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As software becomes more complex and the costs of developing and maintaining

code increase, dynamic programming languages such as Python are becoming more

desirable alternatives to traditional static languages such as C. Programmers can express

more functionality with fewer lines of code and can spend less time debugging low-level

bugs such as buffer overflows and memory leaks. Unfortunately, programs written in a

dynamic language often execute significantly slower than an equivalent program written

in a static language, sometimes by orders of magnitude.

This dissertation investigates the following question: How can dynamic languages

achieve high performance through HW/SW co-optimization? The first part of the disser-

tation studies inefficiencies in dynamic languages through a detailed quantitative analy-

sis of the overhead in Python. The study identifies a new major source of overhead, C

function calls, for the Python interpreter. Additionally, studying the interaction of the

runtime with the underlying processor hardware shows that the performance of Python

with JIT depends heavily on the cache hierarchy and memory system. Proper nursery

sizing is necessary for each application to optimize the trade-off between cache perfor-

mance and garbage collection overhead.

Based on insights from the study, the software and hardware are co-optimized to

improve the memory management performance. In the second part of the dissertation,

a cache-aware optimization for single-application memory management is presented.

The performance and memory bandwidth usage is improved by co-optimizing garbage

collection overhead and cache performance for newly-initialized and dead objects. Fur-



ther study shows that less frequent garbage collection results in a large number of cache

misses for initial stores to new objects. The problem is solved by directly placing unini-

tialized objects into on-chip caches without off-chip memory accesses. Cache perfor-

mance is further optimized by reducing unnecessary cache pollution and write-backs

through a partial tracing algorithm that invalidates dead objects between full garbage

collections.

The dissertation then focuses on the case of multiple applications running concur-

rently on a multi-core processor with shared caches. It is shown that the performance of

dynamic languages can degrade significantly due to cache contention among multiple

concurrent applications that share a cache. To address this problem, program memory

access patterns are reshaped by adjusting the nursery size. Both a static and a dynamic

scheme are presented that determine good nursery sizes for multiple programs running

concurrently.



BIOGRAPHICAL SKETCH

Mohamed Ibrahim Ismail attended Cornell University starting in 2008, where he first

received his Bachelor of Science degree (summa cum laude) in Electrical and Computer

Engineering. He then continued his studies at Cornell University, where he pursued his

Ph.D. degree in the School of Electrical and Computer Engineering. He worked with his

advisor, Professor G. Edward Suh, on various topics in the field of computer architecture

including runtime monitoring, real-time systems, and dynamic languages.

iii



In the name of God, the most Compassionate the most Merciful.

iv



ACKNOWLEDGEMENTS

Over the seven years of pursuing the Ph.D., there have been many people that have

pushed me and helped me get to the point where, all praise to God, I have successfully

completed my dissertation and earned the Ph.D. degree. Every small act of goodness

had its part in my trajectory through graduate school and I would like to thank each and

every person that helped along the way (even if I cannot mention everyone by name in

these acknowledgements).

Particularly, I would like to thank my advisor, Professor G. Edward Suh, for his

continuing support and feedback throughout my Ph.D. When I first started, I had vague

notions of what research was and how to conduct it. Through regular feedback, I learned

how to more effectively identify problems, propose approaches, analyze the potential

benefits and costs, and compare to existing solutions. He gave me the freedom to choose

my research direction and was ready to help reorient me when I got lost along the way.

For every idea, paper, and presentation, he would also provide extensive feedback on

how to improve my work and how to think more critically about the problem. Even

when some ideas were not good or results were not too promising, he would try to

point out the positives and encourage me to continue brainstorming and to rethink the

problem.

I would like to thank my other committee members, Professor José Martı́nez and
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CHAPTER 1

INTRODUCTION

As software becomes more complex and the costs of developing and maintaining

code increase, dynamic programming languages are becoming more desirable alterna-

tives to traditional static languages. Dynamic languages allow programmers to express

more functionality with less code. In addition, runtime checks and memory management

are built-in, limiting the possibility of low-level program bugs such as buffer overflow.

Dynamic languages such as JavaScript, Python, PHP, and Ruby consistently rank in the

top ten most popular languages across multiple metrics [16, 24, 103]. These dynamic

languages are increasingly utilized in production environments as well in order to bring

new features quickly.

Unfortunately, programs written in a dynamic language often execute significantly

slower than an equivalent program written in a static language, sometimes by orders

of magnitude. Therefore, the performance overhead represents a major cost of using

dynamic languages in high-performance applications. Ideally, companies with enough

time and resources may rewrite performance-critical portions of code in faster static

languages when they are mature. For example, Twitter reported a 3x reduction in search

latencies after porting their Ruby on Rails infrastructure to Java [65]. However, porting

code is an expensive proposition and just-in-time (JIT) compilation is often used as a

lower-cost alternative to improve the performance of dynamic language programs.

Even though dynamic languages and JIT are becoming increasingly important work-

loads, we currently do not have a good understanding of sources of overhead and

how the underlying microarchitecture affects their performance. State-of-art high-

performance superscalar processors with out-of-order speculation, increasingly com-

plex branch prediction hardware, and multi-level cache hierarchies are still optimized

1



for single-threaded performance of programs written in low-level languages such as C

and are not specialized to accelerate common features of dynamic languages such as au-

tomatic memory management or just-in-time compilation. Furthermore, implementing

these features in dynamic languages without considering the underlying microarchitec-

ture can result in poor utilization of processor resources and poor overall performance.

This dissertation studies inefficiencies in dynamic languages through quantitative

analysis and co-optimizes the software runtime and hardware architecture to improve the

overall performance based on the findings. Optimizations are targeted to be transparent

to the programmer of the dynamic language and to be generally applicable to a range

of dynamic languages and implementations. While there has been substantial work in

improving software runtime of dynamic languages, many do not consider the role of the

hardware architecture in improving the performance. Therefore, this dissertation seeks

to address the following research question: How can dynamic languages achieve high

performance through HW/SW co-optimization?

A quantitative analysis of the Python runtimes provides new insights into sources of

overhead that may lead to inefficient program execution. For example, C function calls

are identified as a significant source of overhead in dynamic languages. In addition, it

is found that careful tuning of automatic memory management parameters is essential

for good performance. Optimizations are then proposed to improve the performance

of automatic memory management in dynamic languages. First, hardware support for

improving the cache performance of individual programs while lowering their garbage

collection overhead is discussed. Then, an optimization for efficient nursery sizing in the

context of multiple applications running on a multi-core processor with shared caches

is discussed. This dissertation demonstrates that careful HW/SW co-optimization can

significantly improve the performance of dynamic languages.
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Table 1.1: Comparison of the top 10 most popular programming languages in November
2008, 2013, and 2018. Popularity was measured as the percent of questions tagged with
a particular language in Stack Overflow (shown in parenthesis). Dynamic languages are
shown with emphasis. Data compiled by Global App Testing [115].

Rank 2008 2013 2018
1 C# (13.4%) JavaScript (10.6%) Python (11.3%)
2 Java (7.7%) Java (10.2%) JavaScript (10.2%)
3 C++ (5.6%) PHP (8.3%) Java (7.6%)
4 JavaScript (4.8%) C# (8.2%) C# (5.3%)
5 PHP (4.1%) Python (5.1%) PHP (4.9%)
6 SQL (3.5%) C++ (4.3%) C++ (2.7%)
7 Python (3.5%) SQL (3.7%) R (2.6%)
8 C (2.0%) Objective-C (2.4%) SQL (2.4%)
9 Ruby (1.6%) C (2.3%) Swift (1.9%)

10 Perl (0.9%) Ruby (1.5%) C (1.5%)

1.1 Dynamic Language Popularity and Performance

Over the past decade, dynamic languages have become increasingly popular and have

become increasingly used in place of their static language counterparts. They are now

being used in a variety of applications, including scientific computing and numerical ap-

plications, web applications, graphical user interfaces, cloud applications, scripting, and

even embedded devices. These languages provide a rich set of features that program-

mers can use to write more complex code with fewer lines and provide more advanced

debugging capabilities through interactive introspection.

Table 1.1 shows one of the many popularity rankings of programming languages

published by various trade groups. Global App Testing [115] gathered data from Stack

Overflow of the percent of questions tagged with a specific language for every month

over a ten year period. The table shows the results for November of 2008, 2013, and

2018. In 2008, many dynamic languages were already in use. However, static languages

such as C#, Java, and C++ were more widely used. By 2013, the landscape looked more
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Figure 1.1: Average execution time of the same 10 benchmarks written in different
languages normalized to the execution time of C. Data is taken from the Computer
Language Benchmark Games [53].

even with approximately the same popularity between JavaScript and Java, PHP and

C#, and Python and C++. As of 2018, Python and JavaScript have continued to see

increased usage with the other languages seeing noticeable declines.

Unfortunately, the best implementations of dynamic languages as of 2019 still run

an order of magnitude slower than static languages. One project, known as the Com-

puter Language Benchmark Games, has measured the execution time of the same 10

benchmarks written for various languages [53]. Figure 1.1 shows their results. The av-

erage execution time of the benchmarks written in different languages is normalized to

the average execution time of the benchmarks written in C, and the results are ordered

by increasing average normalized execution time. Even with this ordering, all the lan-

guages to the left of and including Go are static languages and the languages to the right

of Go starting at Node.js (an implementation of JavaScript) are dynamic languages. The

results clearly show that there is an order of magnitude increase in normalized execution

time for applications when they are written in dynamic languages.

It is also worth noting that Truffle Ruby, Ruby, and JRuby are all implementations
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of Ruby. Truffle Ruby and JRuby use Java runtimes as their backend. The results

show that merely compiling code from one language to another does not eliminate the

performance inefficiencies of using dynamic languages.

The performance numbers already capture the fact that dynamic language runtimes

have been improved and optimized for performance. For example, just-in-time com-

pilers and more efficient garbage collection algorithms are already used to greatly re-

duce the computational cost of executing programs written in these languages. The data

shows that there is more potential for improving performance of these languages.

One natural question that follows is why programmers would be willing to write in

these dynamic languages if they are so slow. Some reasons are as follows:

1. Dynamic languages enable programmers to express more complex algorithms

with less lines of code and provide better debugging capabilities with built-in er-

ror checking and interactive introspection. As a result, programmers can be more

productive and companies can develop new features more quickly. For example,

Twitter initially used Ruby on Rails for development of their service [65] and

Dropbox used Python [81].

2. Some languages are part of standards with no other alternatives. For example,

JavaScript is the only supported scripting language by browsers, so web applica-

tions have to be written in JavaScript.

3. Significant resources have been invested in developing libraries for some lan-

guages and rewriting code in other languages would require porting those li-

braries. For example, Facebook has invested resources in developing PyTorch,

a Python library for machine learning [110].

4. Runtimes are constantly being improved for performance, so code that is currently
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executing in a slow interpreter can potentially run faster with future advances

in runtime performance. For example, just-in-time compilation has already im-

proved performance in these languages without programmers having to rewrite

code.

Therefore, dynamic languages will continue to increase in popularity as algorithms

become more complex and they become more difficult to express in static languages.

With enough investment and development in dynamic languages, it may be possible

for the performance of dynamic languages to match the performance of some static

languages in the future. This dissertation demonstrates some ways to achieve high per-

formance in dynamic languages.

1.2 Thesis Goals

1.2.1 Identifying Sources of Overhead

Previous studies have attempted to identify the sources of inefficiencies in dynamic lan-

guages. However, they have generally been limited in scope. They either focus on a

few sources of overhead or are only able to evaluate a few benchmarks. Some studies

merely rely on a qualitative understanding of software inefficiencies in order to propose

optimizations.

The first goal of this dissertation is to more comprehensively study the following

research question: What are the sources of inefficiencies in dynamic languages? To

better understand which overheads are worth optimizing, a quantitative analysis of a

large number of overheads using a large number of benchmarks needs to be performed.
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In addition, how microarchitectural and runtime parameters affect the performance of

these languages needs to be studied. Finally, the findings should be generally applicable

to various implementations and languages.

1.2.2 Single-Application Memory Management Performance

Once the various sources of overhead have been identified, the dissertation focuses on

reducing the overheads and optimizing single-application memory management perfor-

mance. The following research question is investigated: Can the garbage collection

overhead be reduced while optimizing the cache performance? In the baseline design,

tuning runtime parameters to lower garbage collection overhead hurts the cache perfor-

mance of the program by increasing the last-level cache miss-rate. The overall program

performance can be improved if the impacts on cache misses are reduced when garbage

collection overhead is reduced.

1.2.3 Efficient Tuning on Multi-core Processors with Shared Caches

Multi-core processors improve resource utilization by sharing the memory hierarchy

among multiple cores. In particular, the last-level cache (LLC) is shared by multiple

applications that are running concurrently. In some cases, cache contention between

the concurrent applications can significantly hurt performance. Cache partitioning is

a traditional approach that limits the impact of cache contention for unmanaged static

languages where memory access patterns are fixed.

In dynamic languages, automatic memory management parameters can be addition-

ally adjusted to alter memory access patterns and improve performance. Therefore, the
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following research question is investigated: Can automatic memory management pa-

rameters be tuned to achieve good performance on multi-core processors with shared

caches? The impact of cache sharing on the optimal memory management parameters

needs to be modeled and schemes for adjusting the parameters need to be developed.

1.3 Contributions

This dissertation proposes to reduce the performance gap between dynamic and static

languages by co-optimizing the software runtime and hardware architecture for dynamic

languages. The optimizations at these layers are transparent to the programmer and re-

quire no change to the language definitions or the programs. The results show that there

are opportunities for significantly improving application execution time by targeting in-

efficiencies at these layers.

This dissertation quantifies the sources of overhead in dynamic languages and pro-

poses optimizations related to memory management performance. Optimizations for

both single-application performance as well as the performance of multiple concurrent

applications running on a multi-core processor are considered. In particular, the disser-

tation makes the following three contributions.

1. The dissertation presents a comprehensive breakdown study of Python for a large

number of benchmarks [70]. The breakdowns of the Python interpreter execution

time are presented. Sweeps of microarchitectural parameters provide better un-

derstanding of which aspects of hardware designs affect performance of Python

runtimes. The trade-off of cache performance and garbage collection time is ana-

lyzed. Finally, it is shown that key findings can apply to other dynamic languages
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and runtime implementations. The study provides new insights regarding the op-

portunities to improve the performance of Python and other dynamic languages. C

function calls represent a major source of overhead not previously identified. The

microarchitectural study shows that dynamic languages exhibit low instruction-

level parallelism and that the presence of JIT lowers sensitivity to branch predic-

tor accuracy and increases sensitivity to memory system performance. Finally,

nursery sizing is shown to have a large impact on dynamic language performance

and needs to be done in an application-specific manner, considering the trade-off

between cache performance and garbage collection overhead, for the best result.

2. The dissertation proposes a new invalid memory region tracking mechanism that

improves single-application performance through cache installation of newly-

allocated objects, write-back reduction, and pollution control [69]. The proposed

solution works with small objects commonly used in dynamic languages. In ad-

dition, a partial tracing algorithm, which can be run to identify invalid cache lines

with lower overhead compared to full garbage collection, is described. Experi-

mental results show that this co-optimization of garbage collection and cache per-

formance can achieve significant improvements in execution time; 22% improve-

ment on average and up to 68% improvement for PyPy [15], a popular implemen-

tation for Python, and 17% improvement on average and up to 63% improvement

for V8 [52] running JavaScript.

3. The dissertation identifies that cache sharing degrades dynamic language perfor-

mance and proposes using automatic memory management to reshape memory

accesses to reduce cache contention among concurrent programs. An analytical

model is developed to better understand the interactions between the execution

time of a program and the cache and nursery sizes. A static nursery sizing scheme

based on offline profiling is presented as well as a dynamic nursery sizing scheme
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that can automatically adjust the nursery size at runtime without offline profiling.

The proposed schemes are implemented and evaluated on a real-world system.

The results show that the proposed nursery sizing schemes are quite effective in

determining good nursery sizes and can significantly increase performance over

the baseline. When four programs run concurrently, the static scheme based on

offline profiling improves the system throughput by 18.5% on average and up to

92%. This performance improvement is within 7.5% of the best nursery sizing

on average. The performance improvements for individual programs can be as

high as 3.28x. The dynamic scheme also provides performance improvements

comparable to the static scheme on average.

1.4 Organization

The rest of the dissertation is organized as follows. Chapter 2 describes key features of

dynamic languages and details of their implementation. Chapter 3 discusses the study

on the sources of overhead for Python. Chapter 4 discusses the hardware support and

software optimizations that reduce modern memory management overhead for a single

application in dynamic languages. Chapter 5 discusses offline and online schemes to ad-

just memory management considering the cache sharing between multiple applications

running on multi-core processors. Related work is surveyed in Chapter 6 and Chapter 7

discusses future work. Finally, Chapter 8 concludes the dissertation.
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CHAPTER 2

BACKGROUND

2.1 Features of Dynamic Languages

Dynamic languages parse and execute code at runtime. Since code is generally not

pre-compiled, they can support a range of features not found in static languages. For ex-

ample, they support dynamic typing where variables types do not need to be explicitly

written in code. In addition, code and classes are first-class types and can be modified at

runtime. As a result of the flexibility provided by dynamic languages, programmers can

express more complex algorithms with less code leading to more productivity. Unfor-

tunately, supporting these features requires more computational overhead than writing

explicit programs with well defined types and data structures. This section briefly de-

scribes common features of dynamic languages and why they add computational over-

head. In the following sections, some details about implementations of dynamic lan-

guage runtimes are discussed.

All variables in dynamic languages are usually dynamically typed and can be rede-

fined at runtime. The programmer does not need to specify the type of a variable and

can use the same variable to hold objects of multiple types. One advantage of dynamic

typing is that functions can be reused for multiple object types as long as the input vari-

ables support all the operations performed in the function. Classes can also be generated

and modified at runtime based on inputs to the program. For example, a class can be

constructed from a JSON file. The performance impact of supporting dynamic types is

that memory for all objects must be dynamically allocated, since the size of the object

cannot be known until runtime. In addition, functions cannot be optimized using tradi-

tional compiler techniques such as unboxing of primitives where int values are directly
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stored in hardware registers or common subexpression elimination where expressions

are simplified by the compiler to reduce computation.

Dynamic languages have runtime checks and automatic memory management built-

in. One advantage of these features is that debugging and testing is simplified; the

program will return an exception if a runtime check fails. Furthermore, these features

eliminate the possibility of memory leaks and low-level memory bugs such as buffer

overflow. The performance impact of supporting these features is that they are per-

formed even in cases where it is clear to the programmer that there would not be any

errors. For example, accessing the first element of a fixed-size array will still perform a

bounds check operation. In addition, the programmer no longer has direct control over

placement of objects in memory, so optimizing accesses for cache performance may no

longer be possible.

Dynamic languages are interpreted and programs do not need to be compiled ahead

of time. One advantage of this is that code can be modified with minimal compilation

cost and can even be changed at runtime. Furthermore, input-specific code can be gen-

erated at runtime using eval statements. The performance impact of supporting these

features is that interpretation is slow and optimizing code at runtime requires complex

just-in-time (JIT) compilers that will add overhead to the program execution when they

are run.

2.2 Interpreter Design

In order to run a program, it is parsed and translated to a series of bytecode instructions.

The language runtime contains an interpreter that reads the bytecode instructions and

executes the necessary actions. The interpreter is often implemented as a virtual machine
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Figure 2.1: Overview of CPython virtual machine architecture.

(VM) with local storage and a dispatch loop. During each loop iteration, a bytecode

instruction is fetched from an array and is executed. Compared to a traditional compiler,

the interpreter is usually simpler to design and can more easily implement complex

language constructs.

For example, Figure 2.1 shows the stages of interpreter execution in CPython [31],

the official runtime for Python. It is implemented in C as a stack-based VM with some

enhancements to support language-specific constructs. The VM uses opptr to index

into the bytecode array (co code) and retrieve the appropriate bytecode. The bytecode

is then decoded using a switch-case construct. Data is read from the stack or other stor-

age variables. The operation specified by the bytecode will be executed using the read

data as operands. Some error-checking code will ensure that the execution completed

successfully. Finally, data will be written back to the stack or other storage variables.

opptr will be updated and the process will repeat until the program completes.

2.3 Just-in-Time Compilation

Interpreters are generally slow because they perform no optimizations across bytecode

instructions. Just-in-time compilation can optimize runtime performance by converting
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Figure 2.2: Steps in just-in-time compilation.

interpreted bytecode to machine code. In addition, runtime information about object

types and values can be used to perform additional optimizations that cannot be done

ahead-of-time. Running the just-in-time compiler during runtime is relatively expensive

and the cost of compilation must be amortized by the performance improvement in the

compiled code. For this reason, JIT compilers focus on frequently executed code, such

as frequently executed loops or functions.

