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1 Introduction

In its broadest conception, the finite element method is a systematic and robust
numerical method for solution of partial differential equations, (PDEs). While
precise agreement with closed-form (weak) solutions are possible (within the
floating point precision of the given hardware in use), one important strength of
the method comes from its ability to furnish approximate solutions, over com-
plex domains, where closed-form solutions are either unknown, or impossible to
obtain.

Another important strength of the finite element method relates to its firm
foundation within the mathematical theories contained under the rubric of Func-
tional Analysis. As a direct result of such foundations, it is often possible to
guarantee the existence and uniqueness of finite element solutions. Functional
analysis enables the study of convergence in finite element solutions to their
exact hypothetical counterparts. The ability to analyze new finite element tech-
nics in terms of existence, uniqueness, and convergence motivate the study of
functional analysis for the mechanician. Indeed, an inability to understand the
convergence properties of any numerical solution method represents a serious
drawback in terms of the reliable and proper use of the method.

This course takes as its point of departure continuum mechanics, elementary
mathematics, numerical methods, computer programming, and introductory
finite element analysis. The primary focus of the course is to introduce the
solution of nonlinear PDEs with finite element method, with an emphasis on
those problems arising within the application domain of structural mechanics.
Solution methods, algorithms, and finite element formulations will be treated in
a theoretical context, and implemented in computer software through a series
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of project assignments. The tools developed will subsequently be applied to
problems related to structural stability and acoustic fluid-structure interaction.

1.1 Review of topics from Continuum Mechanics

As a beginning point to discussions concerning nonlinear finite element analy-
sis, a review of the fundamentals of continuum mechanics is undertaken. An
excellent, and more in-depth treatment of these topics may be found in the
monograph by Malvern [10]. The current treatment of review topics is meant
to refresh important ideas, introduce useful notation, and furnish a sense of
continuity in concepts with this, and earlier, courses.

In many important themes in engineering and applied mathematics, where a
physical system comprised of matter is under investigation, the idealization of a
continuum is appropriate. Understanding the nature of matter, at length scales
of hundreds of pico-meters (i.e. 100E-10 meters), to be discontinuous, the util-
ity of the conceptual framework associated with the continuum is, nonetheless,
useful in certain contexts. Meaning, if the length scale of the problem under
investigation is much larger than atomic length scale, then the behavior of the
medium comprising the domain of the problem may be considered as possessing
the properties of the atoms, and molecules, of the material, as an aggregation.

With this perspective in mind, a material point, P , is defined as being an
infinitesimally small volume of atoms / molecules possessing the aggregate prop-
erties of the material comprising a given body, B. We then say:

P ∈ B (1)

with the assumption that there are an infinity of analogous material points in
the neighborhood surrounding the point under discussion, P . This conception
of a material point is useful in the so-called referential description of contin-
uum mechanics (a description that is very important in nonlinear finite element
method). Changes in space-time of the body, B, comprised of the infinite col-
lection of material points, P , may now be considered.

It is oftentimes convenient to conceive of the body, B, as being notionally
“embedded” in R3, in a manner to be made precise later. For simplicity a right-
handed rectangular Cartesian reference frame with origin, O, is constructed.
The orhthonormal bases defining such a reference system are given in indicial
notation as: ei, i = 1, 2, 3. At a specific point in time, each of the infinity of
material points, P , in the body, B, are assumed to posses an invertible mapping
from the body into a subspace of R3 that represents the geometric outline of the
body. This outline is referred to as the configuration of the body, B, at a given
point in time, t. Now each of the material points, P in the body, B correspond
uniquely with the infinity of points contained within the configuration, Ω, de-
fined at a particular time instant. Position vectors, X, locating the individual
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material points, mapped to a particular configuration of the body, may now be
used to label the points under consideration within a particular configuration;
as well as to facilitate the description of changes occurring when going from one
configuration to another. This may be summarized as:

L (P ) = X, ∀P ∈ B, X ∈ Ωt ⊂ R3, t ≥ 0 (2)

where L is the bijective (i.e. one-to-one and onto) operator mapping mate-
rial points, P , into distinct position vectors within R3. The subscript on the
configuration, Ω, is used to specify which particular configuration is under con-
sideration (e.g. perhaps body, B, is acted upon by some time varying external
agency leading to some rigid body motion and deformation).

A so-called referential (or Lagrangian) description is frequently adopted in
the consideration of solids and structures, where the deformation history of the
body is commonly of interest (e.g. consider plasticity). In such a case, an
initial stress free conception of the body, as a configuration in the reference
frame (span(ei)), is identified by uniquely mapping all material points in the
body to real numbers in the reference configuration; the unique triplet of real
number locating the points are then the components of the position vectors of
these same points, X. We may then speak of the reference configuration as the
collection of all such points X (notice that we are now labeling the points using
only the position vectors). Any hypothetical motion taking the body, B, from
the reference configuration to some new configuration (we can now label the the
material points, in the new configuration, using new position vectors, x), can
then be expressed using the following mapping:

x = φ (X, t) (3)

In such a description, the initial position of the material points in the reference
configuration are used to describe any subsequent motion in the body, occur-
ring at various solution times. Meaning, the future and fate of all points in the
body are measured in reference to some starting position in the stress free state.
Again, this makes perfect sense for the case of solids and structures where the
various engineering theories are tied to overall deformation. The same is not
true for fluids.

Consider now the case of a fluid medium that is incompressible and of negli-
gible shear resistance (invicid). In such a situation, it is no longer as important
to know the motion of a given material point, as it is to understand the nature
of the flow within some control volume. In such a case, rather than a configura-
tion of a body, we consider a region of space at some arbitrary time. We label
the infinity of stations (locations) in the control volume, that various material
points may pass through, using the same position vectors that we considered
for use in an arbitrary configuration of body, B. In other words, we monitor all
points located in the control volume with position vectors, x; and subsequently
use these position vectors to label the material points that happen to occur at
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these locations at a particular time instant. Such a description is termed as
being spatial (or Eulerian)

Consideration of the motion in terms of the referential and spatial descrip-
tions permits the introduction of the displacement field, as the difference in the
position of two points. In the case of the referential description, the displace-
ment field may be defined as:

u (X, t) = φ (X, t)− φ (X, 0) = φ (X, t)−X (4)

whereas in the spatial case the following holds:

u (x, t) = x− φ−1 (x, t) (5)

where φ−1 is the inverse of the transformation introduced in Equation (3); a
mapping that may be difficult to obtain in every practical case. However, it is
pointed out that:

u (x, t) = u (φ (X, t) , t) = u (X, t) (6)

and thus the equality in displacement fields is observed between the two de-
scriptions.

The two different descriptions (i.e. Lagrangian and Eulerian) have different
strengths and weaknesses, and both are useful in different ways. Rather than
selecting one over the other, the discussion now turns to highlighting several
important differences between the two, beginning with a discussion on velocity.

Within a referential description, the position of each material point is fur-
nished by Equation (3) and the velocity of a particular particle, originally at
some point, X, in the reference configuration, is expressed as:

v (X, t) =
∂

∂t
φ (X, t) (7)

Similarly, the referential description yields an acceleration expression of the
form:

a (X, t) =
∂

∂t
v (X, t) =

∂2

∂t2
φ (X, t) (8)

The foregoing are the first and second partial time derivatives with material
coordinate, X, held constant, respectively. If now we wish to consider the motion
of particles passing through a specific location in space, then we adopt a spatial
description and subsequently consider the partial time derivative with spatial
position held constant. In this latter case we now have, for velocity:

v (x, t) =
∂x

∂t
(9)

and for acceleration:

a (x, t) =
∂

∂t
v (x, t) =

∂2x

∂t2
(10)
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An important distinction to draw when considering Equations (9) and (10), as
opposed to Equations (7) and (8), is that in the former case, the quantities are
local with respect to the given particle located instantly at the point of interest,
while the latter two are used to describe the motion of a specific particle at an
arbitrary time. This difference may be highlighted by the consideration of a
steady flow situation.

In a the case of steady flow, it is easy to imagine that the accelerations of
the individual material points, as they proceed along their stream lines (a curve
whose tangents are parallel with the particle velocity vector associated with par-
ticle instantaneously occupying the point of tangency) are non-zero. Whereas,
the consideration of the time rate of change in velocity measured at a particular
spatial point, anchored in space, will yield an acceleration of zero. The utility
of Equation (10) becomes apparent, as it affords us a means for inferring the
motion of a particular particle, just now being observed at a point within some
control volume.

It is observed that the form of the derivatives appearing in Equations (7)
and (8) are commonly referred to as material time derivatives; as it is that the
material point is held constant as the derivative with respect to time is evalu-
ated. Alternately, the form of the derivatives appearing in Equations (9) and
(10) are commonly referred to as spatial time derivative; for analogous reasons.

If it were that only spatial data are available, the material time derivative
could, nonetheless be evaluated as follows (using acceleration as an example):

v (x, t) = v (φ (X, t) , t) = v ◦ φ (11)

where the form of the velocity in the rightmost terms are given as a composition
of functions; a notation that is common in the mathematical literature, and
introduced here for completeness. Equation (11) may now be used to re-express
the material time derivative using the chain rule as follows:

∂v (X, t)

∂t
=
∂v (x, t)

∂t
+
∂v (x, t)

∂x

∂φ (X, t)

∂t
(12)

it is noted that use has been made of Equation (3) in the last term on the right
hand side of Equation (12). We may expand the result of Equation (12) as:

a (X, t) = a (x, t) + v (X, t) · ∇v (x, t) (13)

It is pointed out that the velocity in the second term on the right hand side of
Equation (13) may be changed to the spatial velocity, on account of the result
from Equation (11); and thus:

a (X, t) = a (x, t) + v (x, t) · ∇v (x, t) (14)

where the rightmost term on the right hand side of Equation (14) is frequently
referred to as either the transport or convective term. It is pointed out that the
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material velocity contained in the convective term in Equation (14) is known in
terms of the spatial velocity (using Equation (11)), and thus the material time
derivative is expressible entirely using spatial quantities.

The gradient operator appearing in Equation (14) is sometimes referred to
as the left gradient, and defined as:

∇v ≡

 ∂vx
∂x

∂vy
∂x

∂vz
∂x

∂vx
∂y

∂vy
∂y

∂vz
∂y

∂vx
∂z

∂vy
∂z

∂vz
∂z

 =

 vx,x vy,x vz,x
vx,y vy,y vz,y
vx,z vy,z vz,z

 (15)

wherein the the indicial notation for partial differentiation has been introduced
in Equation (15).

The specific result presented in Equation (12) may be generalized to any
scalar field as:

Df

Dt
=
∂f

∂t
+ v · ∇f (16)

as well as any tensor field:

Dσ

Dt
=
∂σ

∂t
+ v · ∇σ (17)

where the convention for referring to the material time derivative as D
Dt , is

introduced. An additional convention, that represents spatial quantities without
parenthetical arguments is adopted. Meaning that from this point forward,
the following is implied (as an example): v = v (x, t); whereas the referential
quantity (or material quantity) will always appear with an argument, as in
v (X, t).

1.1.1 Rate of deformation tensor

Consider two continuum particles located in a spatial reference frame. While it
is that the original position of the points, in terms of material coordinates in a
referential sense, is not known, the instantaneous spatial velocities are known.
As a result, the velocity of one particle may be denoted as, v, while the the
velocity of the other particle, a distance dx away, is given by v + dv. The
relative velocity of the first point, with respect to the second, is then:

dv = L · dx, L = (∇xv)
T

(18)

where ∇x denotes the spatial gradient, and thus (∇xv)
T

denotes the spatial
gradient of velocity, now called L.

The tensor, L, may be written as the sum:

L = D + W (19)
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where,

D =
1

2

(
L + LT

)
(20)

and,

W =
1

2

(
L− LT

)
(21)

D is called the rate of deformation tensor and W is called the spin tensor
(the former being symmetric, and the latter being skew symmetric). Thus it is
observed that the spatial velocity field can be expressed as:

dv = D · dx + W · dx (22)

If the rate of deformation tensor vanishes, then the motion in the spatial ref-
erence frame is a simple rigid body rotation. Conversely, if the spin tensor
vanishes, then the motion is irrotational, and thus:

dv = D · dx (23)

It is pointed out that there is no requirement of smallness on the part of the
velocity and velocity gradients. The representation of motion in terms of the
rate of deformation and spin may be finite in magnitude.

Properties of the rate of deformation tensor may be elucidated when con-
sidering a differential position vector, dX, in the reference configuration. The
instantaneous change in this vector length, in the spatial reference frame, is:

(ds)
2

= dx · dx (24)

the rate of deformation of this quantity is given using the chain rule:

d

dt
(ds)

2
= 2ds

d

dt
(ds) (25)

Using Equations (24) and (25):

d

dt
(ds)

2
= 2dx · d

dt
(dx) (26)

Using Equation (3), it is observed that:

d

dt
(dx) =

[
d

dt
(∇φ)

T

]
· dX + (∇φ)

T · d
dt
dX (27)

the last term of which vanishes since the time rate of change of the material point
in the reference configuration is zero, by definition. A change in differentiation
order yields:

d

dt
(dx) =

d

dt

[
∇φT

]
· dX = (∇v (X, t))

T · dX (28)
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It is observed that (∇v (X, t))
T

is the velocity gradient with respect to the
material coordinates in a referential system; which is clearly different from L,
the spatial gradient of the velocity field. However, both of these can be made
to yield the same quantity, as:

(∇v (X, t))
T · dX = dv = L · dx (29)

and thus:
d

dt
(dx) = L · dx (30)

Using Equation (26), it is seen that:

d

dt

[
(ds)

2
]

= 2dx · L · dx (31)

= 2dx ·D · dx + 2dx ·W · dx

Since the last term in Equation (31) vanishes due to the skew symmetry of W,
the following observation is made:

d

dt

[
(ds)

2
]

= 2dx ·D · dx (32)

the rate of deformation of the squared length of the material occupying an
instantaneous relative position dx at some location, is determined using the
rate of deformation tensor, D, at that same point. It is pointed out that the
rate of deformation tensor is not the same thing as the time rate of change of
strain. The former is obtained using the spatial gradient of the velocity field at a
point, while the later is obtained using a material derivative of the displacement
field.

1.1.2 Deformation gradient

Using the description of deformation furnished in Equation (3), as well as the
Jacobian matrix, it is possible to characterize the deformation by defining an
operator known as the deformation gradient :

F =
∂φ

∂X
= (∇0φ)

T
(33)

The effect of the deformation gradient is to map a linear differential in the refer-
ential coordinate system into its deformed counterpart in the spatial coordinate
system. The following equation illustrates this idea through the contraction
of the deformation gradient with an arbitrary linear differential selected from
within the reference configuration:

dx = F · dX; dxi = FijdXj (34)

In the foregoing, subscript i refers to the motion, while subscript j refers to the
partial derivative. Being more explicit, an example two dimensional case may
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be considered, from with the following is obtained:

F = (∇0φ)
T

=

[
∂φ1

∂X1

∂φ1

∂X2
∂φ2

∂X1

∂φ2

∂X2

]
(35)

The determinant of the deformation gradient also plays an important role in
relating volume integrations performed in different reference frames as:

dVΩ =| F | dVΩ0 (36)

something that will be very useful for us to know, later in the course.

Commonly, certain restrictions on the motion of a body are assumed (or
enforced) when considering a continuum within a finite element context:

• φ (X, t) is continuously differentiable

• φ (X, t) is one-to-one and onto (bijection)

• | F |> 0

The first requirement is specified as a means to help ensure compatibility within
the body, B, as a result of any given deformation. It is pointed out that the
requirement can be relaxed somewhat to permit discontinuities in φ, and its
derivatives on sets of measure zero (i.e. at small cracks). The requirement
regarding a one-to-one and onto mapping is a necessary and sufficient condition
for the invertability of F; something that is necessary for the existence of the
reverse mapping from the spatial coordinates back to the referential coordinates.
Additionally, the invertability requirement dictates that the determinant of the
deformation be non-zero. However, our third requirement on motion of the body
enforces the positivity of | F |, as a means to ensure that mass is not destroyed,
etc.

1.1.3 Rigid body rotation and coordinate transformation

A notional decomposition of the motion from the referential to the spatial co-
ordinates may be presented as:

φ (X, t) = R (t) ·X + xT (t) (37)

where R (t) is the rotation tensor, and xT is the translation vector. The van-
ishing of the latter term leads to a motion that is a rigid body rotation; which
preserves length:

dx · dx = dX ·RTR · dX (38)

as a result of the preservation of length, it is observed that the product RTR
must be the identity tensor, I, in order to guarantee that dx · dx = dX · dX.
Based on the foregoing, it is observed that the rotation tensor, R, is an orthog-
onal tensor, as it is that R−1 = RT . As a result, any contraction of R with a
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vector results in an orthogonal transformation (e.g. rigid body rotation).

As an initial step in the development of the rotation tensor, R, consider the
representation of a given vector quantity in terms of two separate orthogonal
cartesian bases (ii · ij = δij = îi · îj):

r = riii = r̂i îi (39)

multiplying both sides of Equation (39) by the unit vector ij yields:

riii · ij = r̂i îi · ij → riδij = r̂i îi · ij → rj = Rjir̂i (40)

where Rji = ij · îi. Thus, it is observed that:

r = R · r̂→ ri = Rij r̂j ≡ Riĵrĵ (41)

Exploiting orthogonality of the rotation tensor, the inverse transformation ap-
pears as:

r̂ = RT · r→ r̂j ≡ rĵ = Rĵiri (42)

It is pointed out that in Equations (41) and (42), there is a single vector that
is being referred to separate coordinates systems, that differ from one another
by a rigid body rotation. As an example, the two dimensional specialization of
the case represented by Equation (41) is given as:[

rx
ry

]
=

[
Rxx̂ Rxŷ
Ryx̂ Ryŷ

] [
r̂x
r̂y

]
=

[
ix · îx ix · îy
iy · îx iy · îy

] [
r̂x
r̂y

]
=

[
cos (θ) −sin (θ)
sin (θ) cos (θ)

] [
r̂x
r̂y

]
(43)

Suppose now that the desire is to rotate a given vector, r, into another vector,
s, in a single coordinate system. It may be observed that the components of the
rotated vector, s, in the rotated coordinate (i.e. hatted) system, ŝi, are identical
to the corresponding components of the vector, r in the unrotated coordinates,
ri:

ŝi = ri (44)

and so, applying Equation (42) to ŝi yields:

r = RT · s⇒ s = R · r (45)

Analogous expression for the rotational transformation of second order tensors
appear as:

D = RD̂RT ⇒ D̂ = RTDR (46)
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1.1.4 Finite strain

Considering, once again, the potential for deformation, alongside translation and
rigid body rotations, the notion of a deformation tensor is motivated. Given
some deformation, a positive definite quantification of this condition is furnished
by the expression:

(ds)
2

= dX ·C · dX (47)

while the inverse is given as:

(dS)
2

= dx ·B−1 · dx (48)

If there is no deformation, the foregoing deformation tensors assume the form
of identity tensors; a condition that is somewhat counterintuitive for a measure
of deformation. As a consequence, it is common to introduce the notion of a
strain tensor as the positive definite (when deformation is present) quantity in
the referential description, known as the Green-Lagrange strain:

(ds)
2 − (dS)

2
= 2dX ·E · dX (49)

quantifying spatial deformation in a referential description. Additionally, the
Eulerian strain appears as:

(ds)
2 − (dS)

2
= 2dx ·E∗ · dx (50)

quantifying deformation in the spatial description.

Comparing Equations (47) and (49) in the Lagrangian description, it is ob-
served that:

dX ·C · dX− dX · dX = 2dX ·E · dX (51)

which leads to:
2E = C− I (52)

An analogous approach applies to the Eulerian case:

2E∗ = I−B−1 (53)

Use may be made of the deformation gradient in the formulation of deformation
and strain tensors. In the referential description, it is observed that:

(ds)
2

= dx · dx =
(
dX · FT

)
· (F · dX) = dX ·C · dX (54)

⇒ E =
1

2

[
FT F− I

]
A similar condition applies in the spatial description:

(dS)
2

= dX · dX =
[
dx ·

(
F−1

)T ] · [(F−1
)
· dx

]
= dx ·B−1 · dx (55)

⇒ E∗ =
1

2

[
I−

(
F−1

)T
F−1

]
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Figure 1: Large rotation of rigid rod

It is pointed out that all four of the foregoing deformation and strain tensors
are symmetric.

Motivation for use of the of the Green-Lagrange strain, as compared with
the usual linear engineering strain, in nonlinear finite element analysis, comes
from its invariance under rigid body rotations; a critically important feature
with respect to stability related finite element analyses that involve large dis-
placements (rotations).

Consider a simple unit dimensional example problem depicted in Figure 1.
This example will highlight two important ideas:

• the unsuitability of the engineering strain in cases of large rotation

• the invariance of the Green-Lagrange strain in such cases

Clearly, a strain measure that yields non-zero terms when a body merely rotates
as a rigid body (i.e. no deformation) would prove pathological for applications
involving geometric nonlinearity. Such a rigid body rotation condition is de-
picted in Figure 1, wherein a bar that is initially aligned with the x-axis of
a two dimensional Cartesian reference frame, moves such that a rotation of π

4
radians occurs about its left end. The displacement of the free end may then be

given as: u1 = −
(
L−

√
2

2 L
)

and u2 =
√

2
2 L. Considering these displacements,

the response of this structural element according to enginering strain may be
examined:

ε =
du1

dx
=

√
2

2 L− L
L

=

√
2

2
− 1 6= 0 (56)

Clearly the strains obtained from Equation (56), according to linear engineering
strain theory, are fictitious, since there can be no deformation of the structural
element under a pure rigid body rotation.

Considering now the Green-Lagrange strain measure applied to this same
problem, the components of the tensor that characterize deformation along the
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x-axis yields:

E11 =
1

2

(
∂u1

∂x1
+
∂u1

∂x1
+
∂u1

∂x1

∂u1

∂x1
+
∂u2

∂x1

∂u2

∂x1

)
=
∂u1

∂x1
+

1

2

(
∂u1

∂x1

)2

+
1

2

(
∂u2

∂x1

)2

=

(√
2

2
− 1

)
+

1

2

(√
2

2
− 1

)2

+
1

2

(√
2

2

)2

=

(√
2

2
− 1

)
+

1

2

(
1

2
−
√

2 + 1

)
+

1

4
= 0 (57)

It is thus seen that the Green-Lagrange strain remains invariant (i.e. null) dur-
ing the rigid body rotation depicted in Figure 1.

Consideration may now be given to relating the Green-Lagrange strain to
the rate of deformation tensor of Equation (19). Starting with the the use of the
Chain Rule on the spatial gradient of the velocity of field, it is observed that:

L =
∂v

∂x
=
∂v

∂X

∂X

∂x
=

∂

∂t

(
∂φ (X, t)

∂X

)(
∂x

∂X

)−1

= Ḟ F−1 (58)

Returning now to Equation (20), it is observed that:

D =
1

2

(
L + LT

)
=

1

2

(
Ḟ F−1 + F−T ḞT

)
(59)

Taking now the time derivative of the Green-Langrange strain from Equation
(54):

Ė =
1

2

D

Dt

(
FT F− I

)
=

1

2

(
FT Ḟ + ḞT F

)
(60)

Pre-multiplying Equation (59) by FT and post-multiplying by F yields:

FT D F =
1

2
FT

(
Ḟ F−1 + F−T ḞT

)
F (61)

=
1

2

(
FT Ḟ F−1 + FT F−T ḞT

)
F

=
1

2

(
FT Ḟ F−1 F + I ḞT F

)
=

1

2

(
FT Ḟ I + I ḞT F

)
=

1

2

(
FT Ḟ + ḞT F

)
The relationship between the time rate of change of Green-Lagrange strain, and
the deformation rate is then given as:

Ė = FT ·D · F (62)

D = F−T · Ė · F−1
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1.1.5 Stress

In the limit, as a traction acting at a surface of a continuous body (either an
actual boundary of the problem domain, or equivalently, a notional, internal do-
main: as in a free body of a portion of the domain) is made to affect a smaller
and smaller area, the point-wise quantity stress is uncovered. The continuum
point at which the stress is acting may be conceived of (quite naturally in a
Cartesian three-space) as a differential material element having three edges cor-
responding with hypothetical coordinate axes. Additionally, all edges in this
element are vanishingly small; and hence the modifier differential. Within this
context, it is then quite natural to conceive of stress as a tensor quantity. It is
convenient, to now review a few key points regarding tensors, and their compo-
nents and invariants.

