
Designing Secure Cryptographic Accelerators with
Information Flow Enforcement: A Case Study on AES

Zhenghong Jiang, Hanchen Jin, G. Edward Suh, Zhiru Zhang
School of Electrical and Computer Engineering, Cornell University, Ithaca, NY

{jz763,hj424,gs272,zhiruz}@cornell.edu

ABSTRACT
Designing a secure cryptographic accelerator is challenging as vul-
nerabilities may arise from design decisions and implementation
�aws. To provide high security assurance, we propose to design
and build cryptographic accelerators with hardware-level informa-
tion �ow control so that the security of an implementation can
be formally veri�ed. This paper uses an AES accelerator as a case
study to demonstrate how to express security requirements of a
cryptographic accelerator as information �ow policies for security
enforcement. Our AES prototype on an FPGA shows that the pro-
posed protection has a marginal impact on area and performance.

CCS CONCEPTS
• Security and privacy → Hardware security implementa-
tion; Information �ow control;

ACM Reference Format:
Zhenghong Jiang, Hanchen Jin, G. Edward Suh, Zhiru Zhang. 2019. Design-
ing Secure Cryptographic Accelerators with, Information Flow Enforcement:
A Case Study on AES. In The 56th Annual Design Automation Conference
2019 (DAC ’19), June 2–6, 2019, Las Vegas, NV, USA. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/3316781.3317798

1 INTRODUCTION
In modern system-on-chips (SoCs), cryptography plays an integral
role in protecting the con�dentiality and integrity of information.
For example, SoCs may need AES for encrypted data storage and
use RSA/ECC for key exchange in a protected communication.
The extensive use of cryptography has propelled the development
of hardened cryptographic (crypto) accelerators for better perfor-
mance and energy-e�ciency. However, the dissimilarities between
accelerators and the increasing design complexity bring challenges
to the security of cryptographic hardware accelerators.

Security vulnerabilities can be introduced into crypto accelera-
tors from various aspects, including design decisions [12], imple-
mentation �aws [6], debug peripherals [10], and even hardware
Trojans [16]. Though numerous e�orts have been made to protect
crypto hardware, most of them only focus on speci�c vulnerabil-
ities [8, 16]. In order to provide high assurance for crypto accel-
erators, we need a methodology that is capable of systematically
checking a broad range of security requirements at design time.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
DAC ’19, June 2–6, 2019, Las Vegas, NV, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6725-7/19/06. . . $15.00
https://doi.org/10.1145/3316781.3317798

Inmostmodern SoCs, crypto accelerators are often shared among
multiple applications/users. For example, multiple users in the cloud
share the same AES accelerator to process encryption requests in
the secure sockets layer (SSL) protocol. However, e�cient and se-
cure sharing of an accelerator is not an easy task. The traditional
method of sharing an accelerator at the coarse granularity only
allows one program (user) to use the accelerator at a time. For such
coarse-grained sharing, security protection can largely focus on
interfaces [14]. On the other hand, the coarse-grained sharing limits
performance, especially for deeply-pipelined accelerators, as the en-
tire pipeline must be drained and re�lled when switching users. To
improve performance, accelerators need to allow more �ne-grained
sharing so that data from di�erent users can be processed inside the
accelerator simultaneously. Unfortunately, the �ne-grained sharing
increases the di�culty of data isolation and leads to higher security
risks.

In this paper, we propose to use hardware-level information �ow
control (IFC) in designing secure crypto accelerators while sup-
porting �ne-grained sharing. Hardware-level IFC systematically
examines information �ows in hardware modules and can provide
strong security assurance to hardware implementations at design
time using either a security-typed HDL [13, 23] or information-
�ow tracking logic [1, 21]. In the paper, we demonstrate that a
broad range of security requirements of a crypto accelerator can
be expressed as information �ow policies and can be systemati-
cally veri�ed using an IFC tool with both low design e�ort and
low implementation overhead. As a case study, we develop a se-
cure AES accelerator that leverages information �ow control to
verify its security requirements. The accelerator is implemented in
a security-typed HDL at RTL, and the implementation is statically
veri�ed to be free of disallowed information �ows, including timing
channels. While its security properties are veri�ed at design time,
the accelerator also uses security tags and tracking logic to support
�exible information �ow policies at runtime.

The main contributions of this work are twofold:
(1) We show that strong security protection for crypto accelera-

tors can be provided with high assurance using hardware-level
information �ow control. The main security requirements of a
crypto accelerator can be expressed as information �ow policies
and veri�ed at design time with low overhead.

