Quantitative Overhead Analysis for Python

Mohamed Ismail and G. Edward Suh
Cornell University
Ithaca, NY, USA
{mii5, gs272} @cornell.edu

Abstract—Dynamic programming languages such as Python
are becoming increasingly more popular, yet often show a
significant performance slowdown compared to static languages
such as C. This paper provides a detailed quantitative analysis
of the overhead in Python without and with just-in-time (JIT)
compilation. The study identifies a new major source of overhead,
C function calls, for the Python interpreter. Additionally, we study
the interaction of the run-time with the underlying processor
hardware and find that the performance of Python with JIT
depends heavily on the cache hierarchy and memory system. We
find that proper nursery sizing is necessary for each application
to optimize the trade-off between cache performance and garbage
collection overhead. Although our studies focuses on Python, we
show that our key findings can also apply to other dynamic
languages such as Javascript.

I. INTRODUCTION

As software becomes more complex and the costs of de-
veloping and maintaining code increase, dynamic program-
ming languages are becoming more desirable alternatives to
traditional static languages. Dynamic languages allow pro-
grammers to express more functionality with less code. In
addition, run-time checks and memory management are built-
in, limiting the possibility of low-level program bugs such
as buffer overflows. Dynamic languages such as Javascript,
Python, PHP, and Ruby consistently rank in the top ten
most popular languages across multiple metrics [1]-[3]. These
dynamic languages are increasingly utilized in production
environments in order to bring new features quickly.

Unfortunately, programs written in a dynamic language
often execute significantly slower than an equivalent program
written in a static language, sometimes by orders of magnitude.
Therefore, the performance overhead represents a major cost
of using dynamic languages in high-performance applications.
Ideally, companies with enough time and resources may
rewrite performance-critical portions of code in faster static
languages when they are mature. For example, Twitter initially
used Ruby on Rails to build their infrastructure and reported
a 3x reduction in search latencies after rewriting it in Java [4].
However, porting code is an expensive proposition and just-in-
time (JIT) compilation is often used as a lower-cost alternative
to improve the performance of dynamic language programs.

In this paper, we provide a quantitative study on the
sources of performance overhead in Python, a popular dynamic
language. The overhead of a dynamic language can come
from multiple aspects of the language design space. This
study explores three different aspects of the overhead to
provide a more comprehensive view. First, at the language
level, some features of the dynamic language may lead to

inherent inefficiency compared to static languages. Second, a
language run-time also adds overhead to dynamic languages
compared to statically compiled code. We break down Python
execution time into language and run-time components as
well as core computations to understand overhead sources.
Finally, at the hardware level, we study how the dynamic
language features impact microarchitecture-level performance
through instruction-level parallelism, branch prediction, and
memory access characteristics. We compare CPython [5], an
interpreter-only design, with PyPy [6], a JIT-based design, to
understand the microarchitecture-level differences between the
run-time implementations.

The study is broken into two main parts. In the first part,
we look at the language and run-time features of Python to
understand which aspects of the language and run-time add
additional overhead compared to C, the baseline static lan-
guage. By annotating instructions at the interpreter-level, we
can generate breakdowns for a large number of benchmarks.
In addition to the sources of overhead already identified by
previous work, we find that C function calls represent a major
source of overhead that has not been previously identified.

In the second part, we study the interaction of the run-
time with the underlying processor microarchitecture. We find
that both CPython and PyPy exhibit low instruction-level
parallelism. Using PyPy with JIT helps decrease sensitivity to
branch predictor accuracy, but increases sensitivity to cache
and memory configurations. In particular, we find that the
generational garbage collection used in PyPy introduces an
inherent trade-off between cache performance and garbage
collection overhead. Frequent allocation of objects in dynamic
languages increases a pressure on the memory hierarchy.
However, increasing the garbage collection frequency to im-
prove cache performance can lead to high garbage collection
overhead. Our study shows that the optimal nursery size
depends upon application characteristics as well as run-time
and cache configurations. If the nursery is sized considering
the cache performance and garbage collection overhead trade-
off, then there can be significant improvements in program
performance.

While we focus primarily on Python for most of our studies,
we believe that the main results from our studies are applicable
to other dynamic languages as well. For a subset of our
findings, we show that the main lessons also apply to V8 [7],
a high-performance run-time for Javascript.

The major contributions of this paper include:

1) A comprehensive breakdown study of the CPython inter-

preter execution time for a large number of benchmarks.

2) Microarchitectural parameter sweeps to better under-
stand which aspects of hardware designs affect perfor-
mance of both the interpreter-only CPython and PyPy
with and without JIT.

3) Analysis of the trade-off of cache performance and
garbage collection time for PyPy.

We gain the following new insights regarding the opportuni-
ties to improve the performance of Python and other dynamic
languages:

1) We find that C function calls represent a major source

of overhead not previously identified.

2) Our microarchitectural study shows that dynamic lan-
guages exhibit low instruction-level parallelism but pres-
ence of JIT lowers sensitivity to branch predictor accu-
racy and increases sensitivity to memory system perfor-
mance.

3) We find that nursery sizing has a large impact on
dynamic language performance and needs to be done
in an application-specific manner, considering the trade-
off between cache performance and garbage collection
overhead, for the best result.

Our paper is organized as follows. Section II introduces
backgrounds on run-time designs. Section III explains our
experimental setup. Section IV discusses our study on the
sources of overhead for Python. Section V analyzes the
interaction between the run-time and the underlying hardware.
Section VI discusses related work, and Section VII concludes
the paper.

II. BACKGROUND ON RUN-TIME DESIGN

In this section, we present some background on essential
aspects of dynamic languages. Unlike static languages, most
dynamic languages translate source code at run-time to an
intermediate representation. The language run-time interprets
the intermediate representation to execute the program. Since
interpretation is slow, just-in-time compilation can be used
to further compile the intermediate representation to machine
code. Regardless of the execution strategy, automatic memory
management ensures that memory is allocated for objects as
needed without explicit calls by the programmer. Garbage
collection amortizes the cost of freeing memory for dead
objects.

A. Basic Interpreter Design

A basic interpreter reads a series of bytecodes and executes
necessary actions for each bytecode. Figure 1 shows the stages
of interpreter execution for CPython, which is implemented
in C as a stack-based virtual machine (VM) with some
enhancements to support language-specific constructs. The
VM uses opptr to index into the bytecode array (co_code)
and retrieve the appropriate bytecode. The bytecode is then
decoded using a switch-case construct. Data is read from the
stack or other storage variables. The operation specified by the
bytecode will be executed using the read data as operands.
Some error-checking code will ensure that the execution
completed successfully. Finally, data will be written back to

co_code State + ~ State
) « globals N « globals
switch(op) { * locals if (error) { « locals
opptr | |op case ... * co_name / "
N [>] * co_consts | Lo b
} pop % } push
o
Dispatch Decode Read Execute Error Check Write

Fig. 1: Overview of CPython virtual machine architecture.

v

1. Bytecode
Interpreter

2. Profile
Execution

Counter Pass
Incremented | Threshold

b o 3. comitation |
Code 3. Compilation

Loop or
Function

Program
Initialization

Fallback
5. Deoptimization

Fig. 2: Steps in just-in-time compilation.