It is instructive to think of the stress tensor as a linear operator whose
components, in the given cartesian coordinate system, produce a traction vector
corresponding to three stress components on the face of the differential material
element that is orthogonal to a unit vector argument:

Tface = n ·T (63)

where n is a unit vector that serves to define the face of interest (i.e. the vector,
n, is taken as the normal to the face). This is more clearly illustrated with a
hypothetical normal vector oriented along the x-direction:

[
T11 T12 T13

]
=
[

1 0 0
]  T11 T12 T13

T21 T22 T23

T31 T23 T33

 (64)

Just as vectors are invariant quantities that can be described using suitable
components within a given coordinate system associated with a specific ortho-
normal basis (i.e. Equation (43)), so too can tensors (such as stress and strain)
be expressed in terms of suitable components in any given set of coordinate
axes. While it was that vector quantities could be described in terms of a linear
combination of scalar magnitudes multiplying appropriate basis vectors, tensors
employ linear combinations of scalar magnitudes acting on dyads. A dyad is an
open product of two vectors defined as:

îi îj = îi ⊗ îj =

 1
0
0

 [ 0 1 0
]

=

 0 1 0
0 0 0
0 0 0

 (65)

with the latter two, right-hand expression being a simple example using the
first two ortho-normal basis vectors for Cartesian three-space. While it seems
clear that a general second order tensor, such as stress, cannot in general be
represented as a single dyad, such tensors can be expressed in terms of dyadics:
linear combinations of dyads, amplified by suitable magnitudes (acting as coef-
ficients for the component dyads).
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A general stress tensor, T, may be expressed as:

T = Tij îi ⊗ îj = T11 î1 ⊗ î1 + T12 î1 ⊗ î2 + T13 î1 ⊗ î3 (66)

+ T21 î2 ⊗ î1 + T22 î2 ⊗ î2 + T23 î2 ⊗ î3

+ T31 î3 ⊗ î1 + T32 î3 ⊗ î2 + T33 î3 ⊗ î3

or, even more explicitly:

T = T11

 1 0 0
0 0 0
0 0 0

+ T12

 0 1 0
0 0 0
0 0 0

 (67)

+ T13

 0 0 1
0 0 0
0 0 0

+ T21

 0 0 0
1 0 0
0 0 0


+ T22

 0 0 0
0 1 0
0 0 0

+ T23

 0 0 0
0 0 1
0 0 0


+ T31

 0 0 0
0 0 0
1 0 0

+ T32

 0 0 0
0 0 0
0 1 0


+ T33

 0 0 0
0 0 0
0 0 1


As in the case of elementary solid mechanics, it is possible to identify the spe-
cific orientation of the differential material element such that the resulting stress
components posses strictly normal components to the faces of the material ele-
ment (i.e. there are no shearing components present)

The state of stress wherein shears vanish is referred to as being principal.
Such a state of stress would be characterized as one wherein the operation
furnished in Equation (63) results in a traction vector that is merely some scalar
multiple of the normal vector to the face of the differential material element in
question:

n ·T = λn (68)

or, in indicial notation:
(Tij − λδij)ni = 0 (69)

In order that Equation (69) have a solution, other than the trivial case of n = 0,
the determinant of the parenthetical term must vanish:∣∣∣∣∣∣

T11 − λ T12 T13

T21 T22 − λ T23

T31 T32 T33 − λ

∣∣∣∣∣∣ = 0 (70)
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As a result of the stress tensor being symmetric and composed of real numbers,
the eigenvalues obtained from the solution of the cubic characteristic equation,
emanating from Equation (70), are real. These three eigenvalues are known
as the principal stresses. Additionally, if these principal stresses are distinct
(i.e. not repeated) then the eigenvectors associated with these eigenvalues are
mutually orthogonal. As it is that the only eigenvectors directions are defined
(and not the magnitudes and positive sense), a positive sense leading to a right-
handed coordinate system is usually adopted.

The expansion of the determinant described in Equation (70) can be be
made in terms of scalar invariants of the stress tensor. These three quantities
are invariant with respect to rotations of the cartesian reference frame at the
continuum point where the state of stress is observed. Specifically, the charac-
teristic equation from Equation (70) may be states as:

λ3 − ITλ2 − IITλ− IIIT = 0 (71)

where the quantities IT , IIT , and IIIT (subscript denotes stress) are scalar
invariant quantities defined as:

IT = Tii = trT (72)

IIT =
1

2
(TijTij − TiiTjj) =

1

2
TijTij −

1

2
I2
T =

1

2

(
T : T− I2

T

)
IIIT =

1

6
eijkepqrTipTjqTkr = detT

The hydrostatic state of stress (i.e. the stress state tending to cause volumetric
changes, only, in a homogeneous, isotropic medium) can be given in terms of
the first invariant as:

σI =
1

3
TiiI =

1

3
IT I (73)

It is mentioned that Equation (73) is also frequently referred to as the spher-
ical stress tensor. A related quantity is the stress deviator ; the quantity that
measures the difference from the purely hydrostatic stress state. This latter
quantity is given by the deviatoric stress tensor :

T− σI (74)

The deviatoric stress tensor gets its name from the fact that it represents the
residual stress, after the stress causing volumetric change is subtracted off. The
implication is that in a homogeneous, isotropic material, once the spherical
stress tensor is removed from the total stress tensor, the portion that remains
must be associated with a change (or deviation) in shape.

It is possible to, once again, define a set of scalar invariants; this time for the
deviatoric stress tensor. These expressions are analogous to those of Equation
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(72), but the resulting characteristic equation is simpler than that of Equation
(71); as the trace of the deviatoric stress tensor is null:

λ3 − J2λ− J3 = 0 (75)

Here the J2 and J3 terms represent second and third deviatoric stress invariants,
respectively.

While the stress tensor provided by Equation (73) is termed hydrostatic, it is
only analogous to the notion of true pressure in a fluid when the deformation of
the body is constantly updated (recall that engineering stress is related to the
original geometry of the body; i.e. σ = P ÷Ao in the case of uniaxial tension in
a bar). In such a circumstance, the stress at a point is referred to as the Cauchy
Stress Tensor, and given as:

n · σ = t (76)

where the vector, t, is the traction acting on an arbitrary surface in the current
configuration. This leads to the consideration of a differential force resultant
acting on a differential area element, normal to the unit vector, n:

n · σ dΓ = t dΓ = df (77)

The foregoing is in contrast to the first Piola-Kirchhoff stress tensor (PK1 ten-
sor), yielding the differential force:

no ·P dΓo = to dΓo = df (78)

Another useful stress tensor, for use with referential descriptions, is the Sec-
ond Piola-Kirchhoff Stress (also called the PK2 stress); yielding yet another
differential force:

no · S dΓo = F−1 · to dΓo = F−1 · df (79)

It is noted that the PK1 stress tensor is non-symmetrical. In contrast, the PK2
tensor is symmetrical. Additionally, the PK2 stress tensor plays a prominent
role in nonlinear analysis involving large deformations, as it is energy conjugate
to the Green-Lagrange strain tensor (in the sense of producing a valid expres-
sion for work).

As the preceding stress equations involve the consideration of differential
areas, dΓ, in different reference frames, it is useful to review the development
of Nanson’s formula for differential area transformation. The review begins
with the postulated existence of two differential areas: one in the referential
description, dΓo; and this same differential area, deformed and in the current
configuration, dΓ. These two quantities may be conveniently expressed in terms
of cross products involving two adjacent and non-parallel edges of the of the
differential areas:

no dΓo = dX× δX→ n dΓ = dx× δx (80)
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or in Cartesian components:

(no)i dΓo = eijkdXjδXk → nq dΓ = eqrsdxrδxs (81)

To better explain these relationships, previous developments related to the de-
formation tensor of Equation (47), as well as the strain invariants described in
Equation (72), are now considered.

When considering the stretching of a linear differential element, defined as
ds
dS ; the ratio of the element lengths in the current and referential configurations,
respectively, are considered. It is common for the stretch in the material element
originally oriented with no, in the reference configuration, to be labeled as Λ;
whereas the stretch of an element oriented along n, in the current configuration,
is denoted by λ. If now Equations (47) and (48) are divided by (dS)

2
and (ds)

2
,

respectively, the following is obtained:

Λ2 =
dX

dS
·C · dX

dS
= no ·C · no (82)

1

λ2
=
dx

ds
·B−1 · dx

ds
= n ·B−1 · n

As a concrete example, the case of the unit extension of a differential material
element whose side is initially parallel with the X1-axis is considered as ds−dS

dS =
ds
dS − 1; thus yielding:

E(1) = Λ(1) − 1 =
√
C11 − 1 =

√
1 + 2E11 − 1 (83)

In Equation (83), E(1) is the unit elongation, and use has been made of Equa-
tion (47), in going from the second to third equality.

Extending the ideas from Equation (83) to the case of a differential volume
element having sides that are parallel with the principal directions of C and
E within the referential coordinate axes, then the following extension becomes
natural:

dV

dVo
= Λ(1)Λ(2)Λ(3) =

√
(1 + 2E1) (1 + 2E2) (1 + 2E3) (84)

=
√
C1C2C3 =

√
IIIC

where IIIC is the third invariant of the Green Deformation Tensor, C. Likewise,
an analogous expression for the case in which the differential element ends up
with its sides aligned with the principal spatial coordinate axes may be expressed
as:

dV

dVo
= λ(1)λ(2)λ(3) =

1√
B−1

1 B−1
2 B−1

3

=
1√

IIIB−1

(85)

These foregoing results may be related to a previously developed notion (i.e.
Equation (36)).
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Recall the use of the deformation gradient determinant, | F |, in volume
integration: ∫

f (x) dx1dx2dx3 =

∫
f ◦ φ (X) | F | dX1dX2dX3 (86)

It is noted that as long as the deformation is continuous, the determinant of
the deformation gradient is always positive. It is now possible elucidate the
implication of Equation (36):

| F |= dV

dVo
=
ρo
ρ

(87)

The inverse relationship also holds:

| F |−1=
dVo
dV

=
ρ

ρo
(88)

The foregoing results from Equations (87) and (88) may be used in conjunction
with the results from Equations (84) and (85) to yield the results that:

IIIC =| F |2 (89)

and,
IIIB−1 =| F |−2 (90)

Recalling, now, that determinant of an arbitrary 3-by-3 matrix (m-rows by n-
columns) may be given as a permutation:

| amn |= eijka
i
1a
j
2a
k
3 (91)

A similar result may be obtained with arbitrary column numbers for a (i.e. not
1, 2, and 3):

epqr | amn |= eijka
i
pa
j
qa
k
r (92)

This result may be used to further develop Equations (87) and (88):

eijk
ρo
ρ

= eijk | F |= erst
∂xr
∂Xi

∂xs
∂Xj

∂xt
∂Xk

(93)

as well as:

erst
ρ

ρo
= erst | F |−1= eijk

∂Xi

∂xr

∂Xj

∂xs

∂Xk

∂xt
(94)

Re-expressing Equation (81) as:

(no)i dΓo = eijk
∂Xj

∂xs

∂Xk

∂xt
dxsδxt (95)

Multiplying both sides of Equation (95) by ∂Xi
∂xr

, and using Equations (94) and
(81), yields:

nr dΓ =
ρo
ρ

∂Xi

∂xr
(no)i dΓo (96)
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or, in tensor form:
n dΓ =| F | no · F−1dΓo (97)

Oftentimes, Equation (97) appears in terms of vector areas:

dA =
ρo
ρ
dAo · F−1 =| F | dAo · F−1 (98)

The foregoing expression for Nanson’s Formula are useful in discussions pertain-
ing to transforming between the various measures of stress introduced earlier
(i.e. Cauchy, PK1, and PK2).

Using the notion of force per unit undeformed area, the Piola-Kirchhoff
stresses arise naturally. The PK1 stress tensor, P furnishes the actual force df
acting on the deformed area element, dΓ, but measured per unit undeformed
area dΓo; thus yielding:

no ·P dΓo = df = n · σ dΓ (99)

Equation (99) is then seen to yield the actual differential force acting on the
deformed area in the current configuration, but it does so using information
regarding the body in question in a previously deformed state (i.e. in terms
of a referential description). In contrast, the PK2 stress tensor, S, furnishes a
differential force, df̃ , that is related to the current differential force vector, df ,
through the application of the inverse deformation gradient:

df̃ = F−1 · df (100)

The foregoing may be used to arrive at the useful additional expressions:

no · S dΓo = df̃ = F−1 · df = F−1 · n · σ dΓ = n · σ
(
F−1

)T
dΓ (101)

The expressions in Equations (77), (78), and (79) are now seen more clearly,
thus permitting additional insights that enable mapping from one stress tensor
to another.

By using Nanson’s Formula, it is possible to consider how it is that the
Cauchy stress tensor is related to the Piola-Kirchhoff stress tensors; beginning
with the PK1 stress:

no ·P dΓo = n · σ dΓ (102)

no ·P dΓo =
ρo
ρ

no · F−1 σ dΓo

0 = no ·P dΓo −
ρo
ρ

no · F−1 σ dΓo

0 = nodΓo ·
(

P− ρo
ρ

F−1 σ

)
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Equations (102) lead to the tensor transformation between the Cauchy and PK1
stress tensors:

P =
ρo
ρ

F−1 σ (103)

and, inversely:

σ =
ρ

ρo
F P (104)

In the case of the PK2 stress the following relations hold:

no · S dΓo = F−1 ·
(
ρo
ρ

no dΓo · F−1 σ

)
(105)

=

(
ρo
ρ

no dΓo · F−1 σ

)
·
(
F−1

)T
thus, leading to the tensor transformation from the Cauchy and PK1 stress
tensors into the PK2 stress tensor:

S =
ρo
ρ

F−1 σ
(
F−1

)T
= P

(
F−1

)T
(106)

and, inversely for the PK2 into the PK1 stress:

P = S FT (107)

and similarly, the inversion from PK2 to Cauchy stress:

σ =
ρ

ρo
F S FT (108)

1.1.6 General principles

The general principles underpinning continuum mechanics require mathematical
descriptions of physical phenomena to enable the statement of balance laws.
An illustration of such a physical phenomenon comes in the form of the vitally
important example of flux across a surface. If a differential portion the boundary
of a body, B, is denoted as dΓ (possessing a normal vector to its surface, denoted
by n), then any physical quantity moving through dΓ may be described using
the notion of flux. Considering that the velocity of the quantity in question may
be denoted by a vector, v, then the flux of volume appears as:

v · ndΓ (109)

The physical interpretation of Equation (109) is quite simply: the volume of
material flowing through the differential boundary element, dΓ, per unit time.
If the differential time interval, dt, were added, as a multiple, to Equation (109),
then the volume of material passing through the boundary, dΓ would be the re-
sult.
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Considering the complete boundary, Γ, of the body B, then the so-called
volume flux appears as:

V olume F lux =

∫
Γ

v · ndΓ (110)

The utility of Equation (110) in expressing quantities useful in conservation
laws, is perhaps obvious, but it is nonetheless instructive to point out a few
useful examples in this regard:

Mass F lux =

∫
Γ

ρv · ndΓ (111)

Momentum Flux =

∫
Γ

ρv (v · n) dΓ (112)

Kinetic Energy F lux =

∫
Γ

1

2
ρv2 (v · n) dΓ (113)

The foregoing equations of flux may be generalized as:

Material Property F lux =

∫
Γ

ρA v · ndΓ =

∫
Γ

ρA vdA (114)

where the quantity, dA, is taken to mean vector differential element of area.

Of course, the implication in the previously defined flux equations was the
motion of mass through the differential boundary, dΓ, associated with the body
of interest. Such mechanical fluxes, as they are usually known, do not in anyway
imply that physical quantities that best occur in a vacuum (i.e. without mass
transport) are somehow excluded from consideration within the scope of the
previously defined notions. Indeed non-mechanical fluxes (e.g. current flow,
heat flow, etc.) can be similarly described. Considering the case of heat flux:

Heat flux through a boundary =

∫
Γ

q · ndΓ (115)

where q is the heat flux vector ; given in units of power per unit area.

An important point of departure for any discussion of the general principles
(or conservation laws) in continuum mechanics is a discussion of the Diver-
gence Theorem of Gauss. In words, this theorem generally states that the outer
normal component of a vector field, taken over a closed surface, is equal to
the divergence of the same vector field over the volume bounded by the closed
surface. Mathematically, the Divergence Theorem appears in vector form as:∫

Γ

v · ndΓ =

∫
Ω

∇ · vdΩ (116)

In Cartesian form, the Divergence Theorem takes the form:∫
Γ

vinidΓ =

∫
V

∂vi
∂xi

dΩ (117)
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Other special cases for the Cartesian representation of the Divergence Theorem
include the case of a scalar field:∫

Γ

fnidΓ =

∫
V

∂f

∂xi
dΩ (118)

as well as the case of a second order tensor:∫
Γ

TijnidΓ =

∫
V

∂Tij
∂xi

dΩ (119)

A generalization of Gauss’s divergence Theorem sometimes appears using the
so-called star product. The star product can be used to denote dot and cross
products, as well as diads, etc. The generalized Divergence Theorem is fre-
quently stated as: ∫

Γ

n ?A dΓ =

∫
Ω

∇ ?A dΩ (120)

While it is clear that the Divergence Theorem requires differentiability on the
part of the quantities appearing within the volume integrations, discontinuities
may, nonetheless, be treated using jump conditions. In such a case, the prob-
lem domain is discretized into sub-domains that are suitablely differentiable for
application of the Divergence Theorem. The set of all interfaces joining such
domains is denoted as Γint. Using this approach a piecewise application of the
Divergence Theorem is possible; as now illustrated for the case of the Cartesian
components of a discontinuous scalar field:∫

Ω

∂f

∂xi
dΩ =

∫
Γ

fnidΓ +

∫
Γint

JfniKdΓ (121)

and the Cartesian components of a discontinuous vector field:∫
Ω

∂vi
∂xi

dΩ =

∫
Γ

nividΓ +

∫
Γint

JniviKdΓ (122)

where JfnK and Jn · vK are the jumps defined as:

JfnK = fAnA + fBnB (123)

Jn · vK = vAi n
A
i + vBi n

B
i =

(
vAi − vBi

)
nAi =

(
vBi − vAi

)
nBi (124)

and in addition:
JfnK · nA = fA − fB (125)

The Divergence Theorem is extremely important, not only for its role cre-
ating useful forms for the balance laws of continuum mechanics, but also for
its general utility in arriving at the fundamental formulations in computational
mechanics. However, it initial use within the current discussion concerns the
former case, and thus a consideration of the conservation of mass and continuity
equation follows.
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Consider a body, B, having mass, M , and enclosed by a boundary, Γ. The
distribution of mass within B varies in both space and time:

ρ (x, t) ∀x ∈ Ω ⊂ R3, t ∈ [0,∞) (126)

and thus, at a given instant of time, the mass of body, B is:

M =

∫
Ω

ρ dΩ (127)

thus leading directly to the following statement concerning the rate of change
in the total mass of B:

∂M

∂t
=

∫
Ω

∂ρ

∂t
dΩ (128)

If mass is neither created, nor destroyed within the body, then the change in
mass per unit time must occur as a result of a mass flux across some, or all of
boundary, Γ. Assuming that the mass is increasing (i.e. here is a net inflow of
mass to body B), Equation (111) may be employed as follows:

∂M

∂t
= −

∫
Γ

ρv · ndΓ (129)

It is pointed out that the negative sign on the right hand side of Equation (129)
is included to denote inflow, as the positive normal, n, was taken as positive
when pointing out from the enclosed volume, Ω.

Gauss’ Divergence Theorem may now be applied to Equation (129); resulting
in:

∂M

∂t
= −

∫
Ω

∇ · (ρv) dΩ (130)

Equations (128) and (130) maybe combined:∫
Ω

[
∂ρ

∂t
+∇ · (ρv)

]
dΩ = 0 (131)

It is clear that irrespective of the choice for Ω, the integral of Equation (131)
must vanish. This result leads to a statement of the continuity equation of
continuum mechanics:

∂ρ

∂t
+∇ · (ρv) = 0 (132)

Equation (132) may be re-cast in terms of the material time derivative as:

Dρ

Dt
+ ρ∇ · v = 0 (133)

Since, in the case of Equation (133) the focus is on a material body (i.e. there
is no mass flux across the material boundary), the material density is taken
as constant, and thus brought out from the divergence term. The form of the
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continuity equation furnished in Equation (132) is sometimes referred to as the
conservative form. Some useful observations may now be made concerning the
implications of Equation (132).

Considering a simple re-arrangement of the continuity equation leads to:

∇ · v = −1

ρ

Dρ

Dt
(134)

Simply stated, Equation (134) requires that the divergence in the velocity field
measures the rate of flow of material at a particle in the body, B. This effect
manifests in units of rate of density change in the neighborhood of the particle.
Thus, in the case of incompressibility, ∇ · v = 0.

Considering, now, the case of material coordinates (the previous development
implied a spatial description), the conservation of mass yields:∫

Ωo

ρ (X, to) dΩo =

∫
Ω

ρ (x, t) dΩ (135)

In words, Equation (135) states that the mass of a body occupying a volume
Ωo at time to is identical to the mass at some future time, t; when the body
occupies the volume Ω. Using the result of Equation (87), the foregoing may be
restated as: ∫

Ω

ρ (x, t) dΩ =

∫
Ωo

ρ (x, t) | F | dΩo (136)

where | F | is the determinant of the deformation gradient (positivity is implied).
Other authors may denote this same quantity as | J |: the absolute value of
the Jacobian determinant. The latter term is a more general mathematical
term, while the former case possesses suggestive geometric implications that are
germane to the present discussion. This leads to the statement:∫

Ωo

[ρ (X)− ρ (x) | F |] dΩo = 0 (137)

thus leading too:
ρ (x) | F |= ρ (X) (138)

Equation (138) may be differentiated with respect to time to arrive at the form
of the continuity equation that is applicable in the material reference frame:

d

dt
(ρ (x) | F |) = 0 (139)

It is pointed out that the spatial and material descriptions of the continuity
equations appear quite different, but their equivalence can be seen in the proofs
contained in most elementary texts on continuum mechanics.
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In considering the balance laws of continuum mechanics, it is oftentimes
helpful to be able to take material time derivatives of integrals for scalar fields
taken over a fixed material domains, in order to describe physical quantities
such as internal energy, heat, etc., and denoted by A . In general, domains
of constant material may have boundaries that deform in order to continually
enclose the particles of interest during the motion of the body (i.e. the integral
quantities of Equations (110) and (111) vanish for the material domain); thus
leading to an integral of the form:

I (t) =

∫
Ω

A (x, t) dΩ (140)

The dependence of the volume, Ω, on time complicates the form of the mate-
rial time derivative of Equation (140); preventing the commuting of the time
derivative to the interior of the integral. Indeed, as a first step towards taking
the material time derivative of Equation (140), the integral is transformed in
order that it may be taken over a fixed volume in the referential configuration.
By using the relations x = φ (X, t), and dΩ =| F (X, t) | dΩo, the time rate of
change in I (t) becomes:

İ =
D

Dt

∫
Ω

A (x, t) dΩ =
∂

∂t

∫
Ωo

A (φ (X, t) , t) | F (X, t) | dΩo (141)

Since the volume of integration within Equation (141) is now constant in time,
the time derivative commutes, and a subsequent application of the product rule
yields:

D

Dt

∫
Ω

A (x, t) dΩ =

∫
Ωo

[
˙A (φ (X, t) , t) | F (X, t) | +A (φ (X, t) , t) | Ḟ (X, t) |

]
dΩo

(142)
where ˙A signifies the material time derivative of the scalar field A . Equation
(142) may now be converted back to the spatial reference frame; once again
using x = φ (X, t), and dΩ =| F (X, t) | dΩo:

D

Dt

∫
Ω

A (x, t) dΩ =

∫
Ωo

[
˙A (φ (X, t) , t) + A (φ (X, t) , t)

| Ḟ (X, t) |
| F (X, t) |

]
| F (X, t) | dΩo

=

∫
Ω

[
˙A (x, t) + A (x, t)

| Ḟ (X, t) |
| F (X, t) |

]
dΩ

=

∫
Ω

[
˙A (x, t) + A (x, t)∇ · v (x, t)

]
dΩ (143)

where smoothness in the spatial velocity field, v, has been assumed.