(2) Using an AES accelerator prototype, we show how to achieve
both security and e�ciency together in a crypto accelerator
using a careful combination of design-time and runtime policies.
The runtime policies provide �exibility for the practical usability
while the design-time policies ensure a formal guarantee of
security on the accelerator implementation.
The rest of the paper is structured as follows: Section 2 discusses

some known attacks on AES hardware, describes the threat model,
and introduces the concept of HDL-level information �ow control
and nonmalleable downgrading. Section 3 describes the design

i = 1 to N

Plaintext
(128 bits)

SubBytes

ShiftRows

MixColumns

Ciphertext
(128 bits)

SubBytes

ShiftRows

Key Expansion
Roundkey[i]

Roundkey[0]

Roundkey[i] Roundkey[N]

Key
(128/192/256 bits)

Figure 1: Typical AES encryption �ow — Di�erent key length
requires di�erent numbers of computing iterations: N = 10 for
128-bit key, N = 12 for 196-bit key, and N = 14 for 256-bit key.

decisions we made to the proposed AES accelerator, and illustrates
how themain security properties of the accelerator can be expressed
as hardware-level information �ow policies. Section 4 presents the
evaluation results from our AES accelerator prototype. Section 5
discusses related work, followed by conclusions in Section 6.

2 PRELIMINARIES
In this section, we �rst brie�y summarize some known attacks on
the AES hardware. Then, we describe the threat model considered
in this paper. In the end, we introduce the concept of HDL-level
information �ow control and nonmalleable downgrading that we
used to verify the security of the accelerator implementations.

2.1 Attacks on AES Hardware
AES (Advanced Encryption Standard) is a symmetric block cipher
standard broadly used for encryption/decryption of sensitive data.
AES encrypts a 128-bit plaintext block into a 128-bit ciphertext block
by using a 128/192/256-bit cryptographic key, shown in Figure 1.
A large message can be divided into multiple 128-bit blocks and
fed into the AES engine in sequence. The extensive use of AES has
propelled the development of custom hardware accelerators [17, 22]
for better performance but also makes it a target for malicious
attacks. Considering the prevalence of AES accelerators in SoCs,
we choose it as a representative case study to explain our proposed
protection method without losing generality.

Rather than discovering weaknesses in the AES algorithm, it is
often more pro�table to exploit vulnerabilities in its hardware im-
plementations [18]. For example, prior work has demonstrated that
disclosure of internal signals, via implementation �aws or rogue
debug interfaces, can signi�cantly reduce the e�ort in recovering
secret keys [6, 10]. Moreover, attackers can leverage the side e�ects
of a hardware implementation to infer secret keys. For example, one
previous attack [12] uses key-dependent execution time of an AES
implementation to infer its secret key. AES accelerators are often
heavily optimized for performance, and the complex optimizations
make designing a secure AES engine a challenging task without a
systematic methodology [2].

2.2 Threat Model
In a typical heterogeneous SoC, multiple user applications can run
on a processor concurrently, which also share crypto accelerators,
DMA engines, and other peripherals. As shown in Figure 2, each
user application has a security label to identify its security privilege
and holds a secret key for encryption/decryption of its private data.

L1 Cache

L2 Cache

Crypto
Accel

tag

tag

tag

tag

DMA

I/O

Processor

In
te

rc
on

ne
ct

io
n

tag

Security Label

Figure 2: Modern SoCs running under multiple security lev-
els —Multiple user applications simultaneously share the crypto
accelerators and each user holds a secret key for its data encryp-
tion/decryption.

1 class CacheTags extends Module {

2 val io = IO(new Bundle {

3 val we = Input(Bool(), Label(public , trusted))
4 val way = Input(UInt (1.W), Label(public , trusted))
5 val tag_i = Input(UInt (19.W), Label(public , DL(way)))
6 val index = Input(UInt (8.W), Label(public , trusted))
7 val tag_o = Output(UInt (19.W), Label(public , DL(way)))
8 })

9 val tag_0 = Reg(Vec(256, UInt (19.W)), Label(public , trusted))
10 val tag_1 = Reg(Vec(256, UInt (19.W)), Label(public , untrusted))
11 when (io.we) {

12 when (io.way === 0.U) { tag_0(way) := io.tag_i; }

13 .otherwise { tag_1(way) := io.tag_i; }

14 } .otherwise {

15 when (io.way === 0.U) { io.tag_o := tag_0(way); }

16 .otherwise { io.tag_o := tag_1(way); }

17 }

18 }

Figure 3: Cache tags in ChiselFlow description — DL is a de-
pendent label that DL(0) indicates trusted and DL(1) indicates un-
trusted. tag_i and tag_o port switch their integrity levels depend-
ing on which way is selected.

