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Abstract
Dynamic programming languages are becoming increasingly
popular, yet often show a significant performance slowdown
compared to static languages. In this paper, we study the
performance overhead of automatic memory management
in dynamic languages. We propose to improve the perfor-
mance and memory bandwidth usage of dynamic languages
by co-optimizing garbage collection overhead and cache per-
formance for newly-initialized and dead objects. Our study
shows that less frequent garbage collection results in a large
number of cache misses for initial stores to new objects. We
solve this problem by directly placing uninitialized objects
into on-chip caches without off-chip memory accesses. We
further optimize the garbage collection by reducing unneces-
sary cache pollution and write-backs through partial tracing
that invalidates dead objects between full garbage collec-
tions. Experimental results on PyPy and V8 show that less
frequent garbage collection along with our optimizations
can significantly improve the performance of dynamic lan-
guages.

CCS Concepts • Software and its engineering → Gar-
bage collection; Scripting languages; •Computer systems
organization → Processors and memory architectures;
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1 Introduction
As software becomes more complex and the costs of develop-
ing and maintaining code increase, dynamic programming
languages are becoming more desirable alternatives to tradi-
tional static languages. Dynamic languages allow program-
mers to express functionality with less code. In addition,
run-time checks and memory management are built-in, lim-
iting the possibility of low-level program bugs such as buffer
overflow. Dynamic languages such as Javascript, Python,
PHP, and Ruby consistently rank in the top ten most popular
languages across multiple metrics [3, 7, 15]. These dynamic
languages are increasingly utilized in production environ-
ments as well in order to bring new features quickly. For
example, Twitter initially used Ruby on Rails to build their
infrastructure and Dropbox used Python.
Automatic memory management is a key feature of dy-

namic languages and other static-but-managed languages
(e.g. Java) that contributes significantly to performance over-
head. It allows the programmer to easily write code with-
out having to worry about allocation and de-allocation of
dynamically created variables. In dynamic languages, partic-
ularly, all variables are allocated dynamically which results
in frequent allocation and deallocation of small objects. To
optimize the cost of frequent allocations, simple sequential
allocators are often used. To amortize the cost of the de-
allocation, garbage collection needs to run infrequently.
However, there is a fundamental trade-off between gar-

bage collection overhead and cache performance of dynami-
cally allocated objects in today’s dynamic languages. On one
hand, frequent garbage collection operations lead to signifi-
cant performance overhead. On the other hand, less frequent
garbage collection requires more memory space to keep
dynamically-allocated objects over a longer garbage collec-
tion period. Such memory allocation using a large memory
region increases the working set size and can significantly
degrade the cache performance through loading of newly
allocated objects from memory and increased cache pollu-
tion and write-backs. The impact on cache performance is
particularly significant if the memory space for frequent
allocations does not fit into on-chip caches. Today’s genera-
tional garbage collectors generally allocate half of the last
level cache size for young objects in order to balance cache
pressure and garbage collection overhead.
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In this paper, we propose hardware support and software
optimizations for reducing modern memory management
overhead in dynamic languages. First, we propose to op-
timize cache performance for newly-allocated objects by
directly placing them in on-chip caches without reading
the corresponding locations from off-chip memory. Because
newly-allocated memory locations need to be initialized any-
ways, there is no need to read their previous values from
memory. Next, we must deal with cache pollution and ad-
ditional write-backs related to newly-allocated objects. A
partial tracing strategy is proposed to determine dead cache
lines that do not need to be kept or written back.

These optimizations remove the main obstacles in using a
large memory region for newmemory allocations and enable
running garbage collection far less frequently than what is
considered to be optimal today. In this way, our approach
simultaneously reduces overhead for both garbage collec-
tion and frequent memory allocations. Our experimental
results show that this co-optimization of garbage collection
and memory allocation can achieve significant performance
improvements; 22% performance on average and up to 68%
performance for PyPy [1], a popular implementation for
Python, and 17% performance on average and up to 63%
performance for V8 [4] running Javascript.
The high-level idea of directly placing newly-allocated

memory locations into on-chip caches without off-chip ac-
cesses is known as cache installation and has been studied
previously in the context of C and C++ [5, 9, 23]. However,
the cache installation itself only leads to small performance
improvements for C and C++ because they only optimize
relatively infrequent memory allocations. This paper shows
that optimizing initialization of newly-allocated locations
are far more important for dynamic languages with frequent
memory allocations, and more importantly can be used to
enable less frequent garbage collection to significantly re-
duce overhead of managed memory. This co-optimization
of garbage collection and memory allocation is essential in
obtaining the performance improvements reported in this
paper.

Moreover, we found that previous cache installation mech-
anisms for C and C++ are not well-suited for dynamic lan-
guages. The previous mechanisms are designed for memory
allocations for objects larger than a cache line (64 bytes).
Yet, dynamic languages often allocate objects smaller than a
cache line. In addition, previous designs are not built to si-
multaneously reduce unnecessary cache pollution and write-
backs. In this paper, we present a new invalid memory track-
ing mechanism that is designed to enable cache installation
even for small objects by leveraging the sequential memory
allocators widely used in today’s generational garbage col-
lectors. The same tracking mechanism can simultaneously
reduce unnecessary cache pollution and write-backs with
software assistance.

The major contributions of this paper include:

1. This paper provides a detailed study of the automatic
memory management in dynamic languages, and iden-
tifies the trade-off between garbage collection over-
head and cache performance of dynamically-allocated
objects.

2. This paper introduces a new invalid memory region
trackingmechanism that allows cache installation even
for small objects commonly used in dynamic languages
as well as write-back reduction and pollution control.

3. This paper presents a partial tracing algorithm that can
be run to identify invalid cache lines with lower over-
head compared to full garbage collection overhead.

4. This paper demonstrates that the proposed optimiza-
tions can lead to significant performance improve-
ments in the state-of-the-art implementations of two
widely used dynamic languages, Python and Javascript,
using a wide range of applications.