Omitting the arguments to the tensor quantities, and subsequently applying
the the Divergence Theorem of Gauss (Equation (116)) to the last term in Equa-
tion (143), furnishes the more common form of Reynolds Transport Theorem:

D

Dt

∫
Ω

A dΩ =

∫
Ω

˙A dΩ +

∫
Γ

A v · ndΓ (144)
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Equation (144) describes the time rate of change of an integral taken over a
material volume by setting up a mathematical description of the body within
the spatial reference frame. The volume of the body, considered in the spatial
frame, is simply the instantaneous volume that the body assumes at the time
instant, t. As a result of the fact that the actual material body possesses
a bounding surface that is deforming in space and time, non-vanishing flux
terms reemerge in this spatial representation. With all of this in mind, the
meaning of Equation (144) may be given in words as: the rate of increase in the
amount of A , possessed by the material body that is instantaneously within
the spatial volume Ω is equal to the rate of increase in the total amount of A
inside of the control surface Γ minus the net rate of outward flux of A carried
by mass transport through the Γ. An analogous expression for the material
time derivative of a line integral

∫
c
f (x) dx may be obtained using Equations

(28) and (29):
D

Dt

∫
c

f (x) dx =

∫
c

[
df

dt
dx + f (x) L · dx

]
(145)

The foregoing treatment of balance laws is helpful to keep in mind as discus-
sion now shifts to balance laws that are directly at the heart of finite element
formulations. The conservation of linear momentum is equivalent to Newton’s
Second Law of Motion; but rather than being posed as a differential equation,
as in the latter case, the conservation form is furnished via integration.

External agencies may impose actions on a given body, B, whose material
points occupy a domain Ω that is bounded by Γ. These actions are usually
described in terms of tractions (mechanical effects imposed along a boundary),
and body forces (effects acting on all particles within the domain; as so-called
actions-at-a-distance, e.g. gravitational attraction, inertial forces, magnetic at-
traction, etc.) Thus, the total force is given as:

f (t) =

∫
Ω

ρb (x, t) dΩ +

∫
Γ

t (x, t) dΓ (146)

Additionally, as linear momentum per unit volume appears as ρv (x, t), the
linear momentum of the entire body, B, is:

p (t) =

∫
Ω

ρv (x, t) dΩ (147)

The conservation of linear momentum requires that the time rate of change of
linear momentum balances the applied total force:

Dp

Dt
= f ⇒ D

Dt

∫
Ω

ρvdΩ =

∫
Ω

ρb (x, t) dΩ +

∫
Γ

t (x, t) dΓ (148)

Dropping the tensor arguments and applying Reynolds Transport Theorem,
along with Gauss’ Divergence Theorem, to the left hand side of Equation (148)
results in:

D

Dt

∫
Ω

ρvdΩ =

∫
Ω

[
D

Dt
(ρv) + (ρv)∇ · v

]
dΩ (149)
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Using the product rule of differentiation on the first term in the right hand side
of Equation (149) result in:

D

Dt

∫
Ω

ρvdΩ =

∫
Ω

[
ρ
Dv

Dt
+ v

(
Dρ

Dt
+ ρ∇ · v

)]
dΩ (150)

It is noticed that the parenthetical term on the right hand side of Equation (150)
is identical with Equation (133), the continuity equation, and thus vanishes;
leaving:

D

Dt

∫
Ω

ρvdΩ =

∫
Ω

ρ
Dv

Dt
dΩ (151)

Continuing in our development of Equation (148), the Divergence Theorem
may be applied to the traction term on the right hand side; as modified using
Cauchy’s Law (Equation (76)):∫

Γ

tdΓ =

∫
Γ

n · σdΓ =

∫
Ω

∇ · σdΩ (152)

It is pointed out that within the notes, thus far, the convention of adopting
the left gradient operator has somewhat informally been followed. From this
point forward, it will be formally followed, unless otherwise noted. In the case
of Equation (152), this convention mandates that, since the normal, n, is to
the left, the divergence is to the left. When the divergence is to the left, the
implication is that the contraction occurs on the first index; the converse is also
true. Since the Cauchy stress tensor is symmetrical, this distinction is somewhat
academic. However, when an asymmetrical stress tensor, or a non-Cartesian
reference frame is considered, this distinction become vital. To emphasize the
meaning of the foregoing, the Cartesian component form of Equation (152) is
now given: ∫

Γ

tjdΓ =

∫
Γ

niσijdΓ =

∫
Ω

∂σij
∂xi

dΩ (153)

Substituting Equations (152) and (151) into Equation (148) yields:∫
Ω

(
ρ
Dv

Dt
− ρb−∇ · σ

)
dΩ = 0 (154)

Assuming that the integrand of Equation (154) is C1, and recognizing that the
integration is valid over any arbitrary domain, the following partial differential
equation is obtained:

ρ
Dv

Dt
= ∇ · σ + ρb (155)

Equation (155) is frequently referred to as the momentum equation. As a result
of the product of density and velocity change, the momentum change term on
the left hand side is oftentimes called the inertial term. The divergence of the
stress field leads to a statement on the internal forces within the body.
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Energy conservation is yet another of the important balance laws of contin-
uum mechanics. The present discussion considers only the context of thermo-
mechanical systems (i.e. those systems where energy change is induced by
mechanical work or heat). This conservation law requires that the time rate of
change in total energy be equal to the rate of mechanical work done on a body
(by surface tractions and body forces); as well as through the introduction of
heat energy (by heat flux through the surface and by heat generation within
the body, e.g. through an exothermic chemical reaction). The total energy
of a body comprises contributions from both stored internal energy, as well as
kinetic energy, and thus the time rate of change of the energy is given in terms
of power, P:

Ptotal = Pstored + Pkinetic (156)

where,

Pstored =
D

Dt

∫
Ω

ρwstoreddΩ (157)

and,

Pkinetic =
D

Dt

∫
Ω

1

2
ρv · vdΩ (158)

In the Equation (157), the quantity wstored is the stored energy per unit mass
(i.e. potential energy).

Consideration of the external actions leads to important expressions involv-
ing, first, mechanical actions (due to body forces and tractions, respectively):

Pmechanical =

∫
Ω

v · ρbdΩ +

∫
Γ

v · tdΓ (159)

and subsequently the contributions from thermal effects (due to heat generation
and heat flux, respectively):

Pthermal =

∫
Ω

ρIdΩ−
∫

Γ

n · qdΓ (160)

where the negative on the heat flux power term is due to the fact that the heat
flow in the direction of the outward normal is considered positive with respect
to the commonly held sign convention. In the foregoing, the term, I, denotes
heat generation, per unit time, per unit volume; while the term, q, denotes the
heat flux (possessing units of power per unit area).

In concise notation, the principle of energy conservation may be stated as:

Ptotal = Pmechanical + Pthermal (161)

Equation (161) is frequently referred to in the literature as the First Law of
Thermodynamics.
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Applying Reynold’s Transport Theorem and Equation (151) to the left hand
side of Equation (161) results in:

D

Dt

∫
Ω

[
ρwstored +

1

2
ρv · v

]
dΩ =

∫
Ω

[
ρ
Dwstored

Dt
+

1

2
ρ
D (v · v)

Dt

]
dΩ

=

∫
Ω

[
ρ
Dwstored

Dt
+ ρv · Dv

Dt

]
dΩ (162)

Considering, now, the traction term within Equation (159), Cauchy’s Law and
the Divergence Theorem may be applied as follows:∫

Γ

v · tdΓ =

∫
Γ

n · σ · vdΓ

=

∫
Ω

∇ · (σ · v) dΩ

=

∫
Ω

(σijvj),i dΩ =

∫
Ω

(vj,iσij + vjσij,i) dΩ

=

∫
Ω

(Djiσij +Wjiσij + vjσij,i) dΩ (163)

In Equation (163), use has been made of Equation (22); where D and W are
the rate of deformation and spin tensors, respectively. Since the Cauchy stress
tensor is symmetrical, and the spin tensor is skew symmetrical, Equation (163)
simplifies, to be: ∫

Γ

v · tdΓ =

∫
Ω

(Djiσij + vjσij,i) dΩ

=

∫
Ω

(D : σ + (∇ · σ) · v) dΩ (164)

Substitution of all of the foregoing into Equation (162) (with an application of
the Divergence Theorem to the heat flux term) yields:∫

Ω

(
ρ
Dwstored

Dt
−D : σ +∇ · q− ρI + v ·

(
ρ
Dv

Dt
−∇ · σ − ρb

))
dΩ = 0

(165)
It is pointed out the last parenthetical term within the integrand of Equa-
tion (165) vanishes due to the conservation of linear momentum (i.e. Equation
(155)). In light of this fact, as well as the fact that the integrand from Equation
(165) holds for any arbitrary boundary, the following PDE for energy conserva-
tion is obtained:

ρ
Dwstored

Dt
= D : σ −∇ · q + ρI (166)

If heat flux, q, and heat generation, I, are neglected, the conservation of energy
no longer appears as a PDE:

ρ
Dwstored

Dt
= D : σ (167)
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the scalar product of the Cauchy stress and the rate of deformation. Thus the
change in internal power, per unit volume, due to stress and strain are described
by the power conjugate quantities of Cauchy stress and the rate of deformation.
The rate of change in the total stored energy within a body is obtained by
integration over the domain:

DW int

Dt
=

∫
Ω

ρ
Dwstored

Dt
dΩ =

∫
Ω

D : σdΩ =

∫
Ω

DijσijdΩ =

∫
Ω

∂vi
∂xj

σijdΩ

(168)
The foregoing treatment of conservation laws within continuum mechanics can
be brought closer to the nonlinear finite element context by beginning to in-
troduce terminology that is more consistent with the finite element literature,
and adopting mechanical response measures that are more suitable for for use
in finite element formulations.

In the finite element literature, the name Total Lagrangian is usually as-
signed to referential context that is referred to as being, simply, Langrangian in
the context of continuum mechanics. Thus, in a Total Lagrangian (TL) context,
the independent variables in time and space are t and X. Additionally, several
important dependent quantities are the initial density, ρo (X, t), the displace-
ment field, u (X, t). Examples of other dependent quantities include the power
conjugate pair PK1 stress P and the time rate of change in the deformation
gradient Ḟ. It is pointed out that some authors (including Belytschko, Liu, and
Moran) refer to the tensor P as the nominal stress, and subsequently refer to
the PK1 stress as PT . This difference is largely academic, and thus the current
treatment will persist in referring to P as the PK1 stress tensor.

With regard to external actions, the current treatment will denote tractions,
that are measured within a Total Lagrangian (TL) reference frame, as to. Sim-
ilarly, for body forces the result ρob furnishes the body force per unity initial
volume of the body. Of course, the conservation of mass ensures that ρob = ρb
as demonstrated by the following:

df = ρbdΩ = ρb | F | dΩo = ρobdΩo (169)

where df is the resultant body force measured with respect to the reference
configuration.

The linear momentum in the TL reference frame is thus able to be written
as:

p (t) =

∫
Ωo

ρov (X, t) dΩo (170)

Consideration of the external actions within the TL leads to:

f (t) =

∫
Ωo

ρob (X, t) dΩo +

∫
Γo

to (X, t) dΓo (171)
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Subsequent application of Newton’s second law, dp
dt = f , leads to:

d

dt

∫
Ωo

ρovdΩo =

∫
Ωo

ρobdΩo +

∫
Γo

todΓo (172)

Since the material domain in the TL formulation is static in time, Reynold’s
Transport Theorem is not needed, and thus the time derivative may be taken
inside the integral in Equation (172), yielding:∫

Ωo

ρo
∂v (X, t)

∂t
dΩo =

∫
Ωo

ρobdΩo +

∫
Γo

todΓo (173)

The last term in Equation (173) may be transformed using Cauchy’s Law and
the Divergence Theorem:∫

Γo

todΓo =

∫
Γo

no ·PdΓo =

∫
Ωo

∇o ·PdΩo (174)

where ∇o represents the gradient taken with respect to the TL reference frame.
Substitution of Equation (174) into Equation (173) leads to:∫

Ωo

(
ρo
∂v (X, t)

∂t
− ρob−∇o ·P

)
dΩo = 0 (175)

Exploiting the arbitrariness of the domain of integration leads to the PDE de-
scribing conservation of linear momentum in the TL reference frame:

ρo
∂v (X, t)

∂t
= ρob +∇o ·P (176)

The conservation of energy follows in a similar manner.

Consider first a statement concerning the conservation of thermo-mechanical
power in an arbitrary body, reckoned with respect to the initial configuration
(i.e. adopting a TL reference frame):

d

dt

∫
Ωo

(
ρow

stored +
1

2
ρov · v

)
dΩo =

∫
Ωo

v · ρobdΩo +

∫
Γo

v · todΓo

+

∫
Ωo

ρoIdΩo −
∫

Γo

no · q̃dΓo (177)

The last term in Equation (177) represents the heat flux currently occurring into
the body, but measured per unit area of the body in its initial state. The tilde
is used to distinguish this heat flux from the earlier one, q, taken with respect
to the current configuration. A simple transformation is available for readily
going between the two. This transformation takes as its point of departure the
equivalence between the heat flux in the body at time t, as measured with respect
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to the current domain boundary, Γ, and the same heat transfer, measured with
respect to the surface of the body in its initial state:∫

Γ

n · qdΓ =

∫
Γo

no · q̃dΓo (178)

By applying Equation (97) to Equation (178) the desired transformation is
obtained:

q̃ =| F |−1 FT · q (179)

Returning to the consideration of Equation (177) leads to the recognition that
since the domain of the integrand is fixed in time, the use of Reynold’s Transport
Theorem is not required, and thus the time derivative may be brought into the
integrand:

d

dt

∫
Ωo

(
ρow

stored +
1

2
ρov · v

)
dΩo

=

∫
Ωo

(
ρo
∂wstored (X, t)

∂t
+ ρov ·

∂v (X, t)

∂t

)
dΩo (180)

whereas the traction power term on the right hand side of Equation (177) can
be modified using the definition of the PK1 stress, as well as the Divergence
Theorem: ∫

Γo

v · todΓo =

∫
Γo

v · (no ·P) dΓo

=

∫
Ωo

∇o · (v ·P) dΩo

=

∫
Ωo

(
∂vj
∂Xi

Pij + vj
∂Pij
∂Xi

)
dΩo

=

∫
Ωo

(
∂Fji
∂t

Pij +
∂Pij
∂Xi

vj

)
dΩo

=

∫
Ωo

(
∂FT

∂t
: P + (∇o ·P) · v

)
dΩo (181)

Employing Equations (180) and (181) within Equation (177) results in (with an
additional application of the Divergence Theorem):∫

Ωo

ρ
∂wstored

∂t
− ∂FT

∂t
: P +∇o · q̃− ρoI

+

(
ρo
∂v (X, t)

∂t
−∇o ·P− ρob

)
· vdΩo = 0 (182)

where the term inside the parentheses is the Lagrangian form of the momentum
equation (and thus it vanishes); leaving:∫

Ωo

ρ
∂wstored

∂t
− ∂FT

∂t
: P +∇o · q̃− ρoIdΩo = 0 (183)
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Furthermore, the recognition of the arbitrary nature involved in the specification
of the domain of integration leads directly to the strong form statement of the
energy conservation in a TL reference frame:

ρo
∂wint (X, t)

∂t
=
∂FT

∂t
: P−∇o · q̃ + ρoI (184)

or, in a slightly different notational presentation:

ρoẇ
int = ḞT : P−∇o · q̃ + ρoI (185)

It is observed from Equations (184) and (185) that the PK1 stress and the
material time derivative of the deformation gradient are power conjugate to one
another. It is further noted that:

D : σ | F |= ḞT : P (186)

Discussion now shifts to the consideration of frame invariance, and its im-
portance within the proper framing of constitutive theories.

1.1.7 Polar decomposition and frame invariance

A useful point of departure regarding any discussion on frame invariance in-
volves the consideration of the polar decomposition theorem. This discussion
complements the earlier treatment regarding rigid body rotations; wherein the
rotation tensor, R, was seen to be orthogonal (i.e. R−1 = RT ).

The statement of the polar decomposition theorem is straightforwardly posed
as:

F = R U (187)

where is the tensor, F, is the deformation gradient mapping a differential line
segment in the reference configuration, dX into the equivalent differential line
segment within current configuration, dx. The tensor U is a symmetrical map
that is alternately referred to as the right stretch tensor, or stretch tensor, for
reasons that will become clear in the the sequel. However, a consideration of
orthogonality and symmetry leads to the following observation:

FT F = (R U)
T

(R U) = UT RT R U = UU (188)

which enables the writing the down of U as:

U =
(
FT F

) 1
2 (189)

It is pointed out that the stretch tensor, U, is the symmetric map taking a
the set of all vectors at a point into new vectors: with changed length, and
also a rotation (except for the case of the subset of vectors coinciding with the
principal directions of U - these experience stretching only). It is noticed that
the operation of raising the tensor product

(
FT F

)
to the one half power involves
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the transformation of the tensor product using its eigenvectors to arrive at the
diagnolized form:

ΦT
(
FT F

)
Φ = λiiI (190)

The diagonal terms of the tensor resulting from the transformation described in
Equation (190) are then raised to the one half power, and the resulting matrix
subjected to the inverse transformation to yield the results described by Equa-
tion (189). The inverse transformation is always available, as the the symmetric
tensor U is positive definite. It is noted that the quantity U − I is sometimes
called the Biot strain tensor.

Discussion now shifts to the topic of frame invariance; a point which can be
motivated through the consideration of the linear hypoelastic material response:

Dσ

Dt
= CσD : D (191)

The inappropriateness of this material law for use in the cases of large rotations
is easily observed through a thought experiment. Consider a 2D truss element
that is prestressed while it is aligned with one axis of a Cartesian reference
frame. If the truss is rotated as a rigid body, in order that its alignment now
coincides with the orthogonal axis, then it is expected that the rate of deforma-
tion, D, must vanish but the components of the Cauchy stress tensor must be
different in order to express the fact that the locked in prestress is now pointing
in a direction that is orthogonal to its initial position. Thus we can observe that
the hypoelastic material law will not serve as a suitable constitutive relation for
use with large rotations. The present discussion now shifts to the development
of suitable rates for the foregoing, and other more general, scenarios.

Consider the case of the Jaumann rate. The Jaumann rate of the Cauchy
stress leads to an objective constitutive relation that accounts for issues like the
one mentioned in the previous paragraph. The form of the Jaumann rate takes
the form:

σ∇J =
Dσ

Dt
−W σ − σ WT (192)

where Equation (192) makes use of the material time derivative of the Cauchy
stress tensor, in addition to the spin tensor W from Equation (21). Also in
Equation (192), the superscript, ∇, denotes an objective rate, while the super-
script, J , describes it as the Jaumann rate. A simple rearranging of terms leads
to an objective description of the constitutive relation sought by Equation (191):

Dσ

Dt
= σ∇J + W σ + σ WT (193)

which can be re-expressed as the sum of a material term and a rotational term
as:

Dσ

Dt
= CσJ : D + W σ + σ WT (194)
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wherein CσJ : D is the Jaumannian form of the objective hypoelastic constitu-
tive relation, and W σ + σ WT accounts for the influence of rotation. Other
objective rates are also available: the Truesdell rate and the Green-Nagdi rate.

1.2 Review of strong forms, weak forms, and topics from
mathematics

It is very useful to review fundamental mathematical terminology and notions
as the present treatment begins shifting to the development of the governing
nonlinear finite element equations. Discussions commences with useful defini-
tions from set theory.

1.2.1 Concepts from set theory

A set is any well defined collection of objects. These individual objects, within
the set, are called elements. Consider an element, a, from within a set A:

a ∈ A (195)

As an example of the notion of a set, consider the set of all positive integers
that are smaller than 100:

Z = {x : x ∈ Z, 0 < x < 100} (196)

Additionally, the set of all positive integers that is smaller than 50, and larger
than 1 is:

W = {y : y ∈ Z, 1 < y < 50} (197)

Furthermore, W is observed to be contained within Z; and thus W is termed a
subset of Z:

W ⊂ Z (198)

It is pointed out that any set is a subset of itself; while a proper subset is a
subset that contains fewer elements than the set to which it is a subset.

The union of two sets is written as A ∪B, and defined as:

A ∪B = {x : x ∈ A or x ∈ B} (199)

whereas the intersection of two sets is written as A ∩B, and defined as:

A ∩B = {x : x ∈ A and x ∈ B} (200)

The concepts of open and closed sets is likewise important; and subsequently
treated.
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An example of a neighborhood is given in the consideration of any point k
on the real line, R, wherein a positive constant, ε, is defined. The neighborhood
of c is defined as an open interval:

(c− ε, c+ ε) = {k : c− ε < k < c+ ε} (201)

where the points, k, are referred to as interior points. The closure of the open
interval that defines the neighborhood in Equation (201) is the union of the
interior points and the points on the boundary of the interval:

[c− ε, c+ ε] = {k : c− ε ≤ k ≤ c+ ε} (202)

1.2.2 Concepts from functional analysis

Consider a set of functions that are well defined. This set is referred to as a
function space. An element of this function space is said to be integrable on
some measurable set, Ω, iff :∫

Ω

|f |dΩ <∞, ∀f ∈ F (203)

where F is the function space in question. The space of square integrable func-
tions is defined as:

L2 (Ω) = {u :

∫
Ω

|u|2dΩ <∞} (204)

It is interesting to observe that:

L∞ (Ω) ⊂ · · · ⊂ Lp (Ω) ⊂ · · · ⊂ L1 (Ω) (205)

Furthermore, it is noticed that the space of continuous functions, C (Ω), is not
a subspace of any Lp; as the following illustration points out.

Consider a function u (x) = 1
x ; a member of C (Ω) in the open interval (0, 1).

It is clear that while u (x) ∈ C (0, 1), u (x) 6∈ L∞ (0, 1) (which, in itself, is a sub-
space of all Lp (0, 1)). However, if instead of focusing on the unbounded case
of u (x) = 1

x , the general case of bounded continuous functions is considered
(denoted as C

(
Ω̄
)
) then C

(
Ω̄
)
⊂ L∞ (Ω). In summary, it is pointed out that

function spaces are simply sets of functions that behave in a precisely defined
manner.

It turns out that the suggestive language of geometry (as related to the
elementary school notion of a vector as a directed line segment) is useful and
important in considering the properties of abstract function spaces. Indeed, any
abstract function space may be considered as a vector space if it satisfies the
following six axioms:

1. ∀u, v ∈ X and α, β ∈ R yields αu+ βv ∈ X

2. u+ v = v + u and u+ (v + w) = (u+ v) + w ∀u, v, w ∈ X
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3. ∃ 0 ∈ X 3 u+ 0 = u ∀u ∈ X (termed the zero element)

4. ∀u ∈ X ∃ − u ∈ X 3 u + (−u) = 0; thus defining vector differencing as
u+ (−v)

5. (αβ)u = α (βu) ∀α, β ∈ R and ∀u ∈ X

6. (α+ β)u = αu+ βu and α (u+ v) = αu+ αv, ∀α, β ∈ R and ∀u, v ∈ X

Examples of function spaces satisfying properties 1-6 include Cm (Ω), LP (Ω),
and L∞ (Ω).

Recalling, once again, elementary mathematics, the scalar product, or dot
product or inner product, was denote as u·v; yielding a scalar quantity |u||v|cos (θ)
(θ being the included angle between the intersecting directed line segments u
and v). More formally, and on a real vector space, X, the properties of an inner
product are abstracted in the following four axioms: ∀ u, v, w ∈ X and α, β ∈ R
where (·, ·) denotes inner product

1. (u, v) ∈ R (i.e. it is a scalar product)

2. (u, v) = (v, u); symmetry property

3. (αu+ βv,w) = α (u,w) + β (v, w); linearity property

4. (u, u) ≥ 0 and (u, u) = 0 ⇐⇒ u = 0; positive definiteness

The inner product applied to the usual Euclidean space, R3, and defined as
(x,y) = x·y = x1y1+x2y2+x3y3 satisfies the four previously specified properties
of an inner product. Consider, now, the abstract function space L2 (Ω) on the
open interval (a, b) (denoted as L2 (a, b)) which may be endowed with an inner
product of the form:

(u, v) ≡
∫ b

a

u (x) v (x) dx ∀u, v ∈ L2 (a, b) (206)

The notion of orthogonality in Euclidean space (where vectors are said to be
orthogonal, or perpendicular, when u · v = 0) may be abstracted, to any space
endowed with an inner product, to mean that elements within the space are
orthogonal when (u, v) = 0.