In this paper, we consider an accelerator that is shared at a �ne gran-
ularity where it can encrypt data from di�erent users with di�erent
keys concurrently. The �ne-grained sharing improves e�ciency
but poses a challenge for security. We assume that an adversary
controls one or more applications on the SoC and can attack a
crypto accelerator by misusing the interfaces for the applications.
For example, the adversary may try to infer a secret that belongs
to another security level or maliciously a�ect the encryption/de-
cryption of another application by observing and manipulating
data at or below his/her security level. The adversary can exploit
implementation �aws or backdoors in an accelerator. The adversary
may also use timing channels, which can be exploited in software.
However, we assume that the adversary has no physical access to
the SoC; therefore, physical attacks, such as fault inject and power
side-channel attacks are not considered.

2.3 HDL-Level Information Flow Control
Information �ow control is a security mechanism that provides
security assurance by tracking information �ows inside a target
system. It associates a label to each data, monitors the data �owing
from sources to sinks, and ensures that secret data cannot leak to
public for con�dentiality or that untrusted inputs cannot contami-
nate trusted data for integrity. HDL-level information �ow control
applies IFC to HDL (Hardware Description Language) in order to
provide security assurance for hardware [13]. For example, given
two security labels ` and `0, if label ` is less restrictive than label
`0, it is written as ` v `0. In general, IFC enforces that a signal with

2

label ` cannot be a�ected by another signal with label `0. In other
words, a more restrictive signal cannot in�uence a less restrictive
signal. ChiselFlow is a newly developed security-typed HDL on
the top of Chisel. Unlike prior security-typed HDLs, ChiselFlow
manages con�dentiality and integrity explicitly [7]. It adopts the
2-tuple label format ` = (c, i), where c and i represents con�dential-
ity and integrity. Given two labels ` and `0, ` vC `0 means `0 has
higher con�dentiality, and ` vI `0 means ` has higher integrity.

Besides static security labels, ChiselFlow also supports dynamic
(dependent) labels to enable �ne-grained sharing of hardware re-
sources. A signal with a static label belongs to a �xed security level
for its entire lifetime. On the other hand, the security level of a
signal with a dependent label is determined by the value of another
signal. Figure 3 shows a ChiselFlow example of a shared cache tag
module. In the module, the cache is statically partitioned: tag_0
holds trusted data and carries a static label of (public, trusted),
whereas tag_1 holds untrusted data and carries a static label of
(public, untrusted). The tag data input and output have a de-
pendent label of (public, DL(way)), which means their integrity
levels depend on the value of signal way. When way has a value
of 0, the tag input is treated as trusted; it receives data from the
trusted level and writes data to the trusted tag_0. When way has
a value of 1, the tag input is treated as untrusted; it receives data
from the untrusted level and writes data to the untrusted tag_1.
Though the cache tag memory is partitioned, the data input and
output ports are shared among two security levels.

2.4 Nonmalleable Downgrading
Information �ow control generally enforces noninterference to pro-
hibit every �ow of information that violates the security policy.
Unfortunately, noninterference is known to be too restrictive for
most practical systems. For example, in cryptography, ciphertext
contains information from the crypto key, but is considered safe
and should be allowed to be released to public channels. Therefore,
it is necessary to introduce downgrading to explicitly allow excep-
tions to an information �ow policy. Downgrading in con�dentiality
is called declassi�cation and downgrading in integrity is called en-
dorsement. Downgrading increases usability but also weakens the
security of IFC. To limit the risk of downgrading, nonmalleable IFC
constrains the use of downgrading in systems [3].

Equation (1) shows constraints for nonmalleable declassi�cation
and endorsement. ` and `0 are the labels of data before and after
downgrading (7!), p is the label of the principal (user) perfomring
downgrading. Here, r means projecting con�dentiality to integrity
or projecting integrity to con�dentiality. SubscriptC indicates oper-
ation on the con�dentiality dimension of the label while subscript
I indicates operation on the integrity dimension. For example, con-
sider a two-level lattice with two con�dentiality levels, public (P)
and secret (S), and two integrity levels, untrusted (U) and trusted
(T). Then, r(P) = U and r(U) = P ; (P ,U) tC (S,U)) (S,U) and
(P ,U) tI (P ,T)) (P ,U). The nonmalleable IFC constrains that
data can only be declassi�ed by a su�ciently trusted principal and
data can only be endorsed when the principal can read it. As an ex-
ample, label (S,U) cannot be declassi�ed to (P ,U) by an untrusted
user (I (p) = U) because S @C P tC r(U).