As shown in Figure 2.2, counters are used to track the number of times that loops

or functions execute. Once the counter reaches a threshold, the loop or function is

considered a good candidate for compilation. An additional profiling stage collects

information for the compiler optimizations. The code is then compiled and the machine

code is executed in place of the interpreted bytecode.

To generate optimized code, the compiler makes assumptions about variable types

and values, and it inserts guards to check whether those assumptions are valid during

the execution. If there is a failed guard, the compiled state is rolled back to a valid

interpreted state and the bytecode interpreter continues execution. This is called deop-

timization and is a relatively expensive operation that could affect overall performance

if it occurs too frequently. Additional steps can be added to the JIT process to better

handle repeated guard failures and optimize a portion of a function or loop.
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2.4 Automatic Memory Management

Automatic memory management is a key feature of dynamic languages that can allocate

and free objects without explicit programmer involvement. The programmer can focus

on writing functional aspects of code instead of having to worry about correctly allo-

cating objects and debugging memory bugs related to improper allocation or freeing of

objects. In most cases, a language runtime will allocate objects on demand as needed

by the program and use periodic garbage collection to free dead objects.

2.4.1 Garbage Collection

In a language with automatic memory management, garbage collection is used to free

memory from objects that are no longer in use. The process of determining which

objects are live and which are not incurs non-trivial performance overhead. In order
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to amortize its cost, garbage collection must be run at infrequent intervals. In some

cases, the cost of automatic memory management can be less than the cost of stack

allocation [6]. Garbage collectors are either reference-based or trace-based. Reference-

based garbage collectors track the number of references to an object and free the object

once the reference count reaches zero. While simpler to implement, they generally are

less efficient and cannot deal with cyclic data structures without additional complexity.

A trace-based garbage collector will run at intervals and traverse object pointers to

determine which objects are live. It starts from a set of root pointers and follows them.

It will then follow additional pointers that it encounters in the process. Objects with

pointers pointing to them are live, while objects without any valid pointers pointing to

them are dead and can be collected. In a managed language, the runtime has knowl-

edge of all pointers in the system unlike low-level languages such as C or C++, where

any variable can be dynamically cast to represent a pointer [14]. Once the live and

dead objects are differentiated, the garbage collector will free memory corresponding to

dead objects. Mark-sweep and copying are two common types of trace-based garbage

collector algorithms.

Figure 2.3(a) shows how the mark-sweep garbage collector works [90]. It marks live

objects during the mark phase and frees unmarked objects during the sweep phase. The

advantage of this algorithm is that it can run with no additional memory overhead. All

objects are freed in place and live objects are kept in the same location. It can easily be

performed incrementally allowing for better responsiveness in the program. The main

disadvantage is that the memory is left fragmented. A compact phase [28] can be added

to perform defragmentation when needed.

Figure 2.3(b) shows how the copying garbage collector works [49]. It works by

splitting the memory space into two semi spaces, one called the from space and the
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other called the to space. During garbage collection, all live objects are copied from the

from space to the to space. During the next garbage collection cycle, the space names

are switched and the same process occurs. The main advantage of this algorithm is that

dead objects are automatically freed and there is no fragmentation following the garbage

collection. The disadvantages are that half of the memory space must be reserved for

garbage collection and that pointers for live objects need to be updated once the object

is copied. This makes it difficult to perform incrementally and as a result most copying

garbage collectors will pause the application until they finish completely.

Generational garbage collection [85] is an optimized form of garbage collection that

is used in many high performance implementations of modern languages. The mem-

ory is separated into subspaces based on object age and different garbage collection

algorithms can run on the different subspaces. Figure 2.3(c) shows the simplest imple-

mentation of generational garbage collection. There is one subspace for young objects,

sometimes called a nursery, and another subspace for old objects. Objects are allocated

in the nursery and are moved to the old space if they survive long enough.

Efficient generational garbage collection relies on the assumption that most objects

in a program die young. Therefore, a copying garbage collector can efficiently move a

small number of surviving objects from the nursery to the old space. Once the object

is in the old space, a slower garbage collector, such as a mark-sweep collector, can run

less frequently. This can be extended to any number of subspaces based on age.

As shown in Table 2.1, real implementations of generational garbage collection add

variations to this general scheme. For example, the PyPy collector runs the mark-sweep

collector incrementally in the old space [108]. V8 adds an additional semi-space in the

nursery. During garbage collection, young objects are copied from one semi-space to the

other and only move to the old generation if they have already been copied once [104].

17



Table 2.1: Summary of popular language implementations that use generational garbage
collection.

Language Implementation Garbage Collector Description

JavaScript V8[104]

Two generation collector with two young
semi-spaces and and an old space. Young objects
are copied from one young semi-space to the other
and then to the old space if they survive.

Python PyPy[108]

Two generation collector with a nursery and an old
region. Young objects surviving in the nursery are
copied and moved to the old region, where
incremental mark-sweep garbage collection is used.

Ruby Rubinius[119] Concurrent generational collection.

Java Hotspot[94]

Three generation collector with a young generation
with three subspaces, an old space, and a
permanent space. An object starts in the eden
subspace of the young generation and is copied to
one of two survivor spaces. If it survives, it is
copied to the old space.

C# .NET CLR[142]

Three generation collector with a young generation
for short-lived objects, a buffer generation for
semi-short-lived objects, and an long-lived
generation.

2.4.2 Sequential Allocation

In order to make allocation fast in generational garbage collection, a sequential alloca-

tor is typically used. The nursery is always guaranteed to be empty following a garbage

collection. The sequential allocator simply uses a pointer to maintain the invariant that

anything before the pointer is allocated and anything after it is unallocated. On alloca-

tion, the pointer is incremented to maintain the invariant. A check is also performed to

ensure the allocation does not exceed the nursery bounds. If it does, garbage collection

will be run to empty the nursery and reset the pointer to the beginning of the nursery.
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CHAPTER 3

STUDY: PYTHON SOURCES OF OVERHEAD

3.1 Overview

This chapter describes a quantitative study on the sources of performance overhead in

Python, a popular dynamic language. The overhead of a dynamic language can come

from multiple aspects of the language design space. This study explores three different

aspects of the overhead to provide a more comprehensive view. First, at the language

level, some features of the dynamic language may lead to inherent inefficiency compared

to static languages. Second, a language runtime also adds overhead to dynamic lan-

guages compared to statically compiled code. This study breaks down Python execution

time into language and runtime components as well as core computations to understand

overhead sources. Finally, at the hardware level, the impact of dynamic language fea-

tures on microarchitecture-level performance is studied by looking at instruction-level

parallelism, branch prediction, and memory access characteristics. CPython [31], an

interpreter-only design, is compared with PyPy [15], a JIT-based design, to understand

the microarchitecture-level differences between the runtime implementations.

The study is broken into two main parts. The first part of the study looks at the

language and runtime features of Python to understand which aspects of the language

and runtime add additional overhead compared to C, the baseline static language. By

annotating instructions at the interpreter-level, breakdowns for a large number of bench-

marks can be generated. In addition to the sources of overhead already identified by

previous work, C function calls are found to represent a major source of overhead that

has not been previously identified.
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The second part of the study looks at the interaction of the runtime with the under-

lying processor microarchitecture. Both CPython and PyPy are found to exhibit low

instruction-level parallelism. Using PyPy with JIT helps decrease sensitivity to branch

predictor accuracy, but increases sensitivity to cache and memory configurations. In par-

ticular, the generational garbage collection used in PyPy introduces an inherent trade-

off between cache performance and garbage collection overhead. Frequent allocation of

objects in dynamic languages increases a pressure on the memory hierarchy. However,

increasing the garbage collection frequency to improve cache performance can lead to

high garbage collection overhead. The study shows that the optimal nursery size de-

pends upon application characteristics as well as runtime and cache configurations. If

the nursery is sized considering the cache performance and garbage collection overhead

trade-off, then there can be significant improvements in program performance.

While the study focuses primarily on Python, the main results are applicable to

other dynamic languages as well. Some evaluation is performed with V8 [52], a high-

performance runtime for JavaScript, to show that the main lessons still apply. Finally,

a study on JIT thresholds is discussed to show additional opportunities for improving

dynamic language performance.

The following summarizes the main contributions in this chapter:

1. A comprehensive breakdown study of the CPython interpreter execution time for

a large number of benchmarks.

2. Microarchitectural parameter sweeps to better understand which aspects of hard-

ware designs affect performance of both the interpreter-only CPython and PyPy

with and without JIT.

3. A detailed analysis of the trade-off of cache performance and garbage collection

time for PyPy.
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The following new insights are identified regarding opportunities to improve the

performance of Python and other dynamic languages:

1. C function calls represent a major source of overhead not previously identified.

2. The microarchitectural study shows that dynamic languages exhibit low

instruction-level parallelism and that presence of JIT lowers sensitivity to branch

predictor accuracy and increases sensitivity to memory system performance.

3. Nursery sizing has a large impact on dynamic language performance and needs

to be done in an application-specific manner, considering the trade-off between

cache performance and garbage collection overhead, for the best result.

The rest of this chapter is organized as follows. Section 3.2 explains the experimen-

tal setup. Section 3.3 discusses the study on the sources of overhead for Python and

Section 3.4 analyzes the interaction between the runtime and the underlying hardware.

Section 3.5 discusses the study on JIT thresholds.

3.2 Experimental Setup

Experiments were run on an infrastructure based on Pin [86]. The Pin framework en-

abled instrumentation of the runtimes at both the instruction-level and function-level

without having to modify the source code and without affecting the instructions exe-

cuted by the program. Pin tools were developed to capture dynamic instruction counts

and other statistics needed for analysis.

To get cycle count estimates for a variety of memory hierarchies and core configu-

rations, the Pin tools were interfaced with ZSim [121], a fast x86-64 simulator built on
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Table 3.1: ZSim configuration.

Core
4-way OOO, 16B Fetch, 3.40GHz

2-level 2-bit BP with 2048x18b L1, 16384x2b L2
224 ROB, 72 Load-Q, 56 Store-Q

L1I 64 kB, 8-way, 4-cycle latency
L1D 64kB, 8-way, 4-cycle latency
L2 256kB, 4-way, 12-cycle latency
L3 2MB, 16-way, 42-cycle latency

Memory 16GB DDR4-2400, 173-cycle latency

Pin. ZSim was run with a configuration that was similar to an Intel Skylake processor.

The details of the configuration are shown in Table 3.1. An out-of-order core model

(OOO) was used for most of the experiments. For the sources of overhead experiments,

the simple core model was used to be able to accurately map individual instructions to

their cycle contributions. It was assumed that each of the four physical cores had one-

quarter of the 8MB shared L3 cache available for use, so the L3 cache size available to

a core was 2MB. DRAMSim2 [117] was integrated with ZSim to model DDR4-2400

memory.

For runtimes, CPython [31] 2.7.10 with the standard compiler optimization flags

(-O3) was used as the Python interpreter and PyPy [15] 5.3.1 was used as the JIT-based

runtime for Python. Experiments were run using 48 benchmarks gathered from the

official Python performance benchmark suite [109] and from the PyPy benchmark suite.

The designers of the official Python performance benchmark suite have mentioned that

their suite focuses on real-world benchmarks, using whole applications when possible,

rather than synthetic benchmarks. Each benchmark was warmed up by running it 2

times followed by running it 3 times for evaluation.

Some experiments were performed using Google V8 [52] 4.2.0, a popular high-

performance JIT-based runtime for JavaScript. The experiments were run using 37
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benchmarks from the JetStream [17] benchmark suite, which combines benchmarks

from other suites including SunSpider, Octane, and LLVM. Benchmarks were run 3

times for evaluation.

3.3 Sources of Overhead

This section presents a quantitative study on the sources overhead of Python compared

to static languages such as C. Various sources of overhead are identified and catego-

rized, a methodology is presented to break down the Python execution time by overhead

category, and the main findings are discussed. The results in this section are reported

for CPython. Evaluation is also presented to show that some findings are applicable to

both PyPy and V8.

3.3.1 Overhead Breakdown

Table 3.2 shows the overhead sources that were identified and evaluated in this study

through careful review of language features as well as CPython source code. The over-

head categories can be placed into three groups. The language features of Python may

incur overhead because they either do not exist in a static language or require additional

dynamic operations. The interpreter itself also adds additional performance overhead

that compiled code would not have. A majority of the features have been previously

identified and evaluated either directly or indirectly (e.g. through an optimization). Ref-

erences are provided in the table to the previous work which evaluates those features.

In addition, this study identifies three new overhead categories not evaluated in previ-

ous work. They are also indicated in the table. The different components and overhead

categories are described further in the following subsections.
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Table 3.2: Sources of performance overhead for Python.

Group Overhead category Description Studied by

Additional
Language
Features

Error check
Check for out-of-bounds, over-
flow, and other errors NEW

Garbage collection
Automatically freeing unused
memory [11, 67]

Rich control flow
Support for more condition cases
and control structures [26, 67]

Dynamic
Language
Features

Type check
Checking variable type to deter-
mine operation [11, 18]

Boxing/unboxing
Wrapping or unwrapping integer
or float types [11, 18]

Name resolution Looking up variable in a map [26]

Function resolution
Dereferencing function pointers
to perform an operation [26]

Function
setup/cleanup

Setting up for a function call and
cleaning up when finished [26, 11, 67]

Interpreter
Operations

Dispatch
Reading and decoding bytecode
instruction [22, 26]

Stack
Reading, writing, and managing
VM stack [26, 18]

Const load Reading constants [26]

Object allocation
Inefficient deallocation followed
by allocation of objects [67]

Reg transfer
Calculating address of VM stor-
age NEW

C function call
Setting up and cleaning up from
calling helper functions in the in-
terpreter

NEW

Additional Language Features

This category consists of language features that do not exist in static languages such

as C. The errorcheck overhead comes from runtime checks that Python performs to

guarantee safety and robustness. After an operation, Python performs checks such as an

overflow check on the int types and bound checks on the list types. The garbage

collection overhead comes from operations for runtime garbage collection such as
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maintaining reference counters and freeing memory. The rich control flow over-

head results from checking various conditions in the case of richer evaluation of condi-

tion or for managing the block stack in the case of support for more control structures.

Dynamic Language Features

This category captures language features that exist in C but requires additional runtime

operations in Python. A majority of these features are managed statically in C at com-

pile time. Setting up a function call and cleaning up on a return is done dynamically in C

through the calling convention, but it requires significantly more computation in Python.

The overheads in this group would still be present even if Python programs were com-

piled ahead-of-time because the compiler lacks necessary runtime information. Python

uses dynamic typing, so types of the variables and where they are allocated are not

known until runtime. Python cannot resolve types of variables statically because they

are not explicitly given in the program. In addition, the variables with unknown types

cannot be allocated statically so the locations of variables are only known dynamically.

The typecheck overhead relates to all checks the interpreter must perform to de-

termine the type of the variable. In Python there is usually a check for variable type

before an operation is performed on the object. The boxing and unboxing overhead

relates to reading integer and float primitives values from the object and writing back

these primitive values to the object. These primitives would normally be stored in ma-

chine registers for a C program, but are represented as objects with type information in

Python. For example, in an add operation, the values of the two variables to be added

will be read from the corresponding object. The sum will be computed and will be

written back to another object representing the sum.
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The name resolution overhead relates to looking up the variable pointer in a map

by using the variable name as the key. Types of global variables are not known and they

can be created and destroyed dynamically, so Python uses maps to store pointers to the

variables. The function resolution overhead relates to dereferencing of function

pointers. Functions in Python are first class objects that can be created and destroyed,

so Python stores function pointers for common operations related to an object.

The function setup/cleanup overhead relates to setting up a call to a function

and cleaning up on a return. In order to setup up a call, Python needs to determine the

function type (both Python and C functions are supported). If it is a C function, then the

inputs passed in through the C extension interface and the output needs to be returned.

If it is a Python function, an execution frame for the function needs to be allocated.

Functions that require variable arguments require special attention. Once the function

returns, Python needs to deallocate the frame and pass the return value to the caller.

Interpreter Operations

In addition to categories relating to language features, there are categories related to

the overhead of running the interpreter. These relate to the cost of emulating a virtual

machine on a physical machine. The dispatch overhead relates to reading the bytecode

and decoding it to perform the correct operation. This includes the execution of the

dispatch loop and a switch statement for decoding.

CPython is a stack-based virtual machine. The stack overhead relates to operations

for managing the stack. Operations read from the stack and write to the stack. The stack

is local storage for the VM similar to the register file for the CPU. The stack is not meant

to store program state, but act as local storage for intermediate values. There are some
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bytecodes for explicitly managing the stack, such as DUP TOP which duplicates the top

entry. In addition to the stack, there are data structures which store constant values. The

const load overhead is the overhead of loading constants to the stack. Constants are

stored in the co const array. The values first need to be loaded to the stack before they

are used by other bytecodes.

In the interpreter implementation, there are certain objects that could be reused but

are instead deallocated and reallocated. The object allocation overhead captures

the case an object is deallocated then reallocated. For example, most method frames are

allocated during execution of the method and deallocated when it finishes. In addition,

arithmetic operations take operands from the stack and generate a new value. When the

operation completes, the original operands are deallocated and a new object is allocated

for the value.

Since CPython is written in C, there may be additional inefficiencies introduced by

how the interpreter is written. The C function call overhead captures the additional

cost of setting and cleaning up C functions in the interpreter. This includes the cost of

creating and destroying stack frames and performing the call. The use of a C function

to write good refactored code results in many function calls per bytecode instruction.

These calls cannot be inlined in most cases because function pointers are used.

When reading a VM data structure, such as the stack, the CPU will first load the

address of the data structure first to the machine registers. Then it will compute the ef-

fective address of the Python variable (e.g. top of stack). Finally, it will load the Python

variable into the machine register. This additional step of finding the data structure of

the VM and loading it to machine registers is categorized as reg transfer.
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3.3.2 Analysis Approach

Based on the described overhead categories, the goal was to develop an analysis tool that

could return the contribution of each category to the overall execution time. Since the

Python program is running on a statically-compiled interpreter, each instruction of the

interpreter can be annotated with a category label. When running the program with the

annotated interpreter, a breakdown of the time spent in each category can be generated

for any Python program with no additional effort.

The annotations of the execution must relate to the execution of the whole Python

program and not just the sources of overhead. Some instructions can be directly an-

notated with the overhead categories summarized in Table 3.2. Other instructions are

needed to execute the program and cannot be annotated with an overhead category. For

example, a Python BINARY ADD bytecode has overheads associated with type checking,

unboxing, error checking, etc., but also performs an ALU add operation between the two

variables. Instructions needed to execute the program are annotated with an execute

label. The analysis breakdown includes the contribution of the execute category in

addition to the overhead categories.

Annotating each static instruction alone cannot provide an accurate breakdown.

There are cases where a function’s annotation depends on the calling function. For

example, CPython uses the same dictionary lookup function for both looking up a vari-

able in a global map and for performing a lookup operation on a map data structure used

in the Python program. In the case of looking up in the global map, the function should

be annotated with the name resolution overhead category. In the other case, the func-

tion should be annotated with the execute category. The call sites of these functions

can be used to support different labels.
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An alternative analysis approach to quantifying the different overhead sources would

be to start with C code of a program and transform it to a Python program while itera-

tively introducing the necessary language features and implementation details. At each

step, the slowdown of introducing the additional feature could be measured. Based on

this, the performance gap between Python and C for a given program could be under-

stood. This process is very tedious and would be difficult to apply to many programs.

Similarly, starting with a Python program and introduce more static features into the

language to eliminate the dynamic runtime overhead would also be tedious and hard to

apply to many programs.

Gathering Statistics with Pin

In order to implement the analysis method, Pin [86] was used to instrument the CPython

interpreter. To make the analysis more flexible, a Pin tool was written to export essential

runtime statistics and a post-processing step was then performed to generate the break-

down. The Pin tool exported statistics for some of the functions in the interpreter at

the instruction granularity. For these functions, the total execution time of the static

instruction at the given PC value was exported.

If a function could be labeled by a single category, then statistics were exported at

the function granularity to limit the size of the statistics files and to make annotations

more feasible. In addition to the function name and its execution time, the origin PC

was also exported. The origin PC is the most recent PC in the call trace that belongs to

a function that is being annotated at an instruction granularity.

Some categories were automatically annotated by the Pin tool by detecting instruc-

tion sequences in the assembly code. For example, the Pin tool could identify and cate-
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gorize the assembly instructions relating to the C function call and reg transfer

overheads. The time spent running instructions for each of these categories was ex-

ported.