Continuing on with allusions to notions from elementary mathematics, con-
sideration of the length of a directed line segment yields an analog for abstract
vector spaces: the norm. An operation known as a norm, and denoted as ‖ · ‖ is
defined on an abstract vector space, X, if the following four axioms are satisfied:
∀u, v ∈ X and α ∈ R

1. ‖u‖ ∈ R (the norm is a scalar)

2. ‖u‖ ≥ 0 and ‖u‖ = 0 ⇐⇒ u = 0; positive definiteness
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3. ‖αu‖ = |α|‖u‖; positive homogeneity

4. ‖u+ v‖ ≤ ‖u‖+ ‖v‖; triangle inequality

An example of a discrete norm defined on Rn is:

‖x‖`p = (|x1|p + |x2|p + · · ·+ |xn|p)
1
p ∀x ∈ Rn (207)

while a continuous norm, defined on LP (Ω) is:

‖u‖Lp =

[∫
Ω

| u |p dΩ

] 1
p

∀u ∈ Lp (Ω) (208)

Additionally, a so-called sup-norm may be defined on the space of bounded
continuous functions (as a subspace of L∞ (Ω)):

‖u‖L∞ = max
x∈Ω̄
| u | ∀u ∈ C

(
Ω̄
)

(209)

In light of the foregoing, the notion of a normed space may be introduced as
the vector space and the norm to be applied therein; denoted as (X, ‖ · ‖), for
example.

While the notion of a normed space is more general than that of an inner
product space, all inner product spaces are normed spaces because the inner
product may be used to define an operation that satisfies the four requirements

of a norm. As an example, consider u ∈ R3, wherein ‖u‖ = (u · u)
1
2 , or more

generally, consider an arbitrary function belonging to an inner product space,

then a norm may defined for this space as: ‖u‖ = (u, u)
1
2 .

Interestingly, when abstracting the elementary notion of length assigned to a

directed line segment, and having the form d (x, y) =

√
(x1 − y1)

2
+ (x2 − y2)

2
+ (x3 − y3)

2
,

to abstract function spaces, there becomes no need to have these be vector spaces
(as was required in the case of normed and inner product spaces). All that is
required of the metric space is that it admit an operation having the properties
that: ∀u, v, w ∈ X (where X is a metric space)

1. d (u, v) ≥ 0 and d (u, v) = 0 ⇐⇒ u = v

2. d (u, v) = d (v, u) (the operation is symmetric)

3. d (u,w) ≤ d (u, v) + d (v, w) (triangle inequality)

Since in nonlinear finite element analysis inner product spaces are normally
considered, it is convenient to generate metrics using norms; as in:

d (u, v) = ‖u− v‖ (210)

These concepts are behind what motivates the integral equations that are at
the heart of the nonlinear finite element method.
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Consider some arbitrary partial differential equation (PDE), represented as
L (u (x)) = 0, ∀x ∈ Ω, and where L (·) is some differential operator defined
on some inner product space Ω. If instead of the solution u (x) (that satis-
fies the PDE exactly), an approximate solution, û (x) is considered, then there
will be some error in the solution; in that the right hand side of the PDE will
not be strictly zero. This error is termed the residual, and thus defined as
R = L (û (x)).

In the nonlinear finite element method, the approximate solution is fre-
quently a lower dimensional representation of the actual solution, that lives in
some inner product space. A cartoon of this relationship may be given in terms
of R3; where R3 represents the inner product space where the exact solution
appears as a point. The subspace where a specific class of lower order approxi-
mate solutions live may be conceived of as a plane within R3.

Each of the individual approximate solutions within the given sub-space pos-
sesses an accompanying residual (in comparison with the exact solution u (x)).
Since the exact solution space is an inner product space (and thus, also, a vector
space) then the residual appears as a directed line segment connecting the point
of a given approximate solution (lying on the plane) with the exact solution
(appearing as a point within R3). In the case of the smallest residual (i.e. best
approximation), this vector should be smaller than any other associated vectors
from within the given class of approximate solutions. One way of thinking about
this is that the smallest residual vector would be the one that is normal to the
subspace of the approximate solutions (i.e. the perpendicular distance is the
closest that any arbitrary point in R3 can be to a flat plane within the same
space).

More formally, the foregoing notions regarding the best approximate solution
may be treated through the consideration of a space, V, where the exact solution
u (x) lives. Denoting the subspace where the approximate solutions, û (x), lives
as Vh the objective in the nonlinear finite element method is to find:

û (x) ∈ Vh 3
∫

Ω

v (L (û (x))) dΩ = 0 ∀v ∈ Vh, ∀x ∈ Ω (211)

where the integral in Equation (211) is an inner product; thus leading to the
orthogonality condition described in the foregoing. Indeed, Equation (211) is
the prototypical form of the weighted residual statement of the problem with
the governing PDE L (u (x)) = 0; although the subspace Vh must be much more
carefully defined.

In keeping with a numerical implementation, the discrete form of the ap-
proximate solution:

û (x) = uiNi (x) (212)

is considered in the sequel. Specifically, the Ni (x) are the so-called finite ele-
ment basis functions, and the ui are the primary unknowns pursued in the finite
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element solution. The finite element method uses the prototypical weighted
residual formulation presented in Equation (211) to pursue an approximate so-
lution to some governing PDE. Indeed, the finite element solution finds the best
approximation to the actual solution, from within a given subspace. In the
case of the approximate solution described by Equation (212), i = dim (Vh),
and Vh = span (Ni). It is further pointed out that the approximate solution of
Equation (212) must satisfy the homogeneous essential (or Dirichlet) boundary
conditions associated with the boundary value problem in questions; the natural
(or Neumann) boundary conditions will be seen to be implied in the integral
statement itself. Other than essential homogeneous boundary conditions will be
treated later in this section.

While the generic form of Equation (211) is consistent with the so-called
weighted residual form of the problem at hand, the specific case described by
Equation (211) is known more precisely as a Galerkin projection. This is the
case since the function v (known as the test function) and the function û (known
as the trial function) live in the same space, Vh.

It is instructive to apply the foregoing to a simple one dimensional example
boundary value problem:

u′′ (x) + f (x) = 0, ∀x ∈ Ω = R (0, 1)

u (0) = 0

u′ (1) = β (213)

Employing a trial solution of the form provided in Equation (212) results in a
residual appearing as:

R (x) = f (x) +N ′′i (x)ui (214)

since:

û (x) = Ni (x)ui

û′ (x) =
dNi (x)

dx
ui +

dui
dx

Ni (x) = N ′i (x)ui

û′′ (x) =
dN ′i (x)

dx
ui +

dui
dx

N ′i (x) = N ′′i (x)ui (215)

The Galerkin form of the weighted residual statement for the problem in Equa-
tion (213) then becomes:∫ 1

0

Nj (x) (N ′′i (x)ui + f (x)) dx = 0 i, j = 1 . . .M

−
∫ 1

0

Nj (x)N ′′i (x)ui dx =

∫ 1

0

Nj (x) f (x) dx (216)

As it is that the integration by parts formula will be useful in the foregoing, it
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is briefly re-derived from the product rule of elementary calculus:

d (uv)

dx
=
du

dx
v +

dv

dx
u∫ b

a

d (uv)

dx
dx =

∫ b

a

du

dx
vdx+

∫ b

a

dv

dx
udx∫ b

a

u
dv

dx
dx = uv |ba −

∫ b

a

v
du

dx
dx (217)

Applying the familiar form in the final line of Equation (217) to the left hand
side of Equation (216) yields:

u ≡ Nj (x) dv ≡ N ′′i (x)

du ≡ N ′j (x) v ≡ N ′i (x)∫ 1

0

Nj (x) (N ′′i (x))ui dx = Nj (x)N ′i (x)ui |10 −
∫ 1

0

N ′j (x)N ′i (x)ui dx (218)

Subsequently substituting the foregoing into Equation (216) yields:∫ 1

0

N ′j (x)N ′i (x)ui dx = Nj (1) û′ (1)−Nj (0) û′ (0)+

∫ 1

0

Nj (x) f (x) dx (219)

which is subsequently recognized as being:∫ 1

0

N ′j (x)N ′i (x)ui dx = Nj (1)β +

∫ 1

0

Nj (x) f (x) dx (220)

It is pointed out that the terms N (0) vanishes on account of our selec-
tion of shape functions that satisfy the problems Dirichlet boundary conditions.
Interestingly, the Neumann conditions arose as a natural consequence of the ap-
plication of integration by parts formula. Thus it can be said that the Neumann
conditions are implied in the integral statement of the problem.

When considering other than homogeneous Dirichlet boundary conditions,
it is convenient to stipulate a slight difference between the space of trial and
test functions. At this point, too, it is useful to add some additional precision
to the definition of these spaces.

It continues to be true that the test functions might only satisfy the homo-
geneous case of the Dirichlet boundary condition (it turns out that this will lead
to more convenient mathematical forms, after the integration by parts), but in
the case of the trial functions, the exact Dirichlet conditions of the problem
(homogeneous or not) must be strictly satisfied; as is easily done by a super-
position with a suitable function that assumes the correct values at the desired
boundary locations:

û (x) = ψ (x) +Ni (x)ui (221)
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Additionally, based on the integral form of Equation (220), that results from
application of the integration by parts formula, it is noticed that the square
of the first derivative of the shape function N (x) is required to be integrated;
along with the shape function by itself. This fact, coupled with the desire for
the vanishing of the test functions on the problem boundary where Dirichlet
conditions are imposed (for convenience), results in the need for two separate
spaces. One for the trial functions:

û ∈ Hm
ψ (Ω) = {u : Dαu ∈ L2 (Ω)∀α 3 |α| < m and u = ψ on ∂Ω} (222)

and one for the test functions:

v ∈ Hm
o (Ω) = {v : Dαv ∈ L2 (Ω) ∀α 3 |α| < m and v = 0 on ∂Ω} (223)

where 2m is the highest derivative occurring within the governing PDE for the
problem under investigation, Dα is the distributional derivative of order α and
below. However, as a practical matter, the superposition furnished in Equation
(221) permits the test functions and finite element shape functions to be from
the same space (Equation (223)); with ψ being used to then satisfy the required
Dirichlet conditions as a result of the superposition. As a result, the application
of the Galerkin method, within the nonlinear finite element context, draws its
finite element shape functions (for use as test functions, and for the interior
portion of the trial functions) from the space of functions Hk

o .

The foregoing general notions may be applied, as an illustration, to an n-
dimensional diffusion problem; given as:

−∇ · (k (x)∇u (x)) = f (x) , ∀x ∈ Ω ⊂ Rn

−k (x)∇u (x) · n = g (x) , ∀x ∈ ∂ΩN

u (x) = ψ (x) , ∀x ∈ ∂ΩE (224)

where u (x) is being sought over a domain, Ω, with a boundary ∂Ω = ∂ΩN∪∂ΩE ;
where ∂ΩN and ∂ΩE are non-overlapping (i.e. ∂ΩN ∩ ∂ΩE = ∅). g (x), f (x),
and ψ (x) are known functions. In applying an approximate solution of the form
û (x) = ψ (x)+Ni (x)ui, the Galerkin weak form of the problem may be pursued.

Commencing with the construction of a weighted residual statement, it fol-
lows that: ∫

Ω

Wi (x) (−∇ · (k (x)∇û (x))− f (x)) dΩ = 0 (225)

At this point, it is now useful to introduce the n-dimensional form of the inte-
gration by parts formula, known as Green’s Lemma:

−
∫

Ω

∇ · (∇u) vi dΩ =

∫
Ω

∇u · ∇vi dΩ−
∫
∂Ω

vi∇u · n d (∂Ω) (226)
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Green’s Lemma may be applied to the first term within the parentheses of the
integrand given in Equation (225):

−
∫

Ω

(∇ · (k (x)∇û (x)))Wi (x) dΩ =

∫
Ω

k (x)∇û (x) · ∇Wi (x) dΩ

−
∫
∂Ω

Wi (x) k (x)∇û (x) · n d (∂Ω) (227)

thus leading to an expanded weak form:∫
Ω

k (x)∇û (x) · ∇Wi (x) dΩ =

∫
Ω

Wi (x) f (x) dΩ

+

∫
∂Ω

Wi (x) k (x)∇û (x) · n d (∂Ω) (228)

Substituting the expanded approximate solution, û (x), into the foregoing, and
employing Galerkin’s method (i.e. Wi (x) = Ni (x)), yields:∫

Ω

k (x)∇Ni (x) · ∇Nj (x)uj dΩ =

∫
Ω

f (x)Ni (x) dΩ

+

∫
∂Ω

Ni (x) k (x)∇û (x) · n d (∂Ω)

−
∫

Ω

k (x)∇Ni (x) · ∇ψ (x) dΩ (229)

where use has been made of the essential boundary condition in the last integral.
Similarly, the Neumann condition may be applied to the second to last integral;
resulting in:∫

Ω

k (x)∇Ni (x) · ∇Nj (x)uj dΩ =

∫
Ω

f (x)Ni (x) dΩ

−
∫
∂ΩN

g (x)Ni (x) d (∂Ω)

−
∫

Ω

k (x)∇Ni (x) · ∇ψ (x) dΩ (230)

1.3 Review of isoparametric finite element formulations

In many practical applications of the finite element method it is a non-trivial
matter to arrive at the form of the set of finite element basis functions, Ni, that
are spatially, globally defined within a given problem domain, Ω, and that span
the solution space of interest. Further complicating the matter is that these
basis functions must vanish at the locations where Dirichlet conditions are to
be imposed; while at the same time being nearly orthogonal to one another
(to avoid ill-conditioning during computational implementation). As a result,
it is natural to consider a given problem domain, Ω, as comprising pairwise
disjoint subsets, Ai (i.e. Ai ∩ Aj = ∅ ∀i, j = 1, 2, . . . 3 j 6= i ), known as a
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partition of Ω. Assuming that Ω ⊆
⋃
iAi, then the partition also is a cover of

Ω. The partition associated with such a cover is what is meant when referring
to the mesh defined on a given problem domain. The mesh provides a con-
venient framework within which a computationally expedient approach to the
finite element method may be conceived. It is pointed out that the requirement
of disjointedness only holds for the classical h-method ; overlapping covers are
admissible within the more general finite element approaches such as: GFEM,
Xfem, PU-FEM, hp clouds, etc. For now, the discussion will be restricted to
the classical h-method.

Given a mesh, comprised of what are referred to as elements, the goal be-
comes one of finding simple polynomial shape functions, hi (defined over in-
dividual elements), such that they may be used to form global finite element
basis functions, Ni, that vanish over most elements, except for a local patch
that shares a specific node. In this way, the enforcing of Dirichlet conditions is
simplified, and bandedness of the system matrix is enhanced (more will be said
about this later).

In pursuit of such an approach, a partition of unity is typically adopted
as the paradigm governing the selection of the finite element shape functions,
hi. For convenience and computational expediency, these functions are typically
polynomials. Additionally, in keeping with the requirement that the global finite
element basis functions be non-zero over only small patches of elements within
the mesh, the notion of a partition of unity is adopted; where the support for
the partition is restricted to the set of elements sharing a given node. This
means that the local finite element shape functions must behave as a Kronecker
delta when constituting a local approximation, û, to a solution, u:

ûi = hj (xi)uj = δijuj = ui (231)

As will be seen later, this results in the unknown coefficients of the finite el-
ement shape functions being the actual field values of the unknown function
being sought through the finite element method. Additionally, in the case of
an isoparametric finite element formulation, the local finite element shape func-
tions, hi, are also used to interpolate the element geometric coordinates; as well
as the field variables.

Within the isoparametric approach, it is frequently convenient to conceive
of a parent element, of simple and regular geometry, that may serve as an
archetype for all finite elements of such type, that occur within a given mesh.
In this way, shape functions, and the inverse and determinant of a Jacobian
involving the same, are employed to map the parent element into an actual
finite element within a mesh that covers the problem domain of interest. A very
simple example of this concept occurs in the consideration of a 2-D linear truss
finite element (depicted in Figure 2).
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Figure 2: Isoparametric truss

Figure 3: Isoparametric truss finite element linear shape functions

The parent element for the current 2-D linear truss element appears on the
left side of Figure 2. The following discussion will serve as an example regarding
the mapping of the parent element onto the actual problem domain (appearing
on the right side of Figure 2). The local, or natural, coordinates are denoted
by ξ, and so the following finite element shape functions are used in the current
formulation (as a result of their obvious satisfaction of the partition of unity
requirement: see Figure 3.)

h1 (ξ) =
1

2
(1− ξ) (232)

h2 (ξ) =
1

2
(1 + ξ) (233)

Using these finite element shape functions, it is possible, within the isopara-
metric element approach, to interpolate both the physical problem coordinates,
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X, and field variables, U (in the case of a 2D truss element, these are simply the
member end displacements). In the case of each component of the interpolated
physical coordinates, the following relation holds for an individual element:

X (ξ) = Σ2
i=1hi (ξ)Xi (234)

where Xi are the nodal coordinates (measured with respect to the coordinates
employed within the physical problem domain) associated with each of the in-
dividual member ends; and

U (ξ) = Σ2
i=1hi (ξ)Ui (235)

where Ui are the nodal displacements (with respect to the coordinate of the
physical system) associated with the member ends. As Equations (234) and
(235) show, it is only the finite element shape function that has a spatial de-
pendence (the nodal values of the coordinates and displacement components are
constants). Thus, when considering a treatment of strains, within the isopara-
metric finite element formulation, the following approach is adopted.

Consider an application of the chain rule to the case of uniaxial strain; as it
applies to the case depicted in Figure (2):

ε =
dU

dξ

dξ

dX
(236)

A focus on a uniaxial state of stress permits the consideration of a scalar dis-
placement field, in terms of the two individual members ends, denoted as Ui
where i ranges from one to two (in the case of Figure (2)):

dU

dξ
=
U2 − U1

2
(237)

As similar consideration of the displacements leads to:

dX

dξ
=
X2 −X1

2
=
L

2
(238)

A substitution of Equations (238) and (237) into Equation (236) leads to the
intuitive result that:

ε =
U2 − U1

L
(239)

It is common practice, within applications of the finite element method to solids
and structures, to define a strain-displacement matrix ; given as:

ε = BU (240)

In terms of the example truss problem, considered in Figure (2), the strain-
displacement matrix takes the form (in light of Equation (239)):

B =
1

L

[
−1 1

]
(241)
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Consistent with the weak form of the governing equations obtained for the 1-D
system associated with Equation (220), the so-called stiffness matrix may be
formed by a consideration of the right hand side of Equation (220), and the
subsequent application of Equation (241):

K =

∫
Ωξ

J−1 dh (ξ)

dξ
C J−1 dh (ξ)

dξ
| J | dΩξ (242)

=

∫
Ωξ

BTCB | J | dΩξ

=
AE

L2

∫ 1

−1

[
−1
1

] [
−1 1

]
| J | dξ

The use of the determinant of the Jacobian, | J |, is motivated by a consideration
of Equation (36); wherein the isoparametric mapping described in Figure (2)
serves as an equivalent “deformation.” In the case of the 1-D isoparametric truss
element formulation, the jacobian determinant volume map takes the form:

A dX =| J | A dξ (243)

whereupon Equation (238) may be applied to yield:

| J |= L

2
(244)

An application of Equation (244) to Equation (242) allows for the statement
of the explicit form of the isoparametric truss stiffness matrix (given in global,
problem coordinates):

K =
AE

L

[
1 −1
−1 1

]
(245)

where A is the truss cross-sectional area and E is the modulus of elasticity (as
a specialization of the more general constitutive tensor C).

A variation on the example problem from Equation (213) will now be used
to demonstrate a useful means for treating the presence of Dirichlet conditions
in the finite element system:

u′′ (x) + f (x) = 0, ∀x ∈ Ω = R (0, L)

u (0) = uL

u (L) = uR (246)

The corresponding weak form that is integrated over the parent element and
mapped onto the finite element in the physical problem space is:∫ 1

−1

J−1∇hi (ξ) · J−1∇hj (ξ) | J | dξ =

∫ 1

−1

f̃ (ξ)hi (ξ) | J | dξ (247)
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where f̃ (ξ) is the simultaneous mapping of f (x) into the local coordinates, and
its subsequent restriction to a particular parent element domain. It is observed
that the left hand side of Equation (246) is identical to the stiffness matrix, K,
from Equation (242). It is noted that in the general finite element literature
(i.e. not restricted to solids and structures), it not uncommon to have the term
denoted as A, and thus:

Aij (ξ) =

∫ 1

−1

J−1∇hi (ξ) · J−1∇hj (ξ) | J | dξ (248)

Additionally, the forcing term from the right hand side of Equation (246) is
similarly denoted by b:

bi (ξ) =

∫ 1

−1

f̃ (ξ)hi (ξ) | J | dξ (249)

Assuming the validity of the finite element shape functions given in Equations
(232) and (233), integration of Equation (248) yields:

A =
1

L

[
1 −1
−1 1

]
(250)

Similarly, Equation (249) can be integrated to yield:

b =
L

2

[
f̃(−1)

f̃(1)

]
(251)

where f̃(−1) and f̃(1) are the values of f̃ (ξ); evaluated at the parent element ends.

The complete system associated with the components furnished in Equations
(250) and (251) appears as:[

1
L − 1

L
− 1
L

1
L

] [
u(−1)

u(1)

]
=
L

2

[
f̃(−1)

f̃(1)

]
(252)

Incorporation of the first of the Dirichlet conditions from Equation (246) (for
the purposes of illustration) can be handled straightforwardly as:[

1 0
− 1
L

1
L

] [
u(−1)

u(1)

]
=

[
uL
L
2 f̃(1)

]
(253)

However, it is noticed that the approach described in Equation (253) destroys
the symmetry in the system; an important characteristic to preserve for effi-
ciency when dealing with large systems of equations. A simple way to correct
this problem rests in a simple algebraic trick: taking the product of the specified
quantity multiplied by the column in the stiffness matrix where its influence is
felt, during the matrix multiplication operation, and subsequently subtracting
this column matrix from the right hand side of Equation (252) (i.e. the b term);
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Figure 4: Isoparametric truss finite element quadratic shape functions

once again setting the required row entries to correspond with the prescribed
values (as in Equation (253). This approach is applied to the examples problem
as: [

1 0
0 1

L

] [
u(−1)

u(1)

]
=

[
uL

L
2 f̃(1) + 1

LuL

]
(254)

whereas the actual system (properly specialized for the complete set of Dirichlet
conditions furnished in Equation (246) appears as:[

1 0
0 1

] [
u(−1)

u(1)

]
=

[
uL
uR

]
(255)

The foregoing example problem can be extended to consider the case of a three
node parent element; in which case the finite element shape functions, h, would
have the form:

h1 (ξ) =
1

2
ξ (ξ − 1) (256)

h2 (ξ) = (1 + ξ) (1− ξ) (257)

h3 (ξ) =
1

2
ξ (1 + ξ) (258)

which also satisfy the partition of unity requirement, as displayed in Figure (4).
The 1D finite element shape functions provided in Equations (232), (233) and

(256) - (258) may be employed as building blocks for a general method of con-
structing higher dimensional finite element shape functions through the use of
an analogy to the dyadic product introduced earlier in the notes as Equation
(65).
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Figure 5: 2D parent element with four nodes

Consideration may now be given to the four node parent element provided in
Figure (5). The required linear finite element shape functions for the formulation
of such an element can be obtained using an approach modeled after the dyadic
product. Consider a case where each of the four required finite element shape
functions, h1 (ξ1, ξ2) , h2 (ξ1, ξ2) , h3 (ξ1, ξ2), and h4 (ξ1, ξ2), appear in a matrix
form as: [

h1 (ξ1, ξ2) h3 (ξ1, ξ2)
h2 (ξ1, ξ2) h4 (ξ1, ξ2)

]
(259)

Such a case could have been arrived at using the open product (i.e. dyadic
product) of two column matrices as:[

h1 (ξ1)
h2 (ξ1)

]
⊗
[
h1 (ξ2)
h2 (ξ2)

]
=

[
h1 (ξ1)h1 (ξ2) h1 (ξ1)h2 (ξ2)
h2 (ξ1)h1 (ξ2) h2 (ξ1)h2 (ξ2)

]
(260)

whereupon, the required finite element shape functions for the element depicted
in Figure (5) become:

h1 (ξ1, ξ2) =
1

4
(1− ξ1) (1− ξ2)

h2 (ξ1, ξ2) =
1

4
(1 + ξ1) (1− ξ2)

h3 (ξ1, ξ2) =
1

4
(1− ξ1) (1 + ξ2)

h4 (ξ1, ξ2) =
1

4
(1 + ξ1) (1 + ξ2) (261)

Obviously, this result can be generalized in a trivial way and extended to higher
dimensional elements, and elements with more than two nodes in the parent
elements whose finite element shape functions form the building blocks of the
shape functions that are analogous to those depicted in Equation (259).
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Figure 6: Example 2D truss problem

Assuming that numerical integration is employed in the evaluation of the
types of integrals that appear in Equations (248) and (249), a general finite
element algorithm, for use with iso-parametric parent elements that are mapped
on finite elements comprising a mesh covering a problem domain, can be arrived
at, or found in the literature. The application of numerical integration, and
element assembly are important considerations; as are other effective means for
treating essential boundary conditions. Later discussions in this work will begin
by taking steps that specialize general finite element algorithms in order to be
more efficient for applications involving structural elements; the ultimate focus
of the present exposition.