Guard
Failure

the stack or other storage variables. opptr will be updated
and the process will repeat until the program completes.

B. Just-in-Time Compilation

Just-in-time compilation can optimize run-time performance
by converting interpreted bytecode to machine code. In addi-
tion, run-time information about object types and values can be
used to perform additional optimizations that cannot be done
ahead-of-time. Running the just-in-time compiler during run-
time is relatively expensive and the cost of compilation must
be amortized by the performance improvement in the compiled
code. For this reason, JIT compilers focus on frequently
executed code, such as frequently executed loops or functions.

As shown in Figure 2, counters are used to track the number
of times that loops or functions execute. Once the counter
reaches a threshold, the loop or function is considered a
good candidate for compilation. An additional profiling stage
collects information for the compiler optimizations. The code
is then compiled and the machine code is executed in place
of the interpreted bytecode.

To generate optimized code, the compiler makes assump-
tions about variable types and values, and it inserts guards
to check whether those assumptions are valid during the
execution. If there is a failed guard, the compiled state is
rolled back to a valid interpreted state and the bytecode
interpreter continues execution. This is called deoptimization
and is a relatively expensive operation that could affect overall
performance if it occurs too frequently. Some additional steps
can be added to the JIT process to better handle guard failures
and optimize a portion of a function or loop if a certain guard
continues to fail.

C. Generational Garbage Collection

In a language with automatic memory management, garbage
collection is often used to free memory from objects that are
no longer in use. The process of determining which objects
are live and which are not incurs non-trivial performance over-
head. In order to amortize this overhead, garbage collection
should be run at infrequent intervals.

Live
_—
Live
Survivors
Young Space Old Space Old Space

(Before Full GC)
Fig. 3: Graphical depiction of how generational garbage col-
lection works.

(After Full GC)

TABLE I: ZSim configuration.

4-way OOO, 16B Fetch, 3.40GHz

Core 2-level 2-bit BP with 2048x18b L1, 16384x2b L2
224 ROB, 72 Load-Q, 56 Store-Q

L1I 64 kB, 8-way, 4-cycle latency

L1D 64kB, 8-way, 4-cycle latency

L2 256kB, 4-way, 12-cycle latency

L3 2MB, 16-way, 42-cycle latency

Memory 16GB DDR4-2400, 173-cycle latency

To determine which objects are live, the garbage collector
will start from a set of root pointers and follow them. This step
is often called tracing. It will then follow additional pointers
that it encounters in the process. Objects with pointers pointing
to them are live, while objects without any valid pointers
pointing to them are dead and can be collected. In a managed
language, the run-time has knowledge of all pointers in the
system unlike low-level languages such as C or C++, where
any variable can be dynamically cast to represent a pointer [8].
Once the live and dead objects are differentiated, the garbage
collector will free memory corresponding to dead objects.

Generational garbage collection [9] is an optimized form
of garbage collection that is used in many high performance
implementations of modern languages. The memory is sepa-
rated into subspaces based on object age and different garbage
collection algorithms can run on the different subspaces. In the
simplest implementation of generational garbage collection,
there is one subspace for young objects, sometimes called a
nursery, and another subspace for old objects. Objects are
allocated in the nursery and are moved to the old subspace
if they survive long enough. Figure 3 shows how generational
garbage collection works.

Efficient generational garbage collection relies on the as-
sumption that most objects in a program die young. Therefore,
a copying garbage collector [10] can efficiently move a small
number of surviving objects from the nursery to the old
subspace. Once the object is in the old subspace, a slower
garbage collector, such as a mark-sweep [11] collector, can
run less frequently. This can be extended to any number of
subspaces based on age. Real implementations of generational
garbage collection add variations to this general scheme. For
example, the PyPy collector runs the mark-sweep collector
incrementally in the old subspace [12].

III. EXPERIMENTAL SETUP

We run our experiments on an infrastructure based on
Pin [13]. The Pin framework allows us to instrument the
various run-times at both the instruction-level and function-
level without having to modify the source code and without

affecting the instructions executed by the program. We develop
Pin tools to capture dynamic instruction counts and other
statistics needed for our analysis.

To get cycle count estimates for a variety of memory
hierarchies and core configurations, we interface our Pin tools
with Zsim [14], a fast x86-64 simulator built on Pin. We
run Zsim with a configuration that mimics an Intel Skylake
processor. The details of the configuration are shown in
Table I. We use an out-of-order core model (OOO) for most
of our experiments. For the sources of overhead experiments,
we use the simple core model to be able to accurately map
individual instructions to their cycle contributions. We assume
that each of the four physical cores has one-quarter of the S8MB
shared L3 cache available for use. We use DRAMSim2 [15]
integrated with ZSim to model DDR4-2400 memory.

For run-times, we use CPython 2.7.10 as our Python in-
terpreter with the standard compiler optimization flags (-O3)
and PyPy 5.3.1 as our JIT-based run-time for Python. We use
48 benchmarks gathered from the official Python performance
benchmark suite [16] and from the PyPy benchmark suite. The
designers of the official Python performance benchmark suite
say that it focuses on real-world benchmarks, using whole
applications when possible, rather than synthetic benchmarks.
We warm up each benchmark by running it 2 times followed
by running it 3 times for evaluation.

For some experiments, we additionally use Google V8
4.2.0, a popular high-performance Javascript run-time that uses
JIT compilation. For test programs, we use 37 benchmarks
from JetStream [17], which ”combines a variety of JavaScript
benchmarks, covering a variety of advanced workloads and
programming techniques” including SunSpider, Octane, and
LLVM. We run each benchmark 3 times for evaluation.

IV. SOURCES OF OVERHEAD

In this section, we perform a quantitative study on the
overhead of Python compared to static languages such as C.
We first categorize various sources of overhead, describe our
methodology to experimentally measure a breakdown of a
Python execution time, and discuss main findings. The results
in this section are reported for CPython [5], the official Python
interpreter. We also explore how some of the findings are
applicable to both PyPy and V8.

A. Overhead Breakdown

Table II shows the overhead sources that we identify in
this study through careful review of language features as
well as CPython source code. The overhead categories can
be placed into three groups. The language features of Python
may incur overhead because they either do not exist in a
static language or require additional dynamic operations. The
interpreter itself also adds additional performance overhead
that compiled code would not have. A majority of the features
have been previously identified and evaluated either directly
or indirectly (e.g. through an optimization). We list references
in the table to the previous work which evaluates the features.
In addition, we have identified three new overhead categories

TABLE II: Sources of performance overhead for Python.