C(`)
p
7! C(`0)when C(`) vC C(`0) tC r(I (p))

I (`)
p
7! I (`0)when I (`) vI I (`0) tI r(C(p))

(1)

(⊥,⊤)

tag tag

tag tag

tag Pipelined AES
E/D Module

Arbiter

A
X

I/R
oC

C
 In

te
rfa

ce Ta
gs

Master
Key

Configuration
Registers

Key
Register

Debug Peripheral

Input Data
Buffer

Output Data
Buffer

(⊤,⊤)

Figure 4: Overview of the proposed AES accelerator —Master
key and con�guration registers are associated with �xed security
labels so only a certain users can access the contents; while datapath,
data bu�ers and registers are associated with hardware tags to
enable �ne-grained resource sharing at runtime.

3 INFORMATION FLOW POLICIES IN
CRYPTO ACCELERATORS

While there exist many types of security vulnerabilities, most ex-
ploitable vulnerabilities in practice result in insecure information
�ows that violate either con�dentiality or integrity. In this section,
we show how to prevent common vulnerabilities with information
�ow policies in a crypto accelerator.

3.1 Design Decisions and Vulnerabilities
To validate the e�ectiveness of the proposed approach in designing
high-performance crypto accelerators, we choose a high-throughput
pipelined architecture that processes one message block per clock
cycle. Moreover, the accelerator is shared among multiple security
levels in a �ne granularity for better e�ciency. Figure 4 shows the
overview of the proposed AES accelerator.

Prior work has proposed many optimizations that improve the
performance or the power-e�ciency of an AES accelerator [22, 24].
However, such high-performance accelerator may have subtle se-
curity �aws unless designed carefully for security. First, pipelined
architecture can introduce timing channels. For example, consider
the case when two users, Alice and Eve, share the pipelined accel-
erator. The latency of Eve’s encryption/decryption depend on the
state of other pipeline stages, which may be processing Alice’s data;
a memory access for Alice may stall the pipeline and delay Eve’s
computation. The dependency can create a covert timing channel
that leaks data from Alice to Eve [20]. Second, scratchpad memory
holding user keys on-chip can introduce another security vulnera-
bility. Figure 5 demonstrates a scratchpad with 64-bit cells, whose
size is designed to be compatible with the host interface. Eve could
leverage a bu�er over�ow error to override Alice’s key stored in the
adjacent cells if the accelerator does not properly check memory
bounds. Finally, a debug peripheral is another common component
in accelerators that can be misused. Prior work has demonstrated an
attack that exploits an debug peripheral to compromise the secret
key in an AES implementation [10].

3.2 Security Requirements and Information
Flow Policies

Protecting the implementation from exploitable vulnerabilities
(e.g., [5, 12]) is a primary objective of developing a secure AES
accelerator. Table 1 summarizes the major security requirements
and the corresponding information �ow policies applied to enforce
the requirements. With formulated information �ow policies, IFC

3

Table 1: Main security requirements for a crypto accelerator and the equivalent information �ow policies — For policy types,C
and I represents con�dentiality and integrity respectively. For restrictions, key9 user indicates any information �ows from the key to the
user’s resource is forbidden if the user doesn’t have enough con�dentiality. In security lattice, ? and > represent fully public and fully
secret for con�dentiality, while ? and > represent completely untrusted and completely trusted for integrity.

Security
Assets

Security
Requirements

Policy
Type

Source
(object and label)

Sink
(object and label) Restriction

Keys

1. A classi�ed key cannot be read
out by a less con�dential user. C Key registers `(ke�) User registers/

outputs `(user) ke� 9 user
if `(ke�) @C `(user)

2. A protected key cannot be modi�ed
by a less trusted user. I User inputs `(user) Key registers `(ke�) user 9 ke�

if `(user) @I `(ke�)
3. A classi�ed key cannot be used by
a less trusted user. C Key registers `(ke�) Ciphertext

output ? cipher text 9 output
if `(ke�) @C r(`(user))

Plaintext
4. A low con�dential user cannot read
plaintext message from a higher
con�dential user.