As a foray into a consideration of structural elements, it is instructive to con-
sider the process of assembly underpinning the so-called direct stiffness method,
as it applies to a very simply 2-D truss problem. As it is that this particular
example problem involves truss elements that can be oriented arbitrarily with
respect to the global coordinate system (implied by the nodal coordinates asso-
ciated with the truss arch structure depicted in Figure (6), a slight modification
of the local element stiffness matrix, Ke, associated with the parent element
depicted in the same figure appears as:

Ke =


c1 0
c2 0
0 c1
0 c2

 AEL
[

1 −1
−1 1

] [
c1 c2 0 0
0 0 c1 c2

]

=
AE

L


c21 c1c2 −c21 −c1c2
c1c2 c22 −c1c2 −c22
−c21 −c1c2 c21 c1c2
−c1c2 −c22 c1c2 c22

 (262)

where the upper right superscript in the the designation Ke is meant to dif-
ferentiate the local element stiffness matrix from the global system matrix to
be designated as K. It is pointed out that the quantities c1 and c2 represent
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Figure 7: System stiffness assembly for example 2D truss problem

the appropriate direction cosines effecting the coordinate rotations necessary
to bring the local coordinate of the parent element into consonance with the
appropriate finite element orientation within the global system frame of refer-
ence. The local 1-diection of the parent element originates at the end of the
parent element corresponding to the smallest of the nodal numbers; extending
through the higher numbered end node. The angles within the direction cosines
are defined with this convention in mind.

Additionally, it is observed that the matrix depicted in the upper right of
Figure (6) represents the element connectivity within the larger system. Specifi-
cally, the M-code matrix, M , lists zeros where homogeneous Dirichlet conditions
are enforced, and integers elsewhere (corresponding to the global system degree
of freedom numbering (usually optimized to minimize the bandwidth of the re-
sulting system). The individual columns correspond with specific elements (i.e.
column 1 pertains to element 1, etc.), and the rows correspond with what, if any,
global degrees of freedom (dofs) correspond with the element ends. In this way,
the individual element element stiffness matrices given in Equation (262) can
be used to form the global stiffness matrix as depicted in Figure (7); yielding:

K =
AE

L

[
c21 c1c2
c1c2 c22

]
+
AE

L

[
c21 c1c2
c1c2 c22

]
=

2AE

L

[
c21 c1c2
c1c2 c22

]
(263)

The M-code can be similarly used to assemble a global force vector from the
local force vectors considered on an individual, element-by-element basis.

2 Nonlinearity

Returning to a more general context (i.e. one that is not restricted to structural
elements), a discussion of nonlinear partial differential equations (PDEs) is now
undertaken.
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2.1 Introduction to nonlinear PDEs and their solution

As a point of departure, consider the two nonlinear ODEs (defined on the in-
terval (0, 1), and including Dirichlet conditions) as a basis for the subsequent
discussion:

d2u

dx2
+ f (u) = 0, u (0) = uL, u (1) = uR

d

dx

(
λ (u)

du

dx

)
= 0, u (0) = uL, u (1) = uR (264)

Assuming an approximate solution of the usual form,

u (x) ≈ û (x) =

n∑
j=1

ujNj (x) (265)

permits a consideration of the weak forms of the model problems. In a way that
is analogous to problem treated in Equation (213) the Galerkin method may be
applied to the model problems; resulting in:

n∑
j=1

(∫ 1

0

N ′i (x)N ′j (x) dx

)
uj =

∫ 1

0

f

(
n∑
s=1

usNs (x)

)
Ni (x) dx, i = 1, . . . , n

n∑
j=1

(∫ 1

0

λ (û (x))N ′i (x)N ′j (x) dx

)
uj = 0, i = 1, . . . , n (266)

These two weak forms may be expressed in a more compact notation as:

Au = b (u)

A (u) u = b (267)

Or even more succinctly still, as:

F (u) = 0 (268)

where F (u) = Au − b (u) in the case of the first model problem, and F (u) =
A (u) u− b, in the case of the second.

2.2 Picard iterations

Arguably, the simplest approach to the solution of nonlinear systems, such as
those of Equation (267), would be to apply the iterative method attributed
to Picard. Through subsequent applications of Picard iteration, the correct
solution to each of the examples in Equation (267) is approached as:

Auk+1 = b
(
uk
)
, k = 0, 1, 2, . . . (269)

A
(
uk
)
uk+1 = b, k = 0, 1, 2, . . .
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where uk is assumed to be available as an earlier solution within the iterative
solution framework. Within such an iterative context, the question of stopping
criteria immediately becomes relevant; additionally, starting conditions are at
issue as well.

It is not uncommon to initiate Picard iteration with the zero vector (i.e.
u0 = 0). As for a stopping criterion, essentially any discrete norm might be
used to measure convergence in subsequent iterations, as ‖uk+1−uk‖. Of course,
the selection of a tolerance for the norm, signaling sufficient solution accuracy,
is up to the analyst to select.

While it can sometimes be that Picard iteration may experience convergence
problems when applied broadly to different classes of PDEs, some improvements
can be achieved through the use of a technique known as over-relaxation. This
approach involves the identification of an initial next step in the solution process,
u∗, using the approaches given in Equation (269):

Au∗ = b
(
uk
)
, k = 0, 1, 2, . . . (270)

A
(
uk
)
u∗ = b, k = 0, 1, 2, . . .

whereupon, an over-relaxation parameter, ω, is introduced by fiat; subsequently
leading to an identification of the next solution point:

uk+1 = ωu∗ + (1− ω) uk (271)

where the prescribed over-relaxation parameter ranges as: ω ∈ (0, 1].

2.3 Newton-Raphson method

It is instructive to introduce the fundamental concepts associated with the
Newton-Raphson Method through the consideration of a scalar form of the equa-
tions appearing as Equation (267); expressed more compactly as F (u) = 0. As
it is that the Newton-Raphson Method is iterative, it is assumed that earlier
approximations to the desired solution are available; being denoted as uk. This
earlier approximation to the problem solution does not satistfy the requirement
wherein F (u) = 0, and thus an improvement is sought through the solution of
an easier, surrogate problem for the more complex nonlinear problem at hand.
The surrogate problem is expressed using a new function that is parameterized
using the previously obtained solution, uk; appearing as:

F (u) ≈M
(
u;uk

)
(272)

The vanishing of Equation (272) is subsequently used to furnish an improved
approximation to the solution of the more complex original problem F (u) = 0.
A useful approach to adopt is one where M

(
u;uk

)
is the linear portion of a
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Figure 8: Schematic depiction of Newton-Raphson method applied to a scalar
problem

Taylor series expansion of F (u) about the point u = uk (with simplification):

M
(
u;uk

)
= F

(
uk
)

+
dF
(
uk
)

du

(
u− uk

)
F
(
uk
)

= −
dF
(
uk
)

du

(
u− uk

)
−
F
(
uk
)

dF (uk)
du

= u− uk (273)

The final line of the foregoing equation may be recast, in a form conducive to
isolating the updated approximate solution to the original nonlinear problem,
as:

uk+1 = uk −
F
(
uk
)

dF (uk)
du

(274)

A graphical depiction of the foregoing nonlinear scalar problem is displayed
schematically in Figure (8). Of course, all of the foregoing may be easily gener-
alized to the multidimensional case.

In the multidimensional case, the more easily solved surrogate problem ap-
pears as M

(
u; uk

)
; a linearization of the solution about the previously solved

state being a commonly adopted approach:

M
(
u; uk

)
= F

(
uk
)

+ J
(
uk
)
·
(
u− uk

)
(275)
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Figure 9: Schematic depiction of Newton-Raphson method applied to a single
degree of freedom structure

where J
(
uk
)
≡
(
∇F

(
uk
))T

is the Jacobian of F
(
uk
)
, whose entry (i, j) is given

as ∂Fi
∂uj

. It is efficient to recast the solution approach furnished in Equation (274),

in order that the increment in the nonlinear solution is solved for within each
iteration as:

J
(
uk
)

∆uk+1 = F (u) (276)

where ∆uk+1 = uk+1−uk. Over-relaxation (sometimes also called line searches)
can be applied to the Newton-Raphson method as well; resulting in an updated
solution of the form:

uk+1 = uk + ω∆uk+1 (277)

While Picard iteration may have issues with convergence, the Newton Raphson
method enjoys a quadratic convergence rate (i.e. | u− uk+1 | ≤ C | u− uk |2,
for a constant C).

The form of the Newton-Raphson method presented in Equation (276) is
particularly useful in nonlinear structural mechanics where the J

(
uk
)

can be
thought of as a tangent stiffness matrix, KT (the linear portion of a Taylor series
expansion carried out about the previous solution point within the method), and
the right hand side of Equation (276) can be viewed as an out-of-balance force
(sometimes called a Residual).

The Newton-Raphson method can be applied to a hypothetical single degree
of freedom structural problem as a means for introducing notation and conven-
tions that will prove useful in discussions centering on the modified spherical arc
length method, to be introduced in the sequel. In the meantime a consideration
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of Figure (9) may proceed.

The structure under consideration in Figure 9 is initially subject to some
baseline loading, R. Subsequent load levels are achieved through the speci-
fication of a Load Proportionality Factor (LPF), λ. The solution increments
(previously denoted by k) are denoted with a left super-script; where the vari-
able name t is now adopted to facilitate later consideration of time, in transient
dynamic contexts. Beginning with a consideration of the previously converged
solution, where the structure assumed the configuration that is consistent with
tu (under the external action of tλR), the Jacobian is formulated as the tangent
stiffness tK. The imbalance between the previously converged response (quanti-
fied by the internal force vector tF ) and the new desired load intensity, t+∆tλR,
are treated iteratively during the increment that is solving for the configuration
at t+ ∆t. In such a framework, the new configuration of the structure, denoted
as t+∆tu, results in an internal action for the structure of t+∆tF ; which does
not balance the applied action t+∆tλR; thus additional iterations are required
within the increment t+ ∆t. Thus, the subsequent structural configurations, at
each iteration within the load increment for t + ∆t, may be given generally as
t+∆tu(i); where the variable i denotes the particular iteration of interest. With
this in mind, the case depicted in Figure (9), could have presented the current
(within the current iteration for the given increment) solution configuration as
t+∆tu(1). It is then possible to summarize the Newton-Raphson approach to the
solution of a particular iteration, within a given increment, as:

t+∆tK(i−1)∆u(i) =t+∆t λR−t+∆t F (i−1) (278)

t+∆tu(i) = ∆u(i) +t+∆t u(i−1)

As an example, the starting iteration for increment t+ ∆t in Figure (9) would
appear as:

tK∆u(1) =t+∆t λR−t F (279)

t+∆tu(1) = ∆u(1) +t u

while the second iteration would then appear as:

t+∆tK(1)∆u(2) =t+∆t λR−t+∆t F (1) (280)

t+∆tu(2) = ∆u(2) +t+∆t u(1)

One important drawback to the Newton - Raphson method rests in its inability
to traverse limit points in the equilibrium path. At such locations, in configu-
ration space, the tangent stiffness matrix becomes singular, and thus the usual
approach to factorizing the matrix, and subsequently solving for displacement
increments, will not be possible. In such cases an arc length method may be
employed.

Prof. Earls, Cornell University 58



Nonlinear finite element analysis: structures 2 NONLINEARITY

2.4 Modified spherical arc length method

There are many different arc length methods to choose from, but the underly-
ing structure is the same: the incremental equilibrium equation is augmented
with an additional constraint equation that dictates a parametric relationship
between the displacement and load increments within a given iteration. In gen-
eral, if the problem at hand has n degrees of freedom, then the n+1 dimensional
problem being solved in the arc length method becomes:

τK∆U(i) =
(
t+∆tλ(i−1) + ∆λ(i)

)
R−t+∆t F(i−1)

0 = f
(

∆λ(i),∆Ui
)

(281)

In Equation (281) the τ appears on the stiffness term, τK, since it may be
that the stiffness is not being updated at every iteration (referred to as a mod-
ified Newton - Raphson method). Additionally, the quantity ∆λ(i) refers to the
increment in the load proportionality that takes t+∆tλ(i−1) into t+∆tλ(i). In
the current discussion, the parametric equation, relating displacement and load
increments, is furnished as:

∆l2 =
[(

t+∆tλ(i−1) −t λ
)

+ ∆λ(i)
]2

+ U(i)TU(i)

U(i) =t+∆t U(i) −t U (282)

Besides facilitating the traversing of limit points, the approach espoused in
Equation (281) is useful when adaptivity in the solution is desirable. For ex-
ample, during the evolution of the incremental solution, it may that regions of
greater nonlinearity are encountered; thus it would desirable to be able to re-
duce the arc length in regions where the solution is particularly difficult to track
(as well as increase it in regions where solution nonlinearity is more mild). The
arc length method permits this. As previously noted, there are many different
implementation strategies for the arc length method. The version presented is
a hybrid of several dominant techniques that appears to perform efficiently and
robustly. The discussion of the present modified spherical arc length method
will commence with a consideration of required starting protocols. It will be
seen that the parameters employed during the initial iteration will impact the
remainder of the incrementally evolving solution.

Prior to the start of the first increment, the analyst must specify three
solution parameters:

1. The reference load vector, R, (to be scaled by the load proportionality
factor (LPF), λ, during the course of the solution evolution);

2. An initial displacement, ∆tU∗k, to initiate the model response in the desired
sense (i.e. in a manner that is consistent with subsequent loading within
the problem);
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3. A scalar constant, α, used to limit the size of any subsequent displacement
increments as:

‖U‖ ≤ α‖∆tU‖ (283)

where ‖ · ‖ denotes the Euclidean norm.

To begin the solution, the solution time, ∆t, is considered. The initial
incremental equilibrium equation can be expressed as:

0K∆U(i) =
(

∆tλ(i−1) + ∆λ(i)
)

R−∆t F(i−1) (284)

However, within the first iteration, the solution time appears as ∆t(1), and thus
the incremental equilibrium equations appear as:

0K∆U(1) = ∆λ(1)R (285)

However, since we do not yet know ∆λ(1) we instead solve the following variant;
where the entire reference load vector, R, used (the resulting over-estimated
displacement is subsequently corrected):

0K∆U(1) = R (286)

The use of Equation (286) implies that ∆U(1) is 1
∆λ(1) too large; and thus must

be reduced by the amount:

∆tλ
(1)
k ≡

∆tU∗k

∆U
(1)
k

(287)

where the subscript, k, refers to a specific degree of freedom within the displace-
ment vector U. We now have our first load proportionality factor. Additionally,
through the use of Equation (287) we see that the updated displacement incre-
ment is presented as:

∆tU(1) =∆t λ(1)∆U(1) =∆t U∗ (288)

The foregoing is depicted, in a schematic sense for one degree of freedom, in
Figure (10), so as to summarize the steps leading to ∆tU(1) and ∆tλ(1) in the
first iteration within the ∆t increment. Subsequent iterations within the ∆t
increment proceed as follows.

Instead of using Equation (284) directly, a modification is employed:

0K∆Ū(i) =∆t λ(i−1)R−∆t F(i−1) (289)

In the case of solution time ∆t(2), the displacement increment, Ū(2), is obtained
from the foregoing; whereupon the increment in LPF, ∆λ(2), is arrived at from:

∆λ
(2)
k = −

Ū
(2)
k

∆U
(1)
k

(290)
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Figure 10: Schematic depiction of the first iteration, within the first increment,
using the modified spherical arc length method

where the denominator term on the right hand side is the over-estimated dis-
placement increment obtained using Equation (286). The incremental LPF
from Equation (290) is subsequently used to compute a negative displacement;
bringing the structure “backwards”, in configuration space (with respect to the
direction of loading) as:

∆U(2) = ∆Ū(2) + ∆λ(2)∆U(1) (291)

whereupon the new configuration, for the increment at time ∆t(2) is:

∆tU(2) =∆t U(1) + ∆U(2) (292)

The accompanying new LPF is also reduced, taking the form:

∆tλ(2) =∆t λ(1) + ∆λ(2) (293)

The iterating within the time increment ∆t continues until convergence in energy
is achieved:

∆U(i) ·
(

∆tλ(i−1)R−∆t F(i−1)
)

∆U(1) ·
(

∆tλ(1)R
) ≤ ETOL (294)

where ETOL is a suitably chosen energy tolerance. Figure (11) displays the
approach, schematically, for the single degree of freedom case. For subsequent
increments within the evolving nonlinear solution, the arc length used in each
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Figure 11: Schematic depiction of the subsequent iterations, within the first
increment, using the modified spherical arc length method

iteration is computed based based on the results obtained within the previous
increments as:

∆l = β
√

U ·U + λ2 (295)

where β is a scaling parameter to be defined later (see Equations (311) and
(312)), and the displacement and load increments used in Equation (295) are
computed as:

U =t U−t−∆t U

λ =t λ−t−∆t λ (296)

This process can be illustrated through the consideration of the equations that
accompany iteration i = 1 within the solution increment for time t + ∆t. Em-
ploying the tangent stiffness of the structure from some arbitrary time, τ , (i.e.
employing the modified Newton - Raphson method), the error from the pre-
vious time increment can be solved for (in order that we do not inadvertently
accumulate error between increments) as:

τK∆Ū(1) =t λR−t F (297)

whereupon a reference displacement increment can be computed for the current
time increment as:

τK∆ ¯̄U(1) = R (298)
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It is now possible to compute the updated LPF, ∆λ(1), using the previously
computed arc length, ∆l:(

t+∆tλ(1−1) −t λ+ ∆λ(1)
)2

+ ∆U(1) ·∆U(1) = ∆l2(
∆λ(1)

)2

+ ∆U(1) ·∆U(1) = ∆l2 (299)

It is pointed out that Equation (299) has been specialized to account for the
conditions accompanying the initial iteration within an increment wherein ∆U
is used (in lieu of U) since the displacement increment between iteration is
the same as that occurring between the increment. Additionally, the term
t+∆tλ(1−1) −t λ vanishes; as it is that within the first iteration t+∆tλ(1−1) −t
λ =t+∆t λ(0) −t λ = 0. The net result of the foregoing is that ∆U(1) depends
on ∆λ(1). The displacement increment for the initial iteration is then given as:

∆U(1) = ∆Ū(1) + ∆λ(1)∆ ¯̄U(1) (300)

thus leading to the following quadratic equation:(
∆λ(1)

)2

+
(

∆Ū(1) + ∆λ(1)∆ ¯̄U(1)
)
·
(

∆Ū(1) + ∆λ(1)∆ ¯̄U(1)
)

= ∆l2 (301)

Since ∆λ(1) is now known, the entire updated iterative solution, within the
current increment, may be summarized as:

t+∆tU(1) =t U + ∆U(1)

t+∆tλ(1) =t λ+ ∆λ(1) (302)

This can be generalized to subsequent iterations (i.e. i = 2, 3, . . .) within the
increment for t+ ∆t by proceeding with the solution of:

τK∆ ¯̄U(1) = R (303)

for ∆ ¯̄U(1) (to be re-used in subsequent iterations within the increment), and
then subsequently solving:

τK∆Ū(i) =t+∆t λ(i−1)R−t+∆t F(i−1) (304)

(so as to not accumulate error in the solution from iteration to iteration). The
foregoing may then be used to solve for the updated displacement, t+∆tU(i), as:

t+∆tU(i) =t+∆t U(i−1) + ∆Ū(i) + ∆λ(i)∆ ¯̄U(1) (305)

where ∆λ(i) comes from the solution of the following quadratic equation:((
t+∆tλ(i−1) −t λ

)
+ ∆λ(i)

)2

+ U(i) ·U(i) = ∆l2 (306)

whose displacement increment terms, U(i), are given by:

U(i) =t+∆t U(i) −t U (307)

Prof. Earls, Cornell University 63



Nonlinear finite element analysis: structures 2 NONLINEARITY

Thus, the expanded form of the quadratic yielding the desired increment in the
LPF becomes:((

t+∆tλ(i−1) −t λ
)

+ ∆λ(i)
)2

+
[(

t+∆tU(i−1) + ∆Ū(i) + ∆λ(i)∆ ¯̄U(1)
)
−t U

]
·[(

t+∆tU(i−1) + ∆Ū(i) + ∆λ(i)∆ ¯̄U(1)
)
−t U

]
= ∆l2

(308)

Once the LPF increment has been solved for using Equation (308), then the
updated LPF for the iteration may be stated as:

t+∆tλ(i) =t+∆t λ(i−1) + ∆λ(i) (309)

Once again, iterations continue until the energy tolerance, given in Equation
(294), is satisfied.

Some important observations concerning the solution of the required quadratic
equations are furnished as:

1. if no real roots are obtained, then abort the increment and subsequently

restart with a smaller arc length; such as ∆lnew = ∆lold

2

2. if two real roots are obtained, then the selected root becomes the one for
which γ is largest; where γ = U(i−1) ·U(i)

Additionally, upon convergence to a displacement within an increment, the fol-
lowing check is performed:

‖t+∆tU−t U‖`2 ≤ α‖∆tU‖`2 (310)

whereupon, if the check of Equation (310) fails, then the increment is abandoned
and then restarted with:

∆lnew = ∆lold
α‖t+∆tU‖`2
‖t+∆tU−t U‖`2

(311)

However, if the test of Equation (310) is passed, then the solution is permitted
to advance to the next increment; applying the updated arc length:

∆lnew = ∆lold
√
N1

N2

α‖t+∆tU‖`2
‖t+∆tU−t U‖`2

(312)

where N1 ≡ optimum number of iterations, and N2 ≡ number of iterations
used in the previous increment. This last step enhances solution efficiency by
adapting to the degree of local nonlinearity that the problem is exhibiting, as
the solution is evolving.
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2.5 Nonlinear continua

In formulating a tractable approach to the solution of nonlinear finite element
idealizations of solids and structures, it is important to apply what we have
reviewed in the preceding treatment, as practical means for solving problems.
Specifically, the principal of conservation of linear momentum will be subse-
quently applied using the work conjugate material time derivative of the de-
formation gradient, Ḟ, and PK1 stress, P; as a result of their simplicity when
formulating important finite element expressions. However, as a result of the
lack of symmetry in Ḟ and P, the Green-Lagrange (G-L) strain and PK2 stress
will be adopted later in these notes; as implementation within the Total La-
grangian (T. L.) formulation progresses. Similarly, the power conjugate rate of
deformation tensor and Cauchy stress rate are used within Updated Lagrangian
(U. L.) formulations, while implementation will involve G-L strain and PK2
stress. It is pointed out that some authors in the literature apply the true
strain and Cauchy stress in a work conjugate pairing for the U. L. formulation
as well. The two approaches for the U. L. formulation are identical, and only dif-
fer as a matter of taste. We will adopt the power formulation so as to illustrate
the usage of some of the quantities that we have previously reviewed in these
notes. It is further noted that the T. L. and U. L. formulations yield identical
results when implemented within a finite element framework. The choice of one
formulation over the other, usually rests in the expediency of one formulation
over the other as a result of peculiarities within a given problem.

2.6 Lagrangian Reference frames

Lagrangian reference frames are referential in nature: measuring the various me-
chanical response measures in terms of the initial, unstressed state in the case of
the T. L., or with respect to the previously converged equilibrium configuration
in the U. L. case. In either case, the referential description is required since the
alternative would involve measuring the needed mechanical properties in the
current configuration with respect to an unknown deformation state; which is
actually the primary unknown sought during the usual nonlinear finite element
solution.