Group Overhead category Description Studied by
Additional Language Error check _ Check fqr overﬂov\(, out-of-bounds, and other errors NEW
Features Gflrbage collection Automatically freeing qr}used memory [18], [19]
Rich control flow Support for more condition cases and control structures [19], [20]
Type check Checking variable type to determine operation [18], [21]
Dynamic Language Boxing/unbox.ing Wrapping or un.wrapPing integer or float types [18], [21]
Features Name. resolutlon. Looking up varlablg in a map] ' [20]
Function resolution Dereferencing function pointers to perform an operation [20]
Function setup/cleanup | Setting up for a function call and cleaning up when finished | [18]-[20]
Dispatch Reading and decoding bytecode instruction [20], [22]
Stack Reading, writing, and managing VM stack [20], [21]
Interpreter Operations Const load Reading constants [20]
Object allocation Inefficient deallocation followed by allocation of objects [19]
Reg transfer Calculating address of VM storage NEW
C function call Following the C calling convention in the interpreter NEW

not evaluated in previous work. The different components
and overhead categories are described further in the following
subsections.

1) Additional Language Features: This category consists of
language features that do not exist in static languages such as
C. The errorcheck overhead comes from run-time checks
that Python performs to guarantee safety and robustness. After
an operation, Python performs checks such as an overflow
check on the int types and bound checks on the list
types. The garbage collection overhead comes from
operations for run-time garbage collection such as maintaining
reference counters and freeing memory. The rich control
flow overhead results from checking various conditions in
the case of richer evaluation of condition or for managing the
block stack in the case of support for more control structures.

2) Dynamic Language Features: This category captures
language features that exist in C but requires additional run-
time operations in Python. A majority of these features are
managed statically in C at compile time. Setting up a function
call and cleaning up on a return is done dynamically in C
through the calling convention, but it requires significantly
more computation in Python. The overheads in this group
would still be present even if Python programs were compiled
ahead-of-time because the compiler lacks necessary run-time
information. Python uses dynamic typing, so types of the
variables and where they are allocated are not known until run-
time. Python cannot resolve types of variables statically be-
cause they are not explicitly given in the program. In addition,
the variables with unknown types cannot be allocated statically
so the locations of variables are only known dynamically.

The typecheck overhead relates to all checks the inter-
preter must perform to determine the type of the variable.
In Python there is usually a check for variable type before
an operation is performed on the object. The boxing and
unboxing overhead relates to reading integer and float prim-
itives values from the object and writing back these primitive
values to the object. These primitives would normally be stored
in machine registers for a C program, but are represented
as objects with type information in Python. For example,
in an add operation, the values of the two variables to be
added will be read from the corresponding object. The sum

will be computed and will be written back to another object
representing the sum.

The name resolution overhead relates to looking up
the variable pointer in a map by using the variable name
as the key. Types of global variables are not known and
they can be created and destroyed dynamically, so Python
uses maps to store pointers to the variables. The function
resolution overhead relates to dereferencing of function
pointers. Functions in Python are first class objects that can
be created and destroyed, so Python stores function pointers
for common operations related to an object.

The function setup/cleanup overhead relates to
setting up a call to a function and cleaning up on a return.
In order to setup up a call, Python needs to determine the
function type (both Python and C functions are supported).
If it is a C function, then the inputs passed in through the C
extension interface and the output needs to be returned. If it is
a Python function, an execution frame for the function needs to
be allocated. Functions that require variable arguments require
special attention. Once the function returns, Python needs to
deallocate the frame and pass the return value to the caller.

3) Interpreter Operations: In addition to categories relat-
ing to language features, there are categories related to the
overhead of running the interpreter. These relate to the cost
of emulating a virtual machine on a physical machine. The
dispatch overhead relates to reading the bytecode and
decoding it to perform the correct operation. This includes
the execution of the dispatch loop and a switch statement for
decoding.

CPython is a stack-based virtual machine. The stack over-
head relates to operations for managing the stack. Operations
read from the stack and write to the stack. The stack is local
storage for the VM similar to the register file for the CPU.
The stack is not meant to store program state, but act as local
storage for intermediate values. There are some bytecodes
for explicitly managing the stack, such as DUP_TOP which
duplicates the top entry. In addition to the stack, there are data
structures which store constant values. The const load
overhead is the overhead of loading constants to the stack.
Constants are stored in the co_const array. The values first
need to be loaded to the stack before they are used by other
bytecodes.

In the interpreter implementation, there are certain objects
that could be reused but are instead deallocated and real-
located. The object allocation overhead captures the
case an object is deallocated then reallocated. For example,
most method frames are allocated during execution of the
method and deallocated when it finishes. In addition, arith-
metic operations take operands from the stack and generate
a new value. When the operation completes, the original
operands are deallocated and a new object is allocated for
the value.

Since CPython is written in C, there may be additional
inefficiencies introduced by the compiler. The C function
call overhead captures the additional cost of setting and
cleaning up C functions in the interpreter. This includes the
cost of creating and destroying stack frames and performing
the call. The use of a C function to write good refactored code
results in many function calls per bytecode instruction. These
calls cannot be inlined in most cases because function pointers
are used.

When reading a VM data structure, such as the stack, the
CPU will first load the address of the data structure first to the
machine registers. Then it will compute the effective address
of the Python variable (e.g. top of stack). Finally, it will load
the Python variable into the machine register. This additional
step of finding the data structure of the VM and loading it to
machine registers is categorized as reg transfer.

B. Analysis Approach

Once we define our overhead categories, our goal is to
develop an analysis tool that can return the contribution of each
category to the overall execution time. Our approach takes
advantage of the fact that the Python program is running on
a statically-compiled interpreter. We annotate each instruction
of the interpreter with a category label. When running the
program with our annotated interpreter, we can generate a
breakdown of the time spent in each category for any Python
program with no additional effort.

Our annotations of the execution must relate to the execution
of the whole Python program and not just the sources of
overhead. Some instructions can be directly annotated with
the overhead categories summarized in Table II. Other in-
structions are needed to execute the program and cannot be
annotated with an overhead category. For example, a Python
BINARY_ADD bytecode has overheads associated with type
checking, unboxing, error checking, etc., but also performs an
ALU add operation between the two variables. We annotate the
instructions needed to execute the program with an execute
label. Our analysis breakdown includes the contribution of the
execute category in addition to the overhead categories.

Annotating each static instruction alone cannot provide
an accurate breakdown. There are cases where a function’s
annotation depends on the calling function. For example,
CPython uses the same dictionary lookup function for both
looking up a variable in a global map and for performing a
lookup operation on a map data structure used in the Python
program. In the case of looking up in the global map, the

function should be annotated with the name resolution
overhead category. In the other case, the function should be
annotated with the execute category. We consider the call
sites of these functions to support different labels.

An alternative analysis approach to quantifying the different
overheads would be to start with C code of a program and
transform it to a Python program while iteratively introducing
the necessary language features and implementation details. At
each step, we would quantify the slowdown of introducing the
additional feature. Based on this, we could better understand
the performance gap between Python and C for a given
program. This is very tedious and cannot be generalized
across many programs. Similarly, we can start with a Python
program and introduce more static features into the language
to eliminate the dynamic run-time overhead. This would also
be tedious and hard to generalize across many programs.

