Application

To test the usability of HyperFlow, we implemented the tax-preparer applica-

tion in assembly using the HyperFlow ISA. Bob has `lwr and `upr labels that are

B� and B� respectively, and generally operates with a `cur label of B. The tax-

preparer generally operates with `cur of (B∧P)�∧P� because it is an instance of

the tax preparation service specifically for handling Bob’s requests, so it needs

to be able to observe Bob’s data. Its `lwr and `upr labels are P� and (B ∧ P)�

respectively.

116

Before either Bob or the tax-preparer executes, a label manager that is fully

trusted and public registers the switch_process call gate and initializes the

memory label. Bob computes his tax form and sends the message to the pre-

parer using shared memory as described in Section 4.4.7. Bob then yields the

processor by calling the switch_process gate so that the preparer can begin

executing. The tax preparer receives the message and then computes the form

using its proprietary data before declassifying the result. The preparer sends

the result back to Bob via IPC and yields the processor back to Bob by calling

the switch_process gate again. Finally, Bob receives the computed form.

4.5 Discussion

In this section we discuss some of the design and implementation trade-offs we

made in order to satisfy the goal of making our HyperFlow prototype label-

check with ChiselFlow. This section also discusses the process of implementing

a processor that label-checks and how this process differs from conventional

hardware design without label-checking.

Labels of Labels In ChiselFlow, wires can be used to represent information

flow labels that can change at run-time. Because these wires are still wires, they

are also labeled. In most information flow systems, it is assumed that informa-

tion flow labels are fully trusted and fully public. If the labels cannot be trusted,

then they clearly cannot be used to establish security, and if they contain secrets,

even inspecting them to implement access controls might leak those secrets.

However, because HyperFlow is timing-channel free and implements fine-

grained per-register and per-page data labels, we found it necessary to give

117

more restrictive labels to some of the signals that represent data labels. For

example, the per-page data labels are stored in the cache and used as security

types for the data in the cache. Most control signals in the cache are labeled

with `cur because they represent signals that affect timing. Because the values

of these control signals influence the time that per-page data labels are brought

into the cache, the labels themselves must be labeled with `cur.

Register File Labeling The register file tags underwent several revisions

even though it is a simple component. This is related to the issue of labeling

labels because the register file tags are the labels of the registers. Initially, we

labeled the register file tags with `cur following the same design choice that we

made for the data labels in the cache. However, this would have required the

register file tags to be cleared whenever `cur moves downward in the lattice,

and by extension the associated registers would need to be cleared. Clearing

the registers whenever `cur was lowered would cause unacceptable limitations

in the expressiveness of the ISA.

We later tried labeling the registers with `lwr. With this labeling, the level of

`cur can move freely without clearing the tags because `cur v `lwr at all times.

The tags (and registers) need only be cleared when `lwr is changed—effectively,

whenever the active process is changed. However, the tags could only be set

when `cur = `lwr. This design point is plausibly acceptable, but it still imposed

significant restrictions. For example, it is useful to set register tags while at a

level above `lwr so that a spare register does not have to retain the value of `lwr.

It is also potentially useful to avoid clearing the tags even when `lwr changes,

for example during system calls.

In our final design, the register file tags (though not the general purpose

118

registers themselves) are labeled totally public and totally trusted. As we dis-

cuss in 4.4.3, the control signals from the instruction decode unit that determine

when tag-setting instructions happen are downgraded. Given that these down-

grades only happen during particular instructions and that the information re-

leased is clear, these downgrades do not violate our design goal of making in-

formation release ISA-visible.

Automatic Tag Propagation Initially, we expected that security labels could

be propagated automatically. For example, following an ADD RS3, RS2, RS1

instruction, we would like to compute the join of the labels of RS1 and RS2 and

store the result in RS3 without needing explicit instructions to set the tag of

RS3. In fact, this form of dynamic tag propagation is common in tagged hard-

ware architectures [20, 82]. However, whether or not general purpose registers

are updated depends on control signals that are influenced by timing and la-

beled with `cur, but the labels of the labels of registers are public and trusted.

In other words, dynamically updating the security tags themselves introduces

subtle timing channels. We found it preferable to only allow register tags to be

updated by explicit instructions that are controlled by the software. Tag updates

can be done automatically by the compiler.

Multi-Cycle Execute Unit Stall Signals Our HyperFlow prototype has two

execute units that take multiple cycles to perform a computation, the multiplier

and the FPU. The time to complete these computations depends on data values.

Because the data values have security labels that might not flow to `cur, the time

to finish these computations could create timing channel vulnerabilities if they

are not carefully controlled. In the HDL code, this timing channel is visible as

a flow from the operands from the register file, which have labels that depend

119

on their tags, to the stall signal, which has the label `cur. We address this timing

channel for each of the two execute units in different ways. For the FPU, we do

not permit computations on operands with labels that do not flow to `cur. For

the multiplier, we permit computations on operands that do not flow to `cur, but

the operations always complete in the worst-case time. This presents a trade-

off between the expressiveness of the ISA and performance. We chose to take

two different approaches for each primarily to demonstrate that either can be

statically checked with the information flow type system.

For the FPU, when the labels of the operands do not flow to `cur, the stall

signals in the pipeline are modified to hide the stall signal that is an output

from the FPU – this dynamic check converts the insecure information flow to

a correctness error if the arguments to the FPU ever have operands with labels

that do not flow to `cur. Access controls guard the inputs to the FPU to ensure

that this invariant always holds, and a correctness violation is never introduced

in practice.

The multiplier is modified so that it always takes in the maximum number

of cycles.In this way it is always correct, but does not leak information through

timing. Unlike the FPU, multiplications can be performed on operands with

labels that do not flow to `cur. However, implementing a constant-time execute

unit is not straightforward. Because the multiplier is a simple FSM, it is a better

candidate for this approach than the FPU, which can be viewed as an indepen-

dent coprocessor. To implement a constant-time multiplier, we used two state

registers: the primary state register and the shadow state register. The primary

state register always points to the FSM state farthest from the terminal state.

The shadow state is always updated based on the control signals and operands

120

to point to what the state would have been in the original multiplier. The pri-

mary state does not depend on the operands, and so its label only depends on

the label `cur. The label of the shadow state does depend on the label of the

operands, and the value of the shadow state is used to compute the output, but

the stall signal does not depend on the shadow state. In this way the multiplier

label-checks and is correct.

It is also possible to implement a multiplier that supports both constant-time

multiplications of values that cannot be read by `cur and faster multiplications

of values with labels that do flow to `cur. The multiplier could compare the

labels before multiplication begins. When the labels of the arguments do flow

to `cur, the shadow state can be used to generate the stall signal rather than the

primary state. This design would incur just a small amount of area overhead

compared to the constant-time multiplier; it would require an additional MUX

to decide which state register to use, and an additional label comparison would

be needed.

HyperFlow and the Spectre and Meltdown Attacks The recent Spectre [42]

and Meltdown [52] attacks exploit out-of-order and speculative execution. Hy-

perFlow, like the RocketChip baseline it extends, does not support out-of-order

execution or speculative execution. It does, however, speculatively update the

branch history table (BHT) and speculatively update the instruction cache. The

BHT in RocketChip includes a table of 2-bit counters per index and a global

history table. On a hit in the branch-target buffer (BTB), the BHT is updated

speculatively. Although the BHT and BTB are accessed in the fetch stage of the

processor pipeline, the speculative update is not undone until the memory stage

by reseting the global history table on branch miss-predictions. In an unsafe de-

121

sign, it might be possible for a secret instruction to cause a speculative update

to the BHT that is visible to a public instruction earlier in the pipeline, leaking

information through timing. In HyperFlow, however, when `cur moves down-

ward in the lattice, the BTB is invalidated and cleared, and both the BHT global

history register and branch table are cleared in the same cycle that `cur changes.

The Meltdown attack exploits a vulnerability in memory permissions checks

in the data caches of Intel processors [52]. In some Intel processors, the data

fetch and TLB permissions checks that a memory access entails are implemented

with separate micro-ops. Because the data access can happen before the permis-

sions check, it is possible that the data access can modify the cache even though

the TLB permissions check later rejects the access. The speculatively modified

cache state creates a timing channel. In HyperFlow, a similar potential vulnera-

bility is prevented in two ways. First, the cache implementation is guarded by

a timing label that represents the secrecy of the process that brought the entries

into the cache. When `cur becomes lower than HyperFlow, the cache is invali-

dated. Second, permissions checks that govern memory data are tightly coupled

with data access. The memory tags governing the accessed data are inspected

in the same cycle of the cache pipeline during which the data is granted.

122

CHAPTER 5

TIMING COMPARTMENTS: TIMING CHANNEL PROTECTION FOR A

MULTI-CORE PROCESSOR

HyperFlow addresses timing channels among mutually distrusting software

modules that share a processor over time through time multiplexing. How-

ever, in a multicore processor performance-enhancing features are also shared

among concurrently executing processes, causing additional timing channels.

This chapter presents Timing Compartments, a hardware architecture that pre-

vents timing channels among concurrently executing processes in a multicore

processor.

At a high level, the timing compartments architecture works by exposing the

process ID of the software executing on each core. The hardware then prevents

timing interference among processes by temporally and spatially partitioning

resources among processes identified by this ID. Because spatial and temporal

partitioning enforce strict noninterference, Timing Compartments is amenable

to static information flow control analysis by an HDL type system. This work

also identifies and addresses new timing channels not found in prior studies

including timing channels caused by contention for shared MSHR queues and

contention among cache coherence transactions originating from different secu-

rity domains.

Experimental results suggest that straightforwardly applying temporal and

spatial partitioning can have significant performance overheads. We propose

two optimization mechanisms that improve performance. First, we propose co-

ordinated scheduling of time slots for time-multiplexed resources in the shared

memory hierarchy. Our study shows that coordinated scheduling reduces the

123

average L2 miss latency by up to 62% compared to an uncoordinated baseline.

Second, we propose a novel optimization which increases the available band-

width through a temporally-partitioned memory controller. As our experiments

show that memory bandwidth reduction is the main source of performance

overhead, this optimization improves performance considerably. The optimiza-

tions reduce the performance overhead of timing compartments by 58%. Simu-

lation results suggest the performance overhead of timing compartments with

the proposed optimizations is quite reasonable especially when a small number

of compartments run concurrently. Compared to the baseline with no timing

isolation, executing two timing compartments reduces system throughput by

less than 7% on average and by less than 2% for compute-bound workloads. In

the worst case, memory-intensive workloads incur up to an 18% overhead.

5.1 Timing compartments

5.1.1 Objective and scope

The goal of timing compartments is to provide timing isolation among software

running concurrently on a multi-core processor. Ideally, timing compartments

should provide similar security as running the same software on dedicated pro-

cessors. Therefore, the focus is on removing timing interference among parallel

processing cores.

Timing compartments ensure that the timing of a program in one compart-

ment is independent of program behavior in other compartments. In doing

so, timing compartments prevents both covert timing channels that are inten-

tional, and unintentional covert channels (i.e., side channels). However, tim-

124

Figure 5.1: Baseline multi-core architecture.

ing compartments do not remove timing dependence within one compartment.

For example, Bernstein’s attack [5] showed that an AES key in OpenSSL can

be extracted by observing timing variations that depend on cache interference

among memory accesses within one program. These timing channel vulner-

abilities exist even if a program runs on its own dedicated hardware. Since

this is an orthogonal problem, they are not prevented by timing compartments.

Language-level techniques have been developed to mitigate [108, 3, 107] these

timing channels.

5.1.2 Architecture model

Figure 5.1 shows the conventional multi-core architecture that is assumed as the

baseline in this chapter. The architecture has multiple cores, each with one or

more private caches (L1 and L2). The cores are connected to a shared cache (L3)

via an on-chip bus. A shared system bus connects the shared cache to a memory

controller that manages requests to main memory as well as other system com-

ponents such as a DMA engine, a timer, and I/O modules. Bus interconnects

are used to model on-chip networks. The general approach and findings should

apply to other types of interconnect networks as well.

125

5.1.3 Threat model and assumptions

Our threat model focuses on software attacks that might enable timing channels

among timing compartments. We assume that attackers do not have physical

access to the system, and do not consider physical attacks such as ones that tam-

per with off-chip memory buses or physical side-channel attacks through power

consumption or electromagnetic emission. If physical security is required, tim-

ing compartments can be combined with existing off-chip memory protection

techniques [84, 1, 30].

We also assume that explicit communication between different timing com-

partments is prevented by allocating disjoint virtual address spaces for software

modules in different compartments. Physical addresses should not be shared

aside from read-only pages that contain instructions or libraries. There is no

point in timing isolation if explicit communication is allowed.

5.2 Protection mechanisms

5.2.1 Approach

Timing channels exist when an adversary can correlate the timing of some event

that it can measure with secret-dependent behavior of some other software

module. As a result, any program-dependent interference in shared hardware

resources between distrusting software modules may lead to timing channels.

To achieve a degree of isolation that is comparable to running on separate hard-

ware, timing compartments are designed to remove contention in shared hard-

126

ware resources.

Timing compartments intend to strictly eliminate timing channels, ideally

to enforce noninterference among compartments. Therefore, timing compart-

ments enforce timing channel protection by applying two strict partitioning

techniques in micro-archtiectural features that might otherwise cause timing

channels. Spatial partitioning removes contention by duplicating or partitioning

a resource for each compartment. Temporal partitioning removes contention by

time multiplexing resources among timing compartments with a fixed sched-

ule. By partitioning resources, timing interference among distrusting domains

is prevented. Prior work has demonstrated that timing channel vulnerabili-

ties exist when software interferes with the timing of its own events, such as

cache accesses [5, 93], or even when there is no interference at all [43]. However,

such attacks are present even when software is not co-resident with malicious

tenants on the same hardware, and they can be prevented with software-level

defenses [3], and pre-loading the cache [43] respectively.

Other timing channel protection mechanisms exist aside from partitioning

resources. Defenses can can reduce the ability of the attacker to measure the tim-

ing of events, for example, by worsening the clock resolution [60], or disabling

performance counters [46]. However, performance counters and precise timing

measurements are important for performance tuning and other applications. In

the rest of the section, we describe how timing compartments eliminates tim-

ing channels in each micro-architectural component, and discuss the trade-off

between spatial and temporal partitioning for each component.

127

5.2.2 Timing compartment ID

To track the timing protection boundaries, management software such as an

operating system assigns a timing compartment ID (TCID) to processes. The

same TCID can be assigned to multiple processes that do not require strong

timing isolation among them such as ones belong to the same user.

In hardware, each processing core has an active timing compartment reg-

ister (ATC) which indicates the TCID of the TC that is currently executing on

that core. The value of the ATC is appended to each memory request and used

by enforcement mechanisms to remove interference between different compart-

ments. The size of the ATC is logarithmic with the number of physical cores as

hardware only needs to distinguish active compartments running concurrently.

The management software can virtualize TCIDs by maintaining a translation

between virtual and physical TCIDs.

5.2.3 Private resource protection

To remove timing channels through each core’s private resources (such as TLBs,

private caches, branch predictors, and pipelines), at most one timing compart-

ment is allocated to a core at a time. Simultaneous multithreading (SMT) is

restricted so that only processes with the same TCID can share a core. This

approach is already taken in production EC2 servers, which disable SMT to pre-

vent timing channel attacks [111].

However, multiple timing compartments can use these resources through

time-sharing. Therefore, there exist timing channels if the state is kept across

128

Component Timing Channel Solution

Shared caches
Replacement Way partitioning
MSHRs Duplicate MSHRs
Response ports Separate queues

Memory Controller

DRAM bus Time multiplexing
Queueing structure Separate queues
Row buffer Closed Page Policy
Response ports Separate queues

On-Chip interconnect Interconnect bus Time multiplexing
Queueing structure Separate queues

Cache coherence Coherence bus Time multiplexing
Cache port Response by L3

Table 5.1: Summary of timing channels and protection. Green represents newly
identified ones.

context switches. For example, the branch behavior of one timing compart-

ment may affect the next timing compartment if the branch predictor table is

kept across a switch. To eliminate this timing channel, timing compartments

flushes the per-core state when a core leaves a timing compartment (i.e., the

TCID changes).

To prevent information leakage, the time taken to flush should not depend

on each timing compartment’s state. For example, cache flushing should not

take longer when there are more dirty blocks. Therefore, we design hardware to

support secure flushing that blocks a core for the worst-case write-back time. In

our evaluation, we found the performance impact of the flushing is negligible.

5.2.4 Timing isolation in memory hierarchy

Table 5.1 summarizes the timing channels in the shared memory hierarchy and

our approaches to remove them. Newly discovered timing channels are high-

lighted in green.

129

Cache contention

Static cache partitioning [70] eliminates cache interference among timing com-

partments by allowing a cache block to replace only entries owned by the same

timing compartment. While other approaches to cache protection have been

proposed [93], timing compartments use way partitioning because partitioning

completely eliminates timing channels. Way partitioning is a form of spatial

partitioning that allocates each cache way to one timing compartment. Cache

partition control registers (CPCs) associate a TCID with each way. On a cache

access, only entries in ways owned by the corresponding TC are checked or

evicted. By changing these registers, management software can adjust the num-

ber of ways allocated to each TC. As with private caches, any partitions owned

by a TC must be flushed when it is context switched out.

For shared caches, spatial partitioning provides better performance than

temporal partitioning by allowing all active TCs to use a portion of the cache

and keep the most heavily used data on-chip. In temporal partitioning, while

one TC can use the entire cache, the performance of other TCs will significantly

degrade as their memory accesses need to go off-chip.