Cycle Count Estimates Using ZSim

While instruction count may be a good first-order estimate, it does not capture micro-

architectural aspects such as memory latency and branches. The Pin tool was interfaced

with the ZSim [121] simulator (also a Pin tool) to estimate cycle counts in addition to the

instruction counts. ZSim has an out-of-order core model that can model an out-of-order

pipeline as well as branch mispredicts and cache misses. However, attributing cycle

counts to a single instruction becomes challenging for an out-of-order core because the

latency of an instruction in the pipeline can be affected by other instructions also in the

pipeline.

Instead, the simple core model was used to measure the number of cycles each in-

struction took to execute. In the simple core model, instruction latency is only affected

by misses in the instruction and data caches. Otherwise, an instruction takes a single

cycle. Including memory latency in the execution time gave a better first-order estimate

of the sources of overhead than just dynamic instruction counts.

Post-Processing

During post-processing, annotated source line numbers in the interpreter were mapped

to PC values in the exported statistics file. For functions that were annotated at the

instruction granularity, each line of the CPython source code was annotated with a

category. Functions that were annotated at the function granularity were either anno-
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tated with a single category based on the name of the function or by multiple categories

based on the name of the function and the origin PC if the category was caller-specific.

CPython was compiled with the (-g) flag to be able to match source lines with PC val-

ues. By running the post-processing, a breakdown of the execution time (in CPU cycles)

for each of the categories was generated.

The CPython interpreter only needed to be annotated once and not for each Python

program. Since all Python programs ran on the same interpreter, the PC values and

source line number mappings for the interpreter remained the same and the annotations

could be reused. As a result, a large number of Python programs were analyzed and

compared with the same set of annotations.

3.3.3 Experimental Results

Execution Time Breakdown

Figure 3.1(a) shows the contributions of language features (both additional and dy-

namic) come from many categories, all adding up to a significant portion of the

total execution time. Among these categories, name resolution and function

setup/cleanup overheads dominate with 9.1% and 4.8% average overhead respec-

tively. To reduce the impact of function setup/cleanup, Python functions can be

inlined. For name resolution, variable look-ups can be cached [26].

Figure 3.1(b) shows the contributions of interpreter operations to the execution

time. C function calls and dispatch are major contributors overall with 18.4%

and 14.2% average overhead. In previous work, dispatch has been repeatedly iden-

tified as a major source of overhead [77, 22]. However, C function calls have not

been identified as a major source of overhead in the context of interpreters.
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Figure 3.1: Overhead breakdown for CPython.
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Some previous work has focused on optimizing BTB performance of indirect

branches and indirect calls in interpreters [23, 47]. Additional analysis shows that indi-

rect calls (but not indirect branches) account for an average of 11.9% and up to 19.0%

of the C function call overhead, representing an average of 1.9% and up to 4.1% of the

overall execution time. Therefore, there are other aspects of the C function call overhead

that more significantly impact the execution time, such as setting up and destroying the

stack frame. These aspects should also be studied and optimized.

On average, the identified overheads account for 64.9% of the overall execution

time. The remaining 35.1% is used for the execution of the program. Therefore, there

is at least 2.8x increase in execution time on average moving from a C-like program to

a Python program running on CPython due to language and interpreter overheads. In

reality, the program written in C can run one or two orders of magnitude faster than the

program written in Python [67] because the C compiler can further optimize the program

using static information about types and memory layout of objects.

During execution, the Python programs spend an average of 7.0% of their overall ex-

ecution time calling library code written in C. Some benchmarks such as pickle dict,

pickle list, regex dna, regex effbot, regex v8, unpickle, and unpickle list

spend more than 64% of their time executing C library code. As a result, the over-

head categories account for a smaller percentage of the execution time. However, C

function call overhead still exists and is still significant even in the C library code.

Applicability to Other Runtimes and Languages

Since C function call overhead can be automatically annotated by the Pin tool by detect-

ing the instructions related to the calling convention, the Pin tool was used to analyze
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Figure 3.2: C function call overhead for PyPy.
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Figure 3.3: C function call overhead for V8.

the C function call overhead of PyPy with JIT and V8. Figure 3.2 and Figure 3.3 show

that this overhead is significant in these runtimes as well with 7.5% and 5.6% aver-

age overhead for PyPy and V8, respectively. The JIT compilation reduces some of the

overhead by inlining methods and generating traces. These results indicate that optimiz-

ing C function call overhead is important for achieving good performance in dynamic

languages in general.
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3.4 Interaction with Hardware

So far, the effects of underlying hardware on program behavior has not been considered.

This section explores how the runtimes interact with the underlying hardware. First, the

sensitivity of the runtime performance to various microarchitectural parameters is stud-

ied. PyPy performance is found to be sensitive to cache hierarchy and memory system

parameters. Since memory management is a key contributor to cache performance, the

interaction of memory management with the underlying hardware is then studied.

3.4.1 Microarchitecture Parameter Sweeps

This section explores the sensitivity of runtime performance to various microarchitec-

tural parameters. Benchmarks were run on CPython and PyPy with and without JIT to

see if there were differences in the sensitivity between an interpreter-based runtime and

a runtime that additionally uses JIT compilation. Figure 3.4 shows how the CPI (cycle-

per-instruction) changes as various microarchitecture parameters are swept. Here, the

average CPI numbers across all benchmarks are shown. The PyPy with JIT execution is

additionally broken down into different phases of execution by annotating PyPy at the

function granularity using Pin. For the issue width sweep, the fetch width was set to be

large to prevent it from becoming a bottleneck. The fetch width sweep results are not

shown but show a similar trend as the result for issue width.

The results show that the performance of both CPython and PyPy are relatively in-

sensitive to the processor fetch width and issue widths, suggesting that there is low

instruction-level parallelism. The branch results indicate that merely increasing the

branch prediction table size does not improve branch prediction accuracy enough to
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Figure 3.4: CPI with microarchitecture parameter sweeps. A line is shown for each
runtime as well as phases in PyPy execution.

impact performance. However, when the table is too small and prediction accuracy suf-

fers, the interpreter-based runtimes suffer more than a runtime with JIT. This indicates

that JIT helps lower sensitivity to branch prediction accuracy.

On the other hand, cache and memory parameters have significant impacts on per-

formance of PyPy with JIT. This indicates that the JIT significantly increases pressure

on the memory hierarchy. In particular, the performance depends heavily on cache sizes.
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Interestingly, the same programs running on the CPython interpreter and PyPy without

JIT do not require a large cache. This indicates that the working set of an application it-

self is not large. Therefore, there is no fundamental reason why the bytecode interpreter

and compiled code phases of PyPy with JIT require a large cache to run efficiently. In

addition, the CPI for PyPy with JIT is greater than the CPI for CPython and PyPy with-

out JIT. This indicates that while the JIT lowers the number of instructions executed,

each instruction takes more cycles to execute due to longer average memory access la-

tency. This is further shown by the sensitivity of the PyPy with JIT to memory latency

and bandwidth.

The cache line size sweep shows that PyPy with JIT benefits from using larger cache

line sizes, while the interpreter runtimes do not. After a closer study, the need for a large

cache and cache line sizes appears to come from the interaction of the memory manage-

ment system with the caches. This observation introduces an interesting opportunity for

performance optimization and is discussed in more detail in the next subsection.

Figure 3.5 shows the results of microarchitecture parameter sweep when the over-

all CPI is shown for a few of the benchmarks. The general trend is the same as the

previous figure. Yet, this figure shows that the performance impacts of microarchitec-

ture parameter changes depend on individual application characteristics. Note that it is

possible for benchmarks to perform better with a higher memory latency (e.g. 100 vs.

50 cycle latency) due to the unpredictable nature of out-of-order instruction scheduling.

The sweeps for V8, another JIT-based runtime, are shown in Figure 3.6. They show

trends similar to PyPy with JIT indicating that the memory management interaction is

important for other JIT-based runtimes as well.
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Figure 3.5: CPI with microarchitecture parameter sweeps. Each bar shows the overall
CPI for one benchmark running on PyPy.
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Figure 3.6: CPI with microarchitecture parameter sweeps. The line shows the average
CPI for V8.

3.4.2 Memory Management Interaction

This section shows that the memory management system contributes to the sensitivity in

cache performance for PyPy with JIT. Proper sizing of the nursery is essential to achiev-

ing good cache performance. However, reducing the nursery size to improve cache

performance may not lead to better overall program performance due to the increased

overhead from garbage collection. The interaction of the memory management system

with the cache hierarchy is explored in more detail.

Figure 3.7 shows the last-level cache (LLC) miss rates as a function of the nursery

size. When the nursery is smaller than the cache size (i.e. 2MB), new objects can be

allocated directly in the cache and miss rates are low. Once the nursery is too large to
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Figure 3.7: LLC miss rate as a function of nursery size.
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Figure 3.8: PyPy execution breakdown for different nursery sizes.

fit in the cache, cache thrashing occurs and most object initializations miss in the cache.

The miss rate increases significantly by almost a factor of 2.4.

Figure 3.8 shows the breakdown of the execution time normalized to the overall

execution time of running with a nursery that is half the cache size (i.e. 1MB nursery

for 2MB cache) averaged across all of the benchmarks. It shows that on average the

increase in cache miss rate hurts overall performance for nursery sizes slightly larger

than the cache size. However, as discussed in Appendix A, garbage collection can be

run less frequently by increasing the nursery size. This spreads some of the overhead

over more of the program execution and reduces the number of live objects that will be

traced and moved. With a much larger nursery, the lower garbage collection overhead

offsets the increase in execution time for the rest of the application (i.e. Non-GC) due to
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Figure 3.9: Nursery sweep for PyPy with different runtime configurations and last-level
cache sizes.

the poor cache performance. These results suggest that nursery sizing purely for good

cache performance may not always result in good overall performance.

The choice of runtime configuration and the amount of cache space also affect the

performance trade-off. Figure 3.9 shows the average execution time of four configura-

tions for the different nursery sizes normalized to the 1MB nursery case. The first two

configurations use a LLC size of 2MB without and with JIT. The next two configura-

tions use PyPy with JIT with different LLC sizes (8MB is the on-chip shared L3 size for

Skylake processors).

For PyPy without JIT, the average trend suggests that sizing the nursery size for

cache performance is beneficial for overall performance. As shown in Figure 3.10, this

is due to the fact that the contribution of garbage collection to the overall execution time

is small. By optimizing the program execution with JIT, the contribution of garbage

collection increases by 4.6x from 3% to 14% on average. As a result, sizing the nursery

only for cache performance can hurt the overall performance due to the larger relative

garbage collection overhead. Note that although the relative overhead of garbage col-
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Figure 3.10: Garbage collection time as a percent of program execution time.
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Figure 3.11: Nursery sweep for individual benchmarks running on PyPy with JIT.

lection increases significantly when using JIT, the absolute garbage collection time only

increases by 5.4% on average.

Figure 3.11 and Figure 3.12 show the sweeps for individual benchmarks for PyPy

with and without JIT respectively. The results suggest that one sizing policy is not

good for all the benchmarks and the optimal nursery size also depends on the runtime

configuration being used (i.e. with or without JIT). Some applications like eparse

which have a large garbage collection contribution for both PyPy with and without JIT
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Figure 3.13: Nursery sweep for V8 with different last-level cache sizes.

will benefit from a large nursery. Other applications like fannkuch which have low

garbage collection contribution for both PyPy with and without JIT will benefit from

a nursery sized for good cache performance. There are also some applications like

pyxl bench which may benefit from a large nursery size for PyPy with JIT and a small

nursery size for PyPy without JIT due to the large change in the garbage collection

contribution as a result of running JIT.

Figure 3.9 also shows that the cache size affects the trade-off. With a larger cache, a

larger nursery can fit in the cache and the better cache performance contributes to better

overall performance. Figure 3.13 shows that this trend also exists for V8 suggesting that
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Figure 3.14: Normalized execution time for best nursery size per benchmark.

this trade-off will be important to explore for implementations beyond PyPy.

Figure 3.14 shows that by choosing the best nursery size for each application, the

normalized execution time can drop by an average 21.4% over the baseline that sets the

nursery size to be half of the cache size (i.e. 1MB nursery for 2MB cache). In com-

parison, simply increasing the nursery to the maximum size for all applications would

only result in 9.8% average execution time reduction. These results further suggest that

nursery sizing should be done considering cache performance, runtime configuration,

and application characteristics.

3.5 Study on JIT Thresholds

JIT compilation can improve performance of an interpreted program by compiling byte-

code to machine code. However, there are cases where using JIT is actually worse than

using an interpreter. This is mostly due to the overhead of compilation and deoptimiza-

44



ch
a

m
e

le
o

n
ch

a
o

s
cr

yp
to

_
p

ya
e

s
d

e
lta

b
lu

e
d

u
lw

ic
h

_
lo

g
e

p
a

rs
e

fa
n

n
ku

ch
flo

a
t

g
o

h
e

xi
o

m
h

tm
l5

lib
js

o
n

_
d

u
m

p
s

js
o

n
_

lo
a

d
s

lo
g

g
in

g
_

fo
rm

a
t

m
a

ko
m

e
te

o
r_

co
n

te
st

n
b

o
d

y
n

q
u

e
e

n
s

p
ic

kl
e

p
ic

kl
e

_
d

ic
t

p
ic

kl
e

_
lis

t
p

id
ig

its
p

yf
la

te
p

yx
l_

b
e

n
ch

ra
yt

ra
ce

re
g

e
x_

co
m

p
ile

re
g

e
x_

d
n

a
re

g
e

x_
e

ff
b

o
t

re
g

e
x_

v8
ri

ch
a

rd
s

ri
e

tv
e

ld
sc

im
a

rk
_

ff
t

sc
im

a
rk

_
lu

sc
im

a
rk

_
m

o
n

te
sc

im
a

rk
_

so
r

sc
im

a
rk

_
sp

a
rs

e
sp

e
ct

ra
l_

n
o

rm
sp

itf
ir

e
sp

itf
ir

e
_

cs
tr

in
g

io
sy

m
_

e
xp

a
n

d
sy

m
_

in
te

g
ra

te
sy

m
_

st
r

sy
m

_
su

m
te

lc
o

tu
p

le
_

g
c

u
n

p
a

ck
_

se
q

u
n

p
ic

kl
e

u
n

p
ic

kl
e

_
lis

t
G

E
O

M
E

A
N

0

1

2

3

4

5
N

o
rm

a
liz

e
d

 E
xe

cu
tio

n
 T

im
e

6 49
100 71

24
3148 6

67
17

60

PyPy w/o JIT PyPy w/ JIT

Figure 3.15: The execution time of PyPy normalized to CPython.

tion which needs to be amortized over time by the more efficient machine code. This

section discusses a study which shows that one way to better amortize the JIT overhead

is to more intelligently choose when to JIT.

Figure 3.15 compares the execution time of PyPy (with and without JIT) to CPython.

The figure shows that JIT compilation in PyPy can often significantly speed up appli-

cations. On average, PyPy with JIT reduces program execution time by 43.3% and up

to 98.8%. Yet, the speed-up heavily depends on application characteristics. There are

some programs, such as rietveld that may execute faster without JIT. In addition, the

PyPy bytecode interpreter runs on average 2.54x slower than the CPython interpreter,

so the JIT optimizations must also improve performance enough to compensate for the

slowdown.

Figure 3.16 shows the breakdown of a program execution time based on the JIT
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Figure 3.16: Breakdown of the execution time by JIT phases.

phases. A Pin tool was used with ZSim to identify functions related to the different

phases and collect stats for each phase separately. For most applications, the compiled

code execution and the bytecode interpreter account for most of execution time. Even

though JIT compilation is slow, its contribution to the overall execution time is low

because the cost is amortized over the entire program execution. The phases that are

related to running JIT (i.e. deoptimization, profile, compilation) account for an average

of 18.5% and up to 54.0% of the execution time. In addition, benchmarks still spend an

average of 24.4% and up to all of their execution time in the bytecode interpreter. The

breakdown suggests that there is opportunity to use JIT to optimize more code.

In order to test out the potential benefits of optimizing more code with JIT, a simple

experiment was run to try out different JIT thresholds for each program and compare the

improvement in the execution time. The JIT compiler optimizes code when a loop count
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Figure 3.17: JIT threshold which results in the best performance.
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Figure 3.18: Execution time for best JIT threshold normalized to execution time when
threshold is 1000.
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reaches the JIT threshold. Thresholds of 100, 500, 1000, 5000 were used. With a thresh-

old of 100, JIT compilation runs earlier in the execution and there is more opportunity

to amortize the cost of running the compiler. In contrast, with a loop threshold of 5000,

compilation is only done for the most frequently running loops. Figure 3.17 shows the

threshold that resulted in the best execution time for each benchmark. As shown in the

figure, there is no best threshold for all of the applications. Figure 3.18 shows the cor-

responding execution times at the best threshold for the various benchmarks normalized

to the case of running with a threshold of 1000 (the default threshold for PyPy is 1039).

If a good threshold is chosen, the results indicate that there would be an average 12%

improvement in execution time and improvements can be as much as 75%. The results

suggest that more intelligently choosing when to JIT based on the trade-offs can be one

way to improve performance of programs with JIT.

It is worth noting that there would probably be more room for improvement if more

loop thresholds were used in the experiments. In addition, the same loop threshold is

applied to all of the loops in the program. Using a more fine grained approach and

selecting loop thresholds on a per-loop basis may also result in more improvements.

Determining how to best choose loop threshold remains an open question. There may

be an opportunity to use hardware counters to inform these decisions.
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CHAPTER 4

CACHE-AWARE OPTIMIZATIONS FOR SINGLE-APPLICATION MEMORY

MANAGEMENT

4.1 Overview

As discussed in the previous chapter, there is a fundamental trade-off between garbage

collection overhead and cache performance of dynamically allocated objects in dynamic

languages. On one hand, frequent garbage collection operations lead to significant per-

formance overhead. On the other hand, less frequent garbage collection requires more

memory space to keep dynamically-allocated objects over a longer garbage collection

period. Such memory allocation using a large memory region increases the working

set size and can significantly degrade the cache performance through loading of newly

allocated objects from memory and increased cache pollution and write-backs. The im-

pact on cache performance is particularly significant if the memory space for frequent

allocations does not fit into on-chip caches. The baseline heuristic for PyPy chooses the

nursery size to be half of the last-level cache size for young objects in order to balance

cache pressure and garbage collection overhead.

In this chapter, hardware support and software optimizations are proposed for re-

ducing memory management overhead in dynamic languages. First, cache performance

is optimized for newly-allocated objects by directly placing them in on-chip caches

without reading the corresponding locations from off-chip memory. Because newly-

allocated memory locations need to be initialized anyways, there is no need to read their

previous values from memory. Next, cache pollution and additional write-backs caused

by newly-allocated objects is reduced using a partial tracing strategy that determines

dead cache lines that do not need to be kept or written back.
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These optimizations remove the main obstacles in using a large memory region for

new memory allocations and enable running garbage collection far less frequently than

what is considered to be optimal. In this way, both overhead for both garbage collec-

tion and frequent memory allocations can be reduced. The experimental results show

that this co-optimization of garbage collection and memory allocation can achieve sig-

nificant improvements in execution time; 22% improvement on average and up to 68%

improvement for PyPy [15], a popular implementation for Python, and 17% improve-

ment on average and up to 63% improvement for V8 [52] running JavaScript.

The high-level idea of directly placing newly-allocated memory locations into on-

chip caches without off-chip accesses is known as cache installation and has been stud-

ied previously in the context of C and C++ [83, 63, 120]. However, the cache installation

itself only leads to small performance improvements for C and C++ because they only

optimize relatively infrequent memory allocations. Optimizing initialization of newly-

allocated locations is far more important for dynamic languages with frequent memory

allocations and, more importantly, can be used to enable less frequent garbage collection

to significantly reduce overhead of managed memory. Co-optimization of garbage col-

lection and memory allocation is essential in obtaining the performance improvements

that are reported.

Moreover, previous cache installation mechanisms for C and C++ are not well-suited

for dynamic languages. The previous mechanisms are designed for memory allocations

for objects larger than a cache line (64 bytes). Yet, dynamic languages often allocate

objects smaller than a cache line. In addition, previous designs are not built to reduce

unnecessary cache pollution and write-backs. The proposed invalid memory tracking

mechanism is designed to enable cache installation even for small objects by leveraging

the sequential memory allocators widely used with generational garbage collectors. The
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same tracking mechanism can also be used to reduce unnecessary cache pollution and

write-backs with software assistance.

The following summarizes the main contributions in this chapter:

1. A detailed study of the sources of cache misses in dynamic languages is provided

as well as insight into the challenges in eliminating those misses.

2. A new invalid memory region tracking mechanism is presented that allows cache

installation even for small objects commonly used in dynamic languages as well

as write-back reduction and pollution control.

3. A partial tracing algorithm is described that can be run to identify invalid cache

lines with lower overhead compared to full garbage collection overhead.