1) Gathering Statistics with Pin: In order to implement the
analysis method, we use Pin [13] to instrument the CPython
interpreter. To make our analysis more flexible, we write a Pin
tool to export essential run-time statistics and perform a post-
processing step to generate our breakdown. In our Pin tool, we
export statistics for some of the functions in the interpreter at
the instruction granularity. For these functions, we export the
total execution time of the static instruction at the given PC
value.

If a function can be labeled by a single category, then we
export statistics at the function granularity to limit the size of
the statistics files and to make annotations more feasible. In
addition to the function name and total execution time, we also
export the origin PC. The origin PC is the most recent PC in
the call trace that belongs to a function that we are annotating
at an instruction granularity.

Some categories relating to patterns in the assembly code
can be automatically annotated by the Pin tool. For example,
we can directly use the Pin tool to identify and categorize
the assembly instructions relating to the C function call
and reg transfer overhead. We export the total execution
time for these categories.

2) Cycle Count Estimates Using Zsim: While instruction
count may be a good first-order estimate, it does not cap-
ture micro-architectural aspects such as memory latency and
branches. We interface our Pin tool with the Zsim simulator
(which is also a Pin tool) to get modeled cycle counts in
addition to the instruction counts. Zsim has an out-of-order
core model that can model an out-of-order pipeline as well
as branch mispredicts and cache misses. However, attributing
cycle counts to a single instruction becomes challenging for
an out-of-order core because the latency of an instruction in
the pipeline can be affected by other instructions also in the
pipeline.

Instead, we use the simple core model and use the number
of cycles each instruction takes to execute. In the simple core
model, instruction latency is only affected by misses in the
instruction and data caches. Otherwise, an instruction takes a
single cycle. This gives us a better first-order estimate of the
sources of overhead than just dynamic instruction counts.

[Function resolution
3 Type check

Name resolution

| [0 Garbage collection
B Function setup/cleanup
=]

3 Boxing/unboxing

Error check 3 Rich control flow

50

T 111
i um]

% Total Execution Time

ll
20 BSOS
SER A*A
NSO m&?(;’*l—zu
§ S0 CETEE,
£ LR SO
R S SEvSED
@ SoL§
S & $
& &7

(a) Language features

3) Post-Processing: During post-processing, we use source
line numbers in the interpreter for annotation and map PC
values in the exported statistics file to source lines numbers.
For functions which we are annotating at the instruction
granularity, we annotate each line of the CPython source code
with a category. For those functions that we are annotating at
the function granularity, we can either annotate only by the
name of the function or by both the name of the function and
the origin PC if the function category is caller-specific. We
need to compile CPython with the (-g) flag to be able to match
source lines with PC values. After running the post-processing,
we get a breakdown of categories and the execution time (in
CPU cycles) for those categories.

We only need to annotate the CPython interpreter once and
not for each Python program. Since all Python programs run
on the interpreter, the PC values and source line number map-
pings for the interpreter remain the same and the annotations
can be reused. As a result, we can analyze and compare a large
number of Python programs with the same set of annotations.

C. Experimental Results

1) Execution Time Breakdown: Figure 4(a) shows the con-
tributions of language features (both additional and dynamic)
come from many categories, all adding up to a significant
portion of the total execution time. Among these categories,
name resolution and function setup/cleanup
overheads dominate with 9.1% and 4.8% average over-
head respectively. To reduce the impact of function
setup/cleanup, we could inline Python functions. For
name resolution, we can cache variable look-ups [20].

Figure 4(b) shows the contributions of interpreter operations
to the execution time. We find that C function calls

I C function call
I Dispatch

[Object allocation
3 Stack

[0 Reg transfer
[Const load

% Total Execution Time

(b) Interpreter operations

Fig. 4: Overhead breakdown for CPython.

and dispatch are major contributors overall with 18.4%
and 14.2% average overhead. In previous work, dispatch
has been repeatedly identified as a high source of over-
head [22], [23]. However, C function calls have not
been identified as a major source of overhead in the context
of interpreters.

Some work has focused on indirect branches and calls
to improve BTB performance in interpreters [24], [25]. Our
analysis shows that indirect calls (but not indirect branches)
account for an average of 11.9% and up to 19.0% of the C
function call overhead, representing an average of 1.9% and up
to 4.1% of the overall execution time. Therefore, other aspects
of the C function call overhead that account for a larger portion
of the execution time, such as setting up and destroying the
stack frame, should also be studied and optimized.

On average, the identified overheads account for 64.9%
of the overall execution time. The remaining 35.1% is used
for the execution of the program. Therefore, there is at
least 2.8x increase in execution time on average moving
from a C-like program to a Python program running on
CPython due to language and interpreter overheads. In reality,
the program written in C can run one or two orders of
magnitude faster than the program written in Python [19]
because the C compiler can further optimize the program
using static information about types and memory layout of
objects. During execution, the programs spend an average of
7.0% of their overall execution time in C library code. How-
ever, benchmarks such as pickle_dict, pickle_list,
regex_dna, regex_effbot, regex_v8, unpickle,
and unpickle_list spend more than 64% of their time
in C library code. As a result, there is very little contribution

% Total Execution Time

DLLORVE 800 RXVES

SRS
% ".ZT?S)%

% Total Execution Time

Fig. 6: C function call overhead for V8.

from the overhead categories. C function call overhead
exists and is still significant even in the C library code.

2) Applicability to Other Run-times and Languages: Since
C function call overhead can be automatically annotated by
the Pin tool by detecting the instructions related to the calling
convention, we extend our tool to analyze the C function call
overhead of PyPy and V8. Figure 5 and Figure 6 show that this
overhead is significant in these run-times as well with 7.5%
and 5.6% average overhead for PyPy and V8 respectively. The
JIT compilation helps reduce some of the overhead through
inlining methods and generating traces, so the contribution is
less than in the interpreter. Based on our results, we believe
that optimizing C function call overhead is important for
achieving good performance in dynamic languages in general.

V. HARDWARE INTERACTION

So far, we have not considered how underlying hardware
affects program behavior. In this section we explore how
the run-times interact with the underlying hardware. We first
study the sensitivity of the run-time performance to various
microarchitectural parameters. We find that PyPy performance
is sensitive to cache hierarchy and memory system parameters.
Since memory management is a key contributor to cache
performance, we study the interaction of memory management
with the underlying hardware.

A. Microarchitecture Parameter Sweeps

In this section, we explore the sensitivity of run-time per-
formance to various microarchitectural parameters. We run the

benchmarks on CPython and PyPy with and without JIT to see
if there are differences in the sensitivity between an interpreter-
based run-time and a run-time that additionally uses JIT com-
pilation. Figure 7 shows how the CPI (cycle-per-instruction)
changes as we sweep various microarchitecture parameters.
Here, the average CPI numbers across all benchmarks are
shown. The PyPy with JIT execution is additionally broken
down into different phases of execution by annotating PyPy at
the function granularity using Pin. For the issue width sweep
we set the fetch width to be large to prevent it from becoming
a bottleneck. The fetch width sweep results are not shown but
show a similar trend as issue width.