MSHR Contention. In addition to contention for cache arrays, MSHRs also

require protection. Contention for miss status holding registers (MSHRs) in

non-blocking caches causes timing channels. The number of outstanding misses

that the cache can tolerate depends on the number of MSHRs. Once all MSHRs

are occupied, the cache will stall on a miss, resulting in increased latency for

cache accesses. Therefore, shared MSHRs cause a timing channel. To remove

MSHR contention, disjoint sets of MSHRs are allocated to each timing compart-

ment. MSHR contention is resolved with spatial partitioning instead of tempo-

130

ral partitioning because MSHRs must be able to serve all active TCs.

Response Port Contention. Conventional caches have CPU-side ports and

memory-side ports which are each split into request and response ports. How-

ever, each port can only service a single response/request at a time, creating

timing channels through contention. Similarly, shared queues that buffer re-

sponses at the ports also lead to timing interference. To remove this timing

channel, the cache ports are time multiplexed and the shared queue is parti-

tioned into per-compartment queues. Temporal partitioning is strictly better

than spatial partitioning here. The ports are only interfaced with temporally

partitioned networks, so there is no benefit from duplication.

On-Chip interconnect contention

For on-chip networks, we adopt a static time multiplexing approach proposed

in previous work [94], and extend it with the capability to allow system soft-

ware to control network bandwidth allocation and scheduling. Each network

arbiter is extended with a ring buffer of network turn control (NTC) registers

and a network turn offset control (NTOC) register. NTCs specify a TCID and

turn length. The NTOC allows the start of the bus schedule to be adjusted rela-

tive to other time multiplexed resources (namely, other buses and the memory

controller). Temporal partitioning is preferable to spatial partitioning because

bus transactions are short, and duplicating the network would have high area

overhead.

131

Main memory controller contention

The main memory is shared concurrently by multiple cores. As a result, interfer-

ence among memory accesses from multiple TCs leads to timing channels. We

temporally partition the memory controller [89] to provide memory protection,

but propose a new optimization to reduce its overhead (Section 5.3.2).

This approach uses a set of techniques to remove timing channels in each

memory controller component. A shared request queue is replaced with smaller

per-compartment queues. To remove timing variation based on row buffer state,

the DRAM controller uses a closed page policy. A closed page clears the row

buffers by pre-charging them after each row access. This is effectively flushing

at the end of a temporal partitioning turn. Contention for DRAM resources

such as the command/data bus, banks, and ranks is removed with temporal

partitioning. A period during which no new requests can be issued, called the

dead time, is added to each time slice in order to prevent in-flight requests or

refreshes from interfering with the next time slice. A hybrid temporal-spatial

partitioning approach can also be taken. In a system with multiple memory

channels, a subset of the TCs can be assigned to each channel, and temporal

partitioning can be used within each channel.

Memory controller protection supports fine-grained resource allocation by

the OS. The resource allocation control structures are similar to those used

for the on-chip interconnects. A ring buffer of memory turn control registers

(MCTs) controls the owner and length of each turn and the memory turn offset

control register (MTOC) controls the turn offset.

132

Contention in cache coherence protocols

We found that cache coherence protocols can be a source of timing channels.

Coherence operations can lead to timing interference though coherence bus con-

tention or contention for cache ports. Even when there is no shared data be-

tween timing compartments, traffic on the snooping coherence bus can lead to

a timing channel because the bus is shared by multiple TCs.

Attack Example. Here, we demonstrate a timing, covert-channel attack

through cache coherence mechanisms using a simulated 4-core system. Each

core has private L1 and L2 caches, and the four cores share an L3 cache. The four

L2 caches are connected with a snooping coherence bus which uses a MOESI

protocol. TC0 runs on core 0 and core 1 while TC1 runs on core 2 and core 3.

TC0 runs two threads on different cores. Both threads run a for loop, and

writes to shared data during each iteration. Before each write is performed, one

of the L2 caches has to forward the data to the other through the snooping co-

herence bus and invalidate its own copy. TC0 repeats this process and records

the time for each loop. To communicate a secret, TC1 sends a ’0’ by doing noth-

ing and sends a ’1’ by spawning multiple threads that write to shared data.

Figure 5.2 shows the execution time of the for loop that TC0 observes, which

shows clear correlation to the secret. ’01101100’, sent by TC1.

Protection. Cache coherence mechanisms have two sources of timing in-

terference: bus contention and port contention. As with the on-chip data bus,

we eliminate interference with temporal partitioning. However, timing channel

protection for the coherence mechanism is different from data bus protection

in two ways. While coherence requests are associated with the TCID of the

133

Figure 5.2: TC0’s timing observation.

core that issues the request, responses must be tagged with the TCID of the

corresponding request, not the TCID of the core that sends the response. In the

MOESI coherence protocol, a private cache that owns the data may need to send

it to another cache. These transactions can contend for cache ports with requests

from processing pipelines. To remove this contention, we change the coherence

protocol to serve data from the shared cache instead of from the private caches

whenever the data is owned by a different timing compartment. Because pro-

tected pages that are shared between compartments are always read-only, the

shared cache or memory always has an up-to-date copy.

134

L2-L3 bus

ReqLayer

RespLayer

Timeline

TC0

TC1

L3-Mem bus

ReqLayer

RespLayer

Memory Controller

...........
L3 Pipeline

...................

treq

tL3 Request blocked by other TC

Not enough time for memory access

treq

Figure 5.3: A bad time multiplexing schedule.

5.3 Performance optimizations

5.3.1 Time-slice coordination

Timing compartments rely heavily on time multiplexing to protect shared re-

sources including the L2-L3 bus, the L3-memory bus, and the memory con-

troller. Since these resources are all involved in handling L2 misses, their sched-

ules must be coordinated to achieve high performance. For example, to avoid

an unnecessary delay when a request exits the L3-memory bus, the memory

controller should be available immediately to handle that request.

Figure 5.3 illustrates the problem. It shows when each of two timing com-

partments are scheduled to use the time multiplexed resources along the L2

miss path. Red (Blue) blocks indicate that TC0 (TC1) is scheduled to use the de-

vice. In the figure, an access from TC0 that misses in both the L2 and L3 caches

is shown. The L2 miss sends a request to the L3 using the L2-L3 bus request

layer. When the L3 access is complete, the request must proceed through the

L3-memory bus request layer, but at this time TC1 is scheduled to use the L3-

135

memory bus, so TC0 is blocked until TC1 finishes. Then, when it arrives at the

memory controller, there is not enough time left to complete a request, so it is

blocked again.

The time multiplexing schedule should be coordinated among related re-

sources to avoid this problem. We define a turn as the block of time that a TC is

scheduled to use a resource, and a turn length is the duration of a turn. An offset

refers to a shift in the start of the turn for a single resource compared to the start

of the full schedule. Coordination can be done by controlling the turn lengths

and offsets for each time multiplexed resource.

There are three main criteria for developing an efficient schedule. First, the

turn length should be long enough for at least one transaction to complete. Sec-

ond, to reduce unnecessary delays, the offset should begin each turn when the

data is available from the preceding step. Third, the desired schedule should

repeat for each timing compartment.

The timing of an L2 miss depends on whether it hits or misses in the L3.

After an L3 hit, the response is sent back across the L2-L3 bus immediately.

After an L3 miss, the request must propagate through the L3-memory bus, the

memory controller, and so on. Since the timing differs for these two cases, they

produce conflicting timing constraints.

Given the conflicting requirements, we found that deriving the optimal

schedule for memory hierarchy in general is a nonlinear optimization problem

which is too difficult to be solved analytically. Instead, we derive a schedule

heuristically. We built a custom simulator that models the memory hierarchy

components involved in an L2 miss. It accepts a schedule (i.e. turn length and

136

C1 C2 C3

} } } }Dead Time

{Queues

Time

}Turn

Figure 5.4: A temporal partitioning schedule with three security classes.

offset values) as inputs and calculates the average L2 miss latency assuming the

distribution of request arrival times is uniform random. We then used a simu-

lated annealing optimizer to find a schedule that minimizes the L2 miss latency

assuming an L3 hit-rate of 90%. We hand-wrote the simulated annealing opti-

mizer in ruby.

The simulation study shows that time-slice coordination has a significant

impact on memory latency. For L2 misses that hit in the L3 cache, the worst

schedule we found by just varying offset values with a fixed turn length had

an average L2 miss latency that is 2.64X higher than the best schedule. For L2

misses in general (90% L2 hit), the schedule found by the optimizer reduced the

average L2 miss latency by 62% compared to the worst schedule found, and by

12% compared to a hand-tuned, best-effort schedule.

5.3.2 Operation-aware dead time

Simulations show that the most significant source of overhead for timing com-

partments is the reduction in maximum usable memory bandwidth due to tem-

137

porally partitioning the memory controller. Figure 5.4 illustrates temporal par-

titioning [89] which removes timing interference in a shared memory controller

by issuing requests in a fixed, static schedule. Each security domain is allo-

cated to a single time-slice called a turn, and each security domain can only

issue transactions during its turn. To prevent transactions issued by one timing

compartment from interfering with another timing compartment, the memory

controller stops issuing transactions for a period at the end of each turn, called

the dead time, in order to ensure that in-flight transactions complete by the end

of a turn and do not interfere with the next turn. The dead time is conserva-

tively set to the worst-case time between two transactions. In practice, this is a

substantial portion of a time slice. For the parameters used in our simulations,

the dead time consumes 22 memory cycles out of each time slice, which range

from 23 to 43 cycles.

Security requires that the in-flight transactions from one compartment can-

not interfere with transactions issued by another TC in the following turn. How-

ever, the worst-case time between two transactions depends on the type of each

transaction — in other words, for some transaction types, the worst-case time

is lower. Transactions that take less time can safely issue later in the turn. We

propose an optimization that leverages this observation by coarsely grouping

transactions into reads and writes. Then, a different dead time is used for each

type of transaction. For example, the following equations show the worst-case

times for each memory operation sequence based on DRAM timing parameters.

• Read, Read: tFAW − 3 ∗ tRRD

• Write, Write: tFAW − 3 ∗ tRRD

• Read, Write: tCAS + tBURST + tRTRS − tCWD

138

• Write, Read: tCWD + tBURST + tWTR

Here, tCAS is the time between a column read command and the placement

of data onto the data bus, tCWD is the time between a column write command

and the placement of data on the bus, tBURST is the time that the data occupies

the data bus, tRTRS is the rank to rank switching time, tWTR is the minimum

time between a column write and a column read, tRRD is the minimum time

between two row activations, and finally, tFAW is the four-bank activation win-

dow, a rolling time period during which no more than for bank activations can

occur.

The dead time for reads is set to the worst case time between any read trans-

action and any other transaction. The dead time for writes is determined simi-

larly. The dead time for each type of transaction determines when that type of

transaction can no longer be issued. The dead time for reads is smaller than the

dead time for writes, allowing multiple read transactions to be issued in a turn.

For example, for the DRAM parameters used in this paper, the dead time for

reads is 12 memory cycles whereas the dead time for writes is 18 cycles.

This optimization significantly improves performance for memory-intensive

workloads.

139

5.4 Evaluation

5.4.1 Methodology

To study the performance overhead of timing compartments a timing-protected

multicore processor is simulated using gem5 [7] integrated with DRAM-

Sim2 [72]. The simulations use the ARM ISA. Table 5.2 shows the system con-

figuration. The cores use the gem5 “O3“ out-of-order core model which runs at

2GHz. Each core has private 32KB L1 instruction and data caches, and a private

256KB L2 cache. The shared L3 cache is varied from 2MB to 9MB depending on

the number of cores. The cache configuration parameters are derived from the

Intel Xeon E3-1220L and Intel Xeon E7-4820 which are used by Amazon EC2.

In DRAMSim2, we simulate a single-channel 667MHz 2GB DDR3 memory. The

interconnects in the simulator run at 1GHz.

For most experiments, each core has its own timing compartment. That is,

for an n-core system, n timing compartments execute concurrently. We study

the impact of having multiple cores in one timing compartment separately. The

number of cache ways and the network/memory bandwidths are evenly par-

titioned among timing compartments. Unless otherwise stated, the memory

controller protection uses the minimum turn length (23) and the relaxed dead

time optimization, which applies different dead times for reads and writes.

Our experiments use multiprogram workloads, and we describe our

methodology precisely enough so that it can be repeated [41]. The simula-

tions are fast-forwarded until each benchmark has executed at least 1 billion

instructions. Benchmarks may reach this threshold at different times, meaning

140

Core count 2/4/6/8
gem5 core model “O3”
CPU Clock 2GHz
Memory 2GB 667MHz
Network Clock 1GHz
L1d / L1i 32kB 2-way 2 cycles
L2 256kB 8-way 7 cycles
L3 2/4/6/9MB 16-way 17 cycles

Table 5.2: Simulation configuration parameters.

the benchmarks which run faster will be fast-forwarded for more instructions.

However, detailed simulations begin from the same point for each workload

and for all system configurations. After fast-forwarding, results are collected

with a detailed simulation until each core has executed for at least 100M instruc-

tions. Statistics are collected for each benchmark at the 100M instruction mark,

but all benchmarks continue to run until the simulation ends, so that there is

interference for the entire simulation for the insecure baseline.

5.4.2 Performance overhead

This section evaluates the performance overhead of timing isolation by running

multiprogram workloads comprised of SPEC2006 benchmarks, and measuring

the system throughput (STP). STP is the aggregated normalized IPC of each

program relative to the IPC when each program runs by itself. An STP of greater

than 1 means that higher throughput is achieved by running the programs in

parallel rather than serially. It is computed by
n∑
i=1

IPCMP,i

IPCSP,i
, (5.1)

where IPCMP,i is the IPC of the ith program in the workload when run in paral-

lel with the others, and IPCSP,i is the IPC for the same program when it is run

141

Workload Benchmarks Memory Intensity

ast_ast astar astar low-low
h26_hm h264ref hmmer med-med
ast_h26 astar h264ref low-med
sjg_h26 sjeng h264ref med-med
sjg_sjg sjeng sjeng med-med
mcf_ast mcf astar high-low
lib_ast libquantum astar high-low
mcf_mcf mcf mcf high-high
mcf_lib mcf libquantum high-high
lib_lib libquantum libquantum high-high

Table 5.3: Multiprogram workloads.

alone on the same system.

The experiments evaluate the performance for the workload mixes shown

in Table 6.2. Workloads were selected to include a diverse set of application

mixes that include both memory intensive and compute intensive benchmarks.

Applications also vary in cache sensitivity. For experiments with two cores,

each workload consists of the two benchmarks in the table. For experiments

with more cores, the same labels are used to refer to a workload mix where half

the compartments run the first program, and the others run the second half.

Overall performance overhead

Figure 5.5 shows the performance overhead of timing compartments in a sys-

tem with 2 cores both with and without optimizations. The optimizations

include the relaxed dead time for the memory controller (relaxed) and static

workload-aware resource allocations for the cache (Cache) and memory (Mem).

Workload-aware resource allocation uses the amount of cache space and mem-

ory bandwidth allocated to each application to match the general application

demands. The allocation, however, is still fixed for the entire execution and

thus only reflects general application characteristics, not data-dependent pro-

142

a
st

_a
st

h
2

6
_h

m

a
st

_h
2

6

sj
g

_h
2

6

sj
g

_s
g

j

m
cf

_a
st

lib
_a

st

m
cf

_m
cf

m
cf

_l
ib

lib
_l

ib

No Opt Relaxed Cache Mem All Opti

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
o
rm

a
liz

e
d

 S
T
P

Figure 5.5: Performance Overhead of Timing Compartments.

gram behavior. The bar labeled (All Opti) uses all optimizations. The overhead

is measured using the STP of the secure system normalized to the STP of the in-

secure baseline. Performance overhead depends heavily on memory intensity.

The overhead is quite low for compute-intensive workloads such as sjg_sjg,

ast_h26, ast_ast, and sjg_h26, because timing compartments only incur over-

head during L2 misses.

On the other hand, the performance overhead can be quite significant for

memory intensive workloads when unoptimized protection techniques are

used. For example, lib_lib has overhead close to 45%. For these cases, the

relaxed operation-aware dead time can significantly reduce overhead. This op-

timization reduces the worst-case overhead to roughly 20%. The overhead can

be further reduced to less than 7% on average and 16% in the worst case if the

application-aware resource allocation is also enabled.

We note that 2 TCs are enough to support many practical application scenar-

ios. For example, mobile security platforms such as ARM TrustZone [59] isolate

applications into two worlds. Each world can be placed in a single TC regard-

143

a
st

_a
st

h
2

6
_h

m

a
st

_h
2

6

sj
g

_h
2

6

sj
g

_s
g

j

m
cf

_a
st

lib
_a

st

m
cf

_m
cf

m
cf

_l
ib

lib
_l

ib

Cache Bus Memory Ctrl

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
o
rm

a
liz

e
d

 S
T
P

Figure 5.6: Performance Breakdown (4 cores).

less of the number of cores. As we show later, overheads scale with the number

of TCs, not with the number of cores. Similarly, hardware compartments such

as Intel SGX are designed to be used as a secure co-processor to run security-

critical parts of an application and mostly likely to run one compartment at a

time.