4. The results show that the proposed optimizations can lead to significant perfor-

mance improvements in the state-of-the-art implementations of two widely used

dynamic languages, Python and JavaScript, using a wide range of applications.

The rest of this chapter is organized as follows. Section 4.2 describes a study on

cache performance in dynamic languages. Section 4.3 describes the invalid memory

tracking mechanism and Section 4.4 describes the partial tracing algorithm. Section 4.5

evaluates the proposed memory management optimizations. Section 4.6 discusses some

other approaches for improving performance and provides evaluation results for those

approaches.
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Figure 4.1: Breakdown of LLC miss rate as a function of nursery size.

4.2 Cache Performance Study

4.2.1 Miss-rate Breakdown

Figure 4.1, which shows the last-level cache (LLC) miss-rate breakdown as a function of

the nursery size, gives insight into why there is poor cache performance for large nursery

sizes. As the nursery size increases, the overall LLC miss-rate increases significantly,

mainly because initial accesses to newly-allocated nursery locations miss in the cache

(shown as Nursery Invalid). The results suggest that it is important to reduce cache

misses for initial nursery accesses in order to enable using a larger nursery with low

garbage collection overhead.

A larger nursery also puts more pressure on caches and increases cache misses for

non-nursery accesses (Non-Nursery) or nursery accesses after the initialization (Nursery

Valid). While not shown in the figure, the number of write-backs can also increase

significantly for a large nursery.
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Figure 4.2: Execution time as a function of nursery size when new objects are directly
installed in caches.

4.2.2 Cache Installation of Invalid Memory

The initial accesses to newly-allocated objects represent a series of stores to initialize

the objects. These accesses retrieve a cache line from memory and simply overwrite

it with a new value. Therefore, there is no need to read these invalid (uninitialized or

unallocated) memory locations. Instead, a store miss to an invalid memory region can

be serviced by directly placing an arbitrary value (such as zero) into the cache block

without reading memory if all memory locations mapped to the cache block are invalid.

This technique is often called cache installation.

The cache installation of invalid memory regions not only reduces unnecessary

memory accesses, but also enables using large nursery sizes to reduce garbage collection

overhead. Figure 4.2 shows the normalized execution time as a function of the nursery

size when all initial accesses to invalid (uninitialized or unallocated) nursery locations
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are somehow identified and directly placed into an on-chip cache without off-chip ac-

cesses. Unlike the baseline PyPy, large nursery sizes combined with cache installation

can significantly improve the performance. On average, the 64MB nursery with cache

installation outperforms the baseline (1MB nursery) by 28.7%. Gcbench, which has

high garbage collection overhead runs 69.4% faster with a 64MB nursery. Nqueens,

which originally shows a 2.7x slowdown for the 64MB nursery in the baseline, only

shows a 2.7% slowdown with the ideal cache installation. The results suggest that the

co-optimization of the nursery size and the initial cache misses for the nursery has a

potential for significant performance improvements.

While cache installation helps reduce read memory traffic, it does nothing to reduce

write-backs or cache pollution. The newly installed cache lines cause existing cache

lines to be evicted. On average, using a 64MB nursery results in 3.74x more write-backs

compared to a 1MB nursery in PyPy. Additional write-backs usually do not directly

affect performance as they happen in the background. Yet, it can be a significant concern

for bandwidth-limited systems.

4.2.3 Memory Allocation Size

In order to use the cache installation, a full cache line must be guaranteed to be uninitial-

ized. In static languages such as C and C++, memory allocations are often larger than a

cache line, and existing cache installation mechanisms either explicitly capture memory

allocations larger than a cache line using a table [83] or capture a series of stores that

overwrite an entire cache line over a short period [63, 120].

For dynamic languages, however, memory allocation sizes are often small. Fig-

ure 4.3 shows the cumulative distribution of the allocation size (in bytes) for PyPy and
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Figure 4.3: The cumulative distribution of the memory allocation size for PyPy and V8.

V8. The distribution is averaged across all benchmarks (49 for Python and 37 for V8).

The vertical line represents the typical cache line size of 64 bytes. For PyPy, more than

73.2% of allocated objects are smaller than a cache line. For V8, 85.9% of allocations

are smaller than a cache line. The results suggest that the cache installation for dynamic

languages must be able to effectively handle small object allocations.

4.3 Invalid Memory Region Tracking (IMRT)

Invalid memory regions can be defined as memory locations that are either unallocated

or uninitialized. When an object is created, memory is allocated but remains uninitial-

ized. Upon calling the constructor, data is written to the object for initialization. The

initialized object can thereafter be used.
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To use cache installation and not load data from memory, a whole cache line needs

to be guaranteed to be from an invalid memory region. Invalid memory regions do not

contain useful data and can hold any value without affecting the functionality of the

program. Most processor caches associate multiple words with a tag in a single cache

line (e.g. 64-bytes). In a typical write-allocate cache design, cache lines which are

written to must be first loaded from memory because neighboring words in the same

cache line may be later read. If the whole cache line is from an invalid memory region,

reading from memory unnecessarily uses memory bandwidth and increases latency.

Explicitly tracking memory allocations is not enough for cache installation in dy-

namic languages because most allocations are smaller than a cache line. Even if a

memory allocation is identified, a cache line should still be read from off-chip mem-

ory because some words in the cache line could still be valid.

Instead, two features of the typical memory management with generational garbage

collection can be used to enable allocating of full cache lines:

1. The nursery is fully unallocated after each garbage collection.

2. The allocation is done in a sequential fashion.

These features ensure that installation does not affect functional correctness by guaran-

teeing that memory locations above a newly-allocated object are always invalid. If an

object is smaller than a cache line, a full cache line is installed into the cache. In the

program, however, the object is still allocated in memory at a byte granularity.

To limit the cache pollution, objects should be installed in the cache when they are

needed. Premature cache installation may unnecessarily evict useful cache lines. A

small hardware table is proposed to track invalid memory regions in the nursery at the
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Figure 4.4: An example of splitting an invalid memory region into two after a memory
allocation.

cache-line granularity (typically, 64 bytes). Then, invalid memory locations are directly

installed in the cache on the first write to the corresponding cache line.

4.3.1 Tracking Table for Address Ranges

In order to track invalid regions, the software must first tell hardware where the initial

invalid memory region is. For the nursery, this only needs to be done every garbage

collection cycle and when it is first allocated. The software provides the base and bound

as full addresses. Hardware keeps cache-line aligned base and bound addresses using a

table, and only installs cache lines that are fully covered by the invalid memory region.

Each entry of the tracking table stores a memory range (cache-line aligned base and

bound addresses) for one invalid memory region. When software initially provides the

base and bound, an entry is added to the table and other entries that fall within the base

and bound of the added entry are cleared. The hardware table monitors stores within

the invalid region, and updates its entries to maintain the invariant that every range in

the table is guaranteed to represent an invalid memory region. Figure 4.4 shows how the

invariant is maintained by splitting one entry into two when there is a store in the middle

of an invalid region.
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Figure 4.5: Cache installation decision on a store.

4.3.2 Handling Tracking Table Evictions

Because a hardware table has a limited size, it may eventually run out of space. In that

case, one of the memory ranges need to be evicted. To limit loss of information, an

eviction policy that evicts the smallest range should be used.

Even if an entry is evicted, the tracking will still be correct in the sense that there is

no false detection of invalid regions. Some stores to invalid memory regions may not

be detected and handled normally without cache installation, but the program execution

will still be correct.

4.3.3 Cache Installation

Figure 4.5 shows how the cache installation using invalid memory region tracking can

be done at the LLC (last-level cache) level. On a store miss, the IMRT will be checked.

If the requested block is from an invalid memory region, then the cache line will be

installed instead of being requested from memory. Placing the tracking table at the LLC

removes the need for changing the cache coherence protocol and also enables using

the table to identify invalid cache lines for reducing unnecessary cache evictions and

write-backs.
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Yet, placing the tracking at the LLC-level level introduces a challenge; tracking

needs to be performed using physical addresses instead of virtual addresses. This re-

quires OS support for setting the initial invalid region. When the user-level software

performs a system call with an invalid memory region in virtual addresses, the OS trans-

lates them to physical address regions and sets the tracking table. As a contiguous virtual

address range may not map to a contiguous physical address range, the OS may need to

set multiple physical address ranges in the tracker.

Since the tracker is managed by the OS and uses physical addresses, multiple pro-

cesses and threads can share the hardware by invoking the relevant system calls to set

the entries. The same hardware can also be used by the OS when mapping and unmap-

ping pages before, during, and after program execution, to eliminate the need to read in

new pages to cache or write-back unused pages from cache.

4.3.4 Implementation Details

The tracking hardware needs interfaces for both an OS and a memory allocator. These

interfaces can be implemented in many ways. Here, a design using memory-mapped in-

terfaces is shown. For the OS interface, a unique hardwired physical address is assigned

to the tracking table so that the OS can configure tracking hardware.

Table 4.1 summarizes the software interfaces necessary for the tracking hardware.

When user-level software wants to set an invalid memory range, it makes a system call

to set the invalid range. Since the tracking will be done automatically in the IMRT, the

user-level software only needs to make system calls when setting ranges. The invalid

memory range can be cleared by setting a valid range using another system call.
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Table 4.1: Software interfaces for the tracking hardware.

Invoked By ISA Instruction Operation

OS

store <base>
[ <track hw addr>
+ set inv base offset

] Sets the base address for
an invalid region in a
temporary register.

store <bound>
[ <track hw addr>
+ set inv bound offset

]
Copies the base (held in
a temporary register) and
bound for an invalid re-
gion to the tracking table,
evicting an entry if nec-
essary.

store <base>
[ <track hw addr>
+ set val base offset

] Set the base address for a
valid region in a tempo-
rary register.

store <bound>
[ <track hw addr>
+ set val bound offset

]
Uses the base (held in
a temporary register) and
bound for a valid region
to update the tracking ta-
ble, splitting an entry if
necessary.

Program
syscall <inv><ptr to array base bound>

The OS will iterate
through the array, trans-
late the virtual addresses
to physical addresses,
and will set the invalid
regions in the track table.

syscall <val><ptr to array base bound>

The OS will iterate
through the array, trans-
late the virtual addresses
to physical addresses,
and will validate the
regions in the track table.
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Figure 4.6: Tracking hardware data path.

Table 4.2: Pseudo-code for updating base and bound fields.

Base Update Bound Update
if (hit && base edge):

base[idx] = addr + 1

if (hit && !base edge):

bound[idx] = addr

if (hit && !(base edge

|| bound edge)):

base[min idx] = addr + 1

if (hit && !(base edge

|| bound edge)):

bound[min idx] = curr bound

Figure 4.6 shows the data path of the tracking hardware with four entries. The input

to the datapath are two addresses, addr and addr+1, at the cache-line granularity; for

64-byte cache lines, addr is obtained by removing the 6 LSBs of the memory address

for a store. The output is a bit indicating a hit. Note that the bound value is exclusive,

so the addr needs to be less than the bound for a hit.

The update hardware is not drawn, but follows the logic shown in Table 4.2. If the

addr is at the base edge, only the base at the current index needs to be updated by
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incrementing addr by 1. If the addr is at the bound edge, only the bound needs to be

set to be addr, since the bound is exclusive. Finally, if the addr is not at an edge, then

the entry must be split by setting the existing entry bound to be the addr and the new

entry to have the range of addr+1 to the current bound. The hardware is more complex

compared to traditional caches because each entry needs to handle an arbitrary memory

range. Yet, the number of table entries is quite small compared to caches.

4.4 Partial Tracing

Although cache installation reduces memory reads, it does not address cache pollution

and increased memory writes from a large nursery. Installed cache blocks will still evict

other cache lines to make room and need to be written back to memory when evicted.

The problem is particularly severe if the nursery is larger than the last-level cache when

most cache lines in the nursery will be evicted and written-back to memory before they

can be used again after garbage collection.

However, many of these cache evictions and write-backs may be unnecessary. Fol-

lowing the generational hypothesis that most objects die young, there is a strong like-

lihood that many objects are dead before they are evicted from the cache. If the dead

objects can be identified, then both unnecessary write-backs of dead objects and unnec-

essary eviction of valid cache lines can be avoided.

For this purpose, a software algorithm is introduced, called partial tracing, that iden-

tifies dead objects in a subset of a nursery with the goal to optimize cache replacements

and write-backs.
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Figure 4.7: Graphical depictions of how tracing works. Arrows represents pointers that
are traversed.

4.4.1 Partial Tracing Algorithm

The tracing algorithm used during the nursery garbage collection can be adapted to de-

termine live objects for a segment of the nursery that is most likely to be in the cache.

The nursery is divided into segments that can fit in the cache. During execution, ob-

jects are sequentially allocated in the nursery as needed. Once a full segment worth of

objects has been allocated, tracing is run to determine which objects are live only for

that segment. This information is communicated to the hardware and used for cache

replacement decisions and removing unnecessary write-backs.

One challenge in performing tracing to identify live objects for only a segment of the

nursery is that pointers for all live objects need to be followed as shown in Figure 4.7(a).
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Not only is the computation unnecessary but may also pollute the cache by accessing

all of the live objects. As shown in Figure 4.7(b), generational garbage collectors solve

a similar problem using a write barrier to limit tracing of old objects to only those old

objects that contain pointers to young objects in the nursery. The write barrier works

by issuing a callback function when a write to any pointer in the old object occurs. The

callback function adds the old objects to a list which is then used as a starting point for

tracing instead of having to perform complete tracing through the program roots.

As shown in Figure 4.7(c), write barriers can be extended to young objects in previ-

ous segments within a nursery. When performing tracing on a segment to find the live

objects in that segment, a write barrier can be added to the pointers of those live objects.

If a pointer in any young object in a previous segment is written to, the write barrier

invokes a callback to add those objects to a trace list. The callback for old objects is

also modified to only add objects that point to the current segment rather than the whole

nursery. The list containing old objects and young objects from previous segments can

be used to perform tracing for only the segment in an efficient manner.

Decoupling tracing from the full garbage collection also opens the door for running

a part of the garbage collection, namely tracing, concurrently with the main application.

As discussed before, the copying garbage collectors need to stall the main application in

order to copy objects and update pointers. However, partial tracing, which only identifies

live objects, does not need to pause the application and can be performed concurrently

without incurring performance overhead if an extra core is available.
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4.4.2 Identifying Dead Cache Lines

Partial tracing returns a list of live objects in the recently-allocated segment of the nurs-

ery that is likely to be in the on-chip cache. Using information about their start addresses

and object sizes, valid memory ranges in the nursery can be determined. By addition-

ally using the base and the bound of the segment, invalid memory ranges in the segment

can be determined. To do this, the algorithm starts by assuming the whole segment is

invalid. Using the valid memory ranges, the initial invalid segment can be split into

smaller invalid ranges. By iterating through all of the valid memory ranges, an accurate

list of invalid memory regions can be constructed.

4.4.3 Integration with IMRT

The IMRT design that was described in the previous section can be used to track invalid

regions for both unallocated/uninitialized nursery regions and dead objects after partial

tracing. As shown in Table 4.1, the IMRT interface allows software to add valid and

invalid regions to the table. To add the invalid regions from the partial tracing, software

first sets the traced segment as an invalid region in the IMRT. Each live object from

tracing is added as a valid region to break the segment into multiple invalid regions.

4.4.4 Cache Eviction and Write-backs

To reduce unnecessary cache pollution and write-backs, the IMRT is referenced on

cache replacements and write-backs in addition to memory reads (for cache installa-

tion). The cache replacement policy prioritizes eviction of cache lines that belong to an

invalid memory region so that live objects can stay longer in the cache for reuse. The
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Table 4.3: Microarchitectural parameters for simulations.

Core 4-way OOO, 2.66GHz
L1I 32kB, 4-way, 4-cycle latency
L1D 32kB, 8-way, 4-cycle latency
L2 256kB, 8-way, 10-cycle latency
L3 2MB, 16-way, 40-cycle latency

Memory Micron DDR3-1333

memory addresses from replacement candidates are looked up in the IMRT on a cache

miss, and invalidated if found in the IMRT. The invalid cache lines are replaced first

before evicting valid cache lines. Note that the IMRT look-ups can be performed in the

background over a long LLC miss latency without affecting performance. The IMRT

table is also referenced on a write-back. If the address of the evicted (dirty) cache line

is found in IMRT, the write-back will be eliminated.

4.5 Evaluation

4.5.1 Methodology

For the evaluation, a simulation infrastructure based on ZSim [121] was used to model

cycle-level microarchitecture behaviors of an out-of-order core with a memory hierarchy

comparable to modern processors. The processor core was configured to model an Intel

Westmere processor. DRAMSim2 [117] was integrated with ZSim to model DDR3-

1333 memory. Table 4.3 summarizes the microarchitectural parameters.

For the implementations of dynamic languages, PyPy [15] was used for Python and

V8 [52] was used for JavaScript. Both Python and JavaScript are widely used in prac-

tice, with Python being used in a range of applications from web servers to scientific
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Table 4.4: Summary of the designs used for evaluation.

Design Description
Base Baseline with no optimization.
IMRT Cache installation with a 256-entry tracking table.

IMRT+PTO
Cache installation with a 256-entry tracking table along with partial
tracing optimization.

IMRT+CPTO
Cache installation with a 256-entry tracking table along with concur-
rent partial tracing optimization

computing and JavaScript being primarily used for web applications. PyPy and V8 rep-

resent the state-of-art implementations for Python and JavaScript. Both use just-in-time

compilation to achieve good performance and use a variation of generational garbage

collection.

For benchmarks, a wide array of applications were used to get a representative sam-

ple of real-world applications. For Python, benchmarks from the official Python per-

formance benchmark suite [109] and benchmarks from the PyPy benchmark suite were

used. For JavaScript, JetStream [17] benchmarks were used. In total, experiments were

run with 49 benchmarks for Python and 37 benchmarks for JavaScript. For Python, the

benchmark was warmed up by running it 2 times and then run 3 times for evaluation.

For JavaScript, the benchmark was run 3 times for evaluation.

The design points shown in Table 4.4 were evaluated. The baseline (Base) repre-

sents the case without any optimization. IMRT represents the proposed invalid memory

region tracking mechanism where only cache installation is enabled. IMRT+PTO rep-

resents the case where both cache installation and partial tracing are enabled. Because

the partial tracing optimization requires a significant re-write of a garbage collector, par-

tial tracing was implemented only for PyPy, but not for V8. IMRT+CPTO represents

the case where partial tracing is run concurrently with the normal program with cache

installation. Note that there is no actual implementation of concurrent tracing but it is
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Table 4.5: The coverage of a limited-size IMRT table compared to the infinite size table.

4 8 16 32 64 128 256
PyPy 77.6% 84.7% 89.4% 92.9% 95.2% 96.1% 97.1%

V8 79.5% 79.7% 88.5% 94.7% 96.5% 97.9% 98.8%

modeled by subtracting the computation overhead of running tracing from the execu-

tion. The cache pollution from tracing is still included. For the baseline, the default

1MB nursery was used for PyPy and V8. For the optimizations, a 64MB nursery was

used for PyPy and 128MB nursery for V8.

4.5.2 Tracking Table Size

This study evaluates how many invalid memory addresses the tracking table can capture

with a limited storage size compared to the ideal case with unlimited storage. For this

purpose, the percentage is computed of memory reads to invalid memory regions that

are captured by a given IMRT table size for cache installation compared to the total

number of reads to invalid memory regions.

The results shown in Table 4.5 suggest that a small tracking table can capture nearly

all of the invalid memory ranges. Since the memory allocation of objects happens se-

quentially and initialization also happens mostly sequentially, most memory allocations

only need to update the base address of an existing entry rather than creating an entry of

a new memory range. An update at the boundary does not split an entry into multiple

ranges, so no additional space is required in the tracking table.

A first-order evaluation shows that a 256-entry table would have minimal area and

power overhead. The first-order evaluation was performed using CACTI [98], an inte-

grated model for cache and memory access time, cycle time, area, leakage, and dynamic
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Figure 4.8: Normalized execution time for garbage collection and partial tracing.

power. The main overhead of the table comes from the memory required to store the

base and bound addresses (i.e. a pair of 64-bit addresses). This would equate to 4kB of

memory and could be reduced by compression of the addresses. If the IMRT is modeled

as a fully associative 4kB cache, it uses 0.038mm2 area and has 6mW leakage power

on a 22nm node. For comparison, the 32kB L1 data cache in the processor would use

0.408mm2 area and would have 15mW leakage power on a 22nm node.

4.5.3 Partial Tracing Period

Here, the overhead of partial tracing is studied as nursery sizes and partial tracing fre-

quencies are varied. The execution time of the garbage collection with and without

partial tracing at each nursery size is normalized to the baseline garbage collection (no

partial tracing) with a 1MB nursery. For reference, garbage collection with a 1MB nurs-

ery is on average 16.0% of the total program execution time. Figure 4.8 shows how

the baseline garbage collection overhead (Base) decreases as the nursery size increases.