The results show that the performance of both CPython
and PyPy are relatively insensitive to processor fetch width
and issue widths, suggesting that there is low instruction-
level parallelism. The branch results indicate that merely
increasing the branch table size does not improve branch
prediction accuracy enough to impact performance. However,
when the table is too small and prediction accuracy suffers, the
interpreter-based run-times suffer more than a run-time with
JIT. This indicates that JIT helps lower sensitivity to branch
prediction accuracy.

On the other hand, cache and memory parameters have
significant impacts on performance of PyPy with JIT. This
indicates that the JIT significantly increases pressure on the
memory hierarchy. In particular, the performance depends
heavily on cache sizes. Interestingly, the same programs
running on the CPython interpreter and PyPy without JIT do
not require a large cache. This indicates that the working set
of an application itself is not large. Therefore, there is no
fundamental reason why the bytecode interpreter and compiled
code phases of PyPy with JIT require a large cache to run
efficiently. In addition, the CPI for PyPy with JIT is greater
than the CPI for CPython and PyPy without JIT. This indicates
that while the JIT lowers the number of instructions executed,
each instruction takes more cycles to execute due to longer
average memory access latency. This is further shown by
the sensitivity of the PyPy with JIT to memory latency and
bandwidth.

The cache line size sweep shows that PyPy with JIT benefits
more using larger cache line sizes, while the interpreter run-
times do not. After a closer study, the need for a large cache
and cache line sizes appears to come from the interaction of
the memory management system with the caches. This obser-
vation introduces an interesting opportunity for performance
optimization and is discussed in more detail in the subsequent
section.

Figure 8 shows the results of microarchitecture parameter
sweep when the overall CPI is shown for a few of the
benchmarks. The general trend is the same as the previous
figure. Yet, this figure shows that the performance impacts
of microarchitecture parameter changes depend on individual
application characteristics. Note that the benchmarks perform
1.4% better on average with a memory latency of 100 vs. 50
cycles. This is due to a timing anomaly in the out-of-order
instruction scheduling. The sweeps for V8, another JIT-based

e—e CPython —o PyPy w/o JIT a—4 PyPy Overall oo Bytecode Interpreter ~e—e Garbage Collection = JIT < Compiled Code

2.0 s e EERE 2.5 TR RETEEE PR
s — —— 2.0
' — & g g g
— 15
= — A x A =
o Lo T [L P N S o
& 1.0 , : &
b b VY 10
S RO A o S 05
0.0
35
3.0
25
_ 20
o
© 45
1.0
0.5 . . : . : : : : : : :
I I I I I I I 0.0 I I I I I I I
256kB 512kB 1MB 2MB 4MB 8MB 16MB 64 128 256 512 1024 2048 4096
(¢) Cache Size (d) Cache Line Size (B)

CPI

50 100 200 400 200 400 800 1600 3200 6400 12800 25600
(e) Memory Latency (CPU Cycles) (f) Memory Bandwidth (MBps)

Fig. 7: CPI with microarchitecture parameter sweeps. A line is shown for each run-time as well as phases in PyPy execution.

N 256kB W 1MB [4MB [16MB

N2 N4 Bm8 @Im 16 [C3 32 HEE 05x [N 1x [2x [4 [C3 8x B 512kB [2MB [8MB
20 - B e 35
2.0 B
15
15
810 &
1.0
0.5
0.5
0.0 o N o ® & e 3 O\ 00 o X) ® o e e A 0 e X o ® & x& © A
& a [N R CA 9 & 2 o N 20 &« e & o o N A e
& ‘eg?ﬂ" R .\“\0@ 5’\’\6 ,Ao‘fve‘ & ‘aga*’ (\d“a‘ .\“\0‘3‘ 59“(\@&/5 s ‘eg?'*’ ‘\6“0‘ '\‘\'@9‘ 69\‘(,ae“v%
B B o =)
(a) Issue Width (b) Branch Table Size (Rel. to Baseline) (c) Cache Size
BN 64 BN 256 [0 1024 [4096 EEN 200 BN 800 [J 3200 [12800
- =] . 2 4
BN 128 [N 512 [2048 s0 0o 00 0o BN 400 [N 1600 [J 6400 [25600
B .
... 7
6
_ 5
5 54
........ s
2
1
! X) o 00 3 N o ® & e e Q0 0 X Y o
R I S L R S & o P WP R) (& Qo? ® N @B §©
o ot o e e‘?“\v,b&/ 0 @ o0 69“\9,50*/ i @ et o
g v B =)
(d) Cache Line Size (B) (e) Memory Latency (CPU Cycles) (f) Memory Bandwidth (MBps)

Fig. 8: CPI with microarchitecture parameter sweeps. Each bar shows the overall CPI for one benchmark running on PyPy.

110~

1.05}--- 1.00
100l . 0.95
_ T T 0.90
& & 095 ; S 085
0.90 f-- i\ R RERTTTEY EEPPRRRR A 0.80
0.85F i) R P, 0.75
0.80 N | 1 0.70 Il Il Il Il Il Il
9 N Y o o o8t NS o+ IS &+ 166“% 5«‘1«“3’ A\ NN \6\“%
(a) Issue Width (b) Branch Table Size (Rel. to Baseline) (c) Cache Size
0.86 |- 105 e R B 2.0 | @t et
0.84 L : ; 18 NG
o5 1.00 e
T 080 _ 095[5 18 o
o 0.78 o 090} AN
0.76 1 5o N - © 085 1.2
0.74 11 i NG - S 10 b g
072 -+ -tenon B 0.80 |- [R ST
0.70 I d—d—r—1— l 0.75 O \® o® «® 1 ,® o
N R A IR o P o A o0) 278 @ A g0 pO g8 el

(d) Cache Line Size (B)

(e) Memory Latency (CPU Cylces)

(f) Memory Bandwidth (MBps)

Fig. 9: CPI with microarchitecture parameter sweeps. The line shows the average CPI for V8.

Miss Rate %
N
o

8M 16M
Nursery Size

32M 64M 128M

Fig. 10: LLC miss rate as a function of nursery size.
e—o GC

¢ Non-GC a—aA Overall
1.2+
1.0
0.8
0.6

0.4

0.2

Normalized Execution Time

I
512k 1M 2M 4M 8M 16M

Nursery Size

Fig. 11: PyPy execution breakdown for different nursery sizes.

0.0

32M 64M 128M

run-time, are shown in Figure 9. They show trends similar
to PyPy with JIT indicating that the memory management
interaction is important for other JIT-based run-times as well.