Overhead breakdown

To better understand the sources of the performance overhead, the overhead of

protection mechanisms were evaluated individually. Figure 6.4 shows the per-

formance overhead of timing compartments compared to the insecure baseline

when only a single protection mechanism is enabled at a time. These protec-

tion mechanisms include cache partitioning, time multiplexing for the on-chip

interconnects, and time multiplexing for the memory controller. The memory

controller uses the relaxed dead time optimization. The results suggest that

the memory controller protection is the most substantial source of overhead,

and that cache partitioning and bus protection are less costly. This is because

144

a
st

_a
st

h
2

6
_h

m

a
st

_h
2

6

sj
g

_h
2

6

sj
g

_s
g

j

m
cf

_a
st

lib
_a

st

m
cf

_m
cf

m
cf

_l
ib

lib
_l

ib

2TCs 4TCs 8TCs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
o
rm

a
liz

e
d
 S

T
P

Figure 5.7: Norm. STP of TCs as the number of TCs increases.

memory controller protection requires a dead time [89] to drain in-flight trans-

actions which significantly reduces total memory bandwidth. For example, in

our DRAM configuration, the turn length is 23 cycles whereas the dead time is

22 cycles. Prior results using a similar simulation environment, benchmarks,

and parameters also suggest that short turn lengths achieve the best perfor-

mance [89]. As a result, only one DRAM request can be issued every 23 cycles,

incurring significant overhead for bandwidth-limited applications. While pro-

tection for caches and on-chip interconnects introduces inefficiencies, they do

not reduce the total cache capacity or the on-chip interconnect bandwidth.

Scaling the number of TCs

Figure 5.7 shows the performance overhead of timing compartments as the

number of TCs and cores increases from 2 to 8. The relaxed dead time opti-

mization is used, but resource allocation is not optimized based on application

characteristics. The performance overhead is low (less than 5%) for compute-

intensive benchmarks even with a large number of TCs. Yet, the overhead of

145

memory-intensive workloads increases with the number of TCs, because more

compartments share the same amount of fixed memory bandwidth.

The results suggest that many TCs can be supported simultaneously with

reasonable overhead for compute-intensive applications. However, many mem-

ory intensive workloads should not be allocated to the same machine to keep

overheads low. Chapter 6 proposes further optimizations to reduce the over-

head of timing channel protection for shared memory controllers.

Using one TC for multiple cores

Multiple programs or virtual machines can be grouped into the same timing

compartment as long as they have the same security needs. For example, cloud

users often request several VMs that run on the same physical machine, possibly

to avoid network communication latencies. Naturally, VMs owned by the same

user can be grouped into the same timing compartment. Also, low-security VMs

may not need timing channel protection. For multi-threaded programs, one

program can also use multiple cores running in the same timing compartment.

Using one timing compartment for multiple cores provides substantial per-

formance improvements because cores within one compartment can share re-

sources as they would in a conventional system without timing protection. Fig-

ure 5.8 shows the benefit of grouping multiple programs into a single timing

compartment by comparing the STP of a system that runs 4 programs in 4 TCs,

to the same system running the same 4 programs in 2TCs. The memory con-

troller turn lengths are increased to 30 for the 2 TC system (compared to 23

for the 4TC systems) since TCs running two programs consume more memory

146

a
st

_a
st

h
2

6
_h

m

a
st

_h
2

6

sj
g

_h
2

6

sj
g

_s
g

j

m
cf

_a
st

lib
_a

st

m
cf

_m
cf

m
cf

_l
ib

lib
_l

ib

4TCs 2TCs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
o
rm

a
liz

e
d

 S
T
P

Figure 5.8: Benefit of allowing 2 programs to share a TC.

bandwidth. The performance improvement is dependent on the characteristics

of the applications in the workload. For memory intensive workloads such as

lib_lib, the STP improves by as much as 54% compared to using 4TCs. How-

ever, for workloads like ast_ast where all applications are compute-bound, the

improvement is small. Overall, the performance overhead of running 2 TCs on

4 cores is comparable to running 2 TCs on 2 cores.

Multi-threaded performance overhead

The multiprogram workloads do not show the overhead of protection for the

cache coherence bus, because they do not have shared data. To evaluate the

overhead of cache coherence protection, we used SPLASH-2 [99] benchmarks

on a 4-core system. For each experiment, we run two copies of a SPLASH-2

benchmark, each with two threads, in two TCs.

The overhead of cache coherence protection was evaluated by comparing the

normalized execution time of a system with all protection mechanisms to the

normalized execution time of the same system with all protection mechanisms

147

except cache coherence protection. The overhead of adding cache coherence

protection is quite low; the overhead is at most 1.5% for ocean_cp. The over-

heads for the remaining SPLASH-2 benchmarks is negligible. The overhead is

low because coherence protocol transactions are infrequent.

Context switching overhead

When a timing compartment is context switched out, the remaining state in the

private and shared caches, and on-chip resources such as the TLB and branch

predictor, need to be flushed and dirty cache lines need to be written back to

main memory. To prevent write-back requests from interfering with the incom-

ing process, the core must be stalled until all write-backs are complete. We

believe flushing the private and shared caches are the main source of overhead

as they are the largest state elements. We evaluated the STP of a 4-core sys-

tem with 4TCs and with private caches that are flushed every 10ms, 50ms, and

100ms normalized to the STP of the system without flushing. The overhead of

context switching is quite small. On average, the overhead is 2.1% when con-

text switches happen every 10ms and 0.8% when context switches happen every

100ms. The overhead is at most 7% (for h26_hm) when flushing happens every

10ms.

148

CHAPTER 6

LATTICE PRIORITY SCHEDULING FOR SHARED MEMORY

CONTROLLERS

Chapter 5 identified that in a multicore processor with timing channel pro-

tection, memory controller timing channel protection is the performance bot-

tleneck. This chapter proposes a memory controller scheduling algorithm for

timing channel protection called lattice priority scheduling (LPS). LPS improves

performance by more precisely enforcing the security policies of a system that

specifies those policies with lattice model information flow labels, such as

the HyperFlow architecture presented in Chapter 4. For example, flows from

public to secret are secure. By allowing these permissible flows, LPS can both

improve upon the memory bandwidth that is utilized and dynamically respond

to the run-time behavior of applications. We evaluate LPS in a simulated 8-core

microprocessor. Compared to a straightforwardly time-multiplexed timing-

channel-free memory scheduler, lattice priority scheduling improves system

throughput by over 30% on average and by up to 84% for some workloads.

This work is the first to describe an algorithm for allocating a shared, mi-

croarchitectural resource among entities while providing timing-channel pro-

tection under a security policy expressed in the lattice model. It does so pre-

cisely, leveraging permissible flows to improve the efficiency of allocation de-

cisions. The lattice policy is highly expressive, and the proposed algorithms

support the full generality of the lattice model.

149

Hypervisor

CPU1

VM 1

$

Shared Cache

Shared Memory

VM 2 VM 3 VM 4

C2

$ $

CPU2 CPUn

C1

Figure 6.1: System model

6.1 Main-Memory Timing Channels

6.1.1 System Model

This work considers a multi-core processor with two or more cores connected

to a shared memory as shown in Figure 6.1. The cores may also share caches,

on-chip networks, and other hardware components. The architecture allows

processes to be grouped into security classes according to their security needs.

In Figure 6.1, the class C1 does not require timing protection from C2. However,

C2 distrusts C1, so timing channels that leak information from C2 to C1 must be

prevented. As discussed in Section 6.3, lattice priority scheduling supports a

wide range of policies describing trust relationships of this form.

This work assumes the target system has a conventional DRAM and memory

controller architecture. A modern processor has multiple memory channels,

the structure of which is shown in Figure 6.2. Each channel is managed by

150

Addr

Cmd

Data

Rank 1 Rank 2

Control
Logic

Queues

Banks

Row Buffer

Figure 6.2: A Conventional DRAM Channel

a separate memory controller. Each memory controller has a set of queues of

pending memory transactions (read or write requests) and control logic which

governs the use of the address, command, and data buses. A DRAM channel

is divided into several sets of chips, called ranks, that work in unison to handle

each memory transaction. Ranks are further divided into banks. Each bank has

an array of DRAM cells which are broken into rows and columns, and each bank

has a row buffer that stores the most recently used row. Banks and ranks both

improve the parallelism of main memory.

6.1.2 Threat Model

Lattice priority scheduling removes all timing channels that are introduced

when a group of co-resident processes share main memory. In particular, this

work addresses timing side channels, as well as timing covert channels. In a side-

channel attack, a victim unintentionally leaks a secret to the attacker through

timing. For example, Wang et al. [89] present a side-channel attack in which the

number of “1s” in a private RSA key is leaked through shared memory traffic.

Timing channels enable covert-channel attacks in which one attacker intention-

ally communicates a secret to another attacker through event timing to bypass a

151

communication restriction. Wang et al. [89] also present a covert-channel attack

where two attackers share a memory. One attacker sends a message by modu-

lating its memory demand. The other attacker issues a large number of memory

requests (which interfere with the first attacker’s requests), and then measures

its memory throughput to receive the message.

LPS addresses a threat model which includes attackers that can run arbi-

trary programs on the target system and can measure the timing of their own

events (e.g., program execution time). The scheduling algorithm is assumed

to be public and known to the attacker. Attackers can leverage this informa-

tion to improve their ability to correlate scheduling decisions with secrets. The

threat model includes sophisticated attackers capable of filtering out noise and

performing statistical analysis when carrying out both covert and side-channel

attacks.

It is assumed that there is adequate protection for explicit communication

(such as virtual memory and access controls). The attackers lack physical access

to the target system, and therefore cannot execute physical side-channel attacks,

such as those which exploit power side channels.

152

6.1.3 Timing-Channel Attacks in Memory

Conventional memory controllers have timing-channel vulnerabilities due to

1) queue interference, 2) row buffer state, and 3) contention for DRAM re-

sources [89]. In conventional memory controllers, transactions from distrusting

processes are placed in a shared queue, where they can interfere, causing mea-

surable delays. Memory banks store the most recently used row in a row buffer

for faster access. An attacker can learn that a particular row was used recently

if it gets a row buffer hit. Finally, DRAM devices have a number of resources

(such as ranks, banks, and the address, command, and data buses) which can

service a finite number of simultaneous requests. Contention for these resources

also causes timing channels.

6.1.4 Temporal Partitioning

Temporal Partitioning (TP) [89] addresses timing channels in main memory.

Fixed Service (FS) [78] improves upon TP, but uses the same high-level ap-

proach. This approach prevents all timing leakage between security classes,

which are groups of processes or virtual machines. Memory transactions are

tagged to indicate the security class that owns them. Queue interference is re-

moved by providing separate queues for each security class or statically parti-

tioning a shared queue. The row-buffer timing channel is addressed by using

a closed page policy, which pre-charges the row buffer after each read or write

command to clear the buffer. The secure memory controller presented in this

chapter also uses duplicated/partitioned queues and a closed page policy to

address these problems.

153

C1 C2 C3

} } } }Dead Time

{Queues

Time

}Turn

Figure 6.3: A temporal partitioning schedule with three security classes.

TP addresses the contention timing channel through time-division multi-

plexing. Memory transactions are issued on a fixed, static schedule. Each se-

curity class is given a turn, which is a time slot in the static schedule during

which it is permitted to issue requests, as illustrated in Figure 6.3. Each of the

three security classes is allocated a turn in the static schedule. The duration of

a turn can be configured to improve performance. The security class currently

scheduled with a turn is said to be active. If the active security class has no use-

ful work, the turn is wasted. No other security class can use the turn since this

would indicate the memory usage of the originally scheduled security class.

Memory transactions require a variable number of cycles to complete. Since

the presence of an in-flight transaction from one class could influence the timing

of transactions owned by another, any in-flight transactions must be drained

before the turn for the next class starts. This is done using a period at the end of

the turn called dead time, which is long enough to drain the worst-case memory

transaction. During dead time, the turn owner can no longer issue transactions.

The turn length must be at least as long as dead time. Dead time is indicated in

Figure 6.3 by a dark gray segment at the end of each turn.

154

a
st

_a
st

h
2

6
_h

m

a
st

_h
2

6

sj
g

_h
2

6

sj
g

_s
g

j

m
cf

_a
st

lib
_a

st

m
cf

_m
cf

m
cf

_l
ib

lib
_l

ib

Cache Bus TemporalPartitioning

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
o
rm

a
liz

e
d

 S
T
P

Figure 6.4: System throughput with off-core protection mechanisms normalized
to throughput of insecure baseline.

Performance of Temporal Partitioning

Unfortunately, Temporal Partitioning is costly. With 8 cores, TP increases the

memory latency by 5.39x compared to the baseline on average, and reduces

system throughput (STP) by up to 80%. Additionally, we simulated a 4-core

system with timing-channel protection mechanisms applied to all major off-core

resources including the shared cache, the interconnects, and the memory con-

troller. The shared caches are statically partitioned, the interconnects are time-

multiplexed with a fixed, round-robin schedule, and TP is used to protect the

memory controller. Figure 6.4 shows the system throughput with each of these

protection mechanisms enabled individually. The throughput is normalized to

the system throughput of the same system with all protection mechanisms dis-

abled. Temporal Partitioning is the greatest source of performance overhead

and accounts for over 81% of the total overhead of the system. This implies that

memory controller protection is the performance bottleneck for systems that re-

move timing channels through shared off-core hardware resources.

155

In TP, time multiplexing is the primary source of performance overhead. A

transaction can only be issued during the turn of its security class, but not dur-

ing dead time. Transactions that arrive outside this period must wait in the

queue. Therefore, TP increases queueing delay: the part of memory latency trans-

action waits in the queue. The other component of memory latency is in-flight

time, which is the time from when the transaction issues from the queue until it

completes. TP increases queueing delay in several ways.

Dead time reduces the total usable bandwidth compared to a conventional

memory controller, increasing queueing delay. With the DRAM timing param-

eters used in this chapter, each turn must include 43 cycles of dead time. If the

minimum turn length is used, transactions are issued at a rate of at most one

per 44 memory cycles. Though the turn length can be increased to improve the

bandwidth, the bandwidth-latency trade-off favors shorter turns. Increasing the

turn length increases the latency imposed on transactions issued by a security

class other than the active one. Prior studies [89, 78] confirm that shorter turn

lengths achieve the best performance.

In addition to reducing the total usable bandwidth, scheduling constraints

restrict TP from efficiently allocating memory bandwidth among security

classes. If the active security class has no pending transactions, no other security

class can be scheduled in its place as this would leak the demand of the orig-

inally scheduled class. Instead, no transactions are issued and memory band-

width is wasted. Generally, this means that under the security model of TP, the

scheduler cannot respond to the dynamic resource needs of each security class

leading to performance overhead. We call this problem demand imprecision.

Even if bandwidth is allocated to security classes proportionally to the mem-

156

ory demand from each security class, static scheduling still imposes restrictions

which lead to delays. If a transaction from one security class is enqueued when

a different security class is active, it is delayed until its security class becomes

active.

6.2 Lattice Priority Scheduling

This section proposes a secure scheduling algorithm, called lattice priority

scheduling (LPS), that enables a timing-safe memory controller to precisely

meet the security requirements of the system, thereby improving performance.

LPS improves performance by enforcing security policies which include uni-

directional protection – in other words, policies which allow information to flow

in just one direction between security classes. LPS leverages uni-directional pro-

tection to address demand imprecision, remove delays due to static scheduling,

and reduce dead time. For simplicity, lattice priority scheduling is first intro-

duced for a system with two security classes, L andH . Information is permitted

to flow from L to H , but not from H to L. Section 6.4 generalizes LPS to support

arbitrary lattice policies.

Lattice priority scheduling improves upon TP in two ways. First, it sched-

ules security classes dynamically. Dynamic scheduling allows LPS to respond

to the run-time resource demands of applications, and removes delays caused

by static scheduling. Second, it uses dead time elision, which improves the total

amount of usable memory bandwidth by reducing the dead time.

To illustrate how lattice priority scheduling addresses demand imprecision,

Section 6.2.1 proposes a simpler scheduling algorithm based on the concept of

157

H L

Time
tL

Turn stolen

H

H H H

HL

Figure 6.5: Dynamic bandwidth allocation example.

dynamic bandwidth allocation. Then, Section 6.2.2 extends this idea with a fully

dynamic schedule, further improving performance.

6.2.1 Dynamic Bandwidth Allocation

Lattice priority scheduling uses dynamic bandwidth allocation to alleviate de-

mand imprecision. To illustrate dynamic bandwidth allocation, we introduce a

scheduling algorithm called dynamic bandwidth scheduling (DBS). DBS begins

with a static schedule as in TP. Then, at the start of L’s turn, DBS checks if L has

pending transactions. If it does not, the turn is given to H .

Figure 6.5 shows an example run of DBS. Initially, the TDM schedule is

H,L, · · · The contents of the queues at the start of L’s turn at time tL are shown.

Since L has no transactions in its queue at tL, its turn is reallocated to H which

does have pending requests.

158

The decision to reallocate the turn from L cannot depend on H . If neither

have queued transactions at the start of L’s turn, L’s turn is still given up so

that information about H is not leaked to L. The decision to reallocate the turn

is final. If L’s turn is given up, but it enqueues a transaction later in that turn,

L cannot reclaim its turn. If the scheduler allowed turns to be reclaimed, it

would leak whether or not the security class which received the bandwidth (H)

actually issued a transaction.

Thus, DBS adds a small overhead not present in TP. If neither L nor H have

pending transactions at the start of L’s turn, it will be given to H . Then, if

L enqueues a transaction later in the turn, it cannot be issued. In this case H

does not make use of the turn. In TP, L would have kept its turn. However,

experiments confirm that this case is exceptional and the overhead is small.

6.2.2 Dynamic Scheduling

The performance of DBS can be improved by scheduling security classes dy-

namically. The lattice priority scheduling algorithm applies the concept dy-

namic bandwidth allocation to a fully dynamic schedule, removing delays

caused by static scheduling. It is strictly better than DBS. At a high level, lattice

priority scheduling prioritizes L over H , and H is scheduled when L has no

pending transactions or when L reaches a bandwidth limit.