This rest of the paper is organized as follows. Section 2
discusses related work. Section 3 describes the memory man-
agement features in modern dynamic languages and studies
the trade-off between garbage collection overhead and cache
performance. Section 4 describes our invalid memory track-
ing mechanism and Section 5 describes our partial tracing
algorithm. Section 6 evaluates the proposed memory man-
agement optimizations, and Section 7 concludes the paper.

2 Related Work
The idea of directly installing a cache line without going to
memory has been studied previously, but existing proposals
are not suitable for dynamic languages. PowerPC has an
dcbz instruction that that can install a cache line directly [6].
However, to use this instruction, software needs to be aware
of the cache line size of the underlying architecture and
explicitly install cache lines one at a time. This limits the
portability and applicability.

Other studies have built on the idea to reduce cache misses
from stores to newly-allocated memory regions in the con-
text of C and C++. Lewis et al. propose a hardware table to
explicitly track mallocs and install newly-allocated cache
lines [9]. This works well for C and C++ because dynami-
cally allocated objects are often larger than one cache line.
In contrast, dynamic languages frequently allocate small ob-
jects, which are smaller than a cache line. The malloc table
cannot be used to install a cache line since no assumption
can be made on neighboring words in the same cache line.
Our tracking table installs cache lines for small objects by
assuming later words are unallocated and can additionally
be used to reduce cache pollution and eliminate unnecessary
write-backs.

Sartor et al. [25] describe using cache installation and
scrubbing instructions in the context of reducing DRAM traf-
fic and energy. They use cache installation instructions to
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eliminate useless read traffic for nursery allocation and scrub-
bing instructions to invalidate or deprioritize dead cache
lines to reduce dead write traffic. Their solution relies on ISA
instructions similar to the PowerPC dcbz instruction and
requires software to be aware of the cache line size. They
overcome the limitations of using cache install instructions
by installing 32kB regions at a time. This can result in un-
necessary cache pollution. We consider nursery sizes that
are many times larger than the size of the last level cache.
Scrubbing such nursery ranges after each nursery collec-
tion would be ineffective. Instead, we use partial tracing to
identify invalid cache lines at more frequent intervals than
nursery collection, and we use hardware to efficiently install
and "scrub" cache lines on-demand.
Hu and John [5] and Rui et al. [23] proposed store fill

buffer designs where they direct store misses to a buffer and
only retrieve the cache line from memory if either the cache
line is evicted from the buffer before being fully written to
or a word is read before it is written. If a full cache line is
written in the buffer, the cache line is directly installed into
the cache. These designs can work without any information
about memory allocation. The store fill buffer can reduce
unnecessary memory reads when the initialization of a full
cache line happens within a short period. However, the buffer
is shared among all stores and an entry may be evicted before
its fully initialized when objects are small. In our design,
we use software to precisely tell the hardware the areas of
memory that are newly allocated. Our tracker can also be
used for write-back reduction and pollution control, while
the store fill buffer can be used only for cache installation.

Yang et al. [33] were the first to identify and present a de-
tailed study on the performance impact of zeroing in modern
managed languages on recent Intel processors. They show
that existing options of zeroing, whether zeroing in bulk or
during object allocation, have different trade-offs but simi-
lar performance impacts. By using existing cache-bypassing
store instructions in the x86 architecture to perform bulk
zeroing, they are able to improve the overall performance
of the program. We similarly find that object initialization
can have high impact on performance if the nursery does
not fit in the cache. Our solution is to use cache installation
to load nursery cache lines on-demand as objects are initial-
ized. Their bulk zeroing technique is complementary and
can be used during garbage collection to further reduce the
overhead of garbage collection.
Zhang et al. [34] identified a strong correlation between

object allocation rate and memory bus write traffic in par-
tially scalable programs written for Java. They conclude that
scalability and performance are limited by object allocation
rate on multi-processor platforms resulting in an "allocation
wall." In our work, we find that performance of dynamic
languages is similarly limited by frequent object allocation
when the nursery is larger than the last level cache size. By
using cache installation, we can remove this allocation wall

and can use larger nursery sizes to achieve better perfor-
mance. While we focus on dynamic languages, we believe
that our technique is applicable to other garbage collected
languages. The prior work suggests that the cache optimiza-
tions are also important for static-but-managed languages
such as Java.

Our tracking hardware for invalid memory regions is sim-
ilar to the Range Cache [29], which is designed to store secu-
rity tags for a range of addresses. For our application though,
we only need to indicate whether a range of addresses is
invalid, which allows us to greatly simplify the hardware. In
addition, we do not keep overlapping ranges, which allows
us to ensure fast (single-cycle) hits for lookups.
Many previous studies optimized garbage collection for

caches. Reddy et al. [20] proposes to pin the nursery, which
contains the most recently allocated objects, in the last level
cache. This reduces the average memory access latency for
new object allocations. However, this limits the nursery size
to be less than the cache size which may result in frequent
garbage collection. In addition, program performance may
suffer from poor cache performance as the workable cache
space for non-nursery memory is effectively reduced. Other
studies [17, 27, 28] try to eliminate unnecessary write-back
operations by using garbage bits to track garbage data in the
cache. Garbage cache lines are not written back and can be
replaced before other valid cache lines. We propose a novel
partial tracing technique that decouples tracing a small part
of a nursery from full garbage collection.
Wilson et al. [31] explored how different cache designs

affect the performance of generational garbage collection.
They concluded that careful attention to memory hierarchy
issues can significantly decrease the performance impact of
garbage collection. They point out that as caches get larger,
the best way to achieve high performance is to make the
young generation (nursery) fit within the last level cache.
In our work, we show that we can beat the performance of
small nurseries that fit in the cache by co-optimizing both
hardware and software.
Previous studies have also proposed hardware support

for garbage collection. Some of them aim to accelerate the
computational overhead of reference counting [8, 32]. Others
use a hardware co-processor to achieve more predictable
garbage collection in a real-time setting [10, 11, 14, 26].