B. Memory Management Interaction

After further study of the cache interactions in PyPy, we
found that the memory management system contributes to the
sensitivity in cache performance. Proper sizing of the nursery
is essential to achieve good cache performance. However,
sizing the nursery to improve cache performance may not lead
to better overall program performance due to the increased
overhead from garbage collection. In this section, we consider
the interaction of the memory management system with the
cache hierarchy in more detail.

Figure 10 shows the last level cache (LLC) miss rates as a
function of nursery size. When the nursery is smaller than the
cache size (i.e. 2MB), new objects can be allocated directly
in the cache and miss rates are low. Once the nursery is
too large to fit in the cache, cache trashing occurs and most
object initializations miss in the cache. The miss rate increases
significantly by almost a factor of 2.4.

Figure 11 shows the breakdown of the execution time
normalized to the overall execution time of running with a

512k
I 1M

B 2M
3 4™

C 8M
3 1eM

C 32M
[64M

/1 128M

1.2
1.1
1.0
0.9
0.8

Normalized Execution Time

Fig. 12: Nursery sweep for PyPy with different run-time
configurations and last level cache sizes.

nursery that is half the cache size (i.e. 1IMB nursery for
2MB cache) averaged across all of the benchmarks. It shows
that on average the increase in cache miss rate hurts overall
performance for nursery sizes slightly larger than the cache
size. However, as nursery size increases, the garbage collector
runs less frequently and the overhead due to garbage collection
decreases. With a much larger nursery, the lower garbage
collection overhead offsets the increase in execution time for
the rest of the application (i.e. Non-GC) due to the poor cache
performance. These results suggest that nursery sizing purely
for good cache performance may not always result in good
overall performance.

The choice of run-time configuration and the amount of
cache space also affect the performance trade-off. Figure 12
shows the average execution time of four configurations for the
different nursery sizes normalized to the 1MB nursery case.
The first two configurations use a LLC size of 2MB without
and with JIT. The next two configurations use PyPy with JIT
with different LLC sizes (8MB is the on-chip shared L3 size
for Skylake processors).

For PyPy without JIT, the average trend suggests that sizing
the nursery size for cache performance is beneficial for overall
performance. As shown in Figure 13, this is due to the fact that
the contribution of garbage collection to the overall execution
time is small. By optimizing the program execution with JIT,
the contribution of garbage collection increases by 4.6x from

E wolJIT 30 w/JIT

% Total Execution Time

Fig. 13: Garbage collection time as a percent of program
execution time.

3% to 14% on average. As a result, sizing the nursery for
cache performance can hurt the overall performance due to the
larger relative garbage collection overhead. Note that although
garbage collection contribution changes significantly when
using JIT, the absolute garbage collection time only increases
by 5.4% on average when using JIT.

Figure 14 and Figure 15 show the sweeps for individual
benchmarks for PyPy with and without JIT respectively. The
results suggest that one sizing policy is not good for all the
benchmarks and the optimal nursery size also depends on
the run-time configuration being used (i.e. with or without
JIT). Some applications like eparse which have a large
garbage collection contribution for both PyPy with and without
JIT will benefit from a large nursery. Other applications like
fannkuch which have low garbage collection contribution
for both PyPy with and without JIT will benefit from a
nursery sized for good cache performance. There are also
some applications like pyx1_bench which may benefit from
a large nursery size for PyPy with JIT and a small nursery size
for PyPy without JIT due to the large change in the garbage
collection contribution as a result of running JIT.

Figure 12 also shows that the overall cache size affects
the trade-off. With larger cache sizes, a larger nursery can fit
in the cache and the better cache performance contributes to
better overall performance. Figure 16 shows that this trend also
exists for V8 suggesting that this trade-off will be important
to explore for implementations beyond PyPy.

Figure 17 shows that by choosing the best nursery size
for each application, the normalized execution time can drop
by an average 21.4% over the baseline static allocation of
half of the cache (i.e. IMB nursery for 2MB cache). In
comparison, simply increasing the nursery to the maximum
size for all applications would only result in 9.8% average
execution time reduction. These results further suggest that
nursery sizing should be done considering cache performance,
run-time configuration, and application characteristics.

VI. RELATED WORK

There are a few previous studies that break down and quan-
titatively analyze the language execution of Python [18], [20],

512k
Il 1M

B 2™
[4™

/I 8™
/31 16M

/1 32Mm
[64M

3 128M

Normalized Execution Time
o
oo

o o\ e (@ o) N\
<& C oS & 2\ N 2
PR\ o? NSNS LAY SRS
@ Q\Y’S/ é\(\g/ o« 2
\o©

Fig. 14: Nursery sweep for individual benchmarks running on
PyPy with JIT.

B 512k W 2M [8M [32M [128M
= 1M = 4M [16M [64M

£ 14,

'_

P

= 1.0Hy -

l% 0.8

3 0.6

N 04

g 02

= 00 N N , O o

Cid O < @' A\ © N @
eq'b‘ (\‘\\6\5 \‘Oeﬁ\ ;\0(«\ %Q\’(\\ X \0\«\\‘3 & b
W é\“g/ o
\o®

Fig. 15: Nursery sweep for individual benchmarks running on
PyPy without JIT.

N M I 4AM [0 16M [64M

B 2M 3 8M [32M [128M
< T 1] Y
£
C 4L05 [e
S — o
3 1.00|- gl e -
2 _ -
W 0.95f- iy | TEEEREEEE
8 —
N oooo|-- | F--- Y]}
[}
Eoss|- M| [F- W]
2

0.80
2MB 4MB 8MB
LLC Size

Fig. 16: Nursery sweep for V8 with different last level cache
sizes.

1.0

0.8

0.6

Normalized Execution Time

Fig. 17: Normalized execution time for best nursery size per
benchmark.

[22]. One study by Barany [18] deconstructs the interpreter
performance by identifying common sources of overhead in
dynamic languages. Their pylibjit tool uses a just-in-
time compiler that optimizes Python code to quantify the
effects of various sources of overhead. The limitations of
the previous work is that they require custom annotations in
Python programs and as a result can only perform analysis on
a small number of benchmarks. By annotating the interpreter,
we can run any Python program and get a breakdown of the
execution time. In addition, we are the first to point out C
function calls as a significant overhead for CPython.

There exists a number of studies [26]-[28] that use bench-
marking to understand which kinds of code work well for dif-
ferent Python implementations. For example, Heynssens [26]
has a masters thesis on benchmarking methodology and anal-
ysis for Python programs. He draws his conclusions based
on the results from various benchmarks running on different
Python implementations. These studies compare execution
times but don’t breakdown sources of overhead.

Some studies have directly proposed modifications to the
CPython interpreter to improve its performance. Cao et al. [22]
find that Python dispatch overheads can be 25% of the execu-
tion time and use pretranslation to get up to 18% improvement.
Power and Rubinsteyn [29] converts the stack-based bytecodes
to a register-based format that exposes more possibilities for
optimization. The optimizations focus on improving a specific
aspect of the interpreter instead of breakdown of various
overheads.