C Plaintext bu�er `(pt) User registers/
outputs `(user) plaintext 9 user

if `(pt) @C `(user)
5. A less trusted user cannot modify
data beyond its authority. I User inputs `(user) Data bu�ers/

register `(data) user 9 data
if `(user) @I `(data)

Con�gs
6. Con�guration registers can be
read by any users, but only be modi�ed
by the supervisor.

I User inputs `(user) Con�guration
registers `(cr)

⇤cr ! user
as ? vC `(user)
⇤user 9 cr
as `(user) @I >
⇤sup ! cr
as `(sup) vI >

Key B
Key C

Key D

64-bit 64-bit

64-bit 64-bit

64-bit 64-bit

64-bit 64-bit

Key A ℓ(#) ℓ(#)

ℓ(%)

ℓ(&)

ℓ(')

ℓ(%)

ℓ(&)

ℓ(')

Figure 5: A key scratchpad memory with 512-bit capacity —
Each cell has an associated tag to identify its security level. Any
bu�er overwrite or overread error will cause an information �ow
violation and will be prevented.

tools, such as ChiselFlow [7] and RTLIFT [1], can be leveraged to
enforce these policies in the target implementation.

3.2.1 Preventing Information Disclosure within an AES Engine. The
Encryption/Decryption (E/D) module is the core component in an
AES accelerator. The E/D module protects plaintext data with the
cryptographic key (encryption) or recovers ciphertext data into a
clear message (decryption). Any disclosure of the key or the plain-
text, caused by implementation errors or intentional backdoors,
will undermine the security of the accelerator and even the entire
system. At design time, a proper information �ow policy should
be formulated to rule out these information leakages. For a user
program with label (cu , iu), its plaintext data should have a label
of (cu , iu) and its secret key also carries a label of (ck , iu). Here,
ck @C cu and ck vC r(iu). By assigning a higher con�dentiality
label to the key, IFC can detect potential vulnerabilities that may
leak the key. Figure 6 shows an example where the implementation
contains a timing channel vulnerability [12]. In the implementation,
the designer annotates the valid signal to be public (?, iu) to ensure
that no secret leaks through that signal. On the other hand, the IFC
tool infers that valid should have the label of (ck , iu) when its tim-
ing depends on the value of the secret key. As (ck , iu) cannot �ow
to (?, iu), this mismatch leads to an error that re�ects the leakage

Plaintext

Key

Ciphertext

(c", $")

(c&, $&)

(⊥, $&)

(ck ⊔ +& 	, $&)

(⊥, $&)
(ck	, $&)

Valid

AES
E/D

Module

Figure 6: Information leakage leads to a label error in IFC —
Blue labels are deduced from the implementation in IFC analysis,
while the black labels are speci�ed by designers. A disallowed
mismatch means a potential implementation error.

Res(1)Plaintext

Key

Cipher
text

(c", $")

(c&, $&) (⊥, $&)
tag

S1

tag

S2

tag
K1

tag
K2

RK(1)

Res(2)

tag

S10...

tag
K10

RK(2)

Round 1 Round 2 Round 10

De
cl
as
sif
y

...

...
...

Key Expansion

Pipelined Encryption/Decryption Datapath

RK(10)

Figure 7: Each pipeline stage has a dedicated tag register to
indicate its security level — Data and tag propagate through the
pipeline stages, enabling �ne-grained resource sharing at runtime.

from key to valid signal in the implementation. Other information
leaks can be discovered in a similar fashion.

Besides the valid signal, Figure 6 also shows another label error
at the ciphertext output. Because ciphertext contains information
from both plaintext and key, the label of ciphertext should be (ck tC
cu , iu). On the other hand, the designer will consider the ciphertext
as a public output. Consequently, the IFC tool raises an error if the
ciphertext is released to a public channel. However, in practice, the
release of the ciphertext should not compromise the con�dentiality

4

of the key and the plaintext. Therefore, we add the declassi�cation
statement to explicitly allow the ciphertext to be released at the
output of the AES E/D module. As shown in Figure 7, in our AES
engine, the declassi�cation statement is placed at the end of the
pipeline, only the output of the last encryption stage is declassi�ed;
outputting an intermediate result is still prevented by the IFC tool.

In a simple secure AES implementation, the E/Dmodule is treated
as a unit carrying one single security label, which implies that only
one user can use the AES module at a time. To enable �ne-grained
sharing, we assign each pipeline stage with an independent security
label; each security label is a dependent type so that the security
level of each pipeline stage can change at the runtime. During the
execution, the data and its label propagate through the pipeline
together. In each clock cycle, a pipeline stage can change its security
level and receive data from another security level. However, if there
can be a mismatch between the data and the security tag in the
implementation, the IFC tool will report a violation at design time.