3 Memory Management in Dynamic
Languages

3.1 Generational Garbage Collection
For a language with automatic memory management, gar-
bage collection is used to free memory from objects that are
no longer in use. The process of determining which objects
are live and which are not incurs non-trivial performance
overhead. In order to amortize this overhead, garbage collec-
tion should be run at infrequent intervals.
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Full garbage collection is expensive, especially when all
objects and the full memory space needs to be scanned. In
order to limit the inefficiency, the memory space can be sep-
arated into multiple subspaces based on the age of objects.
In the simplest implementation of generational garbage col-
lection, there is one subspace for young objects, sometimes
called a nursery, and another subspace for old objects. Ob-
jects are allocated in the nursery and are moved to the old
subspace if they survive long enough.
Efficient generational garbage collection relies on the as-

sumption that most objects in a program die young. There-
fore, a copying garbage collector can efficiently move a small
number of surviving objects from the nursery to the old
subspace. Once the object is in the old subspace, a slower
mark-sweep garbage collector can run less frequently. This
can be extended to any number of subspaces based on age.

Generational garbage collection is used in many high per-
formance implementations of modern languages as shown in
Table 1. Real implementations of generational garbage collec-
tion add variations to this general scheme. For example, the
PyPy collector runs the mark-sweep collector incrementally
in the old subspace [18]. V8 adds an additional semi-space
in the nursery. During garbage collection, young objects are
copied from one semi-space to the other and only move to
the old generation if they have already been copied once [16].

3.2 Sequential Allocation
In order to make allocation fast in generational garbage col-
lection, a sequential allocator is typically used. The young
subspace (i.e. nursery) is always guaranteed to be empty fol-
lowing a garbage collection. The sequential allocator simply
uses a pointer to maintain the invariant that anything before
is allocated and anything after is unallocated. On allocation,
the pointer is incremented to maintain the invariant. A check
is also performed to ensure the allocation does not exceed
the subspace region. If it does, garbage collection will be run
to empty the subspace and reset the pointer to the beginning
of the subspace.

When a live object is moved from the young subspace to
the old subspace, the old subspace can use a more compli-
cated allocator as the move to the old space happens infre-
quently. In some cases, a variation of a sequential allocator
may still be used in the old subspace.

3.3 Trade-off between Garbage Collection and
Cache Performance

While necessary, garbage collection can lead to significant
performance overhead. As discussed in Appendix A, garbage
collection can be run less frequently by increasing the nurs-
ery size. This spreads some of the overhead over more of the
program execution and reduces the number of live objects
that will be traced and moved.

Table 1. Summary of popular language implementations
that use generational garbage collection.
Language Implementation Garbage Collector Description

Javascript V8[16]

Two generation collector with two
young semi-spaces and and an old
space. Young objects are copied
from one young semi-space to the
other and then to the old space if
they survive.

Python PyPy[18]

Two generation collector with a
nursery and an old region. Young
objects surviving in the nursery are
copied and moved to the old region,
where incremental mark-sweep
garbage collection is used.

Ruby Rubinius[22] Concurrent generational collection.

Java Hotspot[12]

Three generation collector with a
young generation with three
subspaces, an old space, and a
permanent space. An object starts
in the eden subspace of the young
generation and is copied to one of
two survivor spaces. If it survives, it
is copied to the old space.

C# .NET CLR[30]

Three generation collector with a
young generation for short-lived
objects, a buffer generation for
semi-short-lived objects, and an
long-lived generation.
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Figure 1. Execution time breakdown as a function of nursery
size.

Unfortunately, simply increasing nursery size negatively
affects cache performance and can significantly degrade over-
all performance. For a large nursery, initial accesses to newly-
allocated objects are likely to require a load from off-chip
memory. Nursery accesses will also have a larger memory
footprint and evict more cache lines.
Figure 1 illustrates the impact of the nursery size on the

average execution time of 64 benchmarks running on PyPy, a
popular Python implementation, normalized to the standard
1MB nursery size used by PyPy. The results are broken down
to show execution time of garbage collection vs. the remain-
der of the execution. As the nursery size increases, garbage
collection overhead decreases, yet the overall execution time
often increases.

Figure 2, which shows the last-level cache (LLC) miss-rate
breakdown as a function of the nursery size, illustrates why
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Figure 3. Execution time as a function of nursery size when
new objects are directly installed in caches.

the overall execution time increases. As the nursery size
increases, the overall LLC miss-rate increases significantly,
mainly because initial accesses to newly-allocated nursery
locations miss in the cache (shown as Nursery Invalid). The
results suggest that it is important to reduce cache misses
for initial nursery accesses in order to enable using a larger
nursery with low garbage collection overhead.

A larger nursery also puts more pressure on caches and in-
creases cachemisses for non-nursery accesses (Non-Nursery)
or nursery accesses after the initialization (Nursery Valid).
While not shown in the figure, the number of write-backs
can also increase significantly for a large nursery.

3.4 Cache Installation of Invalid Memory
The initial accesses to newly-allocated objects represent a se-
ries of stores to initialize the objects. These accesses retrieve
a cache line from memory and simply overwrite it with a
new value. Therefore, there is no need to read these invalid
(uninitialized or unallocated) memory locations. Instead, a
store miss to an invalid memory region can be serviced by
directly placing an arbitrary value (such as zero) into the
cache block without reading memory if all memory loca-
tions mapped to the cache block are invalid. This technique
is often called cache installation.
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Figure 4. The cumulative distribution of the memory allo-
cation size for PyPy and V8.

The cache installation of invalid memory regions not only
reduces unnecessary memory accesses, but also enables us
to reduce garbage collection overhead using large nursery
sizes. Figure 3 shows the normalized execution time as a func-
tion of the nursery size when all initial accesses to invalid
(uninitialized or unallocated) nursery locations are somehow
identified and directly placed into an on-chip cache without
off-chip accesses. Unlike the baseline PyPy, large nursery
sizes combined with cache installation can significantly im-
prove the performance. On average, the 64MB nursery with
cache installation outperforms the baseline (1MB nursery)
by 28.7%. Gcbench, which has high garbage collection over-
head runs 69.4% faster with a 64MB nursery. Nqueens, which
shows a 2.7x slowdown for the 64MB nursery in the baseline,
only shows a 2.7% slowdown with the ideal cache instal-
lation. The results suggest that the co-optimization of the
nursery size and the initial cache misses for the nursery has
a potential for significant performance improvements.