Since memory transactions take multiple cycles, memory resources must still

be granted at the granularity of a turn (including dead time), so that in-flight

transactions from different classes do not interfere. Instead of using a static

schedule, the arbiter selects which security class is active each turn using Algo-

159

Algorithm 1 Priority Scheduling

1: procedure SELECTTURNOWNER
2: turn_owner← ⊥
3: while (turn_owner 6= > and (

QueueEmpty(turn_owner) or
not HasBandwidth(turn_owner))) do

4: turn_owner←AscendFrom(turn_owner)
5: end while
6: ConsumeBandwidth(turn_owner)
7: return turn_owner
8: end procedure

rithm 1.

The algorithm searches for the lowest class (turn_owner) with pending

transactions by checking if the queue of each class is empty. It stops when

it finds a security class with pending transactions. It would be insecure for

the arbiter to check H and then only schedule L if H did not have pending

requests. In this case, L could observe whether or not H had pending trans-

actions. Instead, L(⊥) is the first candidate turn owner. Then, if the candidate

turn owner has an empty queue (QueueEmpty(turn_owner)), the algorithm calls

AscendFrom(turn_owner) to select the next security class which can see infor-

mation from turn_owner. In this simple case with only two security classes,

AscendFrom() always returns H . Section 6.4 describes how AscendFrom()

works in general. The algorithm stops if there are no other security classes per-

mitted to see information from the candidate. This is true when the candidate

is H(>).

If both L and H are memory-intensive, simply prioritizing L over H would

be unfair, and would lead to performance loss for H . Further, L could exe-

cute a denial-of-service attack causing H to starve. Instead, priority scheduling

places an upper bound on the number of turns that L can be granted within an

160

H L

Time
t1 t2t0

??

Priority Schedule

??

L HH H

t3

Epoch 1 Epoch 2

Queues at
Time t1

New Req
from L

New Reqs
from H

H L

Queues at
Time t2

?? ??

Figure 6.6: Lattice priority example.

epoch, which is a static, fixed-length interval expressed as a number of turns. As

Algorithm 1 searches for a turn owner, it calls HasBandwidth() which returns

true when the argument class has turns left in the epoch. When the turn owner

is selected, it calls ConsumeBandwidth() to indicate that it has used up a turn.

Counters which track the remaining bandwidth for each security class are re-

set at the start of each epoch. The epoch length and the maximum number of

turns granted to each security class can be adjusted depending on static char-

acterizations of the programs, as long as static characterization does not violate

security.

Dynamic scheduling with an epoch of 2 turns is similar to turn stealing with

the static schedule L,H, · · · , but dynamic scheduling is strictly better. In both

cases,H is granted at least one out of every two turns. When L has few requests,

H is granted more turns with either approach. However, priority scheduling

is more flexible. Figure 6.6 demonstrates the additional flexibility of lattice

priority scheduling with an example. Assume the epoch length is 2 and L is

161

granted at most 1 turn per epoch. The queues for H and L at time t0 are empty.

Since L has no pending requests, H is allocated the turn even though H has no

pending requests. Otherwise, L could learn that H did not have a request.

Some time between t0 and t1, a new request is enqueued by L. At the start of

time t1, both H and L have pending requests. Since L has higher priority than

H , and L has not consumed its maximum of one turn during the first epoch,

lattice priority scheduling schedules L. If instead, DBS was used with the static

schedule L,H, · · · , the first turn would have been reallocated to H since L had

no useful work. However, since the second turn is statically scheduled to H , the

turn is not given to L even though H has no pending requests. This is wasteful

since L does have pending requests and could make use of the turn.

Continuing with the example run with dynamic scheduling, at time t2 the

second epoch begins and there are two new requests enqueued by H , but none

enqueued by L. Both turns are given to H since L has no pending requests.

Since this decision depends only on the fact that L has no requests, L learns

nothing about whether or not H had any requests. LPS responds to dynamic

program behavior just as well as DBS, but can also remove additional delays.

6.2.3 Dead Time Elision

Since H can learn about L, it is permissible for transactions from L to interfere

with H . Transactions from L can remain in-flight at the start of H’s turn, and

the dead time between them can be elided (skipped) as shown in Figure 6.7. By

eliding the dead time (shown in gray) during L’s turn, L can continue issuing

transactions until the turn ends. However, the dead time is still needed at the

162

H ...L LH

H ...L LH

Time

H

H

Figure 6.7: Dead-Time Elision.

end of H’s turn to prevent transactions from H from interfering with L.

For the system with classes L andH , dead times can be elided whenever L is

currently scheduled. The owner of the next turn could be either L or H , but in-

formation is permitted to flow from L to either L or H . Section 6.4.2 generalizes

dead-time elision to support arbitrary security policies.

6.3 Lattice Security Model

This work leverages the widely accepted lattice model[21] of security to pre-

cisely capture the security needs of a wide range of systems. Under the lattice

model, entities in a system are assigned a security class. A set of security classes

SC, together with an ordering relation v, form a lattice 〈SC,v〉. Information is

allowed to flow from class A ∈ SC to B ∈ SC if and only if A v B holds. The

relation, v, must be reflexive, transitive, and antisymmetric.

Since lattices are a type of partial order, not all security classes are necessarily

ordered — they may be incomparable. Security classesA andB are incomparable

if neither A v B nor B v A hold. The meet of A and B, written A u B, is the

greatest class less than both A and B. Similarly, the join of A and B, written

A t B, is the least class greater than both A and B. For a partial order to be a

163

lattice, taking the meet or join of any two classes in the lattice must result in a

class which is also in the lattice. The classes > and ⊥ denote the greatest and

least of all classes in the sense that for all classes A, A v > and ⊥ v A hold.

The terms “A is lower than B” and “A is higher than B” are occasionally used

as abbreviations for A v B and B v A throughout this chapter.

The lattice model is highly expressive, and it can be used to describe the

needs of many practical systems. For example, it can be used to describe the

Bell-Lapadula multi-level security (MLS) model [45] in which information can

flow from public to secret and from secret to top secret. Figure 6.8 (a)

shows the MLS model in a common pictorial representation of a lattice policy.

The arrows show the direction in which information is allowed to flow. For

example, an arrow points from public to secret since public v secret. Since

the lattice is transitive, it is implied that information can flow from public to top

secret as well. This policy is totally ordered since it contains no incomparable

elements.

Incomparable security classes are useful for describing mutual distrust. For

example, with the “diamond” lattice shown in Figure 6.8 (b), M1 and M2 are

incomparable and information cannot flow in either direction between them.

However, information from L can flow to M1 or M2 and information from both

M1 and M2 can flow to H . These security classes might be used to describe a

cloud system with several low-security VMs (L), two high-security VMs that

require timing-channel protection from all other VMs in the system (M1 and

M2), and a cloud owner class (H) that includes the hypervisor and scheduling/-

analysis programs that compute using input data from all the clients.

In this chapter, we assume that a security class is assigned to each process

164

Figure 6.8: Example lattice policies.

(e.g., by the OS or hypervisor). Memory requests are queued and scheduled

according to the security class of the process that issued them. The policy de-

termines what scheduling restrictions are needed for protection. The security

policy supported by TP can also be described in the lattice model as shown

in Figure 6.8 (c) for a system with 4 security classes. Each of the four security

classes are incomparable, so the scheduling decisions made by the memory con-

troller must be heavily restricted. The security classes > and ⊥ are not actually

used, but they are needed formally to represent the join and meet of the other

classes. Given this lattice, the approaches described in this chapter will behave

equivalently to TP.

165

6.4 Memory Protection under the Lattice Model

Section 6.2 presents lattice priority scheduling for a system with two security

classes, L v H . Practical systems may contain any number of entities, some

pairs of which may be mutually distrusting. This section generalizes LPS to

support a wider range of systems by leveraging the lattice model

6.4.1 Generalized Dynamic Scheduling

When scheduling security classes, it is preferable to schedule classes that actu-

ally have pending transactions. In a memory controller that prevents all timing

channels, the time that one class is scheduled cannot depend on the contents of

another class’s queue. Under a policy in the lattice model, it is permissible for

the timing of a security class to depend on the demand from any lower class.

To make the best use of memory bandwidth, LPS searches through the se-

curity classes until it finds one that has a pending transaction. A sequence of

classes, C1, C2, · · · , Ci that are searched for pending transactions is defined as a

lattice traversal. An attacker at class Ci that gets scheduled can observe (through

timing) that classes C1, · · · , Ci−1 must not have had transactions. Therefore, Ci

must be higher than all those checked before it for this to be secure. That is, the

sequence in which security classes are searched must form an ascending chain.

As an example, consider three classes, L v M v H . If the scheduler checks

L and finds that it has no transactions, it would be safe to schedule either M or

H . If the scheduler then checks M and finds it also has no transactions, it can

safely check H . However, if H is checked first, it would be insecure to check M ,

166

since this creates a timing dependence of M on H . Therefore, the only secure

traversal that checks all classes is L,M,H .

Since lattices are partial orders, there may be incomparable classes. That is,

classes A,B ∈ SC where neither A v B nor B v A is true. Whenever there

are incomparable classes, there are multiple ascending chains, and there is no

ascending chain which includes all security classes.

For example, in Figure 6.8 (b), both L,M1, H and L,M2, H are ascending

chains. For fairness it is necessary to ensure that both M1 and M2 are scheduled,

so both traversals must be used. Though care must be taken — information

from M1 and M2 cannot be used to decide which ascending chain to use (e.g.,

it is insecure to simply pick the one with pending transactions). However, both

M1 andM2 can see information from L since they are both above L. More gener-

ally, a class may be chosen from among incomparable classesC1, C2, · · ·Cn using

information from classes at or below C1 u C2 u · · · u Cn.

The lattice priority scheduler simply alternates between incomparable

classes in a round-robin fashion. Consider the lattice in Figure 6.8 (b) with two

incomparable classes M1 and M2 above class L. Assume all classes have turns

remaining in this epoch. The first time L has no pending requests, M1 is granted

the turn regardless of whether or not M1 or M2 actually have requests. The next

time, M2 is granted the turn, and the time after that M1 is scheduled, and so on.

The decision of which incomparable class to check depends only on how often

L has an empty queue, which is acceptable for both M1 and M2 to learn.

Using the above intuition, lattice priority scheduling is generalized to sup-

port any lattice. AscendFrom in Algorithm 1 uses a tree structure as shown in

167

C5

C2 C3 C4

C1

C6

C6

C5

C3C2 C4

C1C1C1C1 C1C1

1

2

111

1 1 1

Figure 6.9: Tree structure for selecting traversals in the lattice priority schedul-
ing algorithm.

Figure 6.9 to select an ascending chain. Each node of the tree is a security class.

Each parent is directly less than its children (i.e. it is covered by its children).

Each node has a counter that increments up to the number of children it has

(i.e., the number of classes that it is directly less than in the lattice). Whenever a

node is reached during a traversal, its counter is incremented and then used as

an index to select from among its children.

In the example shown in Figure 6.9, class C5 is less than three incomparable

classes C2, C3, and C4, so it has a counter that increments from 1 to 3. Assume

all classes have bandwidth remaining (turns left) during this epoch. First, C6 is

checked. Since it has no requests, it is not scheduled and C5 is checked. Since

C5 has no requests either, it is also not scheduled. In this iteration, the counter

is 2 so the next class to be offered the turn is C5’s second child, C3.

168

Fairness for General Policies

To prevent starvation and improve fairness, security classes are guaranteed a

minimum number of turns within each epoch. To enforce this minimum, each

class C is given an additional bandwidth counter representing the number of

turns C can become active this epoch. The counter decreases whenever C uses

a turn that it is offered. It is initially the maximum number of turns C can be

active in an epoch, which is

Tepoch −
∑
Ci∈C+

Tmin(Ci)

where Tepoch is the number of turns in an epoch, C+ is the set of classes that

C is less than, or {Ci|C @ Ci}, and Tmin(Ci) is the minimum number of turns

guaranteed to Ci in an epoch.

When selecting the next active class, Algorithm 1 calls HasBandwidth(turn_owner)

to check if the candidate class, turn_owner, has used its maximum number

of turns during this epoch. If the bandwidth counter of turn_owner is zero,

HasBandwidth(turn_owner) returns false, preventing

turn_owner from being scheduled. When turn_owner is scheduled,

ConsumeBandwidth(turn_owner) decrements the bandwidth counter of turn_owner.

6.4.2 Generalized Dead Time Elision

In general, dead time can be elided whenever the scheduler is certain that the

currently scheduled security class will be less than or equal to the next security

class to become active (even though the next class may not have been decided

yet). The time that the next active security class is decided affects whether or

169

Algorithm 2 Start-of-Turn Turn Allocation

1: procedure ALLOCATETURN
2: if IsTurnStart() then
3: active_class←SelectTurnOwner()
4: end if
5: end procedure
6: procedure ELIDEDEADTIME
7: lower_bound← >
8: for C ∈ {C ′|C ′ v active_class} do
9: if HasBandwidth(C) then

10: lower_bound← lower_bound u C
11: end if
12: end for
13: return active_class v lower_bound
14: end procedure

not dead time can be elided. There are two suitable choices: 1) at the start of the

turn being allocated and 2) at the start of when the dead time would begin if it

is not elided.

Algorithm 2 shows the first approach in which the next active security class

is decided at the start of the turn. In Algorithm 2, AllocateTurn decides which

security class is active at the start of each turn by calling SelectTurnOwner

which is defined in Algorithm 1. Then, ElideDeadTime determines if dead time

can be elided at the end of this turn. If all the security classes below the cur-

rently active one have already consumed all of their bandwidth for this epoch,

none of them can become active next turn. In this case, the current active class

will always be less than or equal to the next one, so dead time can be skipped.

ElideDeadTime checks for this condition.

Algorithm 3 shows the second approach, in which the next active class is de-

cided just before dead time will begin if it is needed. It uses AllocateNext

to pick the next active class just before the start of dead time. Then it uses

170

Algorithm 3 Dead-Time Turn Allocation

1: procedure ALLOCATETURN
2: if IsTurnStart() then
3: active_class←next_active
4: end if
5: end procedure
6: procedure ALLOCATENEXT
7: if IsStartOfDeadTime() then
8: next_active← SelectTurnOwner()
9: end if

10: end procedure
11: procedure ELIDEDEADTIME
12: return active_class v next_active
13: end procedure

ElideDeadTime to decide if dead time can be skipped. Now the class which

is scheduled next is known at the time when ElideDeadTime is called, so it

can simply compare the active class to the next one. At the start of the turn

it makes the previously decided next active class (next_active) the new active

class (active_class).

Dead time may be dropped more often when turns are allocated at the start

of dead time. However, there is a trade-off. When the turn is allocated sooner,

the turn is “locked in” earlier. If in a system with classes L v H , L had no

requests at the start of dead time, H would be scheduled next regardless of

whether or not H had requests. However, if requests from L arrive later, L

cannot reclaim the turn.

6.5 Hardware Implementation

This section describes how the lattice priority scheduling algorithm is imple-

mented in hardware. As with TP, each physical thread (i.e. thread in SMT) has

171

a register located in the core which stores a security ID representing the security

class of the software running in that thread. The memory controller has a num-

ber of pending transaction queues equal to the number of threads. Each queue

has a register which stores a security ID indicating its owner. The security ID

registers in the cores and in the memory controller are managed by the trusted

hypervisor or OS. Access controls should prevent modifications by untrusted

software.

Unlike TP, lattice priority scheduling supports an arbitrary policy specified

in the lattice model. The lattice policy is stored in a dedicated table in the mem-

ory controller. The table stores a 1-bit entry for each pair of security classes

(A,B) indicating whether or not A v B is true. The table is initialized and man-

aged by trusted software, and access controls should prevent modifications by

untrusted software.

LPS requires registers to configure the number of turns in the epoch and a

counter to track the current turn in the epoch. Registers set the maximum band-

width per epoch for each security class. A set of counters track the bandwidth

consumed in the current epoch by each security class.

Unlike TP, which decides the active security class statically, LPS decides

the active class for each turn dynamically. Doing so requires checking the

queues and bandwidth counters for each security class. This information can

be checked for each security class in parallel. A priority encoder is used to se-

lect the next turn owner based on the security policy.

While in general a system might have many security classes, the hardware

data structures just described need only support as many security classes as

172

there are physical threads. The security classes can be virtualized to support

arbitrarily many classes. The maximum number of simultaneously running se-

curity classes is the number of physical threads. Since the number physical

threads is small, the area overhead of lattice priority scheduling is small as well.

For example, to support a 64 thread system, the policy table would require 512B

of storage.

6.6 Evaluation

6.6.1 Methodology

The performance of lattice priority scheduling is evaluated in a multicore

out-of-order processor using a simulator based on Gem5[7] integrated with

DRAMSim2[72]. Simulation parameters are given in Table 5.2. The experiments

simulate 4 cores each with private 32KB L1I/D caches and a private 256kB L2. In

our experiments, each core runs at most one security class concurrently. In prac-

tice, there may be as many simultaneously executing security classes as there are

physical threads. Each core has a private 1MB last-level cache (LLC). Contem-

porary server processors have a shared LLC with 1MB per thread [39]. These

experiments use private caches so that only the direct performance improve-

ment of the memory controller is measured, and changes in cache interference

patterns are not measured.

Our experiments use multiprogram workloads, and we describe our

methodology precisely enough that it can be repeated [41]. The simulations are

fast-forwarded until each benchmark has executed at least 1 billion instructions.

173

Processor
Cores and Frequency 4/8cores, 2GHz
Gem5 core model “O3”
ISA ARMv8-A

Cache Hierarchy
L1d / L1i 32kB 2-way 2 cycles
L2 private 256kB 8-way 7 cycles
L3 private 1MB 16-way 10 cycles
Network Clock 1GHz

Memory
Size and Frequency 8GB 667MHz
Channels, ranks, and banks 1, 8, 8

Table 6.1: Simulator configuration parameters.