With a 64MB nursery, garbage collection overhead is reduced by an average of 87.4%.
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Adding partial tracing on top of garbage collection enables cache optimizations for

replacements and write-backs, but reduces the savings from a large nursery. In the figure,

‘Every x-MB’ indicates the case where partial tracing is performed once every x-MB in

addition to the full garbage collection when the entire nursery gets full. More frequent

partial tracing has a potential to more quickly identify and remove dead objects in the

cache, but also has higher overhead. However, the results suggest that the performance

differences among different tracing frequencies are rather small for the range of values

evaluated. In the following studies, the partial tracing period of every 1.25MB is used for

IMRT+PTO. This partial tracing period with a 64MB nursery has a potential to remove

42.2% of the baseline garbage collection overhead.

4.5.4 Overall Performance

This study evaluates the overall performance improvements of the proposed optimiza-

tions. The performance is presented as the execution time normalized to the baseline

with a 1MB nursery. For the IMRT schemes, a table size of 256 entries is used to sup-

port both cache installation and write-back elimination. For PyPy, results for both 1MB

and 64MB nursery sizes are shown in order to separately evaluate the improvements

from cache installation and less-frequent garbage collection.

Figure 4.9 shows the normalized execution time of the various designs for each

Python benchmark. The results show that simply increasing the nursery (Base-64MB)

leads to a significant slowdown in many applications. On the other hand, cache instal-

lation with a 1MB nursery (IMRT-1MB) only reduces the execution time by 4.7% on

average. This shows that cache installation by itself does not lead to significant per-

formance improvements. Using a large (64MB) nursery with cache installation (IMRT-
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Figure 4.9: Normalized execution time for PyPy. The execution time is normalized to
the baseline with a 1MB nursery.
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64MB) reduces the execution time by 22% on average compared to the baseline with

only a single benchmark showing a noticeable slowdown. Moreover, the execution time

is reduced by over 50% for multiple benchmarks. The average improvement is within

2.0% of the possible improvement with an ideal tracker. The results show the benefits

of co-optimizing garbage collection period with cache installation.

Cache installation with partial tracing (IMRT-64MB+PTO) shows performance im-

provements on average of 8.0%, which is less than IMRT due to the overhead of ad-

ditional tracing. However, IMRT+PTO can still significantly reduce the execution for

many applications. Moreover, for applications where the impact on cache performance

overhead of a large nursery is particularly significant, IMRT+PTO outperforms IMRT,

reducing the execution time by an additional 5.9% for spitfire cstringio or 1.4%

for meteor contest.

If partial tracing is performed concurrently with the application (IMRT-

64MB+CPTO), then the execution time is always better than IMRT, since the partial

tracing improves cache performance and there is little sequential execution overhead for

running it. As a result, there is an additional 1.3% average reduction in the execution

time over IMRT. Running partial tracing concurrently can achieve significant perfor-

mance improvement while simultaneously reducing memory accesses.

Figure 4.10 shows the normalized execution time for V8 when the IMRT hardware

is used for cache installation with the 128MB nursery size. Cache installation alone

reduces the average execution time by 8.2%. When combined with the larger nursery

size, the average execution time is reduced by 16.8% with some benchmarks showing

reductions more than 40%. The results show that the proposed hardware tracker is

general enough to be applied to multiple languages and implementations beyond PyPy.
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Figure 4.10: Normalized execution time for V8. The execution time is normalized to
the baseline with a 1MB nursery.

Table 4.6: Breakdown of cache miss rates at the LLC.

PyPy V8
Base-
64MB

IMRT-
64MB

IMRT-
64MB+PTO

Base-
128MB

IMRT-
128MB

Overall 60.2% 17.6% 17.4% 48.2% 21.2%
Non-Nursery 29.5% 29.5% 26.1% 34.2% 26.5%

Nursery 89.7% 9.5% 9.2% 70.6% 13.8%

4.5.5 Cache Miss-Rate Breakdown

Here, the impact of the optimizations on the last-level cache (LLC) miss-rates for dif-

ferent memory regions is studied. Table 4.6 shows a breakdown of the cache miss-rates

for PyPy and V8 for the baseline and IMRT with the same nursery size. The miss-rates

are shown for all accesses (overall), nursery accesses, and non-nursery accesses. The

results show that the proposed cache installation is indeed quite effective in reducing the

cache misses to the nursery. For PyPy, the results suggest that the partial tracing opti-

mization can reduce cache pollution and slightly improve the cache miss rate for both
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Figure 4.11: Total off-chip memory operations for PyPy.

nursery and non-nursery accesses. For V8, the IMRT table was used for both nursery

and non-nursery allocations of large objects. As a result, there is also a reduction in

miss-rate for the non-nursery accesses.

4.5.6 Off-Chip Memory Operations

In addition to performance improvements, the proposed optimizations also reduce off-

chip memory accesses. Less memory accesses reduce energy consumption in memory.

Lower memory bandwidth usage is also important for bandwidth-limited applications

or systems where many applications share a memory channel. Figure 4.11 shows the

number of memory operations (reads and writes) for various PyPy benchmarks. Here,

only benchmarks where the memory bandwidth utilization is more than 5% of the the

maximum memory bandwidth are shown. While the IMRT scheme can reduce memory
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Table 4.7: Configuration of the low-end processor.

Core 4-way OOO, 2.17GHz
L1I 24kB, 6-way, 3-cycle latency
L1D 32kB, 8-way, 3-cycle latency
L2 512kB, 16-way, 14-cycle latency

Memory 6400 MB/s mem with 210-cycle latency

reads through cache installation, the partial tracing optimization can further reduce the

memory writes, especially when there are many dead cache lines being written back

upon eviction. On average, partial tracing reduces memory operations by an addi-

tional 13.7%. For some benchmarks, the reduction is far more significant (over 4x

for pidigits). There are some cases where the total number of memory operations

increase with partial tracing due to the memory accesses from tracing itself.

4.5.7 Microarchitectural Sweeps

Here, the effect of a different processor configuration and different last-level cache sizes

is studied. A configuration for a low-end processor similar to the Intel Silvermont is

used as shown in Table 4.7. Low-end processors often have smaller caches and are less

tolerant to memory latency due to smaller buffers and queues. As a result, these proces-

sors are more sensitive to memory performance and the optimizations are expected to

be more effective.

Figure 4.12 shows the average normalized execution time results for PyPy. In the

baseline, the nursery size is adjusted to be half of the cache size. With a small cache,

garbage collection is run more frequently. As the cache size increases, garbage collec-

tion becomes less frequent and a proportionately larger space is available for the non-

nursery accesses. The results show that the proposed cache installation scheme with
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Figure 4.12: Normalized execution time of PyPy on a low-end processor with different
LLC and nursery sizes.
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Figure 4.13: Normalized execution time of v8 on a low-end processor with different
LLC and nursery sizes.

a large nursery size (IMRT-64MB with 0.5MB LLC) can improve the performance as

much as increasing the cache size by 8x (Base with 4MB LLC). Furthermore, the aver-

age execution time can be reduced by 40% for a 0.5MB LLC, significantly more than in

a high-performance processor. Alternatively, IMRT can perform just as well with half of

the nursery size as the baseline (IMRT-1MB with 4MB LLC vs. Base with 4MB LLC).
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Figure 4.13 shows the average normalized execution time results for V8. For the

baseline, the nursery size is fixed to be 1MB (the minimum V8 allows). As the cache size

increases, the cache performance improves and the execution time decreases. Similar

to PyPy, IMRT can achieve the same performance with a larger nursery (IMRT-64MB

with 0.5MB LLC) as the base with 8x the cache size (Base with 4MB LLC). In addition,

the average execution time can be reduced by 19% for IMRT with 0.5MB LLC, slightly

more than in a high-performance processor.

The results indicate that the cache performance is more important on low-end pro-

cessors than high-end processors, and the proposed optimizations lead to more signifi-

cant performance improvements for processors with smaller caches.

4.6 Other Approaches to Optimizing Application Performance

So far in this chapter, application performance was improved by increasing the nurs-

ery size and reducing the cache performance overhead by using cache installation. The

advantage of the approach is that it can greatly reduce misses due to uninitialized ob-

jects. The disadvantage is that additional hardware must be introduced to perform the

optimizations. This section discusses other potential approaches to improving dynamic

language performance by adapting nursery allocation to the cache replacement policy

and by dynamically sizing the nursery. Experimental results are also shown to evaluate

the effectiveness of these approaches.
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4.6.1 Adapting Nursery Allocation to Cache Replacement Policy

Since objects are sequentially allocated in the nursery and most objects die young, the

access behavior for the nursery looks similar to a sequential access through a large array

in the common case. If the nursery is accessed in a sequential fashion, then once the

nursery size is greater than the cache size the beginning of the nursery is evicted by the

additional nursery blocks allocated. For example, if the LRU cache set can hold two

blocks and they are accessed sequentially, then a pattern of [1, 2, 1, 2] will hit for all

accesses, but a pattern of [1, 2, 3, 1, 2, 3...] will miss in all accesses since block 3 will

evict block 1 before it is reused, block 1 will evict block 2 before it is reused, and so on.

If the access pattern is modified so that it looks like [1, 2, 3, 3, 2, 1, 1, 2...], where

the accesses are reversed, then the number of misses can be reduced. In this case, only

1 out of every 3 accesses will miss. As a result, the cache performance can be improved

even though the nursery size is larger than the cache size.

The nursery allocator can be modified to emulate the reversing access pattern by

allocating from lowest address to highest address one time and from highest address to

lowest address after garbage collection and so on. For the study, the ZSim simulator

was modified to transform the nursery object addresses to simulate this pattern. When

objects are being allocated in the forward direction (i.e. 1, 2, 3) then the original object

addresses are used. When objects are being allocated in the reverse direction (i.e. 3, 2, 1)

then the addresses are mirrored so that the lowest nursery address becomes the highest

nursery address and the highest nursery address becomes the lowest nursery address.

The modified allocation scheme and the original allocation scheme were evaluated

using a high-performance OOO processor model in ZSim with 8MB LLC cache. Fig-

ure 4.14 shows impact of modification on the average execution time normalized to the
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Figure 4.14: Comparing execution times of different allocation schemes for different
nursery sizes.

ch
am

el
eo

n
ch

ao
s

cr
yp

to
_p

ya
es

de
lta

bl
ue

du
lw

ic
h_

lo
g

ep
ar

se
fa

nn
ku

ch
flo

at
ge

ns
hi

_t
ex

t
ge

ns
hi

_x
m

l
go

he
xi

om
ht

m
l5

lib
js

on
_d

um
ps

js
on

_l
oa

ds
kr

ak
at

au
m

ak
o

m
dp

m
et

eo
r_

co
nt

es
t

nb
od

y
nq

ue
en

s
pi

ck
le

pi
ck

le
_d

ic
t

pi
ck

le
_l

is
t

pi
di

gi
ts

py
fla

te
py

xl
_b

en
ch

ra
yt

ra
ce

re
ge

x_
co

m
pi

le
re

ge
x_

dn
a

re
ge

x_
ef

fb
ot

re
ge

x_
v8

ric
ha

rd
s

rie
tv

el
d

sc
im

ar
k_

fft
sc

im
ar

k_
m

on
te

sp
ec

tra
l_

no
rm

sp
itf

ire
sp

itf
ire

_c
st

rin
gi

o
sy

m
_e

xp
an

d
sy

m
_i

nt
eg

ra
te

sy
m

_s
tr

sy
m

_s
um

te
lc

o
un

pi
ck

le
un

pi
ck

le
_l

is
t

xm
l_

et
re

e_
ge

ne
ra

te
xm

l_
et

re
e_

ite
rp

ar
se

xm
l_

et
re

e_
pa

rs
e

xm
l_

et
re

e_
pr

oc
es

s
G

E
O

M
E

A
N

0.90

0.92

0.94

0.96

0.98

1.00

1.02

1.04

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e

Figure 4.15: Execution time of the modified allocation scheme normalized to the exe-
cution time of the original allocation scheme when using optimal nursery sizes.

original allocation scheme with a 4MB nursery. The largest improvements come when

the nursery size is larger than the cache size, with an average of 7.1% improvement for

a nursery size of 16MB. However, as indicated by the average execution time, running

at the largest nursery size may not be the optimal nursery size for all programs.
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Figure 4.15 shows the execution time of each program when using the modified

allocation scheme and the optimal nursery size normalized to the execution time of using

the original allocation scheme and the optimal nursery size. There is an average 1.7%

improvement with up to 8.4% improvement. It is worth noting that some benchmarks

see a slowdown of as much as 3.3% due to the fact that assuming a purely sequential

nursery access pattern may not be correct for all benchmarks. The results show that

better adapting the allocation strategy to the replacement policy is a potential way to

improve program performance.

4.6.2 Dynamic Nursery Sizing

So far, nursery size has been fixed at program startup. Choosing a best nursery size

statically is a coarse-grained decision that does not consider program phase and runtime

behavior. This section considers the potential improvements that can be achieved if the

nursery size changes dynamically to adjust for program phase behavior. Experimental

results suggest that a dynamic nursery sizing scheme has the potential to noticeably

improve the performance of programs.

For the experiment, the program execution was broken down into periods that con-

sisted of non-GC execution followed by running GC once. Based on a nursery size, the

number of these periods and the length of these periods would vary. Programs were

profiled at various nursery sizes and the execution time was recorded for each of the

periods. The experiment was run on a native Intel machine with a 3MB LLC.

Profiling was run at nursery sizes of 756kB, 1MB, 3MB, 6MB, and 12MB. Nursery

sizes were chosen so that they were multiples of each other. As a result, profiles at

different nursery sizes could be mixed and matched offline and the comparisons would
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Figure 4.16: Best nursery size for eparse over time.
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Figure 4.17: Execution time with dynamic nursery sizing normalized to the baseline
with a static 1.5MB nursery.

still make sense in terms of how much of the program had been executed. For example,

over the same period of execution, a large nursery size of 6MB could be used or smaller

nursery sizes of [1.5MB, 1.5MB, 3MB] could be used. In both cases, the application

would be allocating 6MB worth of objects in the nursery. In the latter case, there would

be three GC cycles whereas in the former there would be a single GC cycle.
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Using a script, the schedule of nursery sizes that would yield the best performance

was generated for each benchmark. Figure 4.16 shows an example of a schedule of

nursery sizes for the benchmark eparse. As shown in the figure, there are phases of

the program where a large nursery size results in good performance and there are other

phases where a small nursery size is needed for good performance.

PyPy was modified to dynamically adjust the nursery based on the schedule of nurs-

ery sizes. Figure 4.17 shows the execution time of dynamic nursery sizing across mul-

tiple benchmarks normalized to the baseline static nursery sizing of using half of the

cache size (i.e. 1.5MB). On average, the execution time improves by 13.8% with up to

44% improvement. The results demonstrate that a dynamic nursery sizing approach that

can consider program phase behavior can further reduce the execution time of the pro-

grams. In practice, accurately determining best nursery sizes at runtime is a challenging

problem that could be addressed in future work.
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CHAPTER 5

EFFICIENT NURSERY SIZING ON MULTI-CORE PROCESSORS WITH

SHARED CACHES

5.1 Overview

In this chapter, it is shown that the performance of automatic memory management can

be significantly affected by cache sharing among multiple concurrent applications, and

offline and online schemes are proposed to adjust memory management considering

cache interference. Unfortunately, cache interference in the context of managed lan-

guages has not been adequately explored. Cache thrashing can happen even with as few

as two to four concurrently running applications. This problem is particularly important

for modern multi-core processors with shared caches, whether on a personal device run-

ning multiple instances of JavaScript or on a Platform-as-a-Service (PaaS) cloud service

where many application instances are sharing underlying hardware. The problem will

be increasingly important as the number of cores per chip increase.

While cache interference in multi-core processors has been heavily studied, man-

aged languages enable a new approach to handle cache interference, which is not pos-

sible in a traditional multi-programmed workload. In particular, automatic memory

management provides parameters that can actively reshape an application’s memory ac-

cess behavior and can be used to effectively manage shared caches. This work proposes

to adjust the nursery size in a cache-aware fashion to intelligently balance cache inter-

ference and garbage collection overhead. To reduce cache interference and reduce an

application’s memory footprint, a smaller nursery size can be used. However, smaller

nursery sizes lead to more frequent garbage collection (GC) and increase GC overhead.

As a result, a good nursery size for an application depends on both the application’s own
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characteristics and other applications that share the cache.

A detailed study is provided on how memory management and the execution time of

a managed program interacts with cache sharing among multiple concurrent programs,

and two approaches are proposed to determine the nursery sizes to optimize the overall

performance considering both cache sharing and garbage collection overhead. In the

first approach, the nursery size for each program is statically set based on a per-program

model that uses offline profiling to predict near-optimal nursery sizes. By deconstruct-

ing the execution time into multiple components related to garbage collection and cache

interference, the nursery-size model can predict an application’s execution time at var-

ious nursery and cache sizes based on the profiling results of individual applications at

a single cache size. In the second approach, the nursery allocator is modified to dynam-

ically adjust the nursery size based on program behavior and observed cache pressure.

By probing the cache and measuring both garbage collection and application execu-

tion times at runtime, the profile of the program can be approximated to determine the

nursery size without offline profiling.

The proposed techniques are implemented and evaluated on an Intel i7-based plat-

form running a broad range of Python benchmarks. The experimental results show that

the baseline static nursery sizing heuristic without considering cache interference and

contention leads to significantly lower performance compared to the case with cache-

aware nursery sizes. The performance gap becomes even more significant as the num-

ber of concurrent applications is increased. The results also show that the proposed

nursery sizing schemes are quite effective in determining good nursery sizes and can

significantly increase the performance over the baseline. When four programs run con-

currently, the static scheme based on offline profiling improves the system throughput

by 18.5% on average and up to 92%. This performance improvement is within 7.5% of
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the best nursery sizing on average. The performance improvements for individual pro-

grams can be as high as 3.28x. The dynamic scheme also provides average performance

improvements comparable to the static scheme. The dynamic scheme outperforms the

static scheme in some cases as it can adjust to runtime variations. The static scheme

performs better for short programs where the dynamic scheme does not have enough

time to learn program’s characteristics.

The following summarizes the main contributions in this chapter:

• To the best of the author’s knowledge, this work represents the first to identify the

performance impact of cache sharing between multiple applications in a managed

language. It is also shown that using automatic memory management to reshape

memory accesses can be an effective tool in reducing cache contention among

concurrent programs.

• An analytical model is developed to better understand the interactions between the

execution time of a managed language program and the cache and nursery sizes

and present a static nursery sizing scheme based on offline profiling.

• A dynamic nursery sizing scheme is presented that can automatically adjust the

nursery size at runtime without offline profiling.

• The proposed schemes are implemented and evaluated on a real-world system and

demonstrate significant performance benefits.

The rest of this chapter is organized as follows. Section 5.2 discusses the cache-

sharing problem that was identified. Section 5.3 describes the analytical model and

how it can be used to choose nursery sizes considering cache sharing among multi-

ple programs. Section 5.4 evaluates the effectiveness of the nursery-sizing approaches.

Section 5.5 discusses some results on scheduling concurrent applications.
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Figure 5.1: The best nursery size for individual benchmarks under different cache sizes.

5.2 Cache-Sharing Effect

5.2.1 Impact on Optimal Nursery Size

When multiple applications are running on the same multi-core processor, the LLC will

be shared among them. As a result, the effective cache size for each program will

be less than the actual cache size. Because an application’s miss-rate often increases

significantly when its nursery does not fit into the cache size, a program needs to use

a smaller nursery to achieve good cache performance when its effective cache size is

reduced due to sharing. At the same time, the garbage collection overhead at the smaller

nursery size will be higher. If the overhead due to poor cache performance is higher

than the garbage collection overhead, the smaller nursery size will lead to better overall

performance. On the other hand, if the garbage collection overhead dominates, then a

large nursery will be better; the large nursery decreases the garbage collection overhead

at the expense of more cache misses.

Figure 5.1 shows how the optimal nursery size for different benchmarks changes as
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Figure 5.2: The performance penalty of fixed nursery sizing over the optimal nursery
sizing at varying cache sizes.

the LLC size is varied. In all of the benchmarks besides float, the optimal nursery

size for an 8MB cache is between 2MB and 6MB. As the cache size decreases, the

optimal nursery size decreases until the cache size reaches a certain point. At that point,

the garbage collection overhead becomes greater than the cache performance overhead,

and the maximum nursery size becomes the best choice. This cache size, which will

be referred to as the saturation threshold, depends on the program characteristics and

is specific to each program. Some benchmarks such as rietveld and krakatau reach

this threshold at a larger cache size, while other benchmarks such as xml etree * reach

this threshold at a smaller cache size. For the benchmarks with a smaller saturation

threshold, it is important for the nursery to fit into the LLC and they will be affected

more by cache sharing.