While cache installation helps reduce read memory traffic,
it does nothing to reduce write-backs or cache pollution. The
newly installed cache lines cause existing cache lines to be
evicted. On average, we found that a 64MB nursery results
in 3.74x more write-backs compared to a 1MB nursery in
PyPy. Additional write-backs usually do not directly affect
performance as they happen in the background. Yet, it can
be a significant concern for bandwidth-limited systems.

3.5 Memory Allocation Size
In order to use the cache installation, a full cache line must
be guaranteed to be uninitialized. In static languages such
as C and C++, memory allocations are often larger than
a cache line, and existing cache installation mechanisms
either explicitly capture memory allocations larger than a
cache line using a table [9] or capture a series of stores that
overwrite an entire cache line over a short period [5, 23].

For dynamic languages, however, we found that memory
allocations are often small. Figure 4 shows the cumulative
distribution of the allocation size (in bytes) for PyPy and
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V8. The distribution is averaged across all benchmarks (49
for Python and 37 for V8). The vertical line represents the
typical cache line size of 64 bytes. For PyPy more than 73.2%
of allocated objects are smaller than a cache line. For V8,
85.9% of allocations are smaller than a cache line. The results
suggest that the cache installation for dynamic languages
must be able to effectively handle small object allocations.

4 Invalid Memory Regions Tracking
(IMRT)

We define invalid memory regions as memory locations that
are either unallocated or uninitialized. When an object is
created, memory is allocated but remains uninitialized. Upon
calling the constructor, data is written to the object for ini-
tialization. The initialized object can thereafter be used.
For cache installation without loading from memory, we

need to guarantee that a whole cache line is from an invalid
memory region. Invalid memory regions do not contain use-
ful data and can hold any value without affecting the func-
tionality of the program. Most processor caches associate
multiple words with a tag in a single cache line (e.g. 64-bytes).
In a typical write-allocate cache design, cache lines which are
written to must be first loaded from memory because neigh-
boring words in the same cache line may be later read. If the
whole cache line is from an invalid memory region, reading
from memory unnecessarily uses memory bandwidth and
increases latency.

Explicitly tracking memory allocations is not enough for
cache installation in dynamic languages because most allo-
cations are smaller than a cache line. Even if we identify a
memory allocation, a cache line should still be read from
off-chip memory because some words in the cache line could
still be valid.
Instead, we use two features of the typical memory man-

agement with generational garbage collection to enable allo-
cating of full cache lines:

1. The young subspace (nursery) is fully unallocated after
each garbage collection.

2. The allocation is done in a sequential fashion.
These features ensure that installation does not affect func-
tional correctness by guaranteeing that memory locations
above a newly-allocated object are always invalid. If an ob-
ject is smaller than a cache line, a full cache line is installed
into the cache. In the program, however, the object is still
allocated in memory at a byte granularity.
To limit the cache pollution, objects should be installed

in the cache when they are needed. Premature cache instal-
lation may unnecessarily evict useful cache lines. In our
approach, we propose to use a small hardware table to track
invalid memory regions in a subspace at the cache-line gran-
ularity (typically, 64 bytes). Then, invalid memory locations
are directly installed in the cache on the first write to the
corresponding cache line.

Invalid Memory 
Region

Base0

Bound0

Invalid Memory 
Region

Base0

Invalid Memory 
Region

Valid Memory
Bound0

Base1

Bound1

Store

Figure 5. An example of splitting an invalid memory region
into two after a memory allocation.

Store

Perform Store Is Invalid?

Normal Refill Cache Install

Hit Miss

No Yes

Figure 6. Cache installation decision on a store.

4.1 Tracking Table for Address Ranges
In order to track invalid regions, the software must first
tell hardware where the initial invalid memory region such
as a young subspace is. For the young subspace, this only
needs to be done every garbage collection cycle and when
the subspace is first allocated. The software provides the
base and bound as full addresses. Hardware keeps cache-
line aligned base and bound addresses using a table, and
only installs cache lines that are fully covered by the invalid
memory region.
Each entry of the tracking table stores a memory range

(cache-line aligned base and bound addresses) for one invalid
memory region. When software initially provides the base
and bound, an entry is added to the table and other entries
that fall within the base and bound of the added entry are
cleared. The hardware table monitors stores within the in-
valid region, and updates its entries to maintain the invariant
that every range in the table is guaranteed to represent an
invalid memory region. Figure 5 shows how the invariant is
maintained by splitting one entry into two when there is a
store in the middle of an invalid region.

4.2 Handling Tracking Table Evictions
Because a hardware table has a limited size, it may eventually
run out of space. In that case, one of the memory ranges need
to be evicted. To limit loss of information, an eviction policy
that evicts the smallest range should be used.

Even if an entry is evicted, the tracking will still be correct
in the sense that there is no false detection of invalid regions.
Some stores to invalid memory regions may not be detected
and handled normally without cache installation, but the
program execution will still be correct.

4.3 Cache Installation
Figure 6 shows how the cache installation using invalid mem-
ory region tracking can be done at the LLC (last-level cache)
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Table 2. Software interfaces for the tracking hardware.
Invoked By ISA Instruction Operation

OS

store <base>[<track_hw_addr>+ set_inv_base_offset] Sets the base address for an invalid region in a temporary register.

store <bound>[<track_hw_addr>+ set_inv_bound_offset] Copies the base (held in a temporary register) and bound for an invalid region
to the tracking table, evicting an entry if necessary.

store <base>[<track_hw_addr>+ set_val_base_offset] Set the base address for a valid region in a temporary register.

store <bound>[<track_hw_addr>+ set_val_bound_offset] Uses the base (held in a temporary register) and bound for a valid region to
update the tracking table, splitting an entry if necessary.