Benchmarks may reach this threshold at different times, meaning the bench-

marks which run faster will be fast-forwarded for more instructions. However,

detailed simulations begin from the same point for each workload and for all

system configurations. After fast-forwarding, results are collected with a de-

tailed simulation until each core has executed for at least 100M instructions.

Statistics are collected for each benchmark at the 100M instruction mark, but all

benchmarks continue to run until the simulation ends, so that there is interfer-

ence for the entire simulation of the insecure baseline.

The performance evaluation metric is system throughput (STP) which is the

aggregate normalized IPC of programs in the multiprogram workload. It is

computed as
n∑
i=1

IPCMP,i

IPCSP,i
, (6.1)

where IPCMP,i is the IPC of the ith program in the workload when run in paral-

lel with the others, and IPCSP,i is the IPC for the same program when run alone

in the same system.

174

H1

Core 3

H2

Core 4

L

Core 1 Core 2

Figure 6.10: Security policy for performance evaluation.

The experiments use multiprogram workloads comprising SPEC bench-

marks. Workloads are selected to capture different mixes of memory inten-

sity. Some workloads use the naming convention bench1_bench2 to indicate

that bench1 is executed on odd-numbered cores and bench2 is executed on

even-numbered cores. Table 6.2 summarizes the remaining workloads by listing

benchmarks in order of core number. Note that order matters since LPS sched-

ules security classes differently, and cores may be in different security classes.

The security policy affects the performance of lattice priority scheduling.

Unless otherwise stated, these experiments use the policy shown in Figure 6.10,

which captures the security requirements of a cloud computing environment

with both high and low-confidentiality VMs. Standard VMs run in the secu-

rity class L, and VMs which require timing-channel protection run in security

classes H1 and H2. The classes H1 and H2 are incomparable and above L. This

policy guarantees that information cannot leak out ofH1 orH2 to any other VM,

but relaxes protection for L. Cores 1 and 2 run applications with security class

L. Cores 3 and 4 run in security classes H1 and H2 respectively. The top se-

curity class above H1 and H2 (not shown) is not used, and is not allocated any

bandwidth.

The turn lengths are chosen based on prior findings that turn lengths that

175

Workload name Benchmarks
mix_1 astar x2, libquantum x2
mix_2 astar x3, libquantum
mix_3 h264ref, hmmer, sjeng, libquantum
mix_4 astar x2, mcf x2
mix_5 mcf x2, libquantum x2
mix_6 libquantum x2, hmmer, gobmk
mix_7 libquantum x1, astar x3
mix_8 libquantum x2, mcf x2

Table 6.2: Multiprogram workloads.

are close to the minimum (the dead time) achieve better performance [89]. The

dead time is 43 memory cycles. For lattice priority scheduling, the turns are 44

cycles. In all experiments, TP uses three incomparable security classes where

Core 1 and 2 share a class. For TP, the same turn length (44) is used for se-

curity classes containing one program. Since the first security class runs two

programs, the turn length is doubled to accommodate the bandwidth demands

of both programs. The lattice priority scheduler uses an epoch of 4 turns with

a minimum of 1 turn reserved for each of H1 and H2 per epoch. This closely

follows the configuration used for TP; assuming L has high memory demand it

will consume 2 turns per epoch, and if these turns are adjacent, the dead time

between them is elided, mirroring the behavior of a turn that is twice the length

of the minimum.

6.6.2 Performance and Scalability

Figure 6.11 studies the performance improvement of lattice priority schedul-

ing compared to temporal partitioning as the core count increases from 4 to 8

cores. The performance metric is system throughput normalized to temporal

176

m
cf

_l
ib

m
cf

_a
st

lib
_l

ib

m
cf

_h
2

6

sj
g

_s
jg

h
2

6
_h

m

a
st

_a
st

m
ix

_1

m
ix

_2

m
ix

_3

m
ix

_4

m
ix

_5

m
ix

_6

m
ix

_7

m
ix

_8

4 Cores 8 Cores

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

N
o
rm

a
liz

e
d

 S
T
P

Figure 6.11: Normalized STP as core count increases.

partitioning. The 4 core machine uses the cloud computing policy described

earlier, and the 8 core machine uses its natural extension. In the policy for 8

cores, Cores 1–4 share the lowest security class and Cores 5–8 are all higher than

cores 1–4 and incomparable with each other. The priority scheduler uses dead

time elision and decides the active class at the start of the turn. Experiments

show that selecting the next active class at the start of the turn achieves better

performance than selecting the next active class at the start of the dead time. In

the best case (lib_lib), priority scheduling improves STP by 89% and 38% for

8 and 4 cores respectively. The greatest performance improvement is observed

for this workload because libquantum is very memory intensive. On average,

priority scheduling improves the STP compared to TP by 30% and 17% for the

8 and 4 core systems respectively.

6.6.3 Per-Core Performance

Figure 6.12 shows the speedup of each core individually. Each bar represents the

IPC of an individual core when using LPS, normalized to the IPC of that same

177

m
cf

_l
ib

m
cf

_a
st

lib
_l

ib

m
cf

_h
2

6

sj
g

_s
jg

h
2

6
_h

m

a
st

_a
st

m
ix

_1

m
ix

_2

m
ix

_3

m
ix

_4

m
ix

_5

m
ix

_6

m
ix

_7

m
ix

_8

Core 1 Core 2 Core 3 Core 4

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

N
o
rm

a
liz

e
d

 I
P
C

Figure 6.12: Individual core speedup.

core when using TP. Notably, the lattice-aware memory controller improves per-

formance for cores 1 and 2 which run low-confidentiality applications as well as

cores 2 and 3, which run higher-confidentiality applications. Dead time elision

allows lower-confidentiality applications to continue issuing memory requests

after the dead time. Priority scheduling allows the higher-confidentiality ap-

plications to use more bandwidth when the lower-confidentiality applications

have few requests.

Lattice priority scheduling provides large performance improvements for

some workloads in the system (77% for core 4 in mix_4), but only infrequently

worsens the performance of other workloads. The only workload that non-

negligibly reduces the IPC of one core compared to TP is mix_6 which reduces

the IPC of core 3 by 8%. However, priority scheduling still improves STP for

this workload since the IPC of cores 1 and 2, are increased by over 24% each.

178

m
cf

_l
ib

m
cf

_a
st

lib
_l

ib

m
cf

_h
2

6

sj
g

_s
jg

h
2

6
_h

m

a
st

_a
st

m
ix

_1

m
ix

_2

m
ix

_3

m
ix

_4

m
ix

_5

m
ix

_6

m
ix

_7

m
ix

_8

Cloud Policy MLS

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

N
o
rm

a
liz

e
d

 S
T
P

Figure 6.13: STP with two different policies normalized to the STP of the inse-
cure baseline.

6.6.4 Lattice Policies and Performance

LPS provides more flexibility than strict static scheduling by preventing only

timing channels that are specified in the policy. Therefore, performance de-

pends on the security policy. The performance was evaluated for a 4-core sys-

tem with strict TP and lattice priority scheduling using two different policies.

The first policy is the cloud policy used in all other experiments. The second

policy is MLS where cores 1 and 2 share the public security class. As before, TP

is configured so that cores 1 and 2 share a security class.

Figure 6.13 shows the STP of lattice-aware scheduling normalized to TP. The

cloud policy is more restrictive than the MLS policy since the MLS policy allows

information to leak from core 3 to core 4. Therefore, with the MLS policy the

improvement is higher. The MLS policy has an average improvement of 23%

compared to TP and the cloud policy has an average improvement of 17%.

179

m
cf

_l
ib

m
cf

_a
st

lib
_l

ib

m
cf

_h
2

6

sj
g

_s
jg

h
2

6
_h

m

a
st

_a
st

m
ix

_1

m
ix

_2

m
ix

_3

m
ix

_4

m
ix

_5

m
ix

_6

m
ix

_7

m
ix

_8

Start of Turn Dead Time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d

 S
T
P

Figure 6.14: Performance impact of elision and turn allocation time.

6.6.5 Scheduling Decision Time

Figure 6.14 shows how the time when the scheduling decision is made (either at

the start of the turn or at the start of the dead time) affects performance. Allocat-

ing at the dead time allows dead times to be dropped more often, but increases

the chance that a lower security class will give up its turn preemptively, and

have a request later in the turn get delayed. The bars represent the STP of pri-

ority scheduling when turns are allocated at the start of the turn and at the start

of the dead time, each normalized to TP. For all evaluated applications, decid-

ing which security class is scheduled next at the start of the turn is better than

deciding at the start of the dead time before that turn. This is because often,

the overhead of locking-in the turn allocation decision earlier is greater than the

improvement gained by eliding turns more often.

180

m
cf

_l
ib

m
cf

_a
st

lib
_l

ib

m
cf

_h
2

6

sj
g

_s
jg

h
2

6
_h

m

a
st

_a
st

m
ix

_1

m
ix

_2

m
ix

_3

m
ix

_4

m
ix

_5

m
ix

_6

m
ix

_7

m
ix

_8

4 Turns 8 Turns 12 Turns 16 Turns

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

N
o
rm

a
liz

e
d

 S
T
P

Figure 6.15: STP normalized to TP as epoch length changes.

6.6.6 Epoch Length

Figure 6.15 shows the STP of LPS as the epoch length is changed. The STP is

normalized to that of the insecure baseline. The epoch length is increased from

4 to 16. Cores 3 and 4 are each given a minimum of 1 turn per epoch in all cases.

This experiment shows the trade-off between providing more fairness and pro-

viding more flexibility. For some workloads, longer epochs, and therefore more

flexibility, leads to better performance. Lattice priority scheduling achieves the

best average STP across all workloads with an epoch length of 12. With this

epoch length, the average system throughput increases by 20% and by up to

63% for lib_lib compared to TP. However, this increase in throughput comes

at the expense of fairness. The IPC of cores 3 and 4 for lib_lib are reduced by

20% compared to TP. With an epoch of length 4, the scheduler is more fair, as

can be seen in Figure 6.12. However, the average STP improvement is slightly

lower (17%).

181

m
cf

_l
ib

m
cf

_a
st

lib
_l

ib

m
cf

_h
2

6

sj
g

_s
jg

h
2

6
_h

m

a
st

_a
st

m
ix

_1

m
ix

_2

m
ix

_3

m
ix

_4

m
ix

_5

m
ix

_6

m
ix

_7

m
ix

_8

0.5MB 1MB 1.5MB 2MB

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

N
o
rm

a
liz

e
d

 S
T
P

Figure 6.16: STP of lattice scheduling normalized to TP as cache per thread
changes.

6.6.7 Impact of Last-Level Cache Size

The performance of both TP and lattice priority scheduling depends on the size

of the LLC, since fewer cache misses means that the memory latency is incurred

less often. In all experiments, private LLCs are used so that only the direct

impact of our improvements to the memory controller are measured, and per-

formance changes caused by differences in cache interference patterns are re-

moved. Figure 6.16 shows the STP of lattice priority scheduling normalized to

TP as the size of the last level cache allocated to each thread changes. Both TP

and lattice priority scheduling have the same cache size. For workloads which

are not very cache-sensitive, such as lib_lib or ast_ast, the size of the cache

has almost no impact. In other cases, since there are fewer misses for both sys-

tems, and since the miss penalty is higher for TP, the improvement from increas-

ing the cache size is greater for TP than for priority scheduling. The improve-

ment of priority scheduling compared to TP is high even for larger caches.

182

CHAPTER 7

RELATED WORK

7.1 Gate-level information flow tracking

Gate-level information flow tracking [87, 68, 69, 85, 86, 36] applies informa-

tion flow control to hardware designs at the gate-level. The earliest variations

of GLIFT [87] augment each gate of the hardware implementation with addi-

tional gates to track information flow. Gate-level information flow tracking of-

fers powerful security; all information flows including explicit flows, implicit

flows, and timing channels are precisely controlled in the hardware implemen-

tation. Though it offers rather strong security, the initial GLIFT approach incurs

significant area and energy overhead. To reduce these overheads, StarLogic [86]

applies GLIFT logic to simulated hardware designs, obviating the need to fab-

ricate information flow tracking logic. This reduces the overhead, but increases

the development effort compared to a conventional processor design flow, be-

cause GLIFT logic expands the state-space of the hardware. Because simulating

every state in large designs is intractable, prior efforts either use simulation-

based GLIFT approaches to check small components [69], or limit the simulation

to cover just the state-space that is reachable with software that is co-designed

with the hardware [86, 85]. Using the software that executes on the hardware to

drive the hardware state-space makes checking tractable while providing strong

security for the software that is used during checking. However, a limitation of

this approach is that it precludes updates to the firmware and operating system,

and such updates are frequent and important in practice.

183

7.2 Hardware description languages for information flow con-

trol

More recently, security-typed hardware description languages have been de-

veloped to check that information-flow policies are enforced at design-time

[50, 51, 110]. This thesis both improves upon security-typed HDLs and de-

scribes the use of such HDLs to construct secure hardware. Unlike simulation-

based approaches, type systems can ensure that the entire design is secure in

just seconds. To support efficient and low-area hardware designs, it is crucial

for HDLs for information flow security to securely permit sharing of hardware

among security domains. In the literature, there are two approaches for describ-

ing hardware that is shared: nested states, and dynamic labels.

Caisson [50] and Sapper [51] both support the description of FSMs that are

shared over time using nested states. Caisson and Sapper both describe hard-

ware as a composition of FSMs and resemble continuation-passing-style lan-

guages in which each continuation represents a state of the FSM. In these lan-

guages, nested states are continuations in which transitions from high states (in

which high or low variables may be modified) to low states (in which only low

variables may be modified) are permitted, yet constrained in a way that avoids

violating security. The approach taken is based on the work of Zdancewic et

al. [102] which studies the use of information flow control in a language with

linear continuations. Linear continuations are executed exactly once along all

paths in the control flow graph – for this reason, it is secure to allow them to

modify high variables and return to a low context.

Nested states can be used to describe controller FSMs that multiplex between

184

physically separate modules for storing trusted and untrusted data. However,

Caisson does not provide a mechanism for reusing registers for both trusted and

untrusted data, and as a result, some registers must be duplicated in the final

design. Sapper includes support for dynamic labels which permit registers to

be shared over time. Sapper enforces these labels dynamically – the compiler

inserts dynamic checks that convert security violations into functional correct-

ness violations. SecVerilog [110] supports more general dependent types that

are functions that are fully applied to free variables in the hardware descrip-

tion. The dependent types of SecVerilog can be used to describe dynamic labels.

As with Caisson, the initial implementation of SecVerilog relies on dynamic en-

forcement of these labels. The compiler inserts hardware to clear dependently-

typed registers whenever values that influence their labels are changed. This

dynamic clearing mechanism is too restrictive in practice – for example, if the

label of the CPU context depends on a value that can change, SecVerilog would

clear all of the general purpose registers and the PC address whenever the reg-

ister that influences the label changes. SecVerilog, as well as the extended type

system proposed in this thesis, would benefit from supporting nested states as

well, because nested state securely relax constraints on implicit flows. The type

system in this thesis proposes a technique to enforce dependently-typed func-

tion labels fully statically by precisely reasoning about updates to labels on each

clock edge [26]. This thesis also proposes more expressive dependent type la-

bels than the initial version of SecVerilog [110] by adding support for function

bindings which can be used to describe heterogeneously labeled arrays and bit

vectors [29].

185

7.3 Information-flow secured processors

Much of the hardware described in this thesis has been constructed with a hard-

ware description language with an information flow type system. Static infor-

mation flow analysis of hardware provides strong assurance. There are other

prior efforts on using information flow control to secure processor implemen-

tations. Tiwari et al. [87] built the first processor implementation with strong

information flow guarantees at the gate level by using GLIFT logic. The pro-

cessor architecture is also called GLIFT. The GLIFT architecture provides two

hierarchical security domains – a trusted domain and an untrusted domain.

A particularly interesting feature of the GLIFT architecture is that it controls

implicit flows as well as timing flows through branching and loop execution,

while still supporting branching and loop conditions that depend on tainted

values. Branching is supported securely by predicating all branches – all branch

paths are executed, but only the results of the true path influence state changes

that are committed. Loops with a fixed number of iterations are supported with

a counter that is set prior to the execution of the loop.

The GLIFT architecture offers powerful security because it constrains all im-

plicit explicit, and timing flows from the untrusted domain to the trusted do-

main. Meanwhile, it still offers a functional ISA capable of running benchmark

programs (though it has just 19 instructions). However, GLIFT has substantial

power and area overhead. All registers and memories in the implementation

are duplicated, and additional taint-tracking logic is inserted. Further, the im-

plementation does not include performance-enhancing features.

Tiwari et al. later improve upon the GLIFT architecture with the Execution

186

Leases [85] architecture. Instead of predication and a loop iteration counter, the

Execution Leases architecture provides a new abstraction called a lease. Leases

support branches and loops that depend on untrusted conditionals by provid-

ing a timer that bounds the execution time of the lease – the lease always returns

to a trusted PC value when the timer expires. Leases offer better performance

for branches than predication and a simpler ISA for loops than fixed iteration

counters.

Tiwari et al. further improve upon the Execution Leases architecture with

the Star-CPU architecture [86]. The Star-CPU architecture extends Execution

Leases with a data cache that is partitioned among security domains, and a 4-

stage pipeline. The Star-CPU architecture drains the pipeline and flushes CPU

context before returning to the call site of the lease. Caches and pipelines are

important features for reducing the average number of cycles per instruction

(CPI). However, Star-CPU omits other critical performance-enhancing features

including branch-prediction, branch-target prediction, TLBs, cache pipelining, a

floating-point unit, and a memory controller. The processing pipeline also does

not support value bypassing, and as a result, relies on the compiler to insert

branch delay slots.