Ilbeyi et al. [19] analyze the performance of Python in
the context of a meta-JIT framework. They present overall
execution time comparisons between CPython and PyPy with
and without JIT in addition to a detailed breakdown of the
overhead in the context of the JIT framework. Our work is
complementary as we focus on execution time breakdowns
of the interpreter and sweep microarchitectural and run-time
parameters. Our findings on sensitivity to cache and memory
parameters and the interactions of garbage collection with the
cache are new insights for PyPy.

There is more extensive work in Javascript to quantita-
tively understand the sources of overheads [30]-[36]. Some
work provides microarchitectural characterization of Javascript
workloads, but they do so to study the differences in bench-
mark suites and how well the benchmarks match real work-
loads. For example, Tiwari and Solihin [30] analyze the
difference between the Sunspider and V8 benchmarks. Dot
et al. [32] identify checks as a major source of overhead in
V8. Our findings of C function calls and sensitivity to cache
and memory designs, which are generalized to V8, are not
discussed in the previous work.

Our work points out C function calls as a major contributor
of overhead for dynamic languages. There is much work in im-
proving the speed of indirect branches and calls in the context
of C++. Some work rely on intelligent interprocedural analysis
and inlining to optimize indirect calls [37]-[40]. Unlike a
static language, most of the interprocedural analysis techniques
would not work in the context of dynamic languages and

new approaches need to be proposed. Other work improves
BTB performance for indirect branches [24], [25], [41]-[46].
Casey et al. [24] and Ertl and Gregg [25] identify indirect
branches as a significant overhead source in interpreters and
discuss how to improve the BTB performance. While their
proposed optimizations improve the indirect calls, they would
not eliminate the majority of the C function call overhead.

Some previous work in nursery sizing suggests that the
nursery should fit in the cache [47], [48], while other work
suggests that a larger nursery is better [49]. Reddy et al. [47]
identify the trade-off of cache performance and garbage collec-
tion overhead. They pin the nursery to the cache to improve the
cache performance and overall execution time of the program
as well as garbage collection pause times. On the other hand,
an in-depth study by Blackburn et al. [49] on the micro-
architectural behaviors of various garbage collection algo-
rithms suggests that a larger nursery size will result in better
performance. They find that sizing the nursery larger than the
last level cache results in lower garbage collection overhead
without significant change to the application performance. In
our work, we argue that nursery sizing should be done in a
manner that considers application-specific characteristics, run-
time configuration, and cache performance. In some cases, a
smaller nursery will be better while in other cases, a larger
nursery could be better for overall performance.

VII. CONCLUSION

In this paper, we perform an extensive characterization of
Python at various levels to provide insight into new opportuni-
ties for optimizations in dynamic languages. When looking at
the sources of overhead, we find that C function call overhead
is repeatedly a major source of overhead in addition to other
sources of overhead identified by previous work. In studying
the interaction of the run-time with the underlying hardware,
we find that PyPy with JIT is sensitive to cache and memory
parameters. Through further investigation, we find that nursery
size needs to be tuned at the application-specific level, consid-
ering the run-time and underlying hardware. While we focus
primarily on Python for most of our studies, we believe that
the main results from our studies can be applicable to other
dynamic languages.

VIII. ACKNOWLEDGMENTS

This work was partially supported by the Office of Naval
Research grant N0O0014-15-1-2175.

REFERENCES
[1] Coding Dojo, “The 9 most in-demand programming
languages of 2016, 2016, http://www.codingdojo.com/blog/

9-most-in-demand- programming-languages-of-2016/.

[2] Spectrum IEEE, “The 2017 top ten programming languages,’
Jul 2017, https://spectrum.ieee.org/computing/software/
the-2017-top-programming-languages.

[3] S. O’Grady, “The RedMonk programming language rankings:
January 2016,” Feb 2016, http://redmonk.com/sogrady/2016/02/19/
language-rankings-1-16/.

[4] “Twitter’s shift from Ruby to Java helps it survive US election,” Nov
2012, https://www.infoq.com/news/2012/11/twitter-ruby-to-java.

[5] “Python,” http://www.python.org/.

http://www.codingdojo.com/blog/9-most-in-demand-programming-languages-of-2016/
http://www.codingdojo.com/blog/9-most-in-demand-programming-languages-of-2016/
https://spectrum.ieee.org/computing/software/the-2017-top-programming-languages
https://spectrum.ieee.org/computing/software/the-2017-top-programming-languages
http://redmonk.com/sogrady/2016/02/19/language-rankings-1-16/
http://redmonk.com/sogrady/2016/02/19/language-rankings-1-16/
https://www.infoq.com/news/2012/11/twitter-ruby-to-java
http://www.python.org/

[6]

[7]
[8]

[10]
(11]
(12]

[13]

[14]

[15]

[16]
(17]

[18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

C. F. Bolz, A. Cuni, M. Fijalkowski, and A. Rigo, “Tracing the meta-
level: Pypy’s tracing JIT compiler,” in Proceedings of the 4th workshop
on the Implementation, Compilation, Optimization of Object-Oriented
Languages and Programming Systems (ICOOOLPS). ACM, 2009.
Google, “Chrome V8,” 2018, https://developers.google.com/v8/.

H.-J. Boehm and M. Weiser, “Garbage collection in an uncooperative
environment,” Software Practice & Experience, vol. 18, Sep. 1988.

H. Lieberman and C. Hewitt, “A real-time garbage collector based on
the lifetimes of objects,” Communications ACM, vol. 26, Jun. 1983.

R. R. Fenichel and J. C. Yochelson, “A LISP garbage-collector for
virtual-memory computer systems,” Commun. ACM, vol. 12, Nov. 1969.
J. McCarthy, “Recursive functions of symbolic expressions and their
computation by machine, part I,” Commun. ACM, vol. 3, Apr. 1960.
The PyPy Project, “Garbage collection in PyPy,” 2014, https://pypy.
readthedocs.io/en/release-2.4.x/garbage_collection.html.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized

program analysis tools with dynamic instrumentation,” in Proceedings of

the 2005 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI). ACM, 2005.

D. Sanchez and C. Kozyrakis, “Zsim: Fast and accurate microarchi-
tectural simulation of thousand-core systems,” in Proceedings of the
40th Annual International Symposium on Computer Architecture (ISCA).
ACM, 2013.

P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim?2: A cycle ac-
curate memory system simulator,” JEEE Computer Architecture Letters,
vol. 10, Jan 2011.

PyPerformance, “Python performance benchmark suite,” 2017, http://
pyperformance.readthedocs.io/.
Browserbench, “JetStream
JetStream/.

G. Barany, “Python interpreter performance deconstructed,” in Proceed-
ings of the Workshop on Dynamic Languages and Applications (Dyla).
ACM, 2014.

B. Ilbeyi, C. FE. Bolz-Tereick, and C. Batten, “Cross-layer workload
characterization of meta-tracing JIT VMS,” in Proceedings of the 2017
IEEE International Symposium on Workload Characterization (IISWC).
IEEE, 2017.