Program
syscall <inv><ptr_to_base_bound_array> The OS will iterate through the array, translate the virtual addresses to

physical addresses, and will set the invalid regions in the track table.

syscall <val><ptr_to_base_bound_array> The OS will iterate through the array, translate the virtual addresses to
physical addresses, and will validate the regions in the track table.

level. On a store miss, the IMRT will be checked. If the re-
quested block is from an invalid memory region, then the
cache line will be installed instead of being requested from
memory. Placing the tracking table at the LLC removes the
need for changing the cache coherence protocol and also
enables using the table to identify invalid cache lines for
reducing unnecessary cache evictions and write-backs.

Yet, placing the tracking at the LLC-level level introduces
a challenge; tracking needs to be performed using physical
addresses instead of virtual addresses. This requires OS sup-
port for setting the initial invalid region. When the user-level
software performs a system call with an invalid memory re-
gion in virtual addresses, the OS translates them to physical
address regions and sets the tracking table. As a contiguous
virtual address range may not map to a contiguous physi-
cal address range, the OS may need to set multiple physical
address ranges in the tracker.
Since the tracker is managed by the OS and uses physi-

cal addresses, multiple processes and threads can share the
hardware by invoking the relevant system calls to set the
entries. The hardware can additionally be used by the OS
when mapping and unmapping pages before, during, and
after program execution, and eliminate the need to read in
new pages to cache or write-back unused pages from cache.

4.4 Implementation Details
The tracking hardware needs interfaces for both an OS and
a memory allocator. These interfaces can be implemented in
many ways. Here, we show a design using memory-mapped
interfaces. For the OS interface, a unique hardwired physical
address is assigned to the tracking table so that the OS can
configure tracking hardware.

Table 2 summarizes the software interfaces necessary for
the tracking hardware. When user-level software wants to
set an invalid memory range, it calls a system call to set the
invalid range. Since the tracking will be done automatically
in the IMRT, the user-level software only needs to make
system calls when setting ranges. The invalid memory range
can be cleared by setting a valid range using another system
call.

Figure 7 shows the data path of the tracking hardware with
four entries. The input to the datapath are two addresses,
addr and addr+1, at the cache-line granularity; for 64-byte
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addr addr + 1
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curr_boundbound_edgebase_edgemin_idx

idx

Base Bound

Figure 7. Tracking hardware data path.
Table 3. Pseudo-code for updating base and bound fields.
Base Update Bound Update
if (hit && base_edge):
base[idx] = addr + 1

if (hit && !base_edge):
bound[idx] = addr

if (hit && !(base_edge
|| bound_edge)):
base[min_idx] = addr + 1

if (hit && !(base_edge
|| bound_edge)):
bound[min_idx] = curr_bound

cache lines, addr is obtained by removing the 6 LSBs of the
memory address for a store. The output is a bit indicating a
hit. Note that the bound value is exclusive, so the addr needs
to be less than the bound for a hit.
The update hardware is not drawn, but follows the logic

shown in Table 3. If the addr is at the base_edge, we only
need to update the base at the current index by incrementing
addr by 1. If the addr is at the bound_edge, we only need
to set the bound to be addr, since the bound is exclusive.
Finally, if the addr is not at an edge, then we must split the
entry by setting the existing entry bound to be the addr and
the new entry to have the range of addr+1 to the current
bound. The hardware is more complex compared to tradi-
tional caches because each entry needs to handle an arbitrary
memory range. Yet, the number of table entries is quite small
compared to caches.

5 Partial Tracing
Although cache installation reduces memory reads, it does
not address cache pollution and increased memory writes
from a large nursery. Installed cache blocks will still evict
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Figure 8. Graphical depictions of how tracing works. Arrows represents pointers that are traversed.

other cache lines to make room and need to be written back
to memory when evicted. The problem is particularly se-
vere if the nursery is larger than the last-level cache when
most cache lines in the nursery will be evicted and written-
back to memory before they can be used again after garbage
collection.

However, many of these cache evictions and write-backs
may be unnecessary. Following the generational hypothesis
that most objects die young, there is a strong likelihood
that many objects are dead before they are evicted from the
cache. If the dead objects can be identified, we can avoid
unnecessary eviction of valid cache lines and unnecessary
write-backs of dead objects.

For this purpose, we introduce a technique named partial
tracing, which identifies dead objects in a subset of a nursery
with a goal to optimize cache replacements and write-backs.

5.1 Partial Tracing Algorithm
We propose to adapt the tracing algorithm used during the
nursery garbage collection to determine live objects for a
segment of the nursery that is most likely to be in the cache
when this partial tracing is performed. We divide the nursery
into segments that would fit in the cache. During execution,
we sequentially allocate space for objects as needed. Once
the full segment has been allocated, we run tracing to de-
termine which objects are live only for that segment. This
information is communicated to the hardware and used for
cache replacement and removing unnecessary write-backs.
One challenge in performing tracing to identify live ob-

jects for only a segment of the nursery is that we need to
follow pointers for all live objects as shown in Figure 8(a).
Not only is the computation unnecessary but we may also
pollute the cache by accessing all of the live objects. As
shown in Figure 8(b), generational garbage collectors solve
a similar problem using a write barrier to limit tracing of
old objects to only those old objects that contain pointers
to young objects in the nursery. The write barrier works by
issuing a callback function when a write to any pointer in the
old object occurs. The callback function adds the old objects
to a list which is then used as a starting point for tracing
instead of having to perform complete tracing through the
program roots.
As shown in Figure 8(c), we extend the write barriers to

young objects in previous segments within a nursery. When

we perform tracing on a segment and find the live objects in
that segment, we add a write barrier to the pointers of those
live objects. If a pointer in any young object in a previous
segment is written to, the write barrier invokes a callback to
add those objects to a trace list. We also modify the callback
for old objects to only add objects that point to one segment
rather than the whole nursery. The list containing old objects
and young objects from previous segments can be used to
perform tracing for only the segment in an efficient manner.
Decoupling tracing from the full garbage collection also

opens the door for running a part of the garbage collection,
namely tracing, concurrently with the main application. As
discussed before, the copying garbage collectors need to
stall the main application in order to copy objects and up-
date pointers. However, partial tracing, which only identifies
live objects, does not need to pause the application and can
be performed concurrently without incurring performance
overhead if an extra core is available.