In addition to its CPI improvements, the Star-CPU implementation also

significantly reduces the area and power overheads compared to Execution

Leases and the GLIFT architecture because it is checked with StarLogic, which

is simulation-based, rather than by inserting GLIFT logic in the final implemen-

tation. In addition to other optimizations, StarLogic applies GLIFT logic to sim-

ulations rather than instantiating it in hardware. Though dynamic overheads

are reduced, the state-space of the simulation is increased, and checking the

187

state-space of an entire CPU is already intractable. To make checking with Star-

Logic tractable, StarCPU is co-designed with a microkernel, and only the subset

of the state-space reachable with the microkernel is checked. As a result, Star-

CPU offers strong security for the particular microkernel that manages it, and

the overheads are minimal. However, security is only offered for the exact im-

plementation of the microkernel used for checking. Since even small changes to

the software might change the reachable state-space of the hardware in unpre-

dictable ways, kernel software and the firmware cannot be changed.

Li et al. also implement a processor with the Caisson secure HDL that they

propose [51]. Because Caisson enforces security with a type system at design

time, it reduces design-time overheads compared to GLIFT. Caisson also offers

strong static security guarantees, namely, that well-typed hardware modules

enforce timing-sensitive noninterference. Since it does not rely on state-space

enumeration to enforce security, it offers security guarantees that are indepen-

dent of the software, yet even complex hardware designs can be checked in a

small amount of time. The Caisson processor architecture is similar to that of

the Execution Leases and StarCPU architectures in that it provides a lease inter-

face to time-multiplex the CPU among security domains. The contribution of

Caisson is that it offers a way to statically check these processor techniques by

providing nested states. However, the Caisson processor duplicates the entire

CPU context – separate register files and program counters are kept for both the

trusted and untrusted domains. Li et al. improve upon the Caisson language

with the Sapper secure HDL [50]. Sapper supports fine-grained sharing of pro-

cessor state such as registers by supporting dynamic labels. Dynamic labels are

also enforced dynamically – the compiler automatically inserts dynamic checks

that convert possible information flow violations into functional correctness er-

188

rors. As a result, the processor implementation with Sapper avoids duplicating

the processor context.

Zhang et al. generalize the dynamic labels supported in Sapper in order to

support labels that are arbitrary functions of values. The labels of SecVerilog

can also be used to describe dynamic labels. SecVerilog also controls possible

information flow violations caused by changes in values that influence labels

through dynamic checks. Though secure, dynamic checks complicate debug-

ging because they may cause functional errors that are not apparent by exam-

ining the code. Ferraiuolo et al. [26] extend SecVerilog to support purely static

checking of labels that depend on mutable variables. They use the extended

type system to construct a simple processor pipeline that includes system call

handling in which system calls are induced by untrusted software yet are han-

dled by trusted software.

The aforementioned processors all enforce a policy in which there are two

hierarchical security domains. In other words, there are domains L and H , such

that L v H , but H 6v L. These processors can therefore enforce confidential-

ity (H is confidential and L is trusted), or integrity (H is untrusted and L is

trusted), but not both simultaneously, because the ordering on information flow

for integrity and confidentiality is inverted [6]. The TrustZone-like processor de-

scribed in this thesis protects both confidentiality and integrity simultaneously

by providing two incomparable security domains. One domain, CT, is confiden-

tial and trusted, whereas the other, PU, is public and untrusted. The aforemen-

tioned processors also do not permit communication fromH to L because doing

so violates noninterference. However, such communication is needed to enforce

the security policy provided by TrustZone. TrustZone permits the CT domain to

189

both read and write PU memory by downgrading loads and stores of PU mem-

ory induced when the processor is executing in the CT mode. Intuitively, the

declassifications of PU memory induced by CT stores are secure because they are

robust [101] – because these stores are induced by trusted software, they are not

influenced by untrusted software. The TrustZone prototype implementation is

also the first multi-core processor to be checked with an information flow type

system, though it does not control timing channels through multi-core compo-

nents.

The HyperFlow architecture further generalizes the security policies en-

forced by the TrustZone-like prototype by providing privilege modes and mem-

ory tags that are arbitrary information flow labels that can be represented by

the lattice model of security. The HyperFlow architecture also builds upon the

intuition for why the downgrades induced by CT accesses to PU memory are se-

cure – declassifications induced by memory accesses among security domains

in HyperFlow are constrained to be robust. HyperFlow also constrains endorse-

ments through such memory accesses so they are transparent [10]. In addition to

downgrades of memory in support of IPC, HyperFlow supports downgrades of

registers to support passing of arguments and return values during system calls.

HyperFlow permits downgrades of control-flow through a call gate mechanism.

With the addition of a timer, the call gates would support the implementation of

leases in software and obviate the need for downgrades. Hardware support for

leases would also be a valuable extension for HyperFlow. The implementation

of HyperFlow also makes contributions in terms of the performance-enhancing

features it provides. These features are described in 4

Though prior information-flow secured processors control timing channels

190

among security domains that share a processing core over time, Timing Com-

partments is the first to eliminate timing channels caused by security domains

that share the memory hierarchy in a multicore processor. Our empirical eval-

uation of Timing Compartments suggested that the memory controller was the

most significant source of overhead. Lattice priority scheduling improves upon

that overhead with a novel memory scheduling algorithm that more precisely

enforces lattice model security policies such as those enforced by HyperFlow.

7.4 Programming Language Based Security

Programming languages for information flow control are widely studied [74].

Naturally, SecVerilog and ChiselFlow both apply techniques from software lan-

guages for information flow control. Both secure HDLs support dependent in-

formation flow labels. The use of dependent types for accurate tracking of infor-

mation flow started with JFlow [64], which uses value-indexed labels. Later sys-

tems [88, 112, 49, 67, 58] have introduced more expressive forms of dependent

labels, exploring trade-offs between needed expressive power and tractability

of analysis. For expressive type systems to be useful in practice, type checking

must be tractable and efficient for real-world code. The per-bit and per-element

dependent labels this thesis describes for SecVerilog are not supported by pre-

vious dependent type systems for imperative software languages. They are an

important feature for future security-typed HDLs because they offer valuable

expressive power while remaining tractable: a sweet spot in the trade-off space.

The type system described in this thesis is the first language in either hard-

ware or software to support mutable dependent information flow labels that

191

are enforced fully-statically at design time. Zheng et al. [113] proposed a soft-

ware language that supports dynamic IFC labels in software programs. How-

ever, labels in this language are immutable. While our language is designed for

hardware, we note that the proposed approach can also be applied to support

mutable dependent types in imperative software languages for IFC – the rea-

soning that we apply to updates on registers on each clock edge can be applied

to successive iterations of loops in a while-language.

Condit et al. [16] proposed Deputy, a language with a dependent type sys-

tem for writing safe C programs. The dependent types in Deputy are mutable.

Deputy is a general framework for dependent types with many possible ap-

plications. The authors demonstrate the use of deputy to check array bounds

thereby preventing buffer overflows. The approach of Condit et al. has not been

used for information flow control or for hardware. Our type system takes in-

spiration from this work—like Deputy, it relies on establishing the Hoare axiom

of assignment wherever dependent types are updated. However, our proposed

type system differs from Deputy in how it establishes this axiom and checks

assignments, allowing our type system to be more expressive. In Deputy, a

change to one variable requires checking all other variables with types that de-

pend on the changed variable. We can check assignments in a more localized

way — on an assignment to a variable we need only establish that the update to

the assigned variable will be secure when the pending updates tracked by the

next-cycle symbols are applied. The result is that in our type system, updates to

variables and their types can be decoupled; in Deputy, the variable and its type

must often be modified with the same parallel assignment. Our type system

allows variables and their labels to be updated in different parts of the code.

The ability to decouple updates to labels and the values they protect is crucial

192

for hardware designs – often, registers that store security information such as

the privilege mode of the processor influence the security of data in desperate

modules such as cache blocks.

Though many languages for information flow security intend to enforce

noninterference, it is too restrictive for practical applications. As a result, all

practical systems rely on downgrades to weaken noninterference. Because

downgrades relax noninterference, much work has gone into strengthening as-

surance in languages that contain them [75]. Sabelfeld et al. [73] propose the de-

limited release security property which ensures that the program only releases

information that the author explicitly declassifies. They study this property in

the context of an imperative software language, and show that it prevents laun-

dering attacks which would otherwise enable attackers to cause more informa-

tion to be released than intended. To typecheck the TrustZone-like prototype

in this paper, we extended SecVerilog with a system for downgrading that is

similar to the one proposed by Sabelfeld and Myers [75].

The assurance offered by a system that enforces the delimited release prop-

erty depends on the implementation details of the system because released in-

formation is limited to the downgrades in the implementation. By contrast,

extensional security properties are purely defined in terms of the behavior of

the system, and offer value without inspecting the implementation of the sys-

tem. Robust declassification [101] is an extensional property that prevents low-

integrity attackers from influencing what information is declassified. It is spec-

ified as a 4-safety hyperproperty that holds of a system if for one attack (low-

integrity input) the public outputs are indistinguishable for any two secret in-

puts, then there is no other attack that will cause public outputs to differ based

193

on the choice of secret inputs. In other words, the choice of low-integrity inputs

has no affect on what information released, so a low-integrity attacker could

not have influenced declassification. Dually, transparent endorsement [10] is an

extensional 4-safety hyperproperty that prevents parties from endorsing infor-

mation that they could not have read. Non-malleable information flow control

is a hyperproperty that is a superset of robust declassification and transparent

endorsement. ChiselFlow and HyperFlow both restrict information flows in a

similar way as systems that were constructed to study the non-malleable infor-

mation flow control security property.

HyperFlow intends to support the policies expressed in languages for infor-

mation flow control. The decentralized label model (DLM) [65, 66] permits the

expression of information flow policies involving principals that are mutually

distrusting, but communicate. The DLM is valuable for systems that are de-

centralized such as distributed systems and microkernels. In the DLM, data is

associated with principals that have authority over (or equivalently privilege to

read or write) data. The ability to release information is restricted to principals

that have authority over the data. Chong et al. formalize this idea by general-

izing robust declassification to the DLM [15]. Other label models that support

decentralized information flow control in the context of microkernel operating

systems [24, 104] and distributed systems [105, 56, 14] have also been proposed.

The DLM relies on an underlying authorization mechanism to permit infor-

mation release. Authorization within DLM borrows conceptually from earlier

work on authorization logics [77, 44] in which a speaks for relation is used to

permit principals to delegate authority. In the context of the Fabric distributed

system for information flow security, Liu et al. [57] define a trust ordering that

194

is perpendicular to the information flow ordering. Interestingly, unlike in the

information flow ordering, integrity and confidentiality are not inverted in the

trust ordering [6]. The flow-limited authorization logic (FLAM) [2] builds on

this notion of a trust ordering and unifies authorization logics and languages

for information flow control. In FLAM, labels and information flow labels are

the same syntactic objects. Principals are ordered by an information flow order

and an acts-for order which is conceptually similar to the speaks for relation

in authorization logics. We chose the FLAM model as the first label model to

represent with the hypercube labels of HyperFlow. Because FLAM represents

authority and information flow policies with the same syntactic objects, transla-

tions of FLAM labels into hypercube labels are compact in terms of the number

of required bits.

7.5 Information-flow tracking architectures

HyperFlow enforces security by associating security tags representing informa-

tion flow labels with memory pages and registers, and by tracking the prop-

agation of these tags. DIFT is the earliest architecture for information flow

tracking [82]. DIFT associates 1-bit tags with memory addresses that indicates

whether or not they are trusted. DIFT then dynamically propagates these tags

and prevents insecure information flows. The Raksha [20] architecture improves

on DIFT by allowing programmer-defined tag-propagation policies and pro-

viding tag violation exceptions. PUMP [22] enforces flexible tag propagation

policies. Like HyperFlow, the Loki [106] processor enforces application-defined

information flow policies in hardware. However, none of the implementations

of these processors have been secured with an HDL that is augmented with

195

an information flow type system. In Loki, information flow labels are opaque

pointers to objects that represent those labels. Loki caches the translations from

pointers to labels. HyperFlow represents information flow policies in a way

that permits inspection of the labels at the hardware-level. This allows access

controls that enforce these policies to be checked in a way that is amenable to

verification with the information flow type system and is efficient because it

does not require software intervention to perform label computations.

7.6 Capability-Based Addressing

HyperFlow provides memory protection by using information flow labels.

Hardware architectures for capability-based addressing also provide an alter-

native to conventional memory protection [9, 100, 95]. Capabilities are an

approach for controlling authorization in computer systems that have been

broadly applied to many domains in computing [48]. Access control lists are

an authorization mechanism in which a list of principals authorized to perform

some operation on an object is associated with that object. By contrast, capabil-

ities permit authorization by associating a list of operations that can performed

on objects with principals. Capabilities must be unforgeable, but can typically

be transferred among principals.

Capabilities-based addressing is a hardware technique for controlling the

authority of a process to read or write a memory location [9]. In a machine that

provides capabilities-based addressing, loads and stores are guarded by capa-

bilities. These capabilities are pointers that specify a base address, a length,

and permissions such as read, write, and execute. An advantage of capabil-

196

ities compared to more conventional virtual memory based protection is that

capabilities provide more fine-grained protection. Capabilities can often offer

distinct permissions for a process for each unique word of memory whereas

virtual memory offers distinct permissions for each page. By providing word-

granularity protection, capabilities-based addressing can defend against vul-

nerabilities such as buffer overflows in unsafe programming languages like

C [9, 100].

Woodruff et al. [100, 95] propose the CHERI architecture and processor im-

plementation for capabilities-based addressing. CHERI supports both capabil-

ities as well as conventional memory protection with a hardware MMU. As

a result, CHERI supports incremental adoption of capabilities. For example,

CHERI supports systems in which libraries provide protection with capabilities,

and can be utilized by capability-unaware legacy applications thereby improv-

ing security for unmodified applications. Supporting legacy applications is also

a goal of HyperFlow, and HyperFlow similarly supports the interoperability of

memory protection through information flow control and virtualization. Unlike

CHERI, the threat-model of HyperFlow also considers timing channel attacks

and defends against timing channels in both the TLBs and hardware page-table

walkers.

HyperFlow and CHERI are micro-architecturally similar in that both pro-

vide memory protection through tagged physical addresses. However, tags in

HyperFlow represent information flow labels rather than capabilities, and as a

result, provide stronger security. Capabilities protect data only at the site where

a principal is authorized to access that data. By contrast, information flow con-

trol constrains the movement of data even after principals have been autho-

197

rized to receive that data. Information flow control also defends attacks that

systems protected by capabilities cannot prevent. Though it has been widely

believed that capabilities can defend against confused deputy attacks, it has re-

cently been shown that capabilities cannot defend against all such attacks [71].

By contrast, integrity protection though information flow control can defend

against confused deputy attacks.

The prototype implementation of HyperFlow provides protection at the

granularity of memory pages rather than providing finer-grained protection

by associating tags with each word of memory. As a result, the prototype is

less equipped to defend against attacks on memory-safe languages. As in any

hardware mechanism for memory protection, there is a trade-off between gran-

ularity of protection and memory density because protection information also

requires storage. Witchel et al. study this trade-off [96]. Watson et al. [95] note

that another advantage of fine-grained protection is the ability to provide het-

erogeneous security policies for data structures and objects. During the devel-

opment of an operating system for CHERI, Watson et al. augmented CHERI

with hardware support for object capabilities. Preliminary work on developing

an operating system for HyperFlow suggests that heterogeneous protection for

objects and data structures in the operating system would benefit HyperFlow

as well. We chose page-granularity tags because doing so reduces the mem-

ory overhead. However, changing the granularity of protection does not fun-

damentally change the architecture or impose challenges with regard to static

label-checking. Prior architectures for dynamic information flow tracking pro-

pose multi-granularity tagging which permits a mix of page-granularity and

word-granularity tags to coexist at runtime [82, 106]. Multi-granularity tags are

naturally an optimization that should be considered for implementations of Hy-

198

perFlow. However, label-checking multi-granularity tags would be non-trivial

because doing so would require policies that change at runtime.

7.7 Enclave Architectures

Processor architectures such as Intel SGX [17, 18, 8] as well as academic ef-

forts [19, 11, 1] provide protection for software modules called enclaves. Al-

though a mostly unmodified operating system still manages resources such as

virtual memory and CPU time for the enclaves, the confidentiality and integrity

of the enclaves is still protected even if the OS is malicious or compromised. The

high-level approach taken by these architectures is to use a reference monitor that

allows the operating system to construct and manage enclaves, but rejects op-

erations that might violate the confidentiality or integrity of the enclaves. The

reference monitor is typically implemented with instruction extensions for man-

aging enclaves. Hyperwall [83] protects enclaves in a system managed by a hy-

pervisor. Ascend [30] prevents physical attacks including side channels that are

exploitable by adversaries that can measure memory access patterns. Ascend

prevents these attacks by relying on oblivious RAMs [34, 81].

Software implementations of enclaves have also been proposed [61, 25]. At

minimum, software implementations of enclaves require hardware support that

includes storage that is inaccessible to the operating system to contain enclave

data and resource management data, and optionally, support for attestation and

defending against physical attacks if needed [25]. Costan et al. note that Intel

SGX is implemented as primarily with microcode, and in a sense, is thus already

software [18].