3.2.2 Preventing Inappropriate Use of Cryptographic Keys. Even if
an attacker cannot directly obtain the cryptographic key, an inap-
propriate use of the key can still break the security [19]. Therefore,
the proposed AES accelerator prevents a less trusted user from
using a high-con�dential key for its encryption/decryption. Let us
use a master key as an example to illustrate how an inappropriate
use of the key is prevented in the proposed accelerator. The master
key carries the label of (>,>), as it is only accessible to the super-
visor. Assume that a regular user (with a label of (cu , iu)) attempts
to use the master key in encryption, the encrypted message would
have a label of (ck , iu). Then, the AES engine tries to declassify the
encrypted message after the �nal round in order to output to the
public domain (?). For the encryption with an authorized key, the
declassi�cation will be allowed as ck vC r(iu). However, for the
encryption with the master key, ck == > so > @C r(iu) and the
declassi�cation will be rejected under the nonmalleable IFC con-
straints. Only the supervisor has high enough integrity to declassify
encryption with the master key.

3.2.3 Preventing Bu�er Errors. A bu�er error is another threat to
crypto implementations. For example, if the accelerator does not
check the length of a key when storing it into the scratchpad mem-
ory, a bu�er overrun error may occur and overwrite other trusted
keys. In order to prevent such errors, our implementation asso-
ciates each memory block with a dedicated tag array as shown in
Figure 5. Each memory cell has a corresponding tag in the tag array
to indicate its security level at runtime. The accelerator checks the
tag before reading data from or writing data to a memory location.
If the tag checking reports a violation, the following write/read
operation will be blocked. For example, consider a case where Eve
sends a request to store her key into the scratchpad memory. The
arbiter accepts the request and con�gures the cell 1 and 2 with label
`(E�e). Then, Eve writes her key to cell 1 and 2. However, if she
attempts to overwrite cell 3 whose label is `(Alice), the tag check
will fail (`(E�e) @ `(Alice)) and the write will be blocked. The IFC
analysis ensures at design time that the necessary runtime checks
are implemented.

3.2.4 Access Control on Configuration Registers. As the accelerator
is shared among multiple security levels, changes to con�guration
registers can a�ect multiple users. For security, only the supervisor
should be able to modify the con�guration registers. To enforce

Roundkey(1)

S1
Plaintext

S2 S10

Roundkey(2) Roundkey(10)

...

...
Ciphertext

⊑

Stall_req

ℓ(Stall_req)⊓

Stall Stall Stall
0

ℓ(Stall)

Stall

tag tag tag

Figure 8: High con�dential users can stall the pipeline when
the pipeline does not contain data with low con�dentiality.

this security policy, we label the con�guration registers with (?,>),
indicating that its values are public but should have the highest in-
tegrity. Any writes to the con�guration registers from unprivileged
users will cause an integrity violation.

3.2.5 Preventing Timing Channels in the Datapath Pipeline. In ad-
dition to information �ows through signal values, timing channels
can also be used to leak sensitive information. In the AES accelera-
tor, we found that the �ne-grained sharing of the datapath could
introduce a timing channel, as mentioned in Section 3.1. To remove
the timing channel, we only allow one security level to stall the
pipeline when no pipeline stage has a lower con�dentiality level. As
shown in Figure 8, the stall logic determines the lowest con�dential-
ity level across all pipeline stages by performing a meet operation
(tC), which returns the security label with the lower con�dential-
ity. When there is a request to stall the pipeline (Stall_req), the
pipeline is stalled only when C(`(Stall_req)) vC C(`(Stall)). The
AES accelerator includes an extra bu�er to hold outputs when the
pipeline cannot be stalled when the receiver is not ready to read
the outputs.

3.2.6 Discussion on downgrading. Information �ow control en-
forces noninterference between security levels except for the vi-
olations explicitly allowed by downgrading operations. While in-
evitable for practical systems, the downgrading operations repre-
sent weakening of security and there is a question on what is the
security assurance that we can obtain when there exists down-
grading. For a traditional design without IFC analysis, potential
vulnerabilities that can lead to information leakage may exist any-
where in a design. On the other hand, with IFC, potential informa-
tion leakage can only occur through downgrading. Even though
downgrading may be inserted incorrectly and lead to a vulnerabil-
ity, it is much easier for human designers to carefully review the
downgrading operations instead of inspecting the entire design for
potential security vulnerabilities. Moreover, the nonmalleable IFC
further constrains downgrading assignments to ensure that Only
quali�ed principals can downgrade sensitive data, as illustrated in
Section 3.2.2.