5.2 Identifying Dead Cache Lines
After performing partial tracing, we have a list of live objects
in the recently-allocated segment of a nursery that is likely to
be in the on-chip cache. Using information about their start
addresses and object sizes, we can determine which memory
ranges are valid. We can additionally use the base and the
bound of the segment to determine which memory ranges
in the segment are invalid. We start by assuming the whole
segment is invalid. Using the ranges of valid memory ranges,
we can split the initial invalid segment into smaller invalid
ranges. Once we iterate through all of the valid memory
ranges, we are left with an accurate list of invalid memory
regions.

5.3 Integration with IMRT
The IMRT design that we described in the previous sec-
tion can be used to track invalid regions for both unallo-
cated/uninitialized nursery regions and dead objects after
partial tracing. As shown in Table 2, the IMRT interface al-
lows software to add valid and invalid regions to the table.
To add the invalid regions from the partial tracing, software
first sets the traced segment as an invalid region in the IMRT.
Then, each live object after the tracing is added as a valid
region to break the segment into multiple invalid regions.
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Table 4. Microarchitectural parameters for simulations.
Core 4-way OOO, 2.66GHz
L1I 32kB, 4-way, 4-cycle latency
L1D 32kB, 8-way, 4-cycle latency
L2 256kB, 8-way, 10-cycle latency
L3 2MB, 16-way, 40-cycle latency

Memory Micron DDR3-1333

Table 5. Summary of the designs used for evaluation.
Design Description
Base Baseline with no optimization.
IMRT Cache installation with a 256-entry tracking table.

IMRT+PTO Cache installation with a 256-entry tracking table along
with partial tracing optimization.

IMRT+CPTO Cache installation with a 256-entry tracking table along
with concurrent partial tracing optimization

5.4 Cache Eviction and Write-backs
To reduce unnecessary cache pollution and write-backs, the
IMRT is referenced for cache replacements and write-backs
in addition to memory reads (for cache installation). The
cache replacement policy prioritizes eviction of cache lines
that belong to an invalid memory region so that live objects
can stay longer in the cache for reuse. The memory addresses
from replacement candidates are looked up in the IMRT on
a cache miss, and invalidated if found in the IMRT. The
invalid cache lines are replaced first before evicting valid
cache lines. Note that the IMRT look-ups can be performed
in the background over a long LLC miss latency without
affecting performance. The IMRT table is also referenced on
a write-back. If the address of the evicted (dirty) cache line
is found in IMRT, the write-back will be eliminated.

6 Evaluation
6.1 Methodology
For the evaluation, we use a simulation infrastructure that
is based on ZSim [24]. ZSim is used to model cycle-level
microarchitecture behaviors of an out-of-order core with
memory hierarchy comparable to modern processors. The
processor core is configured to mimic an Intel Westmere
processor. For the DRAM memory system, we use DRAM-
Sim2 [21] integrated to ZSim to model DDR3-1333 mem-
ory.Table 4 summarizes the architecture parameters.
For the implementations of dynamic languages, we use

PyPy [1] for Python and V8 [4] for Javascript. Both Python
and Javascript are widely used in practice, with Python being
used in a range of applications from web servers to scien-
tific computing and Javascript being primarily used for web
applications. PyPy and V8 represent the state-of-art imple-
mentations for Python and Javascript. Both use just-in-time
compilation to achieve good performance and use a variation
of generational garbage collection.
For benchmarks, we use a wide array of applications to

get a representative sample of real-world applications. For

Table 6. The coverage of a limited-size IMRT table compared
to the infinite size table.

4 8 16 32 64 128 256
PyPy 77.6% 84.7% 89.4% 92.9% 95.2% 96.1% 97.1%
V8 79.5% 79.7% 88.5% 94.7% 96.5% 97.9% 98.8%

Python, we use benchmarks from the official Python perfor-
mance benchmark suite [19] and benchmarks from the PyPy
benchmark suite. The designers say that the Python bench-
mark suite focuses on real-world benchmarks, using whole
applications when possible, rather than synthetic bench-
marks [19]. For Javascript, we use JetStream [2], which "com-
bines a variety of JavaScript benchmarks, covering a variety
of advanced workloads and programming techniques" in-
cluding SunSpider, Octane, and LLVM. In total, we use 49
benchmarks for Python and 37 benchmarks for Javascript.
For Python, wewarm up the benchmark by running it 2 times
followed by running it 3 times for evaluation. For Javascript,
we run the benchmark 3 times for evaluation.

We evaluate the design points shown in Table 5. The base-
line (Base) represents the case without any optimization.
IMRT represents the invalid memory region tracking mech-
anism in this paper where only cache installation is enabled.
IMRT+PTO represents the case where both cache installation
and partial tracing are enabled. Because the partial tracing
optimization requires a significant re-write of a garbage col-
lector, we currently have a partial tracing implemented only
for PyPy, but not for V8. IMRT+CPTO represents the case
where partial tracing is run concurrently with the normal
program with cache installation. Note that we do not have
an actual implementation of concurrent tracing but model it
by subtracting the computation overhead of running tracing
from the execution. The cache pollution from tracing is still
included. For the baseline, we use the default 1MB nursery
for PyPy and V8. For our optimizations, we use a 64MB nurs-
ery for PyPy and 128MB nursery for V8. For our average
speedup calculations, we use geometric mean.

6.2 Tracking Table Size
For this study, we evaluate how many invalid memory ad-
dresses our tracking table can capture with a limited storage
size compared to the ideal case with an unlimited storage.
For this purpose, we compute the percentage of memory
reads to invalid memory regions that are captured by a given
IMRT table size for cache installation compared to the total
number of reads to invalid memory regions.

The results shown in Table 6 suggest that a small tracking
table can capture nearly all of the invalid memory ranges.
Since the memory allocation of objects happens sequentially
and initialization also happens mostly sequentially, most
memory allocations only need to update the base address
of an existing entry rather than creating an entry of a new
memory range. An update at the boundary does not split an
entry into multiple ranges, so no additional space is required
in the tracking table.
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Figure 9. Normalized execution time for garbage collection
and partial tracing.