Figure 5.2 shows the problem of using a fixed nursery size without considering

cache sharing, which reduces the effective cache size. The graph shows the performance

penalty of using different nursery-sizing schemes compared to the optimal nursery size

when the cache size is reduced to less than 8MB averaged over 50 Python benchmarks.
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SN denotes the nursery size. Even the nursery size is set to be the optimal size when

the application has 8MB cache to itself, it becomes sub-optimal for smaller cache sizes.

The average performance penalty reaches close to 25% when the optimal nursery size

for a 8MB cache is used for a 2MB cache. For sizes less than 2MB, the average penalty

decreases because more applications reach the saturation threshold and use the maxi-

mum nursery size. Other baseline schemes that use half the original cache size (4MB),

the maximum nursery size (32MB), or the half the effective cache (SC/2N) all have sig-

nificant performance penalty. Note that the penalty can be much higher than the average

for individual programs. The results suggest that choosing the optimal nursery size at

a single cache size is not sufficient to achieve good performance when cache sharing

is considered. There is an opportunity to significantly improve overall performance if

the nursery size for each program is carefully chosen considering the reduced effective

cache capacity due to sharing.

5.2.2 Limitations of Cache Partitioning

Cache partitioning is a popular technique to handle cache contention among multiple

concurrent programs. It can be effective in better allocating cache space and isolating

accesses from different programs, but cannot reduce cache thrashing that a program

experiences from its own accesses. In traditional languages, the access pattern of the

program is fixed and cannot be changed. In managed languages, the memory access

behavior can be altered by changing the nursery size.

In order to test the effectiveness of cache partitioning, simulations were run to ap-

proximate the throughput of applications when running with cache partitioning. 23

groups of 2 programs and 68 groups of 4 programs were tested, and the throughput was
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Figure 5.3: The average throughput improvement when running applications with cache
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is (Equal Part, SN=4MB).

compared when equally partitioning and optimally partitioning a 8MB last-level cache.

Figure 5.3 shows the average throughput improvement over the baseline of equal par-

titioning and nursery size being half of the cache size (i.e. SN=4MB). Results for both

partitioning schemes are shown when using the baseline nursery sizing scheme (i.e. half

the cache size) as well as when using the best nursery size for each application for the

given partition configuration. When nursery sizing is not optimal, some programs can be

thrashing the cache and there is some benefit from optimal cache partitioning. Average

throughput improves by 7.7% and 8.7% for groups of 2 and 4 applications respectively.

On the other hand, optimizing the nursery size can reduce the cache thrashing effect

and improves average throughput by 25.3% and 34.4% (for groups of 2 and 4 appli-

cations respectively). Using optimal nursery sizes with equal partitioning results in

average improvement that is within 2.5% of the average improvement for optimal cache

partitioning and optimal nursery sizing. Furthermore, nursery sizing does not need to

be very accurate. The optimal nursery size for equal partitions can be used even in the
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optimal partitioning case with very little performance degradation (<2%). This insight

is used to simplify the estimation of effective cache size. Instead of predicting the exact

cache footprint of the program, it is sufficient to estimate the best nursery size assuming

equal partitioning of the cache.

5.3 Cache-Aware Nursery Sizing

5.3.1 Overview

This section presents an analytical model that provides intuition for how to adjust the

nursery size as the effective cache size changes due to contention. The goal is to predict

a good nursery size to use for each program, not to predict the exact execution time.

The model is based on the garbage collection and cache performance trade-off curve

by considering how different components of the curve are affected by changing cache

sizes. Two nursery sizing schemes based on the model are then presented: one static

scheme based on offline profiling and another dynamic scheme based on microarchitec-

tural measurements at runtime.

5.3.2 Analytical Model

In order to determine a good nursery size to use, the impact of changing the cache size

on an execution time profile of a program is considered. Given a profile T (SN ,SC) at a

single cache size SC and various nursery sizes SN :

T (SN ,SC) = TGC(SN ,SC)+TNGC(SN ,SC)+Tint(SN ,SC) (5.1)
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Figure 5.4: Execution time of GC normalized to GC with a 8MB cache and 4MB nurs-
ery. The x-axis shows the nursery sizes and the lines represent different memory sizes.

where TGC(SN ,SC) is the time of garbage collection, TNGC(SN ,SC) is the time of appli-

cation (i.e. non-GC time) and Tint(SN ,SC) is the interference on the application from

running garbage collection, the goal is to predict the profile T (SN ,S
′
C) for a different

cache size S
′
C. To do this, each term of the equation is considered separately.

GC Execution Time

To the first order, the nursery size changes the number of instructions that are executed

for garbage collection. It determines how often GC runs and how many objects survive

after each GC period. For example, with a smaller nursery, garbage collection is run

more often and more objects survive than with a larger nursery. The execution time of

garbage collection is dominated by instruction count and caching only has a second-

order effect. Therefore, to simplify the model, the following approximation is made:

TGC(SN ,S
′
C)≈ TGC(SN ,SC) (5.2)
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The effect of the nursery fitting and not fitting in the cache during garbage collec-

tion can be seen from the shift in the curves in Figure 5.4. Although, the execution

time curves for garbage collection at different cache sizes diverge for small nursery and

cache sizes, the impact of such errors on the end result (choosing good nursery sizes) is

minimal. In the static sizing scheme, the overall execution time would improve by less

than 2% on average even if the prediction error in the garbage collection time were to

be completely removed.

Non-GC Execution Time

Unlike the GC case, the nursery size does not affect the number of instructions for the

non-GC execution. It primarily affects the non-GC cycle count through its interaction

with the caches. This interaction is broken down into two components. First, there is

the effect of cache contention among accesses within the nursery itself. If the nursery is

too large to fit in the cache, bringing new nursery blocks into the cache may evict other

nursery blocks. Second, there is the effect of cache contention between the non-nursery

working set and the nursery.

First, consider the case where the program only uses the nursery. In this case, as

long as the nursery fits in the cache, there will be no cache miss, and the execution

time will be small. Once the nursery size reaches the cache size, the cache miss-rate

will increase until it saturates at a certain nursery size. While the saturation point varies

based on each program’s access patterns, it can be bounded analytically. Consider a

cache with the following parameters: size (capacity) SC, block size b, Ns sets, and Nw

ways. In the worst case, the miss-rate saturation will occur when the nursery size (SN)

is equal to SC +SC/Nw. As shown in Figure 5.5(a), this case happens when the nursery

is sequentially accessed with no reuse of earlier parts of the nursery. The LRU policy

implies that every access will miss. In the best case, the miss-rate saturation will occur
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Figure 5.5: Graphical depictions of a stream of cache accesses on a single cache set.

when SN = 2 ∗ SC. As shown in Figure 5.5(b) and Figure 5.5(c), this case happens if

the nursery access pattern has temporal reuses that match the LRU policy. For example,

the repeated nursery access pattern of [1, 2, 3, 4, 5, 4, 3, 2, 1], where the nursery is

accessed again in a reverse order before a garbage collection, results in 6 hits out 9

accesses as shown in Figure 5.5(b). In essence, reuse of earlier nursery blocks can have

cache hits even if the nursery is larger than the cache. In the model, the saturation point

can be conservatively estimated to occur at 2 ∗ SC, and curve in the region between SC

and 2∗SC can be scaled for each application to roughly fit the profiled data.

Figure 5.6 shows the results of a cache simulation of two different benchmarks with

an 8MB cache. The overall miss-rate curve includes accesses to both the nursery and

non-nursery. The curves of nursery-only and non-nursery only show the miss rates when

those accesses were done in isolation on an 8MB cache. Figure 5.6(a) shows close to the

worst case access pattern for nursery accesses. Figure 5.6(b) shows close to the best case

access pattern for nursery accesses. For both benchmarks, the nursery-only miss-rates

are relevant only when the nursery exceeds the cache size.
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Figure 5.6: Miss-rate curves for two benchmarks. The breakdown shows miss rates if
the accesses were performed in isolation.

Now, consider the effect of non-nursery accesses on the cache performance. Al-

though the non-nursery cache accesses generally have low miss-rates, they interfere with

nursery accesses. As shown in Figure 5.6, there is little effect of the nursery size on the

miss-rate of non-nursery accesses if performed in isolation. However, the overall miss-

rate curve shows a significant increase in cache misses as the nursery size approaches

the cache size. The non-nursery working set of the program (SW ) can be approximated

by looking at the nursery size at which the overall miss-rate starts to increase. If the

working set is small, then the nursery size can be larger before it begins to interfere.
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If the working set is large, the miss-rate begins to increase at a smaller nursery size.

Therefore, the working set can be estimated to be SW = SC− SN,W where SN,W is the

nursery size at the point where the miss rate starts to increase. SN,W will be referred to

as the effective cache size for nursery. For example, SW is 0.2MB and SN,W is 7.8MB for

Figure 5.6(a); and SW is 2MB and SN,W is 6MB for Figure 5.6(b). The model assumes

that the non-nursery working set size is roughly fixed regardless of cache and nursery

sizes, so the execution time curve is shifted to keep a constant SW when predicting the

curve for a different cache size.

The effect of both components can be combined to compute TNGC at a different cache

size S
′
C as follows:

TNGC(SN ,S
′
C) =


TNGC(SC− (S

′
C−SN),SC), SN ≤ S

′
C

TNGC(SN ∗SC/S
′
C,SC), SN > S

′
C

(5.3)

where the transformation for SN ≤ S
′
C represents a shift of the profile to keep a constant

SW and the transformation for SN > S
′
C represents a scale of the profile between SC and

2 ∗ SC. The curve is flat when SN < SN,W and SN > 2 ∗ S
′
C, so applying the scales and

shifts in those regions do not affect the curve in the regions.

Interference Model

Finally, consider the effect of the cache interference from garbage collection. Garbage

collection needs to trace through live objects and copies the live objects out of the nurs-

ery each time it runs. These GC accesses pollute the caches with data that may not be

used by a program anytime soon. Moreover, after the relocation, objects need to be

reloaded from their new memory location. This effect occurs more noticeably at the

L1 and L2 caches where running garbage collection effectively flushes the caches every
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time it runs. The GC interference can be modeled with the following equation:

Tint(SN ,SC) =
SPA

SN
tint (5.4)

where tint is the overhead of interference per invocation of garbage collection, SPA is the

total number of bytes allocated by the program, SPA/SN represents the number of times

that garbage collection runs, and Tint is the overall execution time overhead caused by

the cache interference from garbage collection. Since the interference due to running

garbage collection primarily affects the private L1 and L2 caches by effectively flushing

them, it is independent of LLC cache size to the first order, so:

Tint(SN ,S
′
C)≈ Tint(SN ,SC) (5.5)

5.3.3 Static Nursery Sizing using Profiles

This section describes a static nursery sizing scheme based on offline profiling. The

transformation described in the previous section is applied to determine good nursery

sizes for groups of applications running together and those nursery sizes are set statically

before the application runs. Figure 5.7 summarizes the static nursery sizing scheme. A

profile, T (SN ,SC), is measured at multiple nursery sizes (SN) and a single cache size
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(SC) by running each application in isolation without cache contention:

T (SN ,SC) = TGC(SN ,SC)+T ∗NGC(SN ,SC) (5.6)

where TGC(SN ,SC) is the GC time profile and T ∗NGC(SN ,SC) is the non-GC time profile

(TNGC) with GC interference (Tint). The following subsection describes how to decon-

struct T ∗NGC to get TNGC and Tint .

Once the profile is in the form of Equation 5.1, T (SN ,S
′
C) can be computed for a

range of values of S
′
C. For each value of S

′
C, a range of nursery values are evaluated to

determine which nursery size minimizes T (SN ,S
′
C). When considering a group of appli-

cations running together, the nursery size for each application that minimizes T (SN ,S
′
C)

is chosen by setting S
′
C to be the effective cache size. A following subsection describes

how the effective cache size is estimated.

This approach was found to be largely transferable; the model based on application

profiles from one system can also be used to predict good nursery sizes on other systems

with different microarchitecture configurations. In that sense, profiling can be done once

for each program by running in isolation using several nursery sizes.

Deconstructing the Non-GC Profile

Offline profiling generates T ∗NGC which is superposition of TNGC and Tint . The curve

can be decomposed by noting that TNGC should be flat for SN < SN,W . However, at

small nursery sizes, the GC interference is highest due to frequent garbage collection.

Therefore, regression can be applied using nursery sizes less than SN,W to determine the

coefficients of the expression:

T ∗NGC(SN ,SC) =
A
SN

+B = Tint(SN ,SC)+TNGC(SN ,SC) (5.7)

where A/SN corresponds to Tint and B corresponds to flat part of TNGC.
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Figure 5.8 shows how the parts of T ∗NGC(SN ,SC) are deconstructed and then trans-

formed to model a different cache size and recombined to get T ∗NGC(SN ,S
′
C). The mea-

sured version of T ∗NGC(SN ,S
′
C) is shown for comparison. The figure shows that the tech-

niques are effective in transforming the curve to a different cache size.

Estimating Effective Cache Sizes

In order to optimize the performance for a group of applications, the effective cache

size for each of the applications running in a group needs to be determined. A simple

approach would be to assume that each application is using roughly the same amount of

the shared cache. For example, if there are N applications, then the effective cache size

can be simply estimated to be SC/N. As described earlier in the context of partitioning,

the optimal nursery sizes assuming equal partitions of the cache are still close to optimal

under ideal partitioning. Therefore, the nursery size predictions assuming equal sharing

can still be good predictions even in the case where the cache sharing is not entirely

equal.
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Previous work by Suh et al. [134] has shown that the effective cache size for an

application running as a group is roughly proportional to the number of misses that each

application has over a time period. This model works well for traditional applications

that have a fixed memory access pattern. Unfortunately, the memory access pattern of

an application varies with the nursery size. As a result, the optimal nursery size and the

effective cache size cannot be determined independently. To address this challenge, an

iterative algorithm was implemented to determine a nursery size; the algorithm starts

with the effective cache size of SC/N, finds the best nursery sizes, updates the effective

cache sizes based on the cache misses at the given nursery sizes, and repeats the process

until the nursery sizes converge.

Both the simple and the iterative approaches were evaluated, and it was found that

the overall performance improvements are comparable even though the iterative algo-

rithm requires far more computations. In fact, the iterative approach did not converge

in some cases, possibly due to inaccuracy in nursery size prediction. In addition, the

simple strategy of assuming the effective cache size to be SC/N could achieve better

performance than any of the baseline sizing schemes that were tested in the experiments.

As a result, the experimental evaluation uses the simple strategy.

5.3.4 Dynamic Nursery Sizing

This section describes a dynamic nursery sizing scheme that can adjust the nursery size

during runtime based on program phase behavior and cache contention from other pro-

grams. This approach requires no knowledge of the programs that are running and no

input from the programmer. It uses cache miss rate and execution time measurements

and insights from the analytical model to predict and set the nursery size at runtime.

According to Equation 5.1, TGC and Tint are expected to be monotonically decreasing
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functions that have minimal values at the maximum nursery size, SMAX . On the other

hand, TNGC is minimal at any point where SN < SN,W . Therefore, the overall equation T

often has two local minima: one near SN,W (the effective cache size for nursery) where

garbage collection overhead is moderate and cache performance overhead is low and

one at SMAX where garbage collection overhead is low and cache performance overhead

is high. The dynamic scheme first estimates the value of SN,W . It then tries to predict

the trade-off of running at SN,W vs. SMAX by evaluating whether ∆TGC +∆T ∗NGC > 0.

Estimating Effective Cache Size for Nursery

In order to evaluate the trade-off, the effective cache size for nursery needs to be de-

termined. This point can change at runtime based on program characteristics and other

programs that contend for the cache. To determine this size, it can be noted that objects

are sequentially allocated in the nursery and long temporal reuse is rare (most objects

die young). Therefore, the nursery can be considered as a large array that is being se-

quentially accessed. Due to cache LRU policies, the beginning of the nursery is most

likely to be evicted before the later parts.

To find SN,W , the nursery size at which the beginning of the nursery gets evicted by

other memory accesses needs to be found. Cache probing can be used at fixed nursery

allocation intervals to access a unique set of memory addresses at the beginning of the

nursery. Accessing unique memory addresses eliminates the possibility of measuring

hits due to a corrupted LRU order in the cache from a previous probe. When a small

portion of the nursery has been allocated, the cache probe will measure small access

times, indicating that the beginning of the nursery is still in the cache. As more of the

nursery is allocated, there will be a point when the access times increase indicating that

the nursery is no longer fitting in the cache. Based on a history of previous probe values,
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statistical outlier detection can be used to determine whether the access time increase is

significant. If it is, then SN,W is set to be the allocation size at which this happens.

Estimating GC Time

In order to compare the trade-offs between two nursery sizes, ∆TGC between SN,W and

SMAX needs to be estimated. Since GC time is amortized by running garbage collection

less frequently, TGC at some nursery size SN can be used to make a first order estimate

of TGC at a different nursery size S
′
N :

TGC(S
′
N ,SC)≈ TGC(SN ,SC)∗SN/S

′
N (5.8)

Historical values of GC time can be used to estimate the current GC time at a nursery

size. At program initialization, when there are no historical values, the first GC time is

approximated as being a fixed percentage of the measured non-GC time. 25% is used

for SN,W based on empirical studies.

The time of each garbage collection can vary over the course of program execution

due to the types of data structures used by the program and the object survival rates. As

a result, there is an accuracy trade-off between using a recent point at a very different

nursery size (SRCNT ) and a less recent point at close to the same nursery size (SCLSE);

using SRCNT reflects the current program phase, while SCLSE requires less extrapolation.

Since Equation 5.8 tends to over-estimate the GC time at smaller nursery sizes, it was

found that using min(TGC(SRCNT ),TGC(SCLSE)) worked well.

Estimating Cache Performance Penalty

∆T ∗NGC corresponds to the cache performance penalty between using the smaller nurs-

ery size of SN,W that fits in the cache and the larger nursery size of SMAX that does not
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fit. Initially when there are no measurements, a rough estimate of the additional cy-

cle penalty per byte allocated is used based on doing measurements on a small array.

The first access of each array element will miss, while the second access of each array

element will hit.

It is possible to measure TNGC by running at both of the nursery sizes and take the

difference. However, there may be enough time elapsed in the program between the two

GC cycles that the program phase could change. Instead, the time elapsed between the

measurements can be reduced by noting that in the first period after the nursery size is

changed from SN,W to SMAX , allocations to the first SN,W of the nursery still hit in the

cache. The remaining allocations that occur after SN,W miss in the cache. Therefore,

a measurement of TNGC can be done for 0 < SN < SN,W signifying the nursery hitting

and another measurement can be done for SN,W < SN < SMAX signifying the nursery

missing. The measurements are scaled by the number of bytes allocated in each region

and subtracted to get the difference in execution time between each byte of allocation

that hits and each byte that misses. A running average of the cache performance penalty

can be used to eliminate noise across measurements.

Implementation Details

A nursery allocator was designed that could allocate chunks of the nursery at a time to

the program instead of the full nursery. A chunk size of 256kB was used to balance

between too many allocator calls and fine grain decision-making. At the point where

the allocated nursery size reached SN,W , estimates of ∆TGC and ∆T ∗NGC were used to

determine whether or not to garbage collect. When running at SN = SMAX , the trade-

off comparison always happened at the newest the value of SN,W . After running for 15

GC cyles with the same nursery size, the allocator would switch to SN,W for a single
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Table 5.1: Microarchitectural details of platform.

Native Machine ZSim Config

Core i7-6700, 3.4GHz Simple, 3.4GHz
4 physical, 8 virtual Single in-order unpipelined

L1I 32kB, 8-way 32kB, 8-way, 1-cycle
L1D 32kB, 8-way 32kB, 8-way, 1-cycle
L2 256kB, 8-way 256kB, 8-way, 12-cycle

LLC 8MB, 16-way 0.5-8MB, 16-way, 42-cycle
Memory 16GB, DDR3-1600 Simple, 173-cycle

GC cycle (regardless of whether or not it was optimal) to update the models. When

running at SN = SN,W , the same nursery size would continue to be used unless a new

S
′
N,W was detected that was less than the current SN,W or it was estimated that SMAX was

a better nursery size to use. This prevented constant fluctuations in nursery size while

allowing for fast reaction to increased cache pressure or garbage collection overhead.

After running for 15 GC cycles, the allocator would switch to the new value of SN,W .