4 EVALUATION
To evaluate our protection scheme, we �rst built an AES accel-
erator baseline without information �ow control. The baseline
contains a deeply-pipelined datapath and a 512-bit key scratchpad.
The pipeline receives one data block each cycle and completes the
encryption of a data block in 30 cycles. The performance of the
baseline accelerator is comparable to the performance of an exist-
ing high-throughput implementation [22]. We then extended the
baseline with security tags and other information �ow enforcement
mechanisms, and veri�ed the deisgn with a static IFC to remove

5

Table 2: Area and performance of the FPGA prototypes —
LUTs: look-up tables, FFs: �ip-�ops, BRAMs: block RAMs.

Baseline Protected
LUTs 13,275 14,021 (+5.6%)
FFs 14,645 15,605 (+6.6%)
BRAMs 40 44 (+10.0%)
Frequency (MHz) 400 400 (+0.0%)

vulnerabilities. In the current implementation, we use 8-bit the
security tags (4 bits for con�dentiality and 4 bits for integrity),
which is compatible with a state-of-the-art information �ow en-
forced processor. To study the area and performance overhead, we
implemented the prototype with Vivado 2017.1, targeting a Xilinx
Virtex-7 FPGA device. The prototype implementation achieves a
throughput of 51.2Gbps @ 400 MHz clock frequency.

To implement the secure (protected) AES accelerator, we changed
around 70 lines of the baseline implementation in Chisel. The
changes include annotating signals with security labels, building
runtime checkers, and code transformations to remove vulnerabili-
ties raised by the IFC analysis. All previously-mentioned vulnera-
bilities in the baseline are �agged by ChiselFlow and are addressed
in the protected design. Table 2 shows the FPGA prototype results
for both baseline and protected implementations. Our protection
scheme incurs 5.6% and 6.6% overheads on the number of LUTs and
FFs. The major BRAM overhead comes from two sources; one is
the security tags stored with the on-chip data bu�ers, and the other
is the extra bu�er holding con�dential outputs when the pipeline
is stalled. Our protection does not have any impact on the critical
path and the clock frequency.

5 RELATEDWORK
Hardware implementation of cryptographic algorithms o�ers signif-
icantly higher performance and power-e�ciency than its software
equivalents. However, most of the hardware implementations only
focus on performance, die area, and power consumption [22, 24],
and do not address potential security concerns. Some e�orts tried
to protect the cryptographic accelerators from malicious attacks,
but the resulting principles and techniques focus on speci�c vul-
nerabilities and do not o�er systematic guarantees [4, 8].

In addition to the HDL-based approaches, hardware-level infor-
mation �ow control can be performed via dedicated tracking logic,
e.g., gate-level information �ow tracking (GLIFT) [21] and register-
transfer-level information �ow tracking (RTLIFT) [1]. Given a hard-
ware design, GLIFT derives a dedicate information �ow tracking
logic and performs security analysis on it. Designers can either run
static veri�cation at design time or verify the security properties
dynamically at runtime. GLIFT is also used to detect Trojans in
hardware implementations [9]. The primary objective of this work
is to formulate security requirements of a crypto accelerator as
information �ow policies. The formulated information �ow policies
can then be enforced using either security-typed HDLs or GLIFT.

6 CONCLUSIONS AND FUTUREWORK
Security vulnerabilities imposed by design decisions and other
implementation �aws are threats to hardware cryptographic accel-
erators. In this paper, we propose to design and build cryptographic
accelerators with hardware-level information �ow control, which is
capable of systematically checking a broad range of security require-
ments at design time. By expressing main security requirements

as information �ow policies, we can formally verify the security
properties of the accelerator at design time with low overhead.

This work demonstrates that hardware-level information �ow
control is an e�ective mechanism in protecting high-performance
crypto accelerators. Currently, the security requirements are man-
ually expressed as information �ow policies and enforced in the
accelerator implementation. Automating the formulation procedure
and integrating it into high-level design tools, such as security-
related high-level synthesis [11, 15], will be promising research
directions.

ACKNOWLEDGMENT
We would like to thank the anonymous reviewers for their in-
sightful comments. This research was supported in part by NSF
award CNS1618275, Semiconductor Research Corporation under
Task 2686.001, and DARPA SSITH Award HR0011-18-C-0014.