2.6.1 Total Lagrangian (T. L.)

We may state the appropriate strong form of the conservation in linear momen-
tum for the T. L. reference frame, in component form, as:

∂Pji
∂Xj

+ ρobi = ρoüi (313)

We may subsequently consider a set of test and trial functions as:

δu (X) ∈ U0, u (X, t) ∈ U (314)

where U is the space of displacement functions that satisfies the actual Dirich-
let condition of the problem (i.e a space of kinematically admissible functions);
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while U0 is a similar space, except that the functions must satisfy the homoge-
neous Dirichlet condition. It is pointed out that a suggestive notation is adopted
for the test functions: including a δ symbol. This is done in order to obviate the
parallels between the weak formulation and the principle of virtual work that is
applied later in the course. A weak form may be subsequently obtained using
the foregoing notation:∫

Ωo

δui

(
∂Pji
∂Xj

+ ρobi − ρoüi
)
dΩo = 0 (315)

The foregoing is not as helpful as it could be, since there is a requirement of
C1 continuity implied in Equation (315) as part of the derivative on the PK1
stress. Fortunately, integration by parts may be applied to this term as follows:∫

Ωo

δui
∂Pji
∂Xj

dΩo =

∫
Ωo

∂

∂Xj
(δuiPji) dΩo −

∫
Ωo

∂ (δui)

∂Xj
PjidΩo (316)

Gauss’ Divergence Theorem may be subsequently applied to the first term on
the right side of the equal sign above, to yield:∫

Ωo

∂

∂Xj
(δuiPji) dΩo =

∫
Γo

δui (no)j PjidΓo (317)

The integrand on the right hand side of Equation (317) is simply the Neumann
condition on the boundary tractions which can be stated as:

(no)j Pji = (to)i (318)

where to is the traction vector on the boundary. Equation (317) may then be
re-stated as: ∫

Ωo

∂

∂Xj
(δuiPji) dΩto =

∫
Γto

δui (to)i dΓto (319)

where Γto is the portion of the domain boundary where Dirichlet conditions
are not specified, and the following conditions apply: Γ = Γt ∪ Γu and Γt ∩
Γu = ∅ (where Γu is the portion of the boundary where the essential boundary
conditions are specified). It is also noted that the first term within the left hand
side of the integrand in Equation (319) may be modified, so as to be put in
terms of the deformation gradient, as follows:

∂ (δui)

∂Xj
= δ

(
∂ui
∂Xj

)
= δFij (320)

Equation (320) may be substituted into Equation (316), which can subsequently
be used in Equation (315) to yield:∫

Ωo

(δFijPji − δuiρobi + δuiρoüi) dΩo −
∫

Γto

δui (to)i dΓto = 0 (321)
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or, in tensor notation:∫
Ωo

(
δFT : P− ρoδu · b + ρoδu · ü

)
dΩo −

∫
Γto

(δu · i) (i · to) dΓto = 0 (322)

The foregoing weak form is sometimes referred to as emanating from the prin-
ciple of virtual work; as it is that notional mechanical interpretations may be
ascribed to the individual terms of the weak form as follows:

δWint =

∫
Ωo

(
δFT : P

)
dΩo

δWext =

∫
Ωo

(ρoδu · b) dΩo +

∫
Γto

(δu · i) (i · to) dΓto

δWkin =

∫
Ωo

(δu · ρoü) dΩo (323)

2.6.2 Updated Lagrangian (U. L.)

Within the context of an Updated Lagrangian formulation, it is sometimes the
case that the strong form of the momentum conservation within the spatial
domain, Ω, is expressed in a velocity form as:

∂σji
∂xj

+ ρbi = ρv̇i (324)

where the Neumann traction boundary conditions are specified on the relevant
segment of the boundary, Γt, in the same way as in the T. L. formulation:

njσji = ti (325)

Proceeding as before, it is possible to form a weak form of the momentum
equation as: ∫

Ω

δvi

(
∂σji
∂xj

+ ρbi − ρv̇i
)
dΩ = 0 (326)

within which test and trial functions are once again defined; this time in terms
of velocities:

δv (X) ∈ U0, v (X, t) ∈ U (327)

where in this case, U and U0 are the space of kinematically admissible velocities,
and velocities that satisfy the homogeneous Dirichlet conditions, respectively.

The first term within the integrand of Equation (326) may be re-expressed
through integration by parts to be:∫

Ω

δvi
∂σji
∂xj

dΩ =

∫
Ω

(
∂

∂xj
(δviσji)−

∂ (δvi)

∂xj
σji

)
dΩ (328)
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Applying Gauss’ Divergence Theorem to the first term within the integrand of
Equation (328) yields:∫

Ω

∂

∂xj
(δviσji) dΩ =

∫
Γ

δvinjσjidΓ (329)

the right hand side of which may be expanded as (using the Neumann traction
condition): ∫

Ω

∂

∂xj
(δviσji) dΩ =

∫
Γt
δvitidΓt (330)

The foregoing may be substituted into Equation (328) to furnish:∫
Ω

δvi
∂σji
∂xj

dΩ =

∫
Γt
δvitidΓt −

∫
Ω

∂ (δvi)

∂xj
σjidΩ (331)

Equation (331) may subsequently be used within Equation (326) to obtain:∫
Ω

∂ (δvi)

∂xj
σjidΩ−

∫
Ω

δviρbidΩ−
∫

Γt
δvitidΓ +

∫
Ω

δviρv̇idΩ = 0 (332)

where the form of Equation (332) is consistent with the form typically observed
within a formulation involving the principle of virtual power.

It is noticed that the first term within the integrand on the right hand side
of Equation (332) may be re-expressed in a more convenient form as (exploiting
the symmetry in the Cauchy stress tensor):

∂ (δvi)

∂xj
σij = δLijσij = (δDij + δWij)σij = δDijσij (333)

wherein the skew symmetry of the spin tensor, W, has been exploited. In tensor
notation, the foregoing result can be compactly expressed as:

∂ (δvi)

∂xj
σij = δD : σ (334)

The suggestive name that accompany the principle of virtual power may now
be assigned to each of the terms within the foregoing weak form as:

δPint =

∫
Ω

δD : σdΩ

δPext =

∫
Ω

δv · ρbdΩ +

∫
Γt

(δv · i) t · i dΓt

δPkin =

∫
Ω

δv · ρv̇dΩ (335)
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2.7 Review of stress-space plasticity

The current treatment of material nonlinear effects is limited to the case of per-
fect plasticity in metals (i.e. hardening effects are ignored), as a result of the
work to come later in specializing nonlinear constitutive theories for application
in stress resultant space (force space) for use with structural elements. As a
point of departure for these later discussions, the current subsection reviews
elementary concepts from stress-space plasticity.

Considering empirical evidence arising from work with metals possessing an
underlying crystal structure that is face centered or body centered (i.e. FCC
or BCC) in nature (e.g. steel, aluminum, etc.) it has been noticed that large
changes in volume (in terms of percent difference) may be experienced, and
recovered from, in an elastic manner. Indeed, it appears that FCC and BCC
metals are essentially insensitive to the occurrence of hydrostatic loading when
considering the activation of inelastic response. As a result, the dominant failure
criteria, in applications involving metals, neglect the occurrence of the hydro-
static portion of the stress when predicting the initiation of yielding.

As a point of departure for the present discussion, consider a Newtonian fluid.
A fluid differs from a typical solid in that it is unable to resist shear stresses
directly, and thus shearing deformations will evolve in a given fluid domain for
as long as the shear stresses are imposed. If the fluid domain is considered to
constitute a thin film layer that separates two plates (one stationary, and the
other moving at some constant velocity with respect to the former) then a single
dimensional relationship for the stress and velocity of the plates may be given
in terms of a fluid mechanical property known as viscosity:

τ = µ
dv

dx
(336)

where v is the relative plate velocities with respect to the spatial coordinate, x;
with µ being the coefficient of viscosity. This result may be generalized to the
three dimensional case by considering the stress deviator on the left hand side,
and the rate of deformation tensor on the right hand side:

T′ = 2µD (337)

the 2 being needed to cancel with the factor of 1
2 present in the rate of defor-

mation, D. The stress deviator is straightforwardly computed as that portion
of the stress tensor that remains after the hydrostatic portion of subtracted off:

T ′ij = Tij − pδij (338)

where p are the hydrostatic pressures that correspond to −3Ke; with K being
the material bulk modulus and e being the mean normal strain. An analogy
is realizable between the viscous flow of a Newtonian fluid (as predicted by
Equation (337)) and the plastic flow in a yielded metal as it experiences un-
recoverable deformations. However, in the latter case, with a focus on perfect
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plasticity, it is not expected that there should be a very significant rate effect
on the strain; and thus the viscosity term ought to be replaced by a quantity
that normalizes plastic deformation in a way that will hold the salient portion
of the stress tensor constant.

Such thinking enables the Levy-Mises perfectly plastic constitutive equation
to be written as:

T′ =
k√
IID

D (339)

where IID is the second invariant of the rate of deformation tensor, D. The
use of invariants is natural, as invariance to reference frame is a requirement for
any plasticity formulation. The nature of the parameter, k, may be explored by
squaring the terms in Equation (339):

T′T′ =
k2

IID
DD (340)

If plastic incompressibility is assumed, then tr D = 0, and thus:

IID =
1

2
DD (341)

which implies that:

k2 =
1

2
T′T′ (342)

It is pointed out that by neglecting the elastic deformations (a requirement since
it is only the incremental strains that are in the direction of the stresses; and not
the total strains), and assuming incompressibility, then the rate of deformation
tensor, D, may subsequently be thought of as the plastic strain rate of the true
strains. Additionally, the right hand side of Equation (342) is recognized as the
second invariant of the deviatoric stress, as:

J′2 = IIT ′ =
1

2
T′T′ (343)

or stated explicitly:
k2 = J′2 (344)

which, may then be thought of as the yield condition: furnishing the state of
stress whereupon plastic flow is possible.

A fundamental property of a yield condition, f(σ) is that it is always non-
positive:

f (T) ≤ 0 (345)

with this requirement in mind, a consideration of Equation (344) leads to a
statement of the von Mises yield criterion:

f (J′2) ≡
√

J′2 − k = 0 (346)
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Considering the case of pure shear (i.e. T12 = T21 6= 0, with all other com-
ponents vanishing), then the second invariant of the stress deviator is given
as:

J′2 = T 2
12 (347)

and so the von Mises yield condition becomes:

| T12 | −k = 0 (348)

which indicates that the von Mises yield condition is tied to the shear stress
in the differential material volume surrounding a given point of interest in a
material domain. Since the invariant, J′2 is proportional to the strain energy
causing distortion of the material volume element, the von Mises yield criterion
is sometimes referred to as a strain energy density of distortion condition.

Another interesting example emanates from the consideration of a uniaxial
state of stress: T11 = Y . In this case, the deviatoric stress tensor may be
expressed in Cartesian components as:

T ′ij = Tij − σδij (349)

where σ is the mean normal stress:

σ =
1

3
Tkk =

1

3
Y (350)

expanding the components of Equation (349) yields: Y 0 0
0 0 0
0 0 0

−
 Y

3 0 0
0 Y

3 0
0 0 Y

3

 =

 2
3Y 0 0
0 −Y3 0
0 0 −Y3

 = T ′ij (351)

the second invariant of the devatoric strain tensor yields:

IIT ′ =
1

2
T ′ijT

′
ij

=
1

2

[(
2

3
Y

)2

+

(
−Y

3

)2

+

(
−Y

3

)2
]

=
1

2

[
4

9
Y 2 +

Y 2

9
+
Y 2

9

]
=
Y 2

3
(352)

Since k2 = IIT ′ , the following is observed:

k =
Y√

3
(353)
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thus implying that the von Mises yield criterion anticipates that that yield stress
in, say, unixial tension will be

√
3 times the yield stress in pure shear. It is in-

structive to explicitly state some important properties of a yield criterion, and
its generated yield surface.

Any yield criterion may be generically stated in terms of the properties of
some function of stress, f(T), stated explicitly as follows. In the case of elastic
material response, one of two requirements must be satisfied:

f (T) < 0 (354)

or that

f (T) = 0 and
∂f

∂Tij
Ṫij < 0 (355)

In the case where plastic deformations become admissible, the yield function
satisfies the requirements:

f (T) = 0 and
∂f

∂Tij
Ṫij ≥ 0 (356)

A geometric interpretation may now be ascribed to the notion of the failure
surface just described: it defines a locus of points in stress space within which
stress points are elastic, and to the outside of which stress points may not ven-
ture. Where it is that a stress point impinges on the failure surface, defined by
the locus of stress points satisfying the failure criterion, a persistency condition
must be examined. To facilitate the geometric interpretation of such conditions,
a specialization of the failure criterion, f(T), for the case of the von Mises yield
surface is now considered.

As noted earlier, the von Mises condition postulates an insensitivity to hy-
drostatic stress in the activation of plastification of FCC and BCC metals. Ad-
ditionally, it assumed that yielded material is isotropic; and thus possesses no
particular directionality. With this significant (and in the case of FCC and BCC
metals, empirically justified), the von Mises failure criterion may be stated as:

f (T) = f (σ1, σ2, σ3) (357)

or, alternatively, in terms of stress invariants:

f (T) = f (J1,J2,J3) (358)

Now, more specifically, it has already been stated that the von Mises yield
criterion depends on the intensity of the deviatoric component of the stress,
only, and thus the yield condition may be further specialized to be:

1

6

[
(σ1 − σ2)

2
+ (σ2 − σ3)

2
+ (σ3 − σ1)

2
]
− k2 = 0 (359)
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The geometrical interpretation of Equation (359) is that of a cylinder in prin-
cipal stress space oriented such that the generator defining the cylinder major
axis is aligned with the vector ( 1√

3
, 1√

3
, 1√

3
). This vector orientation defines the

hydrostatic stress state. The slices through the von Mises yield surface that
are taken such that the hydrostatic generator is orthogonal to them, are cir-
cular in shape. These circular cross sectional slices through the yield surface
are sometimes referred to as Π-planes, or deviatoric planes, and define a purely
deviatoric state of stress (if the hydrostatic point is ignored - as it can since the
circular radius is independent of this state of stress). The persistency condition
may now be re-visited through a consideration of a 2-D specialization of the von
Mises yield criterion.

In considering the specific 2-D stress state associated with plane stress condi-
tion, then it may be assumed that σ3 = 0. In such a circumstance the geometric
condition is an elliptical intersection of the von Mises cylinder with the σ1-σ2

plane; as can be seen from the specialization of Equation (359) for the σ3 = 0
case:

1

6

[
(σ1 − σ2)

2
+ σ2

2 + σ2
1

]
= k2

1

3

[
σ2

1 − σ1σ2 + σ2
2

]
= k2 (360)

or, by recalling that k = Y√
3
:

σ2
1 − σ1σ2 + σ2

2 = Y 2 (361)

In such a plane stress state, the stress point of interest, Q, may be located
using a position vector emanating from the origin in principal stress space, and
ending with the particular intensity. The elliptical boundary of the von Mises
failure surface, demarcating the admissible stress states from the inadmissible,
provides some insight into the persistency condition furnished in Equations (355)
and (364). In this case, the spatial derivatives in the persistency condition may
be thought of as gradients, and so the inner product with the stress rate will
provide some useful physical insight. Once again considering the requirements of
a failure surface, the gradients and 2-D principal stress stress components may
be considered using vector dot products (the dot products are admissible when
considering the principal stress components; rather than the fully populated
tensor). In the case of purely elastic response, it is required that

f (Q) < 0 (362)

or that
f (Q) = 0 and ∇f (Q) · Q̇ < 0 (363)

In the case where plastic deformations become admissible, the yield function
satisfies the requirements:

f (Q) = 0 and ∇f (Q) · Q̇ ≥ 0 (364)
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From a consideration of the persistency condition it is seen that time rates of
change that form a positive dot product with the outward normal to the yield
surface (∇f (Q)) occur when the included angle between the two vectors is
acute; and thus the time rate of change in stress, Q̇ is also pointing in a direc-
tion that is towards the outside of the yield surface. Conversely, the negative
sign associated with the dot product in the elastic case implies that the time
rate of change in the stress points towards the interior of the yield surface, and
thus unloading is imminent. This information concerning the stress state needed
to initiate plastic flow, and the concomitant effects of this on the nature of the
yield surface, are useful and important. However, what is also required is some
ability to understand the nature of the plastic deformations that accompany
plastic flow. Plastic potential theory furnishes this insight.

The basic premise of plastic potential theory is that the plastic part of the
rate of deformation is proportional to the gradient of some plastic potential, g:

q̇ = λ∇g (T) (365)

In the case of a material that is assumed to exhibit associative flow during
plastification, the plastic potential function, g, is assumed to coincide with the
failure surface, and thus:

q̇ = λ∇f (T) (366)

This assumption means that the plastic deformation is occurring in a direction
that is parallel to the outer normal of the failure surface. In the case of the
von Mises failure surface, this implies that plastic flow is occurring within the
deviatoric plane, and thus plastic incompressibility follows. As a result of this,
it is realized that the plastic portion of the rate of deformation now reduces
down to the rate of change in the plastic portion of the rate of natural strains:

ε̇p = λ∇f (T) (367)

The plastic potential theory can lend important insights into plasticity problems
when considering materials that satisfy Drucker’s requirements:

• the plastic work done by an external agency, during the application of
some additional stresses, is positive

• the net total work performed by the external agency during the cycle of
adding and removing stress is non-negative

The first of these requirements may sometimes be thought of as a stability in the
small requirements; in that increments in stress (beyond some previous loading
state) bring about positive work increments:

Ṫ · ε̇p > 0 (368)

Beyond this requirement, there is also the requirement that the total work done
by the external agency in taking the stress state, from some initial value, T∗,
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to some final condition, results in non-negative work:

(T−T∗) · ε̇p ≥ 0 (369)

This definition of stability in a work hardening sense is somewhat phenomeno-
logical in nature: having arisen from laboratory observations related to materials
such as common metals. Basically what is being conceived of is a state of stress,
T∗, that arises from some deformation, u. This stress is then incrementally
changed to a new intensity, T, on account of an incremental deformation, δT.
Now in Drucker’s original theory, the increment in this work had to be positive;
due to Drucker’s first requirement related to stability in the small. However, if
perfect plasticity is considered (as in the present discussion), then the theory
must be amended to admit the possibility of neutral stability in the small, and
so the new requirements become:

Ṫ · ε̇p = 0 (370)

(T−T∗) · ε̇p ≥ 0 (371)

The first of these requirements is intuitive since in an associated flow theory, the
plastic strain increment is in the direction of the outward normal of the yield
surface in stress space. Additionally, since the stress point may never exit the
interior of the yield surface, then infinitesimal plastic stress increments must
occur in a direction that is tangent to the yield surface. This results in an
orthogonality between the plastic stress increments and strains, respectively; a
condition expressed in the condition of Equation (370). Additionally, Equation
(371) requires that the the vector difference between two bound vectors, begin-
ning at the origin in principal stress space, and ending at points T and T∗,
respectively, form an acute angle with the plastic strain increment, ε̇p; by virtue
of the dot product. As a result, convexity in the yield surface is assured in the
case of a stable material, in the sense of Drucker. Likewise, this assumption
further reinforces the notion that the strain increment ought to be parallel to
the outward normal to the yield surface, as it is only this condition that will
assure convexity (i.e. a plastic potential surface other than the yield surface
would be problematic in such a context.)

3 Structural elements

So-called structural elements afford an efficient means analyzing the mechanical
response of large and complex structural systems. To treat complex structures
as an assemblage of continuum elements would result in enormous number of
degrees of freedom; potentially making the solution impossible, or at the very
least, impractical. Structural elements take advantage of an understanding of
the salient mechanical responses of individual components making up a given
structural system. With this understanding in mind, engineering theories (e.g.
Bernoulli-Eluer and Timoshenko beam theories, Kirchhoff and Mindlin-Reissner
plate theory, etc.) may be employed in a fundamental way during the finite
element formulations leading to a given type of structural element.
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3.1 3D Truss

In the case where a structural system comprises, in whole or in part, a collection
of two force members (one at each end; collinear with the local member axis)
then the idealization of a truss finite element is in order. The present discussion
will lead to a 3-D nonlinear, large displacement, finite strain truss element.

3.1.1 Strain-displacement relations

Recalling the general form of the Green-Lagrange strain tensor, in tensor form:

E =
1

2

[
FTF− I

]
(372)

and in index notation:

Eij =
1

2

[
∂xk
∂Xi

∂xk
∂Xj

− δij
]

(373)

where xk and Xk are the coordinates for the body points in the current and
reference configurations, respectively. Continuing along this line, it is recalled
that the displacement, u, relates the two configurations of the body:

xk = Xk + uk; uk(X1, X2, X3, t) (374)

This leads to the a re-statement of the Green-Lagrange strain as:

Eij =
1

2

[
∂ (Xk + uk)

∂Xi

∂ (Xk + uk)

∂Xj
− δij

]
(375)

Recalling from the one dimensional strain state occurring within a truss element
(Equation (239)), a specialization finite Green-Lagrange strain is now possible:

E11 =
1

2

[
∂ (X1 + u1)

∂X1

∂ (X1 + u1)

∂X1
+
∂ (X2 + u2)

∂X1

∂ (X2 + u2)

∂X1
+
∂ (X3 + u3)

∂X1

∂ (X3 + u3)

∂X1
− 1

]
=

1

2

[(
1 +

∂u1

∂X1

)(
1 +

∂u1

∂X1

)
+
∂u2

∂X1

∂u2

∂X1
+
∂u3

∂X1

∂u3

∂X1
− 1

]
=

1

2

[
1 + 2

∂u1

∂X1
+
∂u1

∂X1

∂u1

∂X1
+
∂u2

∂X1

∂u2

∂X1
+
∂u3

∂X1

∂u3

∂X1
− 1

]
=

∂u1

∂X1
+

1

2

[(
∂u1

∂X1

)2

+

(
∂u2

∂X1

)2

+

(
∂u3

∂X1

)2
]

(376)

In the foregoing, the X1, X2, X3 axes correspond to the X, Y , and, Z axes,
respectively, depicted in Figure (12).

As in Section 1.3, a linear interpolation of the displacements and coordi-
nates will be employed (i.e. a linear isoparametric formulation); with the shape
functions once again taking the form:

h1 (ξ) =
1

2
(1− ξ) (377)
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Figure 12: Parent element for nonlinear 3-D truss formulation

h2 (ξ) =
1

2
(1 + ξ) (378)

thus enabling the displacements and coordinates to be described in a continuous
fashion, by way of discrete nodal values, as:

X (ξ) = Σ2
i=1hi (ξ)Xi (379)

where Xi are the nodal coordinates (with respect to the coordinate of the phys-
ical system) associated with the member ends; and

U (ξ) = Σ2
i=1hi (ξ)Ui (380)

where Ui are the nodal displacements (with respect to the coordinate of the
physical system) associated with the member ends. These interpolated fields
may subsequently be used in the development of a Green-Lagrange strain - dis-
placement relationship.

Consider an application of the chain rule to the case of uniaxial Green-
Lagrange strain; in reference to the case depicted in Figure (12):

E11 =
∂u1

∂ξ

∂ξ

∂X1
+

1

2

[(
∂u1

∂ξ

∂ξ

∂X1

)2

+

(
∂u2

∂ξ

∂ξ

∂X1

)2

+

(
∂u3

∂ξ

∂ξ

∂X1

)2
]

(381)
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It is thus possible to use the expressions from Equations (379) and (380) to
resolve the derivatives appearing in (381):

∂uk
∂X1

=

2∑
i=1

∂hi (ξ)

∂ξ

∂ξ

∂X1
uik (382)

where uik denotes the k − th displacement component at local, parent node i.
The derivatives of the shape functions follow directly from Equations (377) and
(378):

∂h1 (ξ)

∂ξ
= −1

2

∂h2 (ξ)

∂ξ
=

1

2
(383)

and thus, the local displacement derivative becomes:

∂uk
∂ξ

=

2∑
i=1

∂hi (ξ)

∂ξ
uik

=
u2
k − u1

k

2
(384)

A similar consideration of the nodal coordinates yields:

∂X1

∂ξ
=
X2

1 −X1
1

2
=
L

2
(385)

where L is the actual member length associated with the parent element mapped
into the finite element.