5.4 Evaluation

5.4.1 Experimental Setup

The experiments were run on two platforms as detailed in Table 5.1. The main experi-

ments were run on an Intel i7-based system. For the profile portability study, ZSim [121]

was used with a simple core model. In the simple core model, instruction latency is only

affected by misses in the instruction and data caches. The results show that the profile

based on the ZSim simulations with a simple core model can be used to predict good

nursery sizes on the Intel-based machine, suggesting that execution profiles are portable

across systems.
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Table 5.2: Summary of nursery sizing schemes used for evaluation.

Scheme Description
Base Set the nursery size (SN) to 4MB.

SC/2N
Set SN to half of the cache size divided by the number of con-
current applications.

Best @ 8MB LLC Use the optimal nursery size for a 8MB cache.
Static Proposed static nursery sizing scheme based on offline profiles.
Dynamic Proposed dynamic nursery sizing scheme.
Best Best static nursery size combinations from experiments.

The experiments were run using PyPy [15], a high-performance implementation of

Python with generational garbage collection and just-in-time compilation. Other lan-

guages were not evaluated, but the proposed technique is believed to be general and can

be applied to other managed languages with generational garbage collection where the

same trade-off between garbage collection and cache performance exists. For the base-

line, PyPy’s default static nursery sizing was used where the nursery size was set to be

half of the machine’s last-level cache size (e.g. 4MB in this case). Other static nursery

sizing techniques were also compared as summarized in Table 5.2.

For benchmarks, a wide array of applications were used to get a representative sam-

ple of real-world applications. A combination of benchmarks from the official Python

benchmark suite [109] and benchmarks from the PyPy benchmark suite were used. In

total, designs were evaluated with 50 benchmarks. The benchmarks are listed in Ta-

ble 5.3 along with the acronyms used in the figures.

To study cache contention among applications, groups of applications needed to

be chosen to run concurrently. Instead of manually selecting applications based on

known characteristics, groups of applications were randomly selected. In some cases

multiple instances of the same application were also run together. Groups of 2, 3, and

4 applications concurrently were evaluated. Experiments were run for 23 randomly-
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Table 5.3: List of benchmarks and acronyms.

chameleon CHM pyflate PYF
chaos CHS pyxl bench PYX

crypto pyaes CRY raytrace RYT
deltablue DLT regex compile RGC

dulwich log DLW regex dna RGD
eparse EPR regex effbot RGF

fannkuch FNN regex v8 RGV
float FLT richards RCH

genshi text GNT rietveld RTV
genshi xml GNX scimark fft SCF

go GO scimark monte SCM
hexiom HXM spectral norm SPN
html5lib HTM spitfire SPT

json dumps JSD spitfire cstringio SPC
json loads JSL sym expand SYX
krakatau KRK sym integrate SYN

mako MAK sym str SYS
mdp MDP sym sum SYM

meteor contest MTR telco TLC
nbody NBD unpickle UNP

nqueens NQN unpickle list UNL
pickle PCK xml etree generate XMG

pickle dict PCD xml etree iterparse XMT
pickle list PCL xml etree parse XMP

pidigits PDG xml etree process XMR

chosen groups of 2, 19 randomly-chosen groups of 3, and 68 randomly-chosen groups

of 4 benchmarks. For the results of the groups of 4 benchmarks, averages include all

68 groups but only 34 are shown in some graphs for readability. They are selected by

sampling every other group after sorting based on performance improvement.

Each benchmark group was run until the longest running benchmark completed at

least one execution. Shorter running applications would keep running for more than one

execution so they could continue to interfere with the longer running applications. The

rdtsc instruction was used to get the total execution time of only the first run of each
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benchmark to use for performance evaluation and to ensure that the same amount of

fixed work was compared for each benchmark.

As a performance metric, the system throughput (STP) was computed using the

following equation:

T hroughput(ST P) =∑
i

Ti,alone,SN=4MB

Ti,shared
(5.9)

where the performance of each application running in a group is normalized to the per-

formance when running alone with the nursery size of 4MB.

GNU Parallel [135] was used to schedule the applications to run concurrently on

the machine cores in a way that reduced the possibility of multiple applications running

on the same physical core. The processor used in the study had 4 physical cores and

8 virtual cores with hyper-threading. As the study focused on cache contention, hyper-

threading was not used and each application got a dedicated physical core.

In order to find the best possible performance, each group of benchmarks was run

with all possible combinations of nursery sizes. Since the nursery size was a continuous

variable in PyPy (in some runtimes, it would have to be a power of 2), 5 discrete nursery

size points were chosen to enumerate possible combinations: 1MB, 2MB, 4MB, 8MB,

and 32MB. For groups of 2 benchmarks, there were 25 combinations. For groups of

3 benchmarks, there were 125 combinations. For groups of 4 benchmarks, there were

625 combinations. For the static nursery sizing scheme, one of the five discrete nursery

sizes was selected in experiments so that the results could be compared with the best

nursery size combination. In the dynamic nursery sizing scheme, any nursery size at

256kB granularity could be selected.
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Figure 5.9: Average improvement of different nursery sizing schemes over the baseline
nursery sizing scheme with different number of applications running.

5.4.2 Performance Results

This study evaluates the system throughput when applications are run in groups to com-

pare how well the nursery sizing schemes perform. The static scheme used offline pro-

files from the Intel machine with five nursery sizes 1MB, 2MB, 4MB, 8MB, and 32MB

for each application to determine the best nursery size to use with cache contention.

Figure 5.9 shows the average throughput results of varying nursery sizing schemes

for different numbers of concurrently running applications. While using the maximum

nursery size (32MB) often results in poor performance when running an application in-

dividually, the large nursery can improve the system throughput when running multiple

applications together. This is because both small (4MB) and large (32MB) nursery sizes

may have poor cache performance when multiple applications share the cache. In that

case, the 32MB nursery is beneficial because it has lower garbage collection overhead.

On the other hand, setting the nursery to be half of the effective cache size helps when

reducing cache contention is more important than reducing garbage collection time. Us-
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ing the optimal nursery size for the 8MB cache without considering cache sharing is

slightly better than the baseline but at best yields 11.4% throughput improvement in the

case of four applications.

The proposed sizing schemes consistently outperform other baseline nursery sizing

schemes. The results show that the static nursery sizing scheme can improve the system

throughput by 12.0%, 15.6%, and 18.5% on average compared to the baseline. The

average improvements are within 6.8%, 6.0%, 7.5% of the best for the groups of 2,

3, and 4 applications, respectively. Moreover, as shown shortly, the improvements for

individual application groups can be far more significant. The dynamic nursery sizing

scheme performs slightly worse than the static approach with average improvements of

10.4%, 13.9%, 16.3% over the baseline. This result shows that the dynamic scheme can

adjust the nursery size effectively even without prior profiling.

It is worth noting that when one application is running, the static nursery sizing

scheme is equivalent to the best nursery sizing scheme since the profile is collected for a

8MB cache. On the other hand, the dynamic scheme on average shows 0% improvement

over the baseline because it must adjust the nursery size without prior profiling.

Figures 5.10, 5.11, and 5.12 show the performance results for individual application

groups. For each graph, the groups are ordered by the improvement of the static scheme

over the baseline. The static scheme improves the system throughput by over 15%

for 5 out of 23 groups of 2 applications, by over 20% for 11 out of 19 groups of 3

applications, and by over 30% for 19 out of 68 groups of 4 applications. In addition,

the maximum improvement is 88%, 35%, 92% for groups of 2, 3, and 4 applications

respectively. Individual applications can have performance improvements of as high as

3.29x. In many cases, the static scheme can achieve the best throughput or close to the

best throughput. There are a few cases where the dynamic scheme can do better than
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Figure 5.10: Detailed throughput results when running two applications concurrently.
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Figure 5.11: Detailed throughput results when running three applications concurrently.
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Figure 5.12: Detailed throughput results when running four applications concurrently.
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Figure 5.13: Performance improvement of the dynamic scheme over the baseline static
nursery sizing scheme for various benchmarks that are scheduled to run together.

even the best static nursery sizing scheme, demonstrating one of the benefits of adapting

the nursery size based on the program phase behavior.

5.4.3 Dynamic Scheduling

This study considers the case where many applications are scheduled to run together

on the machine. 16 applications were run in alphabetical order with a maximum of 4

running concurrently on the 4 cores of the machine. The cache contention changed over

time as applications were starting up and exiting. The proposed dynamic scheme is

compared to the baseline scheme of setting the nursery to be 4MB in Figure 5.13. The

execution time of the applications can be improved by an average of 8.2% and by more

than 10% for 7 of the 16 benchmarks. This further demonstrates the benefits of having

a dynamic scheme over a static scheme.
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Figure 5.14: Comparison of the improvements of group of four applications when using
native machine vs. ZSim to generate the profile.

5.4.4 Profile Portability

This study evaluates whether an execution profile collected on one system can be used

to make predictions on a different system for the static scheme. Execution profiles were

generated from ZSim simulations with five nursery sizes of 1MB, 2MB, 4MB, 8MB,

and 32MB. The ZSim simulator was configured to use a simple in-order core that did

not hide any cache miss latency. All instructions besides memory instructions took one

cycle.

Figure 5.14 shows a comparison of the system throughput improvements for a subset

of applications running in groups of four. Surprisingly, even with a profile collected on

a simple simulator, performance improvements are close to those based on profiles on

the native Intel machine. There are some application groups where using the simulator

profile yields better results and some application groups where using the native machine
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Table 5.4: Profiles compared for input sensitivity evaluation.

Profile Description
Same Input Use the same input for profiling and evaluation.

Multiple Inputs
Use the average execution time of running with multiple inputs for
profiling and use a single input for evaluation.

Different Input Use a different input for profiling than for evaluation.

profile yields better results, but the difference is less than 2% on average across bench-

mark groups. The result indicates that application profiles are indeed portable and they

do not have to be collected for each target system.

5.4.5 Input Sensitivity

This study evaluates how resilient the modeling for the static scheme is to changes in

input sets for the benchmarks. Among the 50 benchmarks shown in Table 5.3, there

are some that run the same Python program with different command-line arguments.

They are genshi*, *pickle*, scimark*, spitfire*, sym*, xml*. To test input sen-

sitivity, the static nursery scheme was used with two alternative profiles for each of

these benchmarks to see if the predicted nursery sizes would be different enough to see

noticeable changes in throughput. The profiles that were compared are shown in Ta-

ble 5.4. The baseline profile was constructed using the same input that was used for

running each benchmark. Next, a profile was constructed for each of these benchmarks

by running them with multiple inputs and averaging the execution time. Finally, a pro-

file was constructed using an input that was different from the input used for running

each benchmark.

Figure 5.15 shows the change in throughput for the group of four applications when

using the multiple inputs and different input profiles compared to using the same input
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Figure 5.15: Change in throughput in the static nursery scheme for groups of four appli-
cations when profiling with multiple inputs and a different input compared to profiling
using the same input. Benchmarks in italics had their profiles changed.

profile. In some cases for the multiple inputs profile, there is a drop in throughput

of as much as 4%, but in other cases, the multiple inputs profile actually results in

better predictions and there is close to 7% improvement in throughput. The average

throughput changes by less than 1%. When using a different input profile for each

benchmark, the profile using one input sometimes does not fully capture the correct

phase behavior of the program running with another input. Although the throughput

drops by 18% for SCF+CRY+SCF+XMR compared to the static nursery sizing scheme with

the same input profile, there is still a 1.1% improvement in the throughput for that group

when compared to the baseline nursery sizing scheme. On average, the throughput

when using a different input profile changes by less than 2%. These results suggest

that changes to program input will not significantly affect the ability of static scheme to

predict good nursery sizes.
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Figure 5.16: Comparison of the improvements of group of four applications when using
finer nursery sizes.

5.4.6 Fine-Grained Nursery Sizing

So far, the static scheme has been constrained to select nursery sizes from among a

small number of options (powers of 2). However, the nursery size in PyPy can be any

value. Since the model is supposed to be able to predict the optimal nursery size, the

performance improvements when any nursery size value can be chosen is studied.

Figure 5.16 compares the system throughput improvements of the coarse-grained

(i.e. powers of 2) and fine-grained nursery sizing using the static sizing scheme as

well as the best coarse-grained nursery selection. The results show that the fine-grained

sizing in general performs better than the coarse-grained selection. On average, the

fine-grained nursery sizing improves the system throughput by 19.8% over the baseline,

which is about 1.3% better than the coarse-grained nursery selection. For a few bench-

mark groups, the fine-grained nursery sizing outperforms even the best coarse-grain
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Table 5.5: Comparison of schedules for groups of eight.

Group 1 Group 2

Worst RGF+DLT+SCF+PDG RGF+DLT+GO+RGD
XMR+CRY+TLC+GO XMR+CRY+MAK+FLT

Best RGF+SCF+GO+PDG RGF+XMR+DLT+FLT
DLT+XMR+CRY+TLC GO+CRY+MAK+RGD

% Improvement 6.43% 8.95%

Group 3

Worst RGF+TLC+SCF+RGD
XMR+GO+CRY+FLT

Best RGF+SCF+GO+FLT
XMR+TLC+CRY+RGD

% Improvement 10.37%

combination. However, there are a few cases where the fine-grained scheme is worse

than the coarse-grained one, possibly due to inaccuracies in the model. The results also

show that the proposed static nursery sizing scheme is flexible enough to work with any

granularity of nursery sizing.

5.5 Study on Scheduling

In the previous section, groups of benchmarks to run were randomly chosen and the

proposed schemes achieved significant performance improvements regardless of which

specific benchmarks were running together. This study evaluates the impact on perfor-

mance of choosing which benchmarks to run together.

For the study, groups of eight benchmarks were chosen and all possible combinations

of four running concurrently were tried. Each benchmark combination was run for all

possible combinations of nursery sizes of 1MB, 2MB, and 32MB to determine the best

nursery sizes to use for each benchmark combination.
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Table 5.5 shows the comparison of the best and worst schedule for three groups

of eight benchmarks as well as the percentage improvement in throughput for going

from the worst schedule to the best schedule. The evaluated throughput is for the best

nursery size combinations for a given schedule, but the percent improvements are similar

if a baseline nursery sizing scheme is used instead. The results shown represent the

maximum additional improvement that can be achieved through intelligent scheduling.

They indicate that there is some room for improvement based on scheduling, but it may

be secondary to optimal nursery sizing.
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CHAPTER 6

RELATED WORK

6.1 Sources of Overhead in Dynamic Languages

There are a few previous studies that break down and quantitatively analyze the language

execution of Python [22, 26, 11]. One study by Barany [11] deconstructs the interpreter

performance by identifying common sources of overhead in dynamic languages. Their

pylibjit tool uses a just-in-time compiler that optimizes Python code to quantify the

effects of various sources of overhead. The limitations of the previous work is that they

require custom annotations in Python programs and as a result can only perform analysis

on a small number of benchmarks. Using the approach in the sources of overhead study

in this dissertation, any Python program can be run to generate a breakdown of the

execution time by annotating the interpreter once. In addition, this dissertation is the

first to point out C function calls as a significant source of overhead for CPython.

There exists a number of studies [60, 19, 80] that use benchmarking to understand

which kinds of code work well for different Python implementations. For example,

Heynssens [60] has a masters thesis on a benchmarking methodology and an analysis

for Python programs. He draws his conclusions based on the results from various bench-

marks running on different Python implementations. These studies compare execution

times but do not breakdown sources of overhead.

Some studies have directly proposed modifications to the CPython interpreter to

improve its performance. Cao et al. [22] find that Python dispatch overhead can be

25% of the execution time and use pretranslation to get up to 18% improvement. Power

and Rubinsteyn [107] convert the stack-based bytecodes to a register-based format that
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exposes more possibilities for optimization. The optimizations focus on improving a

specific aspect of the interpreter instead of breakdown of various overheads.

Ilbeyi et al. [67] analyze the performance of Python in the context of a meta-JIT

framework. They present overall execution time comparisons between CPython and

PyPy with and without JIT in addition to a detailed breakdown of the overhead in the

context of the JIT framework. The work in the dissertation is complementary as the

focus is on execution time breakdowns of the interpreter and sweep of microarchitectural

and runtime parameters. The findings on sensitivity to cache and memory parameters

and the interactions of garbage collection with the cache are new insights for PyPy.

There is more extensive work in JavaScript to quantitatively understand the sources

of overhead [137, 131, 39, 153, 102, 99, 132]. Some work provides microarchitec-

tural characterization of JavaScript workloads, but they do so to study the differences

in benchmark suites and how well the benchmarks match real workloads. For example,

Tiwari and Solihin [137] analyze the difference between the Sunspider and V8 bench-

marks. Dot et al. [39] identify checks as a major source of overhead in V8. The findings

of C function calls and sensitivity to cache and memory designs, which are generalized

to V8, discussed in this dissertation are not discussed in the previous work.

6.2 Optimizing Indirect Branches in Interpreter Design

This dissertation points out C function calls as a major contributor of overhead for dy-

namic languages. The problem of optimizing indirect branches has been extensively

studied, because it encompasses virtual calls in static languages such as C++ and Java in

addition to interpreters. The work can be roughly categorized in two parts. First, some

work deals with improving the BTB performance to improve the overall performance
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at the microarchitectural level. Second, other work deals with profiling and identifying

virtual functions to inline or convert to direct function calls at the compiler or source

code level.

6.2.1 Indirect Branch Resolution

Indirect branches are branches where the jump target is specified through a register.

They have been identified as a problem because they are hard to predict and lead to

expensive pipeline flushes in out-of-order processors. A common BTB design uses the

PC of an instruction to store the most recent branch targets. However, indirect branches

usually have many targets that are context specific. Many papers analyze the overhead

of these indirect branches [20, 40, 122, 37, 41, 141, 118, 23]. Ertl and Gregg [45, 47, 46]

have shown that interpreters behave differently from normal programs in that they have a

large number of indirect branches. They show that prediction accuracy for these indirect

branches is only 2-50%. Casey et al. [23] discuss how to improve the BTB performance

in the context of interpreters. While their proposed optimizations improve the indirect

calls, the study in this dissertation finds that indirect calls account for only 11.9% of the

C function call overhead.

There have been many variations in BTB designs that can improve the poor indirect

branch accuracy. For example, using multi-stage [43] or cascaded predictors [42] which

use more history to improve accuracy. There can also be additional data structures which

can improve prediction such as a data structure which performs partial matching [76] or

an additional cache to store more history [27]. Kim et al. [78] propose to separate a sin-

gle indirect branch into multiple virtual PCs and use those virtual PCs to index the BTB

instead of real PC values to lower misprediction rates. However, in the case of inter-
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preters where there could be hundreds of targets for a single branch, the VPC approach

would pollute the BTB and could lead to worse overall performance. Farooq et al. [48]

generalize the idea to have the BTB indexed by any value. However, these hardware-

only approaches cannot reduce the increased number of instructions that account for

inefficiencies in interpreters.

Choi et al. [30] and Kim et al. [77] recently proposed to use more runtime infor-

mation to improve the performance of indirect branches in dynamic languages. Kim et

al. [77] use the BTB to bypass part of the dispatch loop which is unnecessary to execute

every iteration, while Choi et al. [30] apply a similar strategy to accelerate the dispatch

of calls to functions through the software polymorphic inline caches. In both cases, they

use the BTB to aid in bypassing part of the execution. However, their techniques only

consider a single value for indexing – bytecode in one case and object type in the other

– and can therefore only eliminate a limited portion of the overhead. In addition, they

do not consider cases where they would need to jump across function boundaries.

There are alternative techniques to improve indirect branch performance like con-

verting branches to predicated execution [73, 72] or separating prediction from resolu-

tion through additional ISA instructions [91] or using code generation to expand indirect

branches [89].

Finally, it is worth noting that although there is a large volume of work related to im-

proving indirect branch prediction, Rohou et al. [116] recently showed that the newest

Intel processors and state-of-art BTB designs actually perform quite well. Their anal-

ysis would not directly apply to embedded processors which would more likely run

unoptimized interpreters and have simpler BTB designs.
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6.2.2 Interprocedural Analysis and Call Graph Construction

Instead of improving the microarchitecture, there have been proposals to improve the

code itself and eliminate unnecessary indirect or virtual function calls. Virtual function

calls are used in object-oriented languages to simplify programming. The most effec-

tive techniques for eliminating virtual function calls are devirtualization and inlining.

Devirtualization converts a virtual function call to a direct virtual function call while in-

lining eliminates function call overhead and allows the compiler to perform more global

optimizations.

Davidson and Holler [32] derived analytical expressions for the effects of inlining

on the performance. They found through experiments that inlining does not always help

overall performance. Global optimization makes the register allocation problem more

complex and the compiler may choose a worse register assignment when there are more

variables to consider. However, there has been subsequent work which looks at type

analysis as a way to aid in inlining [62, 25, 150, 56, 35, 36, 57, 2, 10].