REFERENCES
[1] A. Ardeshiricham,W. Hu, J. Marxen, and R. Kastner. Register Transfer Level Infor-

mation Flow Tracking for Provably Secure Hardware Design. Design, Automation,
and Test in Europe (DATE), 2017.

[2] L. Bossuet, M. Grand, L. Gaspar, V. Fischer, and G. Gogniat. Architectures of
Flexible Symmetric Key Crypto Engines-A Survey: From Hardware Coprocessor
to Multi-Crypto-Processor System on Chip. ACM Computing Surveys, 2013.

[3] E. Cecchetti, A. C. Myers, and O. Arden. Nonmalleable Information Flow Control.
ACM SIGPLAN Conf. on Computer and Communications Security (CCS), 2017.

[4] H. Chan, P. Schaumont, and I. Verbauwhede. Process Isolation for Recon�gurable
Hardware. International Journal of Information Security, 2013.

[5] N. V. Database. CVE-2014-0160 (Heartbleed). 2014.
[6] W. Diehl. Attack on AES Implementation Exploiting Publicly-visible Partial

Result. Technical Report, George Mason University, 2017.
[7] A. Ferraiuolo, M. Zhao, A. C. Myers, and G. E. Suh. HyperFlow: A Processor

Architecture for Nonmalleable, Timing-Safe Information Flow Security. ACM
SIGPLAN Conf. on Computer and Communications Security (CCS), 2018.

[8] L. Guan, J. Lin, B. Luo, J. Jing, and J. Wang. Protecting Private Keys against
Memory Disclosure Attacks Using Hardware Transactional Memory. IEEE Symp.
on Security and Privacy (S&P), 2015.

[9] W. Hu, B. Mao, J. Oberg, and R. Kastner. Detecting Hardware Trojans with
Gate-Level Information-F1ow Tracking. Computer, 2016.

[10] Y. Huang and P. Mishra. Trace Bu�er Attack on The AES Cipher. Journal of
Hardware and Systems Security, 2017.

[11] Z. Jiang, S. Dai, G. E. Suh, and Z. Zhang. High-Level Synthesis with Timing-
Sensitive Information �ow Enforcement. Int’l Conf. on Computer-Aided Design
(ICCAD), 2018.

[12] F. Koeune and J.-J. Quisquater. A Timing Attack Against Rijndael. 1999.
[13] X. Li, M. Tiwari, J. Oberg, V. Kashyap, F. Chong, T. Sherwood, and B. Hardekopf.

Caisson: A Hardware Description Language for Secure Information Flow. ACM
SIGPLAN Conf. on Programming Language Design and Implementation (PLDI),
2011.

[14] L. E. Olson, J. Power, M. D. Hill, and D. A. Wood. Border Control: Sandboxing
Accelerators. Int’l Symp. on Microarchitecture (MICRO), 2015.

[15] C. Pilato, K. Wu, S. Garg, R. Karri, and F. Regazzoni. TaintHLS: High-Level
Synthesis For Dynamic Information Flow Tracking. IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), 2018.

[16] T. Reece and W. Robinson. Analysis of Data-Leak Hardware Trojans in AES
Cryptographic Circuits. Int’l Conf. on Technologies for Homeland Security, 2013.

[17] J. Rott. Intel Advanced Encryption Standard Instructions (AES-NI). Technical
Report, Intel, 2010.

[18] B. Schneier. Cryptographic Design Vulnerabilities. Computer, 1998.
[19] R. Stubbs. Classi�cation of Cryptographic Keys. 2018.
[20] J. Szefer. Survey of Microarchitectural Side and Covert Channels, Attacks, and

Defenses. IACR Cryptology ePrint Archive, 2016.
[21] Tiwari, Mohit and Wassel, Hassan MG. and Mazloom, Bita and Mysore, Shashid-

har and Chong, Frederic T. and Sherwood, Timothy. Complete Information Flow
Tracking from the Gates Up. Int’l Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2009.

[22] Y. Wang and Y. Ha. High Throughput and Resource E�cient AES Encryption/De-
cryption for SANs. Int’l Symp. on Circuits and Systems (ISCAS), 2016.

[23] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers. A Hardware Design Language for
Timing-Sensitive Information-Flow Security. Int’l Conf. on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2015.

[24] X. Zhang and K. K. Parhi. High-Speed VLSI Architectures for the AES Algorithm.
IEEE Trans. on Very Large-Scale Integration Systems (TVLSI), 2004.

6