A first-order evaluation shows that a 256-entry tablewould
have minimal area and power overhead. The main overhead
of the table comes from the memory required to store the
base and bound addresses (i.e. a pair of 64-bit addresses).
This would equate to 4kB of memory and could be reduced
by compression of the addresses. For our first-order eval-
uation, we use CACTI [13], an integrated model for cache
and memory access time, cycle time, area, leakage, and dy-
namic power. If we model our IMRT as a fully associative 4kB
cache, it uses 0.038mm2 area and has 6mW leakage power on
a 22nm node. For comparison, the 32kB L1 data cache would
use 0.408mm2 area and would have 15mW leakage power on
a 22nm node.

6.3 Partial Tracing Period
Here, we study the overhead of partial tracing as we vary
nursery sizes and partial tracing frequencies. We normal-
ize the execution time of the garbage collection with and
without partial tracing at each nursery size to the baseline
garbage collection (no partial tracing) with a 1MB nursery.
For reference, garbage collection with a 1MB nursery is on
average 16.0% of the total program execution time. Figure 9
shows how the baseline garbage collection overhead (Base)
decreases as the nursery size increases. With a 64MB nurs-
ery, garbage collection overhead is reduced by an average of
87.4%.

Adding partial tracing on top of garbage collection enables
cache optimizations for replacements and write-backs, but
reduces the savings from a large nursery. In the figure, ’Every
x-MB’ indicates the case where partial tracing is performed
once every x-MB in addition to the full garbage collection
when the entire nursery gets full. More frequent partial trac-
ing has a potential to more quickly identify and remove dead
objects in the cache, but also has higher overhead. However,
the results suggest that the performance differences among
different tracing frequencies are rather small. In the follow-
ing studies, we use the partial tracing period of every 1.25MB
for IMRT+PTO. This configuration has a potential to remove
42.2% of the baseline garbage collection overhead.

6.4 Overall Performance
In this study, we evaluate the overall performance improve-
ments of the proposed optimizations. The performance is
presented as the execution time normalized to the baseline.
For the IMRT schemes, we use the table size of 256 entries to
support both cache installation and write-back elimination.
For PyPy, we show results for both 1MB and 64MB nursery
sizes in order to separately evaluate the improvements from
cache installation and less-frequent garbage collection.

Figure 10 shows the normalized execution time of the var-
ious designs for each Python benchmark. The results show
that simply increasing the nursery (Base-64M) leads to a
significant slowdown in many applications. On the other
hand, cache installation with a 1MB nursery (IMRT-1M) only
reduces the execution time by 4.7% on average. This shows
that cache installation by itself does not lead to significant
performance improvements. Using a large (64MB) nursery
with cache installation (IMRT-64M) reduces the execution
time by 22% on average compared to the baseline with only
a single benchmark showing a noticeable slowdown. More-
over, the execution time is reduced by over 50% for multiple
benchmarks. The average improvement is within 2.0% of
the possible improvement with an ideal tracker. The results
show the importance of co-optimizing garbage collection
period with cache installation.

Cache installation with partial tracing (IMRT+PTO) shows
lower performance improvements on average compared to
IMRT due to the overhead of additional tracing. However,
IMRT+PTO can still significantly reduce the execution for
many applications. Moreover, for applications where the im-
pact on cache performance of a large nursery is particularly
significant, IMRT+PTO outperforms IMRT, reducing the exe-
cution time by an additional 5.9% for spitfire_cstringio
or 1.4% for meteor_contest.
If partial tracing is performed concurrently with the ap-

plication (IMRT+CPTO), then the execution time is always
better than IMRT, since the partial tracing improves cache
performance and there is little sequential execution over-
head for running it. As a result, there is an additional 1.3%
average reduction in the execution time over IMRT. By run-
ning partial tracing concurrently, we can achieve significant
performance improvement while simultaneously reducing
memory accesses.
Figure 11 shows the normalized execution time for V8

when the IMRT hardware is used for cache installation with
the 128MB nursery size. Cache installation alone reduces the
average execution time by 8.2%. When combined with the
larger nursery size, the average execution time is reduced by
16.8% with some benchmarks showing reductions more than
40%. The results show that the proposed hardware tracker
is general enough to be applied to multiple languages and
implementations beyond PyPy.
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Figure 11. Normalized execution time for V8. The execution
time is normalized to the baseline with a 1MB nursery.

Table 7. Breakdown of cache miss rates at the LLC.
PyPy V8
Base-
64M

IMRT-
64M

IMRT-
64M+PTO

Base-
128M

IMRT-
128M

Overall 60.2% 17.6% 17.4% 48.2% 21.2%
Non-
Nursery 29.5% 29.5% 26.1% 34.2% 26.5%

Nursery 89.7% 9.5% 9.2% 70.6% 13.8%

6.5 Cache Miss-Rate Breakdown
Here, we study the impact of our optimizations on the last-
level cache (LLC) miss-rates for different memory regions.
Table 7 shows a breakdown of the cache miss-rates for PyPy
and V8 for the baseline and the proposed tracker with the
same nursery size. The miss-rates are shown for all accesses
(overall), nursery accesses, and non-nursery accesses. The
results show that the proposed cache installation is indeed
quite effective in reducing the cache misses to the nursery.
For PyPy, the results suggest that the partial tracing opti-
mization can reduce cache pollution and slightly improve the
cache miss rate for both nursery and non-nursery accesses.
For V8, we used the IMRT table for both nursery and some of
non-nursery allocations as reflected in the reduced miss-rate
for the non-nursery accesses.

6.6 Off-Chip Memory Operations
In addition to performance improvements, the proposed op-
timizations also reduce off-chip memory accesses. Less mem-
ory accesses reduce energy consumption in memory. Lower
memory bandwidth usage is also important for bandwidth-
limited applications or systems where many applications
share a memory channel. Figure 12 shows the number of
memory operations (reads and writes) for various PyPy
benchmarks. Here, only benchmarks where the memory
bandwidth utilization is more than 5% of the the maximum
memory bandwidth are shown. While the IMRT scheme
can reduce memory reads through cache installation, the
partial tracing optimization can further reduce the memory
writes, especially when there are many dead cache lines
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Figure 12. Total off-chip memory operations for PyPy.