There have been attempts to profile a program through call graph construction [55,

3] or class analysis to perform interprocedural analysis or devirtualization [33, 105,

62, 54, 95, 68, 9, 97]. Interprocedural analysis can perform some optimizations that

would be performed with inlining, but without having to actually inline the function.

Interprocedural optimizations can be expensive, but DeFouw et al. [34] found a way

to improve a O(N3) algorithm to a lesser complexity. Li et al. [84] and Johnson et

al. [75] present more lightweight techniques to perform interprocedural optimizations

based on feedback-directed optimizations and summary-based whole-program analysis.

Zhuang et al. [154] and Uzelac et al. [139] similarly present ways to more efficiently

profile programs to limit the effect on the overall program performance. Since most of

this work has been done in the context of static languages, the interprocedural analysis
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techniques would need to be adapted to dynamic languages and new approaches would

need to be proposed.

6.3 Just-in-Time Compilation Research

There are a few studies with Java which point out the question of when it is appropriate

to JIT [111, 112, 133]. Radhakrishnan and John [112] explore this issue in the context

of Java and find that method reuse characteristics can help inform whether or not to JIT.

Quantitative analysis in this dissertation suggests that intelligent use of JIT compilation

in dynamic languages may also lead to better performance gains. Future work would

need to explore this issue in more detail.

Most of the research on just-in-time compilers focuses on improving the compiler

with feedback-directed optimizations (FDO) and reducing profiling overhead for opti-

mizations. The goal is to reduce the cost of optimization and provide more useful in-

formation to the compiler to produce more optimized code. There is some work which

focuses on using hardware to aid profile collection. Mock et al. [96] and Arnold et al. [7]

focused on automating FDO while limiting the profling overhead to 2-3%.

JIT compilers usually use a loop or a method as the unit of compilation to limit the in-

strumentation overhead of profiling. Yasue et al. [148] present a way to break the method

further and still collect accurate path profiles with low overhead. Waley [143] similarly

presents an optimization scheme to avoid compiling the cold regions of a method that is

going to be optimized.

There is some work on identifying phases in program execution. On changing

phases, JIT optimizations can become invalid and identifying phase changes can help
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reduce the guard failure cost of execution. Sherwood et al. [125] describe a profiling ar-

chitecture to detect phase-based program behavior using hardware-based metrics which

they find strongly correlate with phase changes. Barnes et al. [12] also use a hardware

profiler to automatically detect execution phases and record branch profile information

for each new phase. Their profiler only focuses on hot code execution.

Many JIT frameworks still use basic counters to determine candidates for optimiza-

tion. Adl et al. [1] present a generic JIT infrastructure for research. While they use

profiling to aid in optimization, they use counters to identify hot methods. Similarly,

Suganuma et al. [133] use counters to optimize from their lowest optimization level

to their middle optimization level. They use profiling of frequently executing PCs to

determine hot candidates for optimizing to their highest optimization level.

6.4 Automatic Memory Management

Much of this dissertation focuses on improving dynamic language performance by im-

proving inefficiencies in automatic memory management. There is much work in im-

proving garbage collection algorithms and detailed evaluation of their performance.

However, much of the previous work focuses on software-only optimizations. The fol-

lowing sections instead discuss work related to HW/SW co-optimization of memory

management.

6.4.1 Nursery Sizing

Some previous work discuss the trade-off of cache performance and garbage collection

overhead. Some work suggests that the nursery should fit in the cache [145, 114], while
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other work suggests that a larger nursery is better [13].

Wilson et al. [145] explore how different cache designs affect the performance of

generational garbage collection. They conclude that careful attention to memory hier-

archy issues can significantly decrease the performance impact of garbage collection.

They point out that as caches get larger, the best way to achieve high performance is to

make the young generation (nursery) fit within the last-level cache.

Reddy et al. [114] similarly propose to pin the nursery, which contains the most

recently allocated objects, in the last-level cache. As a result, they improve the cache

performance and overall execution time of the program as well as garbage collection

pause times.

On the other hand, an in-depth study by Blackburn et al. [13] on the micro-

architectural behaviors of various garbage collection algorithms suggests that a larger

nursery size will result in better performance. They find that sizing the nursery larger

than the last-level cache results in lower garbage collection overhead without significant

change to the application performance.

This dissertation shows that the performance of small nurseries that fit in the cache

can be further improved by co-optimizing both hardware and software. Nursery sizing

should be done in a manner that considers application-specific characteristics, runtime

configuration, and cache performance. In some cases, a smaller nursery will be better

while in other cases, a larger nursery could be better for overall performance. Nursery

sizing is extended to multiple concurrent applications to show that proper nursery sizing

is essential for good performance when multiple applications share a cache.
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6.4.2 Cache Installation

The idea of directly installing a cache line without going to memory has been studied

previously, but existing proposals are not suitable for dynamic languages. PowerPC

has an dcbz instruction that that can install a cache line directly [66]. However, to

use this instruction, software needs to be aware of the cache line size of the underlying

architecture and explicitly install cache lines one at a time. This limits the portability

and applicability.

Other studies focus on reducing cache misses from stores to newly-allocated mem-

ory regions in the context of C and C++. Lewis et al. propose a hardware table to ex-

plicitly track mallocs and install newly-allocated cache lines [83]. This works well for

C and C++ because dynamically allocated objects are often larger than one cache line.

In contrast, dynamic languages frequently allocate small objects, which are smaller than

a cache line. The malloc table cannot be used to install a cache line since no assumption

can be made on neighboring words in the same cache line. In this dissertation, the pro-

posed tracking table for invalid memory ranges installs cache lines for small objects by

assuming later words are unallocated. The same tracking table can additionally be used

to reduce cache pollution and eliminate unnecessary write-backs.

Sartor et al. [123] describe using cache installation and scrubbing instructions in

the context of reducing DRAM traffic and energy. They use cache installation instruc-

tions to eliminate useless read traffic for nursery allocation and scrubbing instructions

to invalidate or deprioritize dead cache lines to reduce dead write traffic. Their solution

relies on ISA instructions similar to the PowerPC dcbz instruction and requires software

to be aware of the cache line size. They overcome the limitations of using cache install

instructions by installing 32kB regions at a time. This can result in unnecessary cache

pollution. The work on optimizing single-application memory management in this dis-
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sertation considers nursery sizes that are many times larger than the size of the last-level

cache. Scrubbing such nursery ranges after each nursery collection would be ineffective.

Instead, partial tracing is used to identify invalid cache lines at more frequent intervals

than nursery collection, and hardware is used to efficiently install and “scrub” cache

lines on-demand.

Hu and John [63] and Rui et al. [120] proposed store fill buffer designs where they

direct store misses to a buffer and only retrieve the cache line from memory if either

the cache line is evicted from the buffer before being fully written to or a word is read

before it is written. If a full cache line is written in the buffer, the cache line is directly

installed into the cache. These designs can work without any information about memory

allocation because they only consider the stores to missed cache lines. The store fill

buffer can reduce unnecessary memory reads when the initialization of a full cache line

happens within a short period. However, the buffer is shared among all stores and an

entry may be evicted before its fully initialized when objects are small. The work on

optimizing single-application memory management in this dissertation uses software to

precisely tell the hardware the areas of memory that are newly allocated. The proposed

tracker can also be used for write-back reduction and pollution control, while the store

fill buffer can be used only for cache installation.

Yang et al. [147] were the first to identify and present a detailed study on the per-

formance impact of zeroing in modern managed languages on recent Intel processors.

They show that existing options of zeroing, whether zeroing in bulk or during object

allocation, have different trade-offs but similar performance impacts. By using existing

cache-bypassing store instructions in the x86 architecture to perform bulk zeroing, they

are able to improve the overall performance of the program. This dissertation similarly

finds that object initialization can have high impact on performance if the nursery does
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not fit in the cache. In this dissertation, multiple solutions are presented including dy-

namically adjusting nursery size and using cache installation to load nursery cache lines

on-demand as objects are initialized. The bulk zeroing technique in previous work is

complementary and can be used during garbage collection to further reduce the over-

head of garbage collection.

Zhang et al. [151] identified a strong correlation between the object allocation rate

and the memory bus write traffic in partially scalable programs written for Java. They

conclude that scalability and performance are limited by the object allocation rate on

multi-processor platforms resulting in an “allocation wall.” This dissertation confirms

their initial experiments and shows that the “allocation wall” can be overcome by di-

rectly initializing cache lines without reading from memory using cache installation.

This dissertation further shows that the effect is amplified when multiple programs run

concurrently and proposes nursery sizing schemes to reduce the performance impact.

While the dissertation focuses on dynamic languages, the techniques should be appli-

cable to other garbage collected languages. The prior work suggests that the cache

optimizations are also important for static-but-managed languages such as Java.

6.4.3 GC Tuning

Previous studies have proposed to improve the locality by shaping memory accesses

with garbage collection [64, 61, 79, 29]. For example, Huang et al. [64] use online

profiling to determine which objects have frequently-accessed fields and use a copying

garbage collector to reorder objects in a way that improves locality. The improved

locality does not significantly change the cache contention among multiple programs,

which is a problem that is addressed in this dissertation.
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Some previous work considers automatically tuning garbage collection and runtime

parameters [140, 71, 82, 130, 129, 128, 21]. Jayasena et al. [71] use an autotuning

algorithm to tune up to 600 different JVM parameters related to garbage collection,

just-in-time compilation, and class loading. Cameron et al. [21] apply economic theory

to perform holistic tuning of heap sizes of multiple applications. This dissertation is

the first to consider nursery size in the context multiple applications and show that the

nursery size can be tuned for significant performance improvement.

6.4.4 GC Resource Contention

To the best of the author’s knowledge, this dissertation includes the first study on the

impact of cache sharing on multiple managed-language applications.

Garbage collection in the context of multiple concurrent applications has been stud-

ied, but the work focuses on improving the virtual memory performance by reducing

paging. Alonso and Appel [4] discuss a holistic approach where managed runtimes ad-

just their working set size according to system utilization. Other work has looked at

reducing paging using equation models [136], control theory [144], and forcing garbage

collection to limit unnecessary memory usage [59]. In addition, Hertz et al. [58] de-

scribe a garbage collection algorithm that works with the virtual memory manager to

guide page eviction decisions and reduce overall paging. This dissertation studies a new

problem, which is cache contention among multiple programs.

Garbage collection has been explored in multi-core contexts, but most of the work

focuses on single multi-threaded applications. For example, Ogasawara [101] studied

the scalability problems of a Java-based web server running on a chip multi-processor.

Using object pooling for long-lived classes, they can greatly improve the scalability and
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throughput of an application. Eizenberg et al. [44] discuss cache coherence issues in

JVM as a result of true and false sharing of memory locations in private caches. Their

Remix tool can detect both true and false sharing and perform repairs for false sharing

to improve application performance.

There has been much work on implementations of garbage collection on multi-

threaded applications [88, 113, 5, 152, 38, 149]. The designs follow Doligez and Leroy’s

work [38] where a small thread-private local heap is used for fast allocations and ef-

ficient garbage collection and a larger shared heap is used only when needed. Raghu-

nathan et al. [113] extend this design to setup the heap hierarchy for further optimization

in functional languages. More recent work focuses on NUMA-aware data placement in

context of automatic memory management [50, 8, 51, 152]. Gidra et al. [51] propose

NumaGiC, which attempts to minimize remote accesses to memory during garbage col-

lection through a distributed algorithm.

Cache partitioning is a well known technique for handling interference among ap-

plications. The dissertation work is complementary to the cache partitioning work and

future work could consider partitioning along with nursery sizing. The cache partition

sizes can be used as an input to the models to choose good nursery sizes for a given

partitioning configuration.

6.4.5 Accelerating Garbage Collection

Previous studies have also proposed hardware support for garbage collection. Some

of them aim to accelerate the computational overhead of reference counting [146, 74].

Others use a hardware co-processor to achieve more predictable garbage collection in a

real-time setting [124, 92, 93, 100]. Maas et al. [87] propose using hardware to acceler-

ate the most commonly used functions in tracing garbage collection.
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6.4.6 Reducing Write-backs

Some previous studies optimize garbage collection to reduce write-backs from

caches [106, 126, 127]. They use a garbage bit to track garbage data in the cache.

Garbage cache lines are not written back and can be replaced before other valid cache

lines. In this dissertation, a novel partial tracing technique is proposed that decouples

tracing a small part of a nursery from full garbage collection.

6.4.7 Tracking Memory Regions

The tracking hardware for invalid memory regions discussed in this dissertation is sim-

ilar to the Range Cache [138], which is designed to store security tags for a range of

addresses. The tracking hardware in this dissertation only needs to indicate whether a

range of addresses is invalid, which allows the hardware to be greatly simplified. In

addition, overlapping ranges do not need to be kept, which allows for fast (single-cycle)

hits for lookups.
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CHAPTER 7

FUTURE WORK

This dissertation identifies multiple sources of overhead in dynamic languages.

While the focus is on optimizing automatic memory management, future work can build

off of the studies to develop approaches to improving the various other sources of over-

head. In order for dynamic languages to be competitive with static languages in per-

formance, multiple inefficiencies should be optimized using a HW/SW co-optimization

approach. This chapter briefly discusses some possible ideas for future improvement.

7.1 C Function Call Overhead

In the study on sources of overhead (Chapter 3), C function call overhead is identified

as a large source of overhead that has not been previously identified. Function calls are

used to better organize code and reduce the amount of code that the programmer needs

to write and debug. At the processor level, they make management of registers easier,

since registers can be used according to the calling convention.

One research direction would be exploring how to reduce this overhead. For exam-

ple, could existing work on interprocedural optimizations based on feedback-directed

optimizations [75] be applied to interpreters? Information about the interpreter struc-

ture can be use to guide the optimizations. In addition, can hardware be modified so

that the cost of calling functions is reduced? For example, hardware may be able to

further reduce the overhead of saving state before a function call and restoring it after

the function call.
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7.2 When to JIT

The study on JIT thresholds (Section 3.5) shows that choosing an appropriate JIT thresh-

old can significantly improve program performance. This direction can be extended to

further study the characteristics of loops that make them better candidates for optimiza-

tion and at what point (in terms of threshold) a loop should be optimized.

For example, JIT optimizes for the common path. Loops with many branches and

control flow divergence may not be good candidates for optimization. Branch predictor

information can be used to collect statistics on a per-loop basis to determine which

loops have high branch predictor accuracy (indicating that the program is executing

predictable paths) and that information can be incorporated into the decision of whether

or not to JIT.

Even in cases where there is little divergence in control flow, it may not be appro-

priate to optimize a loop unless it is expected to execute for a long time. Can loops

that execute for long enough to amortize overhead be better predicted by inferring the

iteration counts of the loops?

Finally, there may be ways to improve the performance of the JIT compilation

through hardware acceleration so that the overhead of optimizing code is reduced. As

a result, more code could be optimized and there would be more performance improve-

ments from using JIT.
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7.3 Further Improving Automatic Memory Management

This dissertation discusses multiple ways that the automatic memory management can

be optimized for dynamic languages to improve performance. Future work could build

on the approaches in this dissertation for further performance improvements.

The dynamic nursery sizing scheme can be further improved to better predict nursery

sizes. For example, can machine learning be applied to train a predictor? The challenge

in this case would be to do it with low overhead and with a limited number of features.

In addition, other hardware metrics can be used to inform the decision. Finally, some

work would be needed to properly train the models to cover various program behaviors.

The dissertation also presents a study on scheduling for multiple applications run-

ning concurrently (Section 5.5). A more comprehensive study with more groups of

benchmarks should be done to get a better understanding of the potential performance

improvements. Which characteristics of applications make them good for running to-

gether and which characteristics lead to poor performance? The study shows that bal-

ancing benchmarks with large nurseries and small nurseries usually does quite well.

Finally, the current analysis of the cache performance and garbage collection trade-

off curve assumes that memory latency is constant. With the current advances in mem-

ory architecture, non-uniform memory access (NUMA) machines are becoming increas-

ingly prevalent. Another research direction would be to further explore how these ma-

chines change the trade-offs and techniques for achieving good performance.
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CHAPTER 8

CONCLUSION

As software becomes more complex and the costs of developing and maintaining

code increase, dynamic programming languages such as Python are becoming more

desirable alternatives to traditional static languages such as C. This dissertation studies

the sources of overhead in these languages and proposes optimizations for improving

their performance.

First, an extensive characterization of Python at various levels is performed to pro-

vide insights into new opportunities for optimizations in dynamic languages. When

looking at the sources of overhead, C function call overhead is identified as a major

source of overhead in addition to other sources of overhead identified by previous work.

In studying the interaction of the runtime with the underlying hardware, PyPy with JIT

is found to be sensitive to cache and memory parameters.Through a further investiga-

tion, it is found that nursery size needs to be tuned at the application-specific level,

considering the runtime and underlying hardware.

Second, single-application optimizations are discussed for memory management in

dynamic languages that consider both the hardware and software together. In particular,

it is shown that a large nursery size can be used to significantly reduce garbage collection

overhead of a single application if the impact on cache performance can be controlled.

A new invalid memory region tracker and partial tracing algorithm are introduced to

address the cache performance issue.

Finally, the impact of cache sharing on program performance is studied. Nursery-

sizing strategies are found to significantly impact the performance of concurrently run-

ning applications. A model is developed to understand the impact of cache size on

135



nursery-sizing and is applied to an offline static sizing scheme and an online dynamic

sizing scheme. The results show that large improvements in the throughput can be

achieved and that using automatic memory management to reshape memory access pat-

terns can be an effective tool in addressing cache contention and improving overall per-

formance of concurrent programs.

While Python is primarily evaluated for most of the studies, the main results from

the studies should be applicable to other dynamic languages. As dynamic languages

continue to see widespread uses, HW/SW co-optimization of these languages will be

essential to make them viable high-performance alternatives to traditional static lan-

guages.
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APPENDIX A

MODEL OF GARBAGE COLLECTION EXECUTION TIME

In this section, a first order model is described of the total garbage collection time,

denoted TGC. The model only considers nursery collection of the young space and not

the full garbage collection of the old space. The total garbage collection time can be

broken down into a series of garbage collection invocations:

TGC = N ∗ tGC (A.1)

where N is the number of times garbage collection is run and tGC is the average time per

invocation.

Garbage collection is triggered when the memory allocated by the mutator matches

the nursery size:

N =
SPA

SN
(A.2)

where SPA is the total number of bytes allocated by the mutator in the nursery and SN is

the nursery size.

The time it takes to run a garbage collection invocation can be expressed as:

tGC = tsetup + tcleanup +(ttrace + tmove)Nlive (A.3)

where tsetup and tcleanup are fixed times for each garbage collector invocation and ttrace

and tmove are the time it takes to trace and move a single object. Nlive is the number of

objects that need to be moved.

Nlive can be modeled as an exponential decay function:

Nlive =
SN

SO
e−λ t (A.4)

where SO is the average size of an object and λ is the death rate of objects.
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Since garbage collection is performed at intervals, t is set to be the interval between

garbage collection invocations:

t =
SN

RPA
(A.5)

where RPA is the rate the mutator allocates nursery space in bytes/cycle.

Through substitution, the above equations are combined to get the following:

TGC =
SPA

SN

[
tsetup + tcleanup +(ttrace + tmove)

SN

SO
e−λ

SN
RPA

]
(A.6)

In the equation, there are some variables that are dependent on the application. λ is

fully dependent on the application that is running. SPA, SO, RPA are also dependent on the

application that is running, but minor adjustments can be made by changing the object

space implementation in the runtime. Decreasing the size of the object will decrease the

total space allocated by the program and the allocation rate. This will result in an overall

reduction in the garbage collection time.

In terms of the garbage collector implementation, any of tsetup, tcleanup, ttrace, tmove, or

SN can be improved. Improving the first four would require optimization of the garbage

collector. SN can easily be adjusted before each run or even at runtime.

By increasing the nursery size (i.e. SN), tsetup and tcleanup is amortized over a longer

time period. In other words, if the nursery size is increased by M, the contribution over

the same time period becomes
(
tsetup + tcleanup

)/
M .

Interestingly, the trace and move times are not affected by the nursery size in the

same way. The larger nursery size makes the magnitude of the exponent larger indicating

a larger decay constant. This means that more live objects will die between garbage

collections with a larger nursery size. As a result, the contribution from tracing and

moving will be smaller.
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The observations from the equation are intuitive. A larger nursery allows for garbage

collection to run less frequently and there will be less live objects to trace and move

during each execution. As a result, the total garbage collection overhead will decrease.
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[50] Lokesh Gidra, Gaël Thomas, Julien Sopena, and Marc Shapiro. A study of the
scalability of stop-the-world garbage collectors on multicores. In Proceedings
of the 18th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 229–240. ACM, 2013.
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