The chain rule may now be applied to Equation (382), thus furnishing:

∂uk
∂X1

=
u2
k − u1

k

L
(386)

This result is helpful when considering that the first term on the right hand side
of Equation (381) is nothing more than the 1-1 component of linear infinitesimal
strain tensor (i.e. engineering strain), ε11, and thus an extension of the standard
strain-siaplcement relation from Equation (241) follows as:

ε11 =
∂u1

∂ξ

∂ξ

∂X1
=

2

L

∂u1

∂ξ
=

2

L

(
u2

1 − u1
1

2

)
=

1

L

(
u2

1 − u1
1

)
= BLu (387)

or in matrix form:

ε11 =
1

L

[
−1 0 0 1 0 0

]

u1

1

u1
2

u1
3

u2
1

u2
2

u2
3

 (388)
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Likewise, the nonlinear strain displacement follows from a consideration of
bracketed remainder of Equation (381):

η11 =
1

2

[(
∂u1

∂ξ

∂ξ

∂X1

)2

+

(
∂u2

∂ξ

∂ξ

∂X1

)2

+

(
∂u3

∂ξ

∂ξ

∂X1

)2
]

=
1

2

[(
∂u1

∂ξ

2

L

)2

+

(
∂u2

∂ξ

2

L

)2

+

(
∂u3

∂ξ

2

L

)2
]

=
2

L2

[(
∂u1

∂ξ

)2

+

(
∂u2

∂ξ

)2

+

(
∂u3

∂ξ

)2
]

=
2

L2

[(
u2

1 − u1
1

2

)2

+

(
u2

2 − u1
2

2

)2

+

(
u2

3 − u1
3

2

)2
]

=
1

2L2

[(
u2

1 − u1
1

)2
+
(
u2

2 − u1
2

)2
+
(
u2

3 − u1
3

)2]
=

1

2
uTBT

NLBNLu (389)

Thus resulting in a matrix expression of the form:

η11 =
1

2

1

L

[
u1

1 u1
2 u1

3 u2
1 u2

2 u2
3

]

−1 0 0
0 −1 0
0 0 −1
1 0 0
0 1 0
0 0 1


1

L

 −1 0 0 1 0 0
0 −1 0 0 1 0
0 0 −1 0 0 1



u1

1

u1
2

u1
3

u2
1

u2
2

u2
3


(390)

The forgoing strain-displacement relations are useful when forming the tangent
stiffness matrix for the 3-D nonlinear truss finite element.

3.1.2 Tangent stiffness matrix

An equivalent approach to the explicit consideration of the weak form reviewed
in Section 1.2, the principle of virtual work is oftentimes employed in the for-
mulation of structural elements. This principle takes as axiomatic the fact that
internal virtual work will balance external virtual work. The virtual moniker is
applied to notional (i.e. not real) displacements that are kinematically admis-
sible; meaning that they satisfy the Dirichlet (essential) boundary conditions of
the problem under consideration. The balance in virtual work may be expressed
concisely as (δ denotes a virtual quantity):∫

Ω

δE : S dΩ =

∫
Ω

δu · b dΩ +

∫
∂Ω

δu · f d∂Ω (391)

where E is the Green-Lagrage strain tensor, S is the PK2 stress tensor, u is
the displacement vector, b is any body force, and f represents any externally
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applied surface tractions. In Equation (391), the left hand integral represents
the internal work (where : denotes the tensor scalar product), and the right
hand side represents the external virtual work. In taking virtual work as the
point of departure, the 3-D truss element tangent stiffness may be derived.

The internal work within a truss element emanates from the consideration
of axial deformations as:

U =

∫
Ω

Ū dΩ; Ū = δE : S (392)

where Ū is known as the strain energy density. Using a the appropriate elasticity
tensor, the strain energy may be re-expressed as:

Ū = δE : CE (393)

where C is the fourth order material tensor that relates Green-Lagrange strain
and PK2 stress. This result may be simplified for the case of the 3-D truss
element, wherein the actual internal strain energy under axial deformation may
be expressed as:

UT =
1

2
CE2

11 (394)

where the squared Green-Lagrange strain term may be expanded to be:

E2
11 =

(
∂u1

∂X1

)2

+
∂u1

∂X1

[(
∂u1

∂X1

)2

+

(
∂u2

∂X1

)2

+

(
∂u3

∂X1

)2
]

+
1

4

[(
∂u1

∂X1

)2

+

(
∂u2

∂X1

)2

+

(
∂u3

∂X1

)2
]2

(395)

the last term is subsequently neglected as a small quantity squared. The actual
strain energy may then be expressed as an integral over the truss volume:

UT =
1

2
C

∫
V

(
∂u1

∂X1

)2

dV +
1

2
C

∫
V

∂u1

∂X1

[(
∂u1

∂X1

)2

+

(
∂u2

∂X1

)2

+

(
∂u3

∂X1

)2
]
dV

=
1

2
CA

∫
X

(
∂u1

∂X1

)2

dX +

∫
X

1

2
CA

∂u1

∂X1

[(
∂u1

∂X1

)2

+

(
∂u2

∂X1

)2

+

(
∂u3

∂X1

)2
]
dX

=
1

2
CA

∫
X

(
∂u1

∂X1

)2

dX +
P

2

∫
X

[(
∂u1

∂X1

)2

+

(
∂u2

∂X1

)2

+

(
∂u3

∂X1

)2
]
dX

(396)

where C is the relevant uniaxial component from the constitutive tensor C, and
P is the member internal force; formed by combining the linear strain term
with the material constant and cross-sectional area. As it is that the actual and
virtual work are related to one another through the fractional value 1

2 (as well
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as a splitting of the displacements into their real and virtual counterparts), the
foregoing may be restated in terms of virtual internal force; along with the use
of the strain-displacement relations, developed previously within this section:

U = CA

∫
X

(
∂u1

∂X1

)2

dX + P

∫
X

[(
∂u1

∂X1

)2

+

(
∂u2

∂X1

)2

+

(
∂u3

∂X1

)2
]
dX

⇒ CA

∫ 1

−1

BT
LBL | J | dξ + P

∫ 1

−1

BT
NLBNL | J | dξ

= CA

∫ 1

−1

1

L


−1
0
0
1
0
0


1

L

[
−1 0 0 1 0 0

]
| L

2
| dξ

+ P

∫ 1

−1

1

L


−1 0 0
0 −1 0
0 0 −1
1 0 0
0 1 0
0 0 1


1

L

 −1 0 0 1 0 0
0 −1 0 0 1 0
0 0 −1 0 0 1

 | L
2
| dξ

(397)

subsequently expanding to:

U =
CA

L


1 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0



+
P

L


1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1
−1 0 0 1 0 0
0 −1 0 0 1 0
0 0 −1 0 0 1

 (398)

The foregoing lead immediately to the tangent stiffness matrix:

KT = KL + KNL (399)
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where,

KL =
CA

L


1 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (400)

and,

KNL =
P

L


1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1
−1 0 0 1 0 0
0 −1 0 0 1 0
0 0 −1 0 0 1

 (401)

the linear and initial stress stiffness matrices, respectively.

3.1.3 Member internal force calculation

As can be recalled from Figure (9), the tangent stiffness is used during each
iteration, within a given solution increment, to propose updated displacements
for use in the evolving nonlinear solution. These proposed displacement are
subsequently used to arrive at the correct internal forces, F, (i.e. no linearization
is used, as compared with the tangent stiffness matrix; which can be viewed as
a linearization of a Taylor series expansion carried out about a solution point).
In the case of the current 3-D nonlinear truss finite element, the internal force
calculation involves the PK2 stress, which may be obtained through an inversion
of Equation (108):

S =
ρo
ρ

F−1 σ F−T (402)

In a truss element, the deformation gradient may simply be stated as the ratio
of the current length, tL, to the initial length, 0L; and thus the PK2 stress for
the truss element becomes:

t
oS11 =

oρ
tρ

(
oL
tL

)2
tσ11 (403)

in the case of a total Lagrangian formulation. It is immediately recognized that
the Cauchy stress in the current state is nothing more than the the current
internal axial force, tP , divided by the current area; this, in conjunction with
the definition of the current length, results in:

t
oS11 =

oρ
tρ

(
oL

oL+ ∆L

)2 tP
tA

(404)

from the conservation of mass, it is further recognized that:

oρoLoA = tρ (oL+ ∆L) tA (405)
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whereupon the current area, tA, is seen to be:

tA =
oρoLoA

tρ (oL+ ∆L)
(406)

Substitution of the foregoing into Equation (404) results in:

t
oS11 =

oL
oL+ ∆L

tP
oA

(407)

From which the current internal axial force can be solved for:

tP =t
o S11

oA
oL+ ∆L

oL
(408)

The axial component of the PK2 stress can be obtained directly from the axial
component of the Green-Lagrange strain as:

t
oS11 = C

(
∆L
oL

+
1

2

(
∆L
oL

)2
)

(409)

where C is the appropriate component of the constitutive matrix. The results
from Equation (409) may be used in Equation (408) to directly obtain the
internal axial force for the element:

tP = oAC

(
∆L
oL

+
1

2

(
∆L
oL

)2
)(

oL+ ∆L
oL

)
(410)

The internal force vector F may be obtained directly from a coordinate trans-
formation involving the following direction cosines (corresponding to the angles
depicted in Figure (12):

• l = cos(θx)

• m = cos(θy)

• n = cos(θz)

These same direction cosines may be used within a coordinate transformation
matrix in order to arrive at a more convenient representation of the linear stiff-
ness matrix, KL:

KL =
CA

L


l2 lm ln −l2 −lm −ln
lm m2 mn −lm −m2 −mn
ln mn n2 −ln −mn −n2

−l2 −lm −ln l2 lm ln
−lm −m2 −mn lm m2 mn
−ln −mn −n2 ln mn n2

 (411)

It is pointed out that the initial stress matrix, KNL, requires no such transfor-
mation.
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3.2 3D Beam

The nonlinear truss element is a useful point of departure for the consideration
of a doubly symmetric, prismatic nonlinear frame element. Additional responses
can be layered on top of the fundamental truss behavior, so as to construct the
desired frame element behavior. However, unlike the nonlinear truss, that can
be formulated within either a total or updated Lagrangian reference frame, the
subsequent frame element is intended for use in an updated Lagrangian refer-
ence frame only (do to certain assumptions that are discussed in the sequel).

Consider a classical Bernoulli-Euler description of flexural kinematics; along
with the assumption of small strains. The flexural normal components of the
strain may then be approximated as:

ε = dy

(
d2y (x)

dx2

)
+ dz

(
d2z (x)

dx2

)
(412)

where the quantities dy and dz represent the perpendicular distances, measured
along the y and z axes, respectively, from the relevant flexural neutral surface.
Additionally, the quantities y (x) and z (x) denote the component of the total
beam deflection measured using the y and z axes, respectively.

Adopting the notation associated with the frame parent element depicted in
Figure (13), an extension of the 1-1 component of the Green-Lagrange strain,

E11 =
∂u1

∂X1
+

1

2

[(
∂u1

∂X1

)2

+

(
∂u2

∂X1

)2

+

(
∂u3

∂X1

)2
]

(413)

may be carried out.

Neglecting any stretching and rotation of the element mid-line ξ (in this
discussion it is assumed that ξ and X1 coincide), the Bernoulli-Euler flexural
normal strains may simply be added to the foregoing statement of E11:

E11 =
∂u1

∂X1
+ η

(
∂2u2

∂X2
1

)
+ ζ

(
∂2u3

∂X2
1

)
+

1

2

[(
∂u1

∂X1

)2

+

(
∂u2

∂X1

)2

+

(
∂u3

∂X1

)2
]

(414)
Additionally, the kinematics associated with uniform torsion within an arbitrary
cross-section may be given as:

u2 = −ζu4

u3 = ηu4 (415)

where η and ζ are the local parent element axes that are orthogonal to ξ, and
coincident with the principal centroidal axes of the cross-section, X2 and X3, re-
spectively (assuming a doubly symmetric, as well as prismatic, section). Taking
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Figure 13: Parent element for nonlinear 3-D frame formulation
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derivatives, the following is obtained:

∂u2

∂X1
= −ζ ∂u4

∂X1

∂u3

∂X1
= η

∂u4

∂X1
(416)

The foregoing may be added, as another quadratic term, to Equation (414);
subsequently yielding:

E11 =
∂u1

∂X1
+ η

(
∂2u2

∂X2
1

)
+ ζ

(
∂2u3

∂X2
1

)
+

1

2

[(
∂u1

∂X1

)2

+

(
∂u2

∂X1
− ζ ∂u4

∂X1

)2

+

(
∂u3

∂X1
+ η

∂u4

∂X1

)2
]

(417)

Now that the cross-sectional normal strains have been identified for the frame
element, the discussion may now switch to the selection of interpolation func-
tions for each of the relevant displacement components.

As before in the nonlinear truss element, it will be assumed that a linear
interpolation of the extensional displacements is suitable for use in the frame
element (but this time expressed using the actual finite element dimensions, and
not the parent element coordinates):

u1 (x) =
(

1− x

L

)
u1

1 +
x

L
u2

1 (418)

subsequently leading to the identification of the axial interpolation polynomial
prototypes as:

h1 (x) =
(

1− x

L

)
h2 (x) =

x

L
(419)

Likewise, the twist is assumed to be distributed linearly between the nodes of
the parent element as:

u4 (x) =
(

1− x

L

)
u1

4 +
x

L
u2

4 (420)

also, leading to interpolation polynomials of the same form as described in
Equation (419). In the case of flexural deformations, use of the slope-deflection
equations lead to a description of the transverse displacements as:

u2 (x) =

[
1− 3

( x
L

)2

+ 2
( x
L

)3
]
u1

2 +

[
3
( x
L

)2

− 2
( x
L

)3
]
u2

2

+ x
(

1− x

L

)2

u1
6 + x

[( x
L

)2

− x

L

]
u2

6 (421)
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subsequently leading to the following interpolation function prototypes (useful
within either bending context):

h1 (x) = 1− 3
( x
L

)2

+ 2
( x
L

)3

h2 (x) = 3
( x
L

)2

− 2
( x
L

)3

h3 (x) = x
(

1− x

L

)2

h4 (x) = x

[( x
L

)2

− x

L

]
(422)

The foregoing interpolation polynomials may be employed within the framework
of the principle of virtual work to arrive at the stiffness matrices for the frame
element depicted in Figure (13).

Employing the principle of virtual work from elementary mechanics, in con-
junction with each of the terms within Equation (417), along with their physical
basis, yields:

δWint =

∫ L

0

(
∂u1

∂X1

)
CA

(
∂δu1

∂X1

)
dX1

+

∫ L

0

(
∂2u2

∂X2
1

)
CIη

(
∂2δu2

∂X2
1

)
dX1

+

∫ L

0

(
∂2u3

∂X2
1

)
CIζ

(
∂2δu3

∂X2
1

)
dX1

+
1

2
P

∫ L

0

[
δ

(
∂u1

∂X1

)2

+ δ

(
∂u2

∂X1

)2

+ δ

(
∂u3

∂X1

)2
]
dX1

+
1

2

∫ L

0

∫
A

σ11 δ

(
∂u4

∂X1

)2 (
η2 + ζ2

)
dA dX1

−Mη

∫ L

0

δ

(
∂u2

∂X1

∂u4

∂X1

)
dX1 +Mζ

∫ L

0

δ

(
∂u3

∂X1

∂u4

∂X1

)
dX1 (423)

where C is the elastic modulus in the 1-1 direction, and with Iη and Iζ being
the second moments of the area about the X2 and X3 axes, respectively. The
last integral term expresses the torsional work done by the projection of the
applied moment onto the flexurally deformed neutral axis; while the second to
last integral in Equation (423) arises out of a virtual warping strain causing
the axial stress, σ11, to add to the virtual work associated with the member.
Additionally recognizing that the area integration of the term

(
η2 + ζ2

)
yields

the St. Venant Torsion Constant, Ip, and that σ11 = P
A (where P is the member
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axial force) results in the following simplification:

δWint =

∫ L

0

(
∂u1

∂X1

)
CA

(
∂δu1

∂X1

)
dX1

+

∫ L

0

(
∂2u2

∂X2
1

)
CIη

(
∂2δu2

∂X2
1

)
dX1

+

∫ L

0

(
∂2u3

∂X2
1

)
CIζ

(
∂2δu3

∂X2
1

)
dX1

+
1

2
P

∫ L

0

[
δ

(
∂u1

∂X1

)2

+ δ

(
∂u2

∂X1

)2

+ δ

(
∂u3

∂X1

)2
]
dX1

+
PIp
2A

∫ L

0

δ

(
∂u4

∂X1

)2

dX1

−Mη

∫ L

0

δ

(
∂u2

∂X1

∂u4

∂X1

)
dX1 +Mζ

∫ L

0

δ

(
∂u3

∂X1

∂u4

∂X1

)
dX1 (424)

Up until now, a consideration of only cross-sectional normal stresses has been
adopted when forming the statement of virtual work leading to the element
matrices needed for the frame element formulation. Indeed, many typical frame
elements might stop at this point and make a substitution using the previously
obtained interpolation polynomials, and leave it at that. Such an approach
would properly account for the nonlinear coupling of axial force and flexure
within the frame element, but would not correctly consider the coupling be-
tween St. Venant’s torsion and flexure. To extend the present formulation to
include the nonlinear coupling of uniform torsion and flexure, the nonlinear por-
tion of the Green-Lagrange strain must be extended beyond the 1-1 component,
and subsequently made to admit the presence of transverse shearing forces (and
their subsequent shearing stresses - arrived at by considering equilibrium alone,
as the Bernoulli-Euler theory will not admit shearing deformations, itself).

So in extending the frame element formulation to properly account for the
coupling between uniform torsion and flexure, the nonlinear term from the
Green-Lagrange strain, Enl, must be once again examined:

Enl =
1

2

(
∂uk
∂Xi

∂uk
∂Xj

)
(425)

neglecting the axial terms (which have already been taken into consideration in
Equation (424)), the following is obtained:

Enl =
1

2

[
2
∂u1

∂X1

∂u1

∂X2
+ 2

∂u2

∂X1

∂u2

∂X2
+ 2

∂u3

∂X1

∂u3

∂X2

]
+

1

2

[
2
∂u1

∂X1

∂u1

∂X3
+ 2

∂u2

∂X1

∂u2

∂X3
+ 2

∂u3

∂X1

∂u3

∂X3

]
+

1

2

[
2
∂u1

∂X2

∂u1

∂X3
+ 2

∂u2

∂X2

∂u2

∂X3
+ 2

∂u3

∂X2

∂u3

∂X3

]
(426)
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The forgoing may be simplified by recognizing that in-plane distortions are
neglected (i.e. ∂u2

∂X2
= ∂u3

∂X3
= 0):

Enl =

[
∂u1

∂X1

∂u1

∂X2
+
∂u3

∂X1

∂u3

∂X2

]
+[

∂u1

∂X1

∂u1

∂X3
+
∂u2

∂X1

∂u2

∂X3

]
+[

∂u1

∂X2

∂u1

∂X3

]
(427)

Additionally, when the virtual work expression is formulated, stresses induc-
ing cross-sectional distortions are neglected, and thus the only required terms
become:

Enl =

[
∂u1

∂X1

∂u1

∂X2
+
∂u3

∂X1

∂u3

∂X2

]
+[

∂u1

∂X1

∂u1

∂X3
+
∂u2

∂X1

∂u2

∂X3

]
(428)

The foregoing results may then be used to augment Equation (424):

δWint =

∫ L

0

(
∂u1

∂X1

)
CA

(
∂δu1

∂X1

)
dX1

+

∫ L

0

(
∂2u2

∂X2
1

)
CIη

(
∂2δu2

∂X2
1

)
dX1

+

∫ L

0

(
∂2u3

∂X2
1

)
CIζ

(
∂2δu3

∂X2
1

)
dX1

+
1

2
P

∫ L

0

[
δ

(
∂u1

∂X1

)2

+ δ

(
∂u2

∂X1

)2

+ δ

(
∂u3

∂X1

)2
]
dX1

+
PIp
2A

∫ L

0

δ

(
∂u4

∂X1

)2

dX1

−Mη

∫ L

0

δ

(
∂u2

∂X1

∂u4

∂X1

)
dX1 +Mζ

∫ L

0

δ

(
∂u3

∂X1

∂u4

∂X1

)
dX1

+

∫
V

σ12 δ

[
∂u1

∂X1

∂u1

∂X2
+
∂u3

∂X1

∂u3

∂X2

]
dV

+

∫
V

σ13 δ

[
∂u1

∂X1

∂u1

∂X3
+
∂u2

∂X1

∂u2

∂X3

]
dV (429)

where use has been made of the fact the σ12 = σ21 and σ13 = σ31. It is
noted that the new integrals appearing within the foregoing virtual internal
work expression are furnished in terms of stress, while the remaining terms are
posed in terms of stress resultants. Stress resultants are desirable from the
standpoint of developing stiffness relations (i.e. load - deformation response)
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and thus stress resultants for the area integrals involving σ12 and σ13 are now
developed in terms of their physical meaning - a transverse shear force:∫

A

σ12 dA = −
M1
η +M2

η

L∫
A

σ13 dA =
M1
ζ +M2

ζ

L
(430)

subsequently leading to the consistent statement of internal virtual work, in
terms of stress resultants:

δWint =

∫ L

0

(
∂u1

∂X1

)
CA

(
∂δu1

∂X1

)
dX1

+

∫ L

0

(
∂2u2

∂X2
1

)
CIη

(
∂2δu2

∂X2
1

)
dX1

+

∫ L

0

(
∂2u3

∂X2
1

)
CIζ

(
∂2δu3

∂X2
1

)
dX1

+
1

2
P

∫ L

0

[
δ

(
∂u1

∂X1

)2

+ δ

(
∂u2

∂X1

)2

+ δ

(
∂u3

∂X1

)2
]
dX1

+
PIp
2A

∫ L

0

δ

(
∂u4

∂X1

)2

dX1

−Mη

∫ L

0

δ

(
∂u2

∂X1

∂u4

∂X1

)
dX1 +Mζ

∫ L

0

δ

(
∂u3

∂X1

∂u4

∂X1

)
dX1

−
M1
η +M2

η

L

∫ L

0

δ

[
∂u1

∂X1

∂u1

∂X2
+
∂u3

∂X1

∂u3

∂X2

]
dX1

+
M1
ζ +M2

ζ

L

∫ L

0

δ

[
∂u1

∂X1

∂u1

∂X3
+
∂u2

∂X1

∂u2

∂X3

]
dX1 (431)

where M1
η and M2

η represent moments acting about the local η axis, at member
ends 1 and 2, respectively. M1

ζ and M2
ζ represent similar quantities, but this

time for a moment acting about the local ζ axis.

Substitution of the interpolated displacements relations appearing within
Equations (418), (420), and (421) into the differentials within Equation (431)
leads to the element stiffness matrices upon integration. These may be con-
veniently expressed in terms of the linear portion of the stiffness KL and the
geometrically nonlinear portion KNL.