199

Most prior architectures for enclaves do not defend against side-channel at-

tacks. Sanctum prevents cache timing channels [19], but other timing channels

such as those caused by branch prediction are not addressed. Timing chan-

nel attacks that exploit branch predictors have been used to attack Intel SGX

enclaves [46]. HyperFlow enforces information flow policies in a timing-safe

way, intending to eliminate microarchitectural timing channel attacks. Though

timing channel attacks are subtle, by implementing HyperFlow in an HDL for

information flow control, we provide strong assurance that we have succeeded

in eliminating them.

Enclave management software implemented for HyperFlow would provide

stronger assurance than prior enclave management systems by eliminating tim-

ing channels. HyperFlow augments virtual memory protection with informa-

tion flow control memory protection that operates on physical pages of memory.

As a result, an enclave management system for HyperFlow can be implemented

by storing enclave data and enclave resource allocation data in memory pro-

tected by labels that are inaccessible to the OS. Komodo implements enclaves

on ARM TrustZone by executing enclaves and enclave management software in

TrustZone’s secure world and by executing the untrusted OS and all other soft-

ware in the normal world [25]. Roughly, secure world memory is confidential

and trusted and normal world memory is public and untrusted [29]. HyperFlow

can emulate TrustZone because it provides memory protection with generalized

information flow labels that can describe confidentiality and integrity policies.

By implementing enclave management software for HyperFlow, stronger se-

curity is provided even for systems managed by unmodified legacy operating

systems and applications.

200

Aside from microarchitectural timing channels, there are other side chan-

nels that enclave systems do not address, and are perhaps better addressed by

the operating system. For example, enclave systems do not address passive ad-

dress translation attacks in which the operating system observes the enclave’s

page faults and correlates the enclave’s memory usage with secrets [18]. Ac-

tive attacks in which the operating system exploits side channels have also been

demonstrated, including Iago attacks [12] in which the operating system returns

spurious values in response to system calls, and controlled channel attacks in

which the operating system deliberately induces page faults. Because enclave

systems do not prevent side channels, the operating system is ultimately still

trusted to protect the enclave’s confidentiality.

7.8 Timing Channels

7.8.1 Timing Channel Attacks

Many microarchitectural timing channels have been identified. Vulnerabilities

have also been found in caches [55, 70, 5], branch predictors [47, 46], proces-

sor pipelines [92], networks on chip [91, 94], and memory controllers [90, 31].

Recently, the Spectre [42] and Meltdown [52] vulnerabilities have been demon-

strated to exploit speculative and out-of-order execution in Intel processors.

Meltdown is especially devastating because it can be used to leak arbitrary ker-

nel data. During our study of Timing Compartments, we identified new timing

channels in cache coherence protocols.

201

7.8.2 Timing channel defense in hardware

Temporal and spatial partitioning techniques are most amenable to informa-

tion flow control analysis because they provide isolation, and therefore likely

enforce noninterference. For example, cache partitioning can be used to pre-

vent timing channels caused by contention among distrusting processes. Liu et

al. [53] demonstrated that way partitioning intended for performance isolation

in conventional Intel processors can also be used for timing channel protection.

Timing compartments leverage prior proposals which use temporal parti-

tioning to protect the network [94, 91] and memory controller [90]. Shaifee et

al. [78] propose rank partitioning and the triple alternation to improve perfor-

mance of temporally partitioned memory controllers. Both optimizations can

be added to timing compartments. However, the previous study [78] showed

that triple alternation has comparable performance with bank partitioning used

in timing compartments. Rank partitioning requires significant restrictions to

memory allocation.

This thesis describes an approach for efficiently preventing memory con-

troller timing channels by precisely enforcing security policies expressed in the

lattice model [28]. Hu [37] proposed lattice scheduling, which uses the lat-

tice model to efficiently address timing channels in process schedulers. Lattice

scheduling schedules processes so they increase monotonically in security level

in order to avoid flushing caches when context switching from one process to

another with a higher class. Lattice scheduling was an inspiration for the dead

time elision technique used in lattice priority scheduling.

Other approaches for cache timing-channel protection have also been pro-

202

posed. For example, RPCache [93] and Random Fill cache [54] obfuscate cache

timing by randomizing cache replacements and insertions respectively. These

do not enforce noninterference, however, and are thus not amenable to infor-

mation flow analysis. Kong et al. also demonstrate that RPCache is vulnerable

to attacks [43]. NoMoCache [23] partitions some cache ways, but allows inter-

ference in other cache ways to reduce timing channel capacity. This approach

attempts to trade-off security in favor of better performance, though it is unclear

what security is ultimately offered in general.

Preventing timing channels through information flow analysis offers formal

guarantees, namely that a timing-safe variant of noninterference is enforced.

Another promising approach to the design of hardware with clear security guar-

antees is by applying the field of quantitative information flow control [80].

Quantitative information flow control uses information theory to bound the

amount of information leaked through a side-channel such as a timing channel.

Fletcher et al. apply quantitative information flow control to bound the infor-

mation leaked in an intra-program timing channel in memory controllers [31].

In addition techniques for preventing and mitigating timing channels, oth-

ers have proposed techniques for detecting timing channel. Hunger et al. [38]

formally model timing channels, and demonstrate that reads from a covert tim-

ing channel are destructive – they mutate state which causes interference. This

interference facilitates detection since it implies reads can be observed. They

also show how attacks can both be performed and detected even through noisy

channels. Chen et al. [13] propose CC-Hunter, a framework for timing channel

detection that uses hardware support to detect bursts of events that are likely to

correspond to attempts to use a timing channel.

203

CHAPTER 8

CONCLUSON

8.1 Summary

HDLs for information flow control are a promising way to ensure that hardware

implementations are secure. This thesis has made contributions towards the

development of HDLs for information flow security and the development of

hardware that can be proven secure with the use of information flow control

HDLs.

It improves upon secure HDLs by adding support for heterogeneously la-

beled data structures, by fully-statically enforcing dynamic information flow

labels, by supporting downgrades that relax information flow control, and by

supporting label inference. The data structures that can be labeled heteroge-

neously include arrays, bit vectors, and structs (or records). Arrays and bit vec-

tors are supported through dependent labels that include function bindings.

For bit vectors, the function binding represents a bit index into the vector. For

arrays, the labels are curried functions with two bindings. The first binding is

an index into the array, and applying that function to the indexing expression

produces a bit vector label with one binding that represents an index into the

vector as before.

Mutable dependent labels are supported fully statically by a type system

that constrains updates to dependently-labeled variables based on an updated

version of the label. In an HDL, assignments to sequential variables represent

an update that will take place at the start of the next clock edge. Therefore, that

204

assignment should be checked using the new valuation of that variable’s label

on that cycle. The new valuation of the label is computed by replacing occur-

rence of variables in the label with the combinational inputs to those variables.

In doing so, the type system can ensure at design time that updates to the labels

of variables are secure.

Downgrades are necessary in all practical systems for information flow con-

trol. Because downgrades relax noninterference, effort has been made to ensure

that downgrades do not cause harm. This thesis applies prior approaches to

securing downgrades called robust declassification [101] and transparent en-

dorsement [10]. Robust declassification prevents untrusted code from influenc-

ing whether or not information is declassified. Transparent endorsement pre-

vents a party from endorsing data that it could not have read. Both forms of

downgrades impose constraints on the confidentiality and integrity of the data

being downgraded and the context in which it is downgraded. Therefore the

language must have notions of confidentiality and integrity. The HDL proposed

in this thesis uses product labels that are pairs of confidentiality and integrity

labels. Robust and transparent downgrades are then enforced in a similar way

to software languages.

This thesis studies the use of a security-typed HDL to secure a processor ar-

chitecture that resembles ARM TrustZone. This study shows that the overhead

of security-typed HDLs is minimal in terms of area, power, frequency, and CPI.

We also recreated security vulnerabilities found in commercial processors and

have shown that the security-typed HDL is able to detect them.

This thesis proposes a novel architecture for information flow security, called

HyperFlow. HyperFlow replaces conventional privilege levels and memory

205

protection with information flow labels. In doing so, it offers better separation

of privilege, for example, in a system managed by a microkernel. HyperFlow

also supports communication across security domains during IPC and system

calls. HyperFlow is implemented in a security-typed HDL providing strong as-

surance about its implementation. HyperFlow also prevents timing channels

through micro-architectural components that are shared over time in a single

processor core.

We also study a multi-core architecture for timing channel security called

Timing Compartments. Timing Compartments relies on simple temporal

and spatial partitioning mechanisms to prevent timing channels so that it is

amenable to information flow verification by a secure HDL. Timing compart-

ments also proposes performance optimizations including coordinated schedul-

ing of time-multiplexed resources, command-aware memory controller dead

time, and application-aware allocation of resources.

Finally, this thesis has proposed lattice priority scheduling (LPS) to improve

the performance of timing-safe memory controllers. Our performance results

about the timing compartments architecture suggest that memory controller

timing channel protection is the performance bottleneck. LPS improves upon

a straight-forward time-multiplexed memory controller by more precisely en-

forcing security policies in the lattice model of security. In doing so, LPS both

improves upon the total available memory bandwidth and better responds to

the run-time behavior of applications without weakening security.

206

8.2 Future Directions

8.2.1 Secure HDLs

A benefit of information flow security for HDLs is that they enforce timing-

sensitive noninterference because HDLs give a cycle-level description of the

hardware. Timing channels in hardware implementations become implicit

flows that are explicit in the HDL code that implements the hardware. As a re-

sult, timing flows in hardware implementations are also difficult to differentiate

from other kinds of flows. Differentiating timing flows from other information

flows in hardware designs is valuable. Many hardware designs do not consider

timing channels to be threats because timing channel attacks have historically

been more difficult to exploit than other kinds of attacks, and timing channel

protection often comes with substantial performance penalties. It may also be

desirable to address some timing channels in software rather than hardware.

It may be easier to analyze what information is released by a timing flow in

software, and therefore avoid constraining timing flows in hardware.

8.2.2 Secure Hardware

The enforcement mechanisms in HyperFlow resemble dynamic information

flow architectures. Preventing implicit flows with dynamic information flow

control has historically been difficult. However, it may be plausible that Hyper-

Flow can control them because it propagates a notion of the program counter

label to the hardware and it may be possible to constrain updates to the pro-

gram counter label. HyperFlow permits updates to the program counter label

207

as long as they are within a range. Movement within this range is necessary to

permit robust and transparent downgrades of registers and memory locations.

However, it may be possible to avoid using a range by relaxing the constraints

on downgrades so that just the confidentiality or integrity aspects of the pro-

gram counter label are used. Changes to the program counter label would then

only be possible through control gates, which can also be constrained so that

they are robust and transparent.

HyperFlow represents memory protection and privilege levels as informa-

tion flow labels that are physically implemented as small, finite bit-vectors.

However, practical systems involve many mutually distrusting processes. As

a result, virtualization of these labels will be a crucial feature for a practical im-

plementation

Because HyperFlow enforces information flow security and constrains

downgrades so that they are robust and transparent, it is naturally desirable to

have a proof of a security property about the HyperFlow ISA. Naturally, this se-

curity property is likely to resemble the non-malleable information flow control

property. An interesting aspect of such a security proof is that the ISA supports

control flow through jump and branch instructions, which may be difficult to

reason about mathematically.

8.2.3 An Operating System for HyperFlow

A natural future direction for HyperFlow is the design of an operating system

that manages HyperFlow. The software that manages security labels in Hyper-

Flow must be trusted. However, because the HyperFlow ISA offers support

208

for fine-grained information flow policies, a natural design for the operating

system is a microkernel in which components of the operating system are pro-

tected with information flow labels. Such an operating system would offer bet-

ter separation of privilege than a conventional microkernel, because ideally, the

only component of the operating system for HyperFlow that would need to be

universally trusted is the subset that manages information flow labels.

An interesting comparison point to a future operating system for HyperFlow

is the Intel SGX architecture [17, 18], because in some sense, SGX resembles a mi-

crokernel that is implemented in firmware and microcode. Microkernels offer

better separation of privilege compared to a monolithic kernel. Micorkernels

are compartmentalized and many components of a microkernel, such as de-

vice drivers, execute in user-space. Compromise of kernel components that ex-

ecute in userspace are less harmful because these components have a restricted

view of memory, unlike supervisor-mode software that can access all of physical

memory. However, conventional microkernels must execute components that

are responsible for resource management, such as process scheduling and vir-

tual memory management in supervisor mode because conventional processors

support only a small number of purely hierarchical privilege levels. Systems

protected by Intel SGX, however, do not place virtual memory management or

process scheduling in the trusted computing base. SGX prevents compromise

of the integrity and confidentiality of applications through a small reference

monitor that controls a region of memory that is inaccessible even to software

with supervisor privilege. The operating system is still permitted to manage

the virtual memory of enclaves by communicating with that reference monitor

via enclave management instructions. Removing resource management compo-

nents of the operating system from the trusted computing base is a considerable

209

improvement because resource management is likely to be vulnerable subset of

the operating system code. Resource-management is performance critical code.

Performance critical code is difficult to implement correctly because it is often

complex.

An operating system that manages HyperFlow can potentially offer both

greater security and performance than either a system protected by SGX or a

conventional microkernel. Because HyperFlow offers lattice-model privilege

levels, it can offer more fine-grained protection for microkernel components. It

can also support system calls which are taken directly from an application to a

label delegated to a small component of the operating system such as a network

driver. In doing so, there are fewer transitions in privilege, and performance

can be improved.

210

BIBLIOGRAPHY

[1]

[2] O. Arden and A. C. Myers. A Calculus for Flow-Limited Authorization.
In 2016 IEEE 29th Computer Security Foundations Symposium (CSF), June
2016.

[3] Aslan Askarov, Danfeng Zhang, and Andrew C. Myers. Predictive
Black-Box Mitigation of Timing Channels. In Proceedings of the 17th
ACM Conference on Computer and Communications Security, 2010.

[4] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. AviÅ¿ienis,
J. Wawrzynek, and K. AsanoviÄĞ. Chisel: Constructing hardware in a
scala embedded language. In DAC Design Automation Conference 2012,
2012.

[5] Daniel J. Bernstein. Cache-Timing Attacks on AES. Technical report,
2005.

[6] K. J. Biba. Integrity Considerations for Secure Computer Systems. Tech-
nical Report ESD-TR-76-372, USAF Electronic Systems Division, 1977.

[7] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar
Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad
Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood. The Gem5
Simulator. SIGARCH Computer Architecture News, 2011.

[8] Rick Boivie. SecureBlue++: CPU Support for Secure Execution, 2012.

[9] Nicholas P. Carter, Stephen W. Keckler, and William J. Dally. Hardware
Support for Fast Capability-based Addressing. In Proceedings of the Sixth
International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS VI, 1994.

[10] Ethan Cecchetti, Andrew C. Myers, and Owen Arden. Nonmalleable In-
formation Flow Control. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’17.

[11] David Champagne. Scalable Security Architecture for Trusted Software. PhD
thesis, Princeton University, 2010.

211

[12] Stephen Checkoway and Hovav Shacham. Iago attacks: Why the system
call api is a bad untrusted rpc interface. In Proceedings of the Eighteenth
International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’13, 2013.

[13] Jie Chen and Guru Venkataramani. CC-Hunter: Uncovering Covert
Timing Channels on Shared Processor Hardware. In Proceedings of the
47th Annual IEEE/ACM International Symposium on Microarchitecture, 2014.

[14] Winnie Cheng, Dan R. K. Ports, David Schultz, Victoria Popic, Aaron
Blankstein, James Cowling, Dorothy Curtis, Liuba Shrira, and Barbara
Liskov. Abstractions for usable information flow control in aeolus. In
Proceedings of the 2012 USENIX Conference on Annual Technical Conference,
2012.

[15] Stephen Chong and Andrew C. Myers. Decentralized robustness. In 19th
IEEE Computer Security Foundations Workshop (CSFW), 2006.

[16] Jeremy Condit, Matthew Harren, Zachary Anderson, David Gay, and
George C. Necula. Dependent Types for Low-level Programming.
ESOP’07.

[17] Intel Corporation. Intel Software Guard Extensions Programming Refer-
ence, 2014.

[18] Victor Costan and Srinivas Devadas. Intel SGX explained. Technical Re-
port http://eprint.iacr.org/2016/086, February 2016.

[19] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanctum: Minimal
hardware extensions for strong software isolation. In 25th USENIX Secu-
rity Symposium (USENIX Security 16), 2016.

[20] Michael Dalton, Hari Kannan, and Christos Kozyrakis. Raksha: A Flexible
Information Flow Architecture for Software Security. ISCA ’07, 2007.

[21] Dorothy E. Denning. A Lattice Model of Secure Information Flow. Com-
munications of the ACM, 1976.

[22] Udit Dhawan, Nikos Vasilakis, Raphael Rubin, Silviu Chiricescu,
Jonathan M. Smith, Thomas F. Knight, Jr., Benjamin C. Pierce, and André
DeHon. Pump: A programmable unit for metadata processing. HASP
’14, 2014.

212

[23] Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-Ghazaleh,
and Dmitry Ponomarev. Non-Monopolizable Caches: Low-Complexity
Mitigation of Cache Side Channel Attacks. ACM Transactions Archi-
tecture and Code Optimization, 2012.

[24] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey,
David Ziegler, Eddie Kohler, David Mazières, Frans Kaashoek, and
Robert Morris. Labels and event processes in the asbestos operating sys-
tem. SOSP ’05, 2005.

[25] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan
Parno. Komodo: Using verification to disentangle secure-enclave hard-
ware from software. In Proceedings of the 26th Symposium on Operating
Systems Principles, SOSP ’17, 2017.

[26] Andrew Ferraiuolo, Weizhe Hua, Andrew C Myers, and G Edward Suh.
Secure information flow verification with mutable dependent types. In
Proceedings of the 54th Annual Design Automation Conference 2017, page 6.
ACM, 2017.