M. Chandra, N. Krintz, C. Cascaval, D. Edelsohn, P. Nagpurkar, and
P. Wu, “Understanding the potential of interpreter-based optimizations
for Python,” UC Santa Barbara Computer Science, Tech. Rep. 2010-14,
August 2010, https://www.cs.ucsb.edu/research/tech-reports/2010-14.

S. Brunthaler, “Speculative staging for interpreter optimization,” CoRR,
vol. abs/1310.2300, 2013.

H. Cao, N. Gu, K. Ren, and Y. Li, “Performance research and optimiza-
tion on CPython’s interpreter,” in Proceedings of the 2015 Federated
Conference on Computer Science and Information Systems (FedCSIS).
IEEE, 2015.

C. Kim, S. Kim, H. G. Cho, D. Kim, J. Kim, Y. H. Oh, H. Jang, and J. W.
Lee, “Short-circuit dispatch: Accelerating virtual machine interpreters
on embedded processors,” in Proceedings of the 43rd International
Symposium on Computer Architecture (ISCA). 1EEE, 2016.

K. Casey, M. A. Ertl, and D. Gregg, “Optimizing indirect branch
prediction accuracy in virtual machine interpreters,” ACM Transactions
on Programming Languages and Systems (TOPLAS), vol. 29, 2007.
M. A. Ertl and D. Gregg, “The structure and performance of efficient
interpreters,” Journal of Instruction-Level Parallelism, vol. 5, 2003.

R. Heynssens, “Performance analysis and benchmarking of Python, a
modern scripting language,” Master’s thesis, Universiteit Gent, Belgium,
2014.

X. Cai, H. P. Langtangen, and H. Moe, “On the performance of
the Python programming language for serial and parallel scientific
computations,” Scientific Programming, vol. 13, 2005.

H. P. Langtangen and X. Cai, “On the efficiency of Python for high-
performance computing: A case study involving stencil updates for
partial differential equations,” in Modeling, Simulation and Optimization
of Complex Processes. Springer, 2008, pp. 337-357.

R. Power and A. Rubinsteyn, “How fast can we make interpreted
Python?” CoRR, vol. abs/1306.6047, 2013.

1.1,” 2017, http://browserbench.org/

(31]

(32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

D. Tiwari and Y. Solihin, “Architectural characterization and similarity
analysis of Sunspider and Google’s V8 JavaScript benchmarks,” in
Proceedings of the 2012 IEEE International Symposium on Performance
Analysis of Systems & Software (ISPASS). 1EEE, 2012.

G. Southern and J. Renau, “Overhead of deoptimization checks in the
V8 JavaScript engine,” in Proceedings of the 2016 IEEE International
Symposium on Workload Characterization (IISWC). IEEE, 2016.

G. Dot, A. Martinez, and A. Gonzalez, “Analysis and optimization
of engines for dynamically typed languages,” in Proccedings of the
27th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD). 1EEE, 2015.

Y. Zhu, D. Richins, M. Halpern, and V. J. Reddi, “Microarchitectural im-
plications of event-driven server-side web applications,” in Proceedings
of the 48th International Symposium on Microarchitecture (MICRO).
ACM, 2015.

T. Ogasawara, “Workload characterization of server-side javascript,” in
Proceedings of the 2014 IEEE International Symposium on Workload
Characterization (IISWC). 1EEE, 2014.

M. Musleh and V. Pai, “Architectural characterization of client-side
JavaScript workloads & analysis of software optimizations,” Purdue
University Department of Electrical and Computer Engineering, Tech.
Rep. 467, 2015, https://docs.lib.purdue.edu/ecetr/467/.

A. Srikanth, “Characterization and optimization of JavaScript programs
for mobile systems,” Ph.D. dissertation, University of Texas at Austin,
May 2013.

K. Hazelwood and D. Grove, “Adaptive online context-sensitive inlin-
ing,” in Proceedings of the International Symposium on Code Generation
and Optimization: Feedback-directed and Runtime Optimization (CGO).
IEEE, 2003.

D. P. Grove, “Effective interprocedural optimization of object-oriented
languages,” Ph.D. dissertation, University of Washington, 1998.

G. Aigner and U. Holzle, “Eliminating virtual function calls in C++
programs,” in Proceedings of the 10th European Conference on Object-
Oriented Programming (ECCOP). Springer-Verlag, 1996.

D. F. Bacon, “Fast and effective optimization of statically typed object-
oriented languages,” Ph.D. dissertation, University of California, Berke-
ley, 1997.

H. Kim, J. A. Joao, O. Mutlu, C. J. Lee, Y. N. Patt, and R. Cohn,
“VPC prediction: Reducing the cost of indirect branches via hardware-
based dynamic devirtualization,” in Proceedings of the 34th Annual
International Symposium on Computer Architecture (ISCA). ACM,
2007.

M. U. Farooq, L. Chen, and L. Kurian, “Value based BTB indexing
for indirect jump prediction,” in Proceedings of the IEEE 16th Interna-
tional Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2010.

J. A. Joao, O. Mutlu, H. Kim, R. Agarwal, and Y. N. Patt, “Improving
the performance of object-oriented languages with dynamic predication
of indirect jumps,” in Proceedings of the 13th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). ACM, 2008.

K. Driesen and U. Holzle, “Multi-stage cascaded prediction,” in Euro-
pean Conference on Parallel Processing. Springer, 1999.

P-Y. Chang, E. Hao, and Y. N. Patt, “Target prediction for indirect
jumps,” in Proceedings of the 24th Annual International Symposium on
Computer Architecture (ISCA). ACM, 1997.

D. S. McFarlin and C. Zilles, “Bungee jumps: Accelerating indirect
branches through HW/SW co-design,” in Proceedings of the 48th
International Symposium on Microarchitecture (MICRO). ACM, 2015.
V. K. Reddy, R. K. Sawyer, and E. F. Gehringer, “A cache-pinning
strategy for improving generational garbage collection,” in International
Conference on High-Performance Computing. Springer, 2006.

P. R. Wilson, M. S. Lam, and T. G. Moher, “Caching considerations
for generational garbage collection,” in ACM SIGPLAN Lisp Pointers,
no. 1. ACM, 1992.

S. M. Blackburn, P. Cheng, and K. S. McKinley, “Myths and realities:
The performance impact of garbage collection,” in Proceedings of
the Joint International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS/Performance). ACM, 2004.

https://developers.google.com/v8/
https://pypy.readthedocs.io/en/release-2.4.x/garbage_collection.html
https://pypy.readthedocs.io/en/release-2.4.x/garbage_collection.html
http://pyperformance.readthedocs.io/
http://pyperformance.readthedocs.io/
http://browserbench.org/JetStream/
http://browserbench.org/JetStream/
https://www.cs.ucsb.edu/research/tech-reports/2010-14
https://docs.lib.purdue.edu/ecetr/467/