Table 8. Configuration of the low-end processor.
Core 4-way OOO, 2.17GHz
L1I 24kB, 6-way, 3-cycle latency
L1D 32kB, 8-way, 3-cycle latency
L2 512kB, 16-way, 14-cycle latency

Memory 6400 MB/s mem with 210-cycle latency

being written back and evicted. On average, partial tracing
reduces memory operations by an additional 13.7%. For some
benchmarks, the reduction is far more significant (over 4x
for pidigits). There are some cases where the total number
of memory operations increase with partial tracing due to
the memory accesses from tracing itself.

6.7 Microarchitectural Sweeps
Here, we study how the performance is affected by a dif-
ferent processor configuration and last-level cache sizes. In
this study, we use a configuration for a low-end processor
similar to the Intel Silvermont (see Table 8). Low-end proces-
sors often have smaller caches and less tolerant to memory
latency due to smaller buffers and queues. As a result, these
processors are more sensitive to memory performance and
we expect our optimizations to be more effective.

Figure 13 shows the average normalized execution time
results for PyPy. In the baseline, the nursery size is adjusted
to be half of the cache size. With a small cache, garbage col-
lection is run more frequently. As the cache size increases,
garbage collection becomes less frequent and a proportion-
ately larger space is available for the non-nursery accesses.
From the results, we find that the proposed cache installa-
tion scheme with a large nursery size (IMRT-64Mwith 512kB
LLC) can improve the performance as much as increasing
the cache size by 8x (Base with 4MB LLC). Furthermore, we
can reduce the average execution time by 40% if we have a
512kB LLC, significantly more than in a high-performance
processor. Alternatively, our scheme can perform just as well
with half of the nursery size as the base case (IMRT-1M with
4MB LLC vs. Base with 4MB LLC).
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Figure 13. Normalized execution time of a low-end proces-
sor with different LLC and nursery sizes for PyPy.
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Figure 14. Normalized execution time of a low-end proces-
sor with different LLC and nursery sizes for v8.

Figure 14 shows the average normalized execution time
results for V8. For the baseline, we fix the nursery size to be
1MB (the minimum V8 allows). As the cache size increases,
the cache performance improves and the execution time
decreases. Similar to PyPy, we can achieve the same perfor-
mance with a larger nursery (IMRT-64M with 512kB LLC) as
8x the cache size (Base with 4MB LLC). In addition, we can
reduce the average execution time by 19% if we have a 512kB
LLC, slightly more than in a high-performance processor.
The results indicate that the cache performance is more

important on low-end processors than high-end processors,
and the proposed optimizations lead to more significant per-
formance improvements for processors with smaller caches.

7 Conclusion
In this paper, we present how memory management in dy-
namic languages can be optimized using both hardware and
software together. In particular, we show that a large nursery
size can be used to significantly reduce garbage collection
overhead if its impact on cache performance can be con-
trolled. We introduce a new invalid memory region tracker
and partial tracing to address this cache performance issue.
Overall, our study shows that this hardware-software co-
optimization is general enough to be applicable to multiple
dynamic languages (PyPy and V8) and can significantly im-
prove performance.
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A Model of Garbage Collection Execution
Time

We build a first order model of the total garbage collection
time, denoted TGC . For this model, we are only concerned
with nursery collection of the young space and not the full
garbage collection of the old space. The total garbage col-
lection time can be broken down into a series of garbage
collection invocations:

TGC = N ∗ tGC (1)

where N is the number of times garbage collection is run
and tGC is the average time per invocation.
Garbage collection is triggered when the memory allo-

cated by the mutator matches the nursery size:

N =
SPA
SN

(2)

where SPA is the total number of bytes allocated by the
mutator in the nursery and SN is the nursery size.
We can break down the time it takes to run a garbage

collection invocation:

tGC = tsetup + tcleanup + (ttrace + tmove )Nl ive (3)

where tsetup and tcleanup are fixed times for each garbage
collector invocation and ttrace and tmove are the time it takes
to trace and move a single object. Nl ive is the number of
objects that need to be moved.
We can further break down Nl ive by modeling it as an

exponential decay function:

Nl ive =
SN
SO

e−λt (4)

where SO is the average size of an object and λ is the death
rate of objects.

Since garbage collection is performed at intervals, we can
set t to be the interval between garbage collection invoca-
tions:

t =
SN
RPA

(5)

where RPA is the rate the mutator allocates nursery space in
bytes/cycle.
Through substitution, we can combine the above equa-

tions to get the following:

TGC =
SPA
SN

[
tsetup + tcleanup + (ttrace + tmove )

SN
SO

e
−λ SN

RPA

]
(6)

In the equation, there are some variables that are depen-
dent on the application. λ is fully dependent on the appli-
cation that is running. SPA, SO , RPA are also dependent on
the application that is running, but we can make minor ad-
justments by changing the object space implementation in
the run time. Decreasing the size of the object will decrease
the total space allocated by the program and the allocation
rate. This will result in an overall reduction in the garbage
collection time.

In terms of the garbage collector implementation, we have
control over tsetup , tcleanup , ttrace , tmove , and SN . Improv-
ing the first four would require optimization of the garbage
collector. SN can easily be adjusted before each run or even
at runtime.

By increasing the nursery size (i.e. SN ), we are spreading
tsetup and tcleanup over a longer time period. In other words,
if we increase the nursery size byM , the contribution over
the same time period becomes

(
tsetup + tcleanup

) /
M .

Interestingly, the trace and move times are not affected
by the nursery size in the same way. The larger nursery size
makes the magnitude of the exponent larger indicating a
larger decay constant. This means that more live objects will
die between garbage collections with a larger nursery size.
As a result, the contribution from tracing and moving will
be smaller.
The observations from the equation match our intuition.

A larger nursery will allow us to run garbage collection less
frequently and there will be less live objects to trace and
move during each execution. As a result, the total garbage
collection overhead will decrease.
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