[27] Andrew Ferraiuolo, Yao Wang, Rui Xu, Andrew C. Myers, and
G. Edward Suh. Full-Processor Timing Channel Protection with
Applications to Secure Hardware Compartments. Technical Report
http://hdl.handle.net/1813/41218, Cornell University, 2015.

[28] Andrew Ferraiuolo, Yao Wang, Danfeng Zhang, Andrew C. Myers,
and G. Edward Suh. Lattice priority scheduling: Low-overhead
timing-channel protection for a shared memory controller. In
IEEE International Symposium on High Performance Computer Architecture,
2016.

[29] Andrew Ferraiuolo, Rui Xu, Danfeng Zhang, Andrew C. Myers, and
G. Edward Suh. Verification of a practical hardware security architec-
ture through static information flow analysis. In Proceedings of the Twenty-
Second International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’17.

[30] Christopher W. Fletcher, Marten van Dijk, and Srinivas Devadas. A Se-
cure Processor Architecture for Encrypted Computation on Untrusted
Programs. In Proceedings of the Workshop on Scalable Trusted Computing,
2012.

[31] Christopher W. Fletcher, Ling Ren, Xiangyao Yu, Marten van Dijk,

213

Omer Khan, and Srinivas Devadas. Suppressing the Oblivious RAM
Timing Channel While Making Information Leakage and Program
Efficiency Trade-Offs. In 20th IEEE International Symposium on High
Performance Computer Architecture, 2014.

[32] Vijay K. Garg. Introduction to Lattice Theory with Computer Science Applica-
tions. Wiley Publishing, 2015.

[33] J.A. Goguen and J. Meseguer. Security Policies and Security Models. In
IEEE S&P, 1982.

[34] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation
on oblivious rams. J. ACM, 1996.

[35] Matthew Hicks, Cynthia Sturton, Samuel T. King, and Jonathan M. Smith.
SPECS: A Lightweight Runtime Mechanism for Protecting Software from
Security-Critical Processor Bugs. In ASPLOS, 2015.

[36] Wei Hu, Dejun Mu, Jason Oberg, Baolei Mao, Mohit Tiwari, Timothy Sher-
wood, and Ryan Kastner. Gate-level information flow tracking for secu-
rity lattices. DAES, 2014.

[37] Wei-Ming Hu. Lattice Scheduling and Covert Channels. In Proceedings of
the Symposium on Security and Privacy, 1992.

[38] Casen Hunger, Mikhail Kazdagli, Ankit Singh Rawat, Alexandros G.
Dimakis, Sriram Vishwanath, and Mohit Tiwari. Understanding
Contention-Based Channels and Using Them for Defense. In Proceedings
of the International Symposium on High Performance Computer Architecture,
2015.

[39] Intel Corporation. http://ark.intel.com/compare/84679,84678,84677,84676.

[40] Colin J. Fidge. Timestamps in message-passing systems that preserve par-
tial ordering. 1988.

[41] Adam N. Jacobvitz, Andrew D. Hilton, and Daniel J. Sorin.
Multi-Program Benchmark definition. In International Symposium
on Performance Analysis of Systems and Software, 2015.

[42] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg,
Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and

214

Yuval Yarom. Spectre attacks: Exploiting speculative execution. ArXiv
e-prints, January 2018.

[43] Jingfei Kong, Onur Aciicmez, Jean-Pierre Seifert, and Huiyang Zhou. De-
constructing New Cache Designs for Thwarting Software Cache-based
Side Channel Attacks. In Proceedings of the 2Nd ACM Workshop on Com-
puter Security Architectures, CSAW ’08, 2008.

[44] Butler Lampson, Martín Abadi, Michael Burrows, and Edward Wobber.
Authentication in distributed systems: Theory and practice. ACM Trans.
Comput. Syst., 10(4):265–310, November 1992.

[45] L. J. LaPadula and D. E. Bell. Secure Computer Systems: A Mathematical
Model. 1996.

[46] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and
Marcus Peinado. Inferring fine-grained control flow inside SGX enclaves
with branch shadowing. In 26th USENIX Security Symposium (USENIX
Security 17), pages 557–574, Vancouver, BC, 2017. USENIX Association.

[47] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and
Marcus Peinado. Inferring fine-grained control flow inside SGX enclaves
with branch shadowing. In 26th USENIX Security Symposium (USENIX
Security 17), pages 557–574, Vancouver, BC, 2017. USENIX Association.

[48] Henry M. Levy. Capability-Based Computer Systems. Butterworth-
Heinemann, Newton, MA, USA, 1984.

[49] Peng Li and Steve Zdancewic. Downgrading policies and relaxed nonin-
terference. Long Beach, CA, January 2005.

[50] Xun Li, Vineeth Kashyap, Jason K. Oberg, Mohit Tiwari, Vasanth Ram Ra-
jarathinam, Ryan Kastner, Timothy Sherwood, Ben Hardekopf, and Fred-
eric T. Chong. Sapper: A Language for Hardware-level Security Policy
Enforcement. In ASPLOS, 2014.

[51] Xun Li, Mohit Tiwari, Jason K. Oberg, Vineeth Kashyap, Frederic T.
Chong, Timothy Sherwood, and Ben Hardekopf. Caisson: A Hardware
Description Language for Secure Information Flow. In PLDI, 2011.

[52] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner

215

Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and
Mike Hamburg. Meltdown. ArXiv e-prints, January 2018.

[53] Fangfei Liu, Qian Ge, Yuval Yarom, Carlos Mckeen, Frank Rozas, Gernot
Heiser, and Ruby Lee. CATalyst: Defeating Last-Level Cache Side
Channel Attacks in Cloud Computing. In Proceedings of the 22nd Inter-
national Symposium on High Performance Computer Architecture, 2016.

[54] Fangfei Liu and Ruby B. Lee. Random Fill Cache Architecture. In Pro-
ceedings of the 47th Annual IEEE/ACM International Symposium on Microar-
chitecture, 2014.

[55] Fangfei Liu, Y. Yarom, Qian Ge, G. Heiser, and R.B. Lee. Last-Level
Cache Side-Channel Attacks are Practical. In Proceedings of the IEEE
Symposium on Security and Privacy, 2015.

[56] Jed Liu, Owen Arden, Michael D. George, and Andrew C. Myers. Fabric:
building open distributed systems securely by construction. 2017.

[57] Jed Liu, Michael D. George, K. Vikram, Xin Qi, Lucas Waye, and An-
drew C. Myers. Fabric: A platform for secure distributed computation
and storage. In Proceedings of the ACM SIGOPS 22Nd Symposium on Oper-
ating Systems Principles, SOSP ’09, 2009.

[58] Luísa Lourenço and Luís Caires. Dependent information flow types. In
POPL, 2015.

[59] ARM Ltd. ARM Security Technology: Building a Secure System using
TrustZone Technology.

[60] Robert Martin, John Demme, and Simha Sethumadhavan. Timewarp: Re-
thinking timekeeping and performance monitoring mechanisms to miti-
gate side-channel attacks. SIGARCH Comput. Archit. News, 40(3):118–129,
June 2012.

[61] Jonathan M. McCune, Bryan J. Parno, Adrian Perrig, Michael K. Reiter,
and Hiroshi Isozaki. Flicker: An execution infrastructure for tcb mini-
mization. In Proceedings of the 3rd ACM SIGOPS/EuroSys European Confer-
ence on Computer Systems 2008, Eurosys ’08, 2008.

[62] CVE-2017-5691, July 2017.

216

[63] A. Myers. Mostly-static decentralized information flow control. Technical
report, Cambridge, MA, USA, 1999.

[64] Andrew C. Myers. JFlow: Practical Mostly-static Information Flow Con-
trol. In POPL.

[65] Andrew C. Myers and Barbara Liskov. A decentralized model for infor-
mation flow control. In 16th ACM Symp. on Operating System Principles
(SOSP), October 1997.

[66] Andrew C. Myers and Barbara Liskov. Protecting privacy using the de-
centralized label model. ACM Trans. Softw. Eng. Methodol., 2000.

[67] Aleksandar Nanevski, Anindya Banerjee, and Deepak Garg. Verification
of information flow and access control policies with dependent types.
pages 165–179, 2011.

[68] Jason Oberg, Wei Hu, Ali Irturk, Mohit Tiwari, Timothy Sherwood, and
Ryan Kastner. Theoretical Analysis of Gate Level Information Flow Track-
ing. In DAC, 2010.

[69] Jason Oberg, Wei Hu, Ali Irturk, Mohit Tiwari, Timothy Sherwood, and
Ryan Kastner. Information Flow Isolation in I2C and USB. In DAC, 2011.

[70] Colin Percival. Cache Missing for Fun and Profit. In BSDCan, 2005.

[71] V. Rajani, D. Garg, and T. Rezk. On Access Control, Capabilities, Their
Equivalence, and Confused Deputy Attacks. In 2016 IEEE 29th Computer
Security Foundations Symposium (CSF), 2016.

[72] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. DRAMSim2: A Cycle
Accurate Memory System Simulator. Computer Architecture Letters, 2011.

[73] Andrei Sabelfeld and Andrew C. Myers. A Model for Delimited Informa-
tion Release. In IEEE S&P.

[74] Andrei Sabelfeld and Andrew C. Myers. Language-based Information-
flow Security. IEEE Journal on Selected Areas in Communications, 2006.

[75] Andrei Sabelfeld and David Sands. Declassification: Dimensions and
Principles. JCS, 2009.

217

[76] Jerome H. Saltzer. Protection and the control of information sharing in
multics. Commun. ACM, 1974.

[77] Fred B. Schneider, Kevin Walsh, and Emin Gün Sirer. Nexus authorization
logic (nal): Design rationale and applications. ACM Trans. Inf. Syst. Secur.,
2011.

[78] Ali Shafiee, Akhila Gundu, Manjunath Shevgoor, Rajeev Balasubramo-
nian, and Mohit Tiwari. Avoiding Information Leakage in the Memory
Controller with Fixed Service Policies. In Proceedings of the International
Symposium on Microarchitecture, 2015.

[79] Sergei Skorobogatov and Christopher Woods. Breakthrough Silicon Scan-
ning Discovers Backdoor in Military Chip. In CHES, September 2012.

[80] Geoffrey Smith. On the foundations of quantitative information flow. In
Proceedings of the 12th International Conference on Foundations of Software
Science and Computational Structures: Held As Part of the Joint European Con-
ferences on Theory and Practice of Software, ETAPS 2009, FOSSACS ’09, 2009.

[81] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling
Ren, Xiangyao Yu, and Srinivas Devadas. Path oram: An extremely sim-
ple oblivious ram protocol. In Proceedings of the 2013 ACM SIGSAC Con-
ference on Computer & Communications Security, CCS ’13, 2013.

[82] G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas. Secure
program execution via dynamic information flow tracking. In Proceedings
of the 11th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XI, 2004.

[83] Jakub Szefer and Ruby B. Lee. Architectural Support for
Hypervisor-Secure Virtualization. In Proceedings of the 17th In-
ternational Conference on Architectural Support for Programming Languages,
2012.

[84] David Lie Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln, Dan
Boneh, John Mitchell, and Mark Horowitz. Architectural Support for
Copy and Tamper Resistant Software. In Proceedings of the 9th Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems, 2000.

[85] Mohit Tiwari, Xun Li, Hassan M. G. Wassel, Frederic T. Chong, and Timo-

218

thy Sherwood. Execution Leases: A Hardware-Supported Mechanism for
Enforcing Strong Non-Interference. In MICRO, 2009.

[86] Mohit Tiwari, Jason K. Oberg, Xun Li, Jonathan Valamehr, Timothy Levin,
Ben Hardekopf, Ryan Kastner, Frederic T. Chong, and Timothy Sherwood.
Crafting a Usable Microkernel, Processor, and I/O System with Strict and
Provable Information Flow Security. In ISCA, 2011.

[87] Mohit Tiwari, Hassan M.G. Wassel, Bita Mazloom, Shashidhar Mysore,
Frederic T. Chong, and Timothy Sherwood. Complete Information Flow
Tracking from the Gates Up. In ASPLOS, 2009.

[88] Stephen Tse and Steve Zdancewic. Run-time principals in information-
flow type systems. In IEEE Symposium on Security and Privacy, Oakland,
CA, May 2004.

[89] Yao Wang, Andrew Ferraiuolo, and Edward Suh. Timing Channel
Protection for a Shared Memory Controller. In Proceedings of the
20th International Symposium on High Performance Computer Architecture,
2014.

[90] Yao Wang, Andrew Ferraiuolo, and Edward Suh. Timing Channel Protec-
tion for a Shared Memory Controller. In Proceedings of the 20th International
Symposium on High Performance Computer Architecture, 2014.

[91] Yao Wang and Edward Suh. Efficient timing channel protection for on-
chip networks. In Proceedings of the 6th ACM/IEEE International Symposium
on Networks-on-Chip., NOCS, 2012.

[92] Zhenghong Wang and Ruby B. Lee. Covert and side channels due to pro-
cessor architecture. ACSAC ’06.

[93] Zhenghong Wang and Ruby B. Lee. New Cache Designs for Thwarting
Software Cache-based Side Channel Attacks. In Proceedings of the 34th
Annual International Symposium on Computer Architecture, ISCA ’07, 2007.

[94] Hassan M. G. Wassel, Ying Gao, Jason K. Oberg, Ted Huffmire, Ryan
Kastner, Frederic T. Chong, and Timothy Sherwood. SurfNoC: A
Low Latency and Provably Non-Interfering Approach to Secure
Networks-on-chip. In Proceedings of the 40th Annual International
Symposium on Computer Architecture, 2013.

219

[95] Robert N. M. Watson, Jonathan Woodruff, Peter G. Neumann, Simon W.
Moore, Jonathan Anderson, David Chisnall, Nirav H. Dave, Brooks Davis,
Khilan Gudka, Ben Laurie, Steven J. Murdoch, Robert Norton, Michael
Roe, Stacey D. Son, and Munraj Vadera. Cheri: A hybrid capability-
system architecture for scalable software compartmentalization. 2015
IEEE Symposium on Security and Privacy, pages 20–37, 2015.

[96] Emmett Witchel, Josh Cates, and Krste Asanović. Mondrian Memory
Protection. In Proceedings of the 10th International Conference on Architec-
tural Support for Programming Languages and Operating Systems, ASPLOS
X, 2002.

[97] Rafal Wojtczuk and Joanna Rutkowska. Attacking SMM Memory via Intel
CPU Cache Poisoning, 2009.

[98] Rafal Wojtczuk and Joanna Rutkowska. Following the White Rabbit: Soft-
ware Attacks Against Intel VT-d Technology, 2011.

[99] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie,
Jaswinder Pal Singh, and Anoop Gupta. The SPLASH-2 Programs:
Characterization and Methodological Considerations. In Proceed-
ings of the 22nd Annual International Symposium on Computer Architecture,
1995.

[100] Jonathan Woodruff, Robert N.M. Watson, David Chisnall, Simon W.
Moore, Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neumann,
Robert Norton, and Michael Roe. The CHERI Capability Model: Revisit-
ing RISC in an Age of Risk. In Proceeding of the 41st Annual International
Symposium on Computer Architecuture, ISCA ’14, 2014.

[101] Steve Zdancewic and Andrew C. Myers. Robust declassification. CSFW
’01, 2001.

[102] Steve Zdancewic and Andrew C. Myers. Observational determinism for
concurrent program security. In CSFW, 2003.

[103] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C.
Myers. Secure program partitioning. ACM Transactions on Computer Sys-
tems, 20(3):283–328, August 2002.

[104] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Maz-
ières. Making information flow explicit in histar. In Proceedings of the 7th
Symposium on Operating Systems Design and Implementation, OSDI ’06, 2006.

220

[105] Nickolai Zeldovich, Silas Boyd-Wickizer, and David Mazières. Securing
distributed systems with information flow control. In Proceedings of the
5th USENIX Symposium on Networked Systems Design and Implementation,
NSDI’08, 2008.

[106] Nickolai Zeldovich, Hari Kannan, Michael Dalton, and Christos
Kozyrakis. Hardware Enforcement of Application Security Policies Using
Tagged Memory. In Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation, OSDI’08, 2008.

[107] Danfeng Zhang, Aslan Askarov, and Andrew C. Myers. Predictive
Mitigation of Timing Channels in Interactive Systems. In Pro-
ceedings of the 18th ACM conference on Computer and communications secu-
rity, 2007.

[108] Danfeng Zhang, Aslan Askarov, and Andrew C. Myers. Language-based
control and mitigation of timing channels. PLDI ’12, 2012.

[109] Danfeng Zhang, Yao Wang, G. Edward Suh, and Andrew C. Myers. A
hardware design language for efficient control of timing channels. Tech-
nical Report http://hdl.handle.net/1813/36274, Cornell University, 2014.

[110] Danfeng Zhang, Yao Wang, G. Edward Suh, and Andrew C. Myers. A
Hardware Design Language for Timing-Sensitive Information-Flow Se-
curity. In ASPLOS, 2015.

[111] Yinqian Zhang, Ari Juels, Alina Oprea, and Michael K. Reiter. HomeAlone:
Co-residency Detection in the Cloud via Side-Channel Analysis.
In Proceedings of the 2011 IEEE Symposium on Security and Privacy, 2011.

[112] Lantian Zheng and Andrew C. Myers. Dynamic security labels and static
information flow control. International Journal of Information Security, 6(2–
3), March 2007.

[113] Lantien Zheng and Andrew C. Myers. Dynamic Security Labels and Static
Information Flow Control. In IJIS, 2007.

221