3.2.1 Tangent stiffness matrix

As in the case of the nonlinear truss, the tangent stiffness matrix, KT , may be
expressed as the sum of linear and geometrically nonlinear components:

KT = KL + KNL (432)
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where,

KL = C



A
L 0 0 0 0 0 −AL 0 0 0 0 0

0
12Iζ
L3 0 0 0

6Iζ
L2 0 − 12Iζ

L3 0 0 0
6Iζ
L2

0 0
12Iη
L3 0 − 6Iη

L2 0 0 0 − 12Iη
L3 0 − 6Iη

L2 0

0 0 0
Ip

2(1+ν)L 0 0 0 0 0 − Ip
2(1+ν)L 0 0

0 0 − 6Iη
L2 0

4Iη
L 0 0 0

6Iη
L2 0

2Iη
L 0

0
6Iζ
L2 0 0 0

4Iζ
L 0 − 6Iζ

L2 0 0 0
2Iζ
L

−AL 0 0 0 0 0 A
L 0 0 0 0 0

0 − 12Iζ
L3 0 0 0 − 6Iζ

L2 0
12Iζ
L3 0 0 0 − 6Iζ

L2

0 0 − 12Iη
L3 0

6Iη
L2 0 0 0

12Iη
L3 0

6Iη
L2 0

0 0 0 − Ip
2(1+ν)L 0 0 0 0 0

Ip
2(1+ν)L 0 0

0 0 − 6Iη
L2 0

2Iη
L 0 0 0

6Iη
L2 0

4Iη
L 0

0
6Iζ
L2 0 0 0

2Iζ
L 0 − 6Iζ

L2 0 0 0
4Iζ
L


(433)

and KNL is,

P
L

0 0 0 0 0 −P
L

0 0 0 0 0

0 6P
5L

0
M1
η

L
T
L

P
10

0 − 6P
5L

0
M2
η

L
−T

L
P
10

0 0 6P
5L

M1
ζ

L
− P

10
T
L

0 0 − 6P
5L

M2
ζ

L
− P

10
−T

L

0
M1
η

L

M1
ζ

L

PIp
AL

−
2M1

ζ−M2
ζ

6

2M1
η−M2

η

6
0 −

M1
η

L
−

M1
ζ

L
−PIp

AL
−

M1
ζ+M2

ζ

6

M1
η+M2

η

6

0 T
L

− P
10

−
2M1

ζ−M2
ζ

6
2PL
15

0 0 −T
L

P
10

−
M1
ζ+M2

ζ

6
−PL

30
T
2

0 P
10

T
L

2M1
η−M2

η

6
0 2PL

15
0 − P

10
−T

L

M1
η+M2

η

6
−T

2
−PL

30
−P

L
0 0 0 0 0 P

L
0 0 0 0 0

0 − 6P
5L

0 −
M1
η

L
−T

L
− P

10
0 6P

5L
0 −

M2
η

L
T
L

− P
10

0 0 − 6P
5L

−
M1
ζ

L
P
10

−T
L

0 0 6P
5L

−
M2
ζ

L
P
10

T
L

0
M2
η

L

M2
ζ

L
−PIp

AL
−

M1
ζ+M2

ζ

6

M1
η+M2

η

6
0 −

M2
η

L
−

M2
ζ

L

PIp
AL

M1
ζ−2M2

ζ

6
−

M1
η−2M2

η

6

0 −T
L

− P
10

−
M1
ζ+M2

ζ

6
−PL

30
−T

2
0 T

L
P
10

M1
ζ−M2

ζ

6
2PL
15

0

0 P
10

−T
L

M1
η+M2

η

6
T
2

−PL
30

0 − P
10

T
L

−
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η−2M2

η

6
0 2PL
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
(434)

with C being the uniaxial component of the constitutive tensor, P being the
member axial force, T being the torques about the frame longitudinal axis, L
being the member length, and Ip being the cross-sectional polar moment of
inertia, taken with respect to the principle centroidal axes η and ζ.

3.2.2 Member internal force calculation

Unlike in the case of the nonlinear truss element formulation considered earlier,
a rigorous determination of the frame member internal forces is frequently ne-
glected. Instead the linearization associated with the use of the tangent stiffness
matrix, KT , is employed within an updated Lagrangian formulation, wherein
the step size is made to be small, and thus the internal force becomes:

t+∆tF ≈ KT∆u +t F (435)
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As a practical matter, this approximation is frequently not a problem, as the
displacement increments must be kept small in order to allow the use of the
force-space plasticity approach that will be described in the sequel.

Coordinate transformations may be handled in a manner similar to what
was done for the case of the nonlinear truss finite element. Using a similar
notation to that encountered during the nonlinear truss element formulation,
the respective direction cosines expressing the cosines of the respective angles
depicted in Figure (13) are now expressed as:

lξ = cos (θX)

mξ = cos (θY )

nξ = cos (θZ) (436)

Similar quantities are developed for the direction cosines associated with the
angles orienting the local η-axis with the global X, Y , and Z-axes, denoted
respectively, as φX , φY , and φZ :

lη = cos (φX)

mη = cos (φY )

nη = cos (φZ) (437)

and for the direction cosines associated with the angles orienting the local ζ-axis
with the global X, Y , and Z-axes, denoted respectively, as αX , αY , and αZ the
following proceeds:

lζ = cos (αX)

mζ = cos (αY )

nζ = cos (αZ) (438)

The forgoing direction cosines may then be used to transform the global internal
force vector, F into the local coordinate system as:

[Flocal] = [Γ] [F] (439)

where

[γ] =

 lξ mξ nξ
lη mη nη
lζ mζ nζ

 (440)

and

[Γ] =


[γ] 0 0 0
0 [γ] 0 0
0 0 [γ] 0
0 0 0 [γ]

 (441)

The transformation from Equation (441) may also subsequently be used to trans-
form the local element tangent stiffness matrix, [kT ], into the global version,
[KT ], as follows:

[KT ] = [Γ]T [kT ][Γ] (442)
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3.3 Three Node DKT Shell

There are number of different ways to approach the formulation of a shell finite
element. Three example approaches include: 1) the discretization of one of the
particular classical shell theories; 2) the specialization of the equations of con-
tinuum mechanics to arrive at a degenerated isoparametric element formulation;
and 3) superimposing of membrane effects over top of a plate bending formu-
lation employing explicit Kirchhoff thin plate kinematics. The first approach is
not suitable for application to a general purpose finite element code since no
suitably general exact shell theory is known (many excellent specialized theories
exist; thus enabling convenient specialized finite element formulations). Since
the objective of the present discussion is the formulation of a useful general
purposes nonlinear shell finite element, the second and third options become
more attractive. In the case of the second formulation approach (i.e. degen-
erate isoparametric element), the issue of shear locking becomes troublesome,
when thin shell behavior is of interest. While various strategies exist for treating
the shear locking pathologies in degenerate isoparametric shells (e.g. reduced
integration, selective integration, mixed interpolation, etc.), the present discus-
sion will center on an alternative approach for satisfying the zero transverse
shear deformation assumption that accompanies thin shell bending: the Dis-
crete Kirchhoff theory (DKT). In such an approach, the Kirchhoff hypothesis
is enforced at specific points within the shell element; subsequently resulting in
satisfactory thin shell performance.

The present discussion focuses on the formulation of a three node triangular
element based on the DKT. The tangent stiffness matrix of this element com-
prises a superposition of a plane stress membrane stiffness, Km, a plate bending
stiffness, Kb, and an in-plane rotational stiffness, Kθ:

KT = Km + Kb + Kθ (443)

This approach leads to an element that is suitable for large deformation analy-
ses, but that is not suitable for consideration of finite strains (as the thickness
is not updated during the solution process, and thus the Green-Lagrange strain
is not treated exactly within the formulation). Additionally, as a result of the
superposition of membrane and plate bending responses, since the shell is flat,
coupling between the membrane and bending action is only introduced through
the transformation of the nodal point forces from the local to the global coor-
dinate system; and thus a fine mesh is required to accurately approximate the
required coupling. Nonetheless, a highly efficient element formulation ensues
from the consideration of the DKT within the context of a three node triangle.
The sequel elucidates the DKT element formulation at issue; beginning with a
consideration of the plate flexural contributions as the point of departure for
the current element formulation.
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3.3.1 Plate bending response

Considering a local coordinate system (x, y, z) that represents a local scaling of
the parent element coordinates (ξ, η, ζ) within a DKT triangular shell element,
an initial focus on Mindlin-Reissner plate theory (i.e. thick plate bending theory
wherein sections that were initially plane and normal to an undeformed reference
surface remain plane after deformation, but not necessarily normal to the current
plate middle surface) is instructive as the DKT plate kinematics are discussed.
Considering the local plate displacement components coinciding with the x, y,
and z directions, respectively, the following are defined:

u = z βx (x, y)

v = z βy (x, y)

w = w (x, y) (444)

where w are the transverse (to the plane of the plate) displacements, and the
subsequent edge rotations are βx and βy for rotations in the x − z and y − z
planes, respectively. Taking the plate curvature to be the spatial derivative of
the edge rotations, the following curvature vector is obtained:

κ =

 βx,x
βy,y

βx,y + βy,x

 (445)

and so the strains induced by flexure are:

εb = z κ (446)

Considering next transverse shear strains, the sum of the edge rotations and
spatial derivatives of the transverse displacements yield:

γ =

[
w,x + βx
w,y + βy

]
(447)

A subsequent assumption of homogeneous, isotropic material properties within
the Kirchhoff plate bending framework leads to the following definition for bend-
ing and shearing plate rigidities, respectively:

Db =
Eh3

12 (1− ν2)

 1 ν 0
ν 1 0
0 0 1−ν

2

 (448)

and

Ds =
Ehk

2 (1 + ν)

[
1 0
0 1

]
(449)

where h is the plate (shell) thickness, ν is Poisson’s ratio, and k is the shear
correction factor (usually taken as 5

6 ). The foregoing may be used to describe
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the internal strain energy within the DKT shell resulting from the consideration
of plate bending:

U = Ub + Us (450)

within which

Ub =
1

2

∫
Ω

κTDbκdA

=
Eh3

24 (1− ν2)

∫
Ω

[
β2
x,x + β2

y,y + 2νβy,yβx,x +
1− ν

2
(βy,x + βx,y)

2

]
dΩ

(451)

and

Us =
1

2

∫
Ω

γTDsγdA

=
Ehk

4 (1 + ν)

∫
Ω

[
(w,x + βx)

2
+ (w,y + βy)

2
]
dΩ (452)

and where Ω represents the spatial domain of integration coinciding with the
plate middle surface. The subsequent stress resultants due to flexure appear as
the following bending moment and shear force expressions, respectively:

M =

 Mx

My

Mxy

 =

∫ h
2

−h2
σz dz = Dbκ (453)

and

Q =

[
Qx
Qy

]
= k

∫ h
2

−h2
σs dz = Dsγ (454)

In the case of thin plates, the transverse shear strains is negligible in comparison
with the contribution from bending. As a result, in the current DKT shell
formulation, the plate bending contribution to the overall shell element strain
energy will consist of only the flexural portion as:

U =
1

2

∫
Ω

κTDbκ dΩ (455)

It is immediately noticed from Equation (455) that since the only kinematical
quantity appearing are the first derivatives of the edge rotations, β, then com-
patibility considerations between elements can be handled in a straightforward
manner. However, what is more complex is how to properly admit transverse
displacements, w, into the formulation (since they do not explicitly appear in
Equation (455)). The required treatment of the transverse displacements is
admitted within an element formulation framework that is based on nodal ro-
tations at the three corner nodes (with components denoted as θx, θy and θz,
depending on orientation) for a total of nine plate dofs (the U2, θ1, and θ3 com-
ponents depicted in Figure (14)). In order to bring the peculiarities of the
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Figure 14: Parent element for nonlinear DKT shell element

Figure 15: Positive rotational sense within the finite element (left) and Kirchhoff
(right) contexts
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Figure 16: DKT shell: enhanced parent element

Kirchhoff plate theory’s sign convention into consonance with the finite element
conventions, the following forms are used to express the required mapping of
sign conventions that is depicted in Figure (15), and expressed as:

θx = w,y

θy = −w,x (456)

While it is that the three node triangle DKT element is conceived of within the
scope of thin shell structures, and thus the DKT conditions may theoretically
be enforced at any location within the shell domain, Ω, care is taken to ensure
that the compatibility in the edge rotations, βx and βy is not lost. It is pointed
out that, in contrast to the edge rotations, β, the nodal rotations are denoted
using θ’s. As a means for ensuring that the DKT assumptions are properly
enforced, the following steps are adopted within the plate bending portion of
the nonlinear three node triangular DKT element at hand.

While it is that the element formulation for the plate bending component
of the shell will end in a 9 dof representation, the point of departure for this
discussion begins with the six parent element nodes appearing in Figure (16).
It is assumed that the edge rotations, βx and βy vary quadratically over each of
the three element sides; by employing quadratic shape functions as a means for
interpolating between the six nodes adopted in the formulation, when expressing
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Figure 17: DKT shell element local coordinates

the Kirchhoff assumptions:

βx =

6∑
i=1

hiβxi

βy =

6∑
i=1

hiβyi (457)

where βxi abd βyi are the nodal values at the corner and mid-side nodes,
consistent with the depiction in Figure (16). Additionally, the finite element
shape functions referenced in Equation (457) appear as:

h1 = 2 (1− ξ − η)

(
1

2
− ξ − η

)
h2 = ξ (2ξ − 1)

h3 = η (2η − 1)

h4 = 4ξη

h5 = 4η (1− ξ − η)

h6 = 4ξ (1− ξ − η) (458)

where the local coordinates ξ and η are depicted in Figure (16). The DKT
condition is practically enforced within the shell by ensuring that Equation
(447) vanishes at specific points within the shell domain, Ω. In the case of the
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current element, the locations are the corner nodes:

γ =

[
βx + w,x
βy + w,y

]
= 0 at nodes 1, 2, and 3 (459)

and at the mid-side nodes:

βsk + w,sk = 0 for k = 4, 5, and 6 (460)

Additionally, it is assumed that the cubic interpolation polynomials from Equa-
tion (422) (developed from slope-deflection equations) are imposed along the
element sides (taking suitable derivatives and substituting for the mid-side node
coordinates), and thus:

w,sk = − 3

2lij
wi −

1

4
w,si +

3

2lij
wj −

1

4
w,sj (461)

where k denoted the particular side of interest (with end points i and j); where
lij denotes the length of this side. While the current DKT element formulation
will not make explicit use of an interpolation polynomial on the out of plane
displacements, w, the assumption of the quadratic variation in w,sk implies the
cubic nature of w. By virtue of the DKT condition from Equation (459), in-
volving the quadratically varying terms w,s and βs that are made to agree at
fixed points along the sides, the Kirchhoff hypothesis is enforced continuously
along the entire problem domain ∂Ω; thus a discrete imposition of the Kirchhoff
condition at six points along the element perimeter leads to complete satisfac-
tion of the Kirchhoff condition along the element boundary. In this manner,
assumption of a null contribution from transverse shear strain energy in Equa-
tion (455), is supported. Figure (18) illustrates important quantities and sign
conventions in support of the foregoing, as well as following formulæ. Useful
additional quantities also include: the element side length is

lij =

√
(xij)

2
+ (yij)

2
(462)

where

xij = xi − xj
yij = yi − yj (463)

and the natural coordinate along the element edge is

ξ =
s

lij
(464)

thus enabling the local finite element coordinates to be expressed as

x = xi − ξ xij
y = yi − ξ yij (465)
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Figure 18: DKT sign conventions, angles, lengths, etc.

Additionally, the local coordinates of the side nodes are furnished as

xk =
1

2
(xi + xj)

yk =
1

2
(yi + yj) (466)

along with their respective direction cosines:

c = cos (γij) = −yij
lij

s = sin (γij) =
xij
lij

(467)

When considering the rotations occurring normal to the side of the element, βn,
a linear variation is imposed as:

βnk =
1

2
(βni + βnj) (468)

where k = 4, 5, 6 denotes the mid side node along element edges 23, 31, and 12,
respectively. To obtain βx and βy in terms of only nodal degrees of freedom
motivates the following development.
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Consider the nodal displacement vector to be given as (according to Figure
(14)):

U =



u1
2

θ1
1

θ1
3

u2
2

θ2
1

θ2
3

u3
2

θ3
1

θ3
3


(469)

The following development will lead to an element formulation that is based
solely on these degrees of freedom (i.e. the mid-side nodes will not explicitly
appear in the element matrices); in order to facilitate the elements subsequent
use with other structural finite elements. In pursuit of this approach, the fol-
lowing geometric relations are defined for each of the element sides:[

βx
βy

]
=

[
c −s
s c

] [
βn
βs

]
(470)

and [
w,s
w,n

]
=

[
c s
s −c

] [
θx
θy

]
(471)

where c and s are defined in Equation (467). βx and βy can now be expressed
in terms of new finite element shape functions:

βx = HT
x (ξ, η) U

βy = HT
y (ξ, η) U (472)

where Hx and Hy are each vectors in R9 defined as:

Hx1 = 1.5 (a6h6 − a5h5)

Hx2 = b5h5 + b6h6

Hx3 = h1 − c5h5 − c6h6

Hx4 = 1.5 (a4h4 − a6h6)

Hx5 = b6h6 + b4h4

Hx6 = h2 − c6h6 − c4h4

Hx7 = 1.5 (a5h5 − a4h4)

Hx8 = b4h4 + b5h5

Hx9 = h3 − c4h4 − c5h5 (473)
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and,

Hy1 = 1.5 (d6h6 − d5h5)

Hy2 = −h1 + e5h5 + e6h6

Hy3 = −b5h5 − b6h6

Hy4 = 1.5 (d4h4 − d6h6)

Hy5 = −h2 + e6h6 + e4h4

Hy6 = −b6h6 − b4h4

Hy7 = 1.5 (d5h5 − d4h4)

Hy8 = −h3 + e4h4 + e5h5

Hy9 = −b4h4 − b5h5

(474)

where the hi (i = 1 . . . 6) are obtained from Equation (458), and the respective
coefficients are given as:

ak = −xij
l2ij

bk =
3xijyij

4l2ij

ck =

(
1
4x

2
ij − 1

2y
2
ij

)
l2ij

dk = −yij
i2ij

ek =

(
1
4y

2
ij − 1

2x
2
ij

)
l2ij

l2ij =
(
x2
ij + y2

ij

)
(475)

within which k = 4, 5, 6 references sides ij = 23, 31, 12, respectively (see Figure
(17)). The foregoing may be used to form a sort of transformation matrix that
maps the desired finite element degrees of freedom into the a kinematical form
that is useful in interfacing with the DKT that has been formulated thus far.
Specifically, a strain displacement matrix relating the nodal degrees of freedom
to the plate flexural curvatures may be given as:

κ = BbU (476)

where the strain displacement matrix, Bb, takes the form:

Bb (ξ, η) =
1

2A

 y31H
T
x,ξ + y12H

T
x,η

−x31H
T
y,ξ − x12H

T
y,η

−x31H
T
x,ξ − x12H

T
x,η + y31H

T
y,ξ + y12H

T
y,η

 (477)
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where 2A = x31y12 − x12y31 and the derivatives of Hx and Hy with respect to
ξ and η being given as:

Hx,ξ =



P6 (1− 2ξ) + (P5 − P6) η
q6 (1− 2ξ)− (q5 + q6) η

−4 + 6 (ξ + η) + r6 (1− 2ξ)− η (r5 + r6)
−P6 (1− 2ξ) + η (P4 + P6)
q6 (1− 2ξ)− η (q6 − q4)

−2 + 6ξ + r6 (1− 2ξ) + η (r4 − r6)
−η (P5 + P4)
η (q4 − q5)
−η (r5 − r4)


(478)

Hy,ξ =



t6 (1− 2ξ) + η (t5 − t6)
1 + r6 (1− 2ξ)− η (r5 + r6)
−q6 (1− 2ξ) + η (q5 + q6)
−t6 (1− 2ξ) + η (t4 + t6)
−1 + r6 (1− 2ξ) + η (r4 − r6)
−q6 (1− 2ξ)− η (q4 − q6)

−η (t4 + t5)
η (r4 − r5)
−η (q4 − q5)


(479)

Hx,η =



−P5 (1− 2η)− ξ (P6 − P5)
q5 (1− 2η)− ξ (q5 + q6)

−4 + 6 (ξ + η) + r5 (1− 2η)− η (r5 + r6)
ξ (P4 + P6)
ξ (q4 − q6)
−ξ (r6 − r4)

P5 (1− 2η)− ξ (P4 + P5)
q5 (1− 2η) + ξ (q4 − q5)

−2 + 6η + r5 (1− 2η) + ξ (r4 − r5)


(480)

Hy,η =



−t5 (1− 2η)− ξ (t6 − t5)
1 + r5 (1− 2η)− ξ (r5 + r6)
−q5 (1− 2η) + ξ (q5 + q6)

ξ (t4 + t6)
ξ (r4 + r6)
−ξ (q4 − q6)

t5 (1− 2η)− ξ (t4 + t5)
−1 + r5 (1− 2η) + ξ (r4 − r5)
−q5 (1− 2η)− ξ (q4 − q5)


(481)
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where,

Pk =
−6xij
l2ij

= 6ak

qk =
3xijyij
l2ij

= 4bk

tk =
−6yij
l2ij

= 6dk

rk =
3y2
ij

l2ij
(482)

for k = 4, 5, 6 associated with ij = 23, 31, 12, respectively. Using the strain
displacement from Equation (477), the plate bending stiffness matrix may be
arrived at.

The plate bending stiffness matrix is obtained most efficiently through the
use of numerical integration for the evaluation of:

KDKT = 2A

∫ −1

0

∫ 1−η

0

BT
b DbBb dξ dη (483)

Equation (483) may be integrated using a Gauss quadrature rule wherein the
sampling points, gi, coincide with the mid-side nodes and the weights, Wi, are
specified as 1

3 :

KDKT = 2A

∫ −1

0

∫ 1−η

0

BT
b DbBb dξ dη

=

numpts∑
i

WiBb (gi)
T

DbBb (gi)

=

numpts∑
i

1

3
Bb (gi)

T
DbBb (gi) (484)

The subsequent element local internal forces are computed as in in linear anal-
ysis: by assuming that F = KU.

3.3.2 Membrane response

In handling the membrane behavior of the DKT shell, it is merely assumed
that the standard plane stress assumptions may be applied to the membrane
deformations as follows in the sequel. Beginning in this way, natural coordinates
are defined.

Consider a triangular domain with three nodes at the vertices (as depicted in
Figure (19)). Natural coordinates may be considered as area fractions associated
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Figure 19: Natural coordinates for DKT membrane formulation

with parsing, into three subsequent triangular sub-areas, of the original domain
in response to the occurrence of an arbitrarily positioned point, P (as depicted
in Figure (19)). Natural coordinates are subsequently identified as:

ξ1 =
A1

A
, ξ2 =

A2

A
, ξ3 =

A3

A
(485)

The obvious requirement that:

A = A1 +A2 +A3 (486)

yields the following result:

A1

A1 +A2 +A3
+

A2

A1 +A2 +A3
+

A3

A1 +A2 +A3
=

1

A1 +A2 +A3
(A1 +A2 +A3)

= 1

=⇒ ξ1 + ξ2 + ξ3 = 1 (487)

The last result from Equation (487) constitutes a constraint equation for the
interpolation within natural coordinates.

In consideration of an arbitrarily located point, P , the partition of unity
properties associated with interpolation demand that in the case of the spatial
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x-coordinate of any given point:

x =
∑
i

ξixi = ξ1x1 + ξ2x2 + ξ3x3 (488)

and similarly for the y-direction:

y =
∑
i

ξiy1 (489)

and all subject to Equation (487). These results may be restated more com-
pactly as:  1

x
y

 = [A]

 ξ1
ξ2
ξ3

 (490)

where,

[A] =

 1 1 1
x1 x2 x3

y1 y2 y3

 (491)

and inversely,  ξ1
ξ2
ξ3

 = [A]−1

 1
x
y

 (492)

with,

[A]−1 =
1

2A

 x2y3 − x3y2 y23 x23

x3y1 − x1y3 y31 x13

x1y2 − x2y1 y12 x21

 (493)

where, again, such quantities as y12, are equal to y1 − y2. An additional result
can be found from the definition of the determinant, applied in a clever manner
(with some patience):

2A =| A |= x21y31 − x31y21 (494)

where 2A represents twice the area of the triangular element.

In developing the portion of the DKT shell element formulation dealing with
membrane effects, it will be necessary to compute Cartesian derivatives of the
shape functions, hi, that appear in terms of area (natural) coordinates. This
can be accomplished through an application of the chain rule:

∂h

∂x
=

∂h

∂ξ1

∂ξ1
∂x

+
∂h

∂ξ2

∂ξ2
∂x

+
∂h

∂ξ3

∂ξ3
∂x

∂h

∂y
=

∂h

∂ξ1

∂ξ1
∂y

+
∂h

∂ξ2

∂ξ2
∂y

+
∂h

∂ξ3

∂ξ3
∂y

(495)
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where the definition of the inverse, as the adjoint (transpose of the matrix of
cofactors - in this case one value) divided by the determinant, may be used to
obtain:

∂ξ1
∂x

=
y23

2A
∂ξ2
∂x

=
y31

2A
∂ξ3
∂x

=
y12

2A
∂ξ1
∂y

=
x32

2A

∂ξ2
∂y

=
x13

2A

∂ξ3
∂y

=
x21

2A

(496)

The membrane strains may now be treated as:

ε =

 ε11

ε22

ε12

 =

 ∂u1

∂x
∂u2

∂y
∂u1

∂y + ∂u2

∂x

 =
1

2A

 y32 0 −y31 0 y21 0
0 −x32 0 x31 0 −x21

−x32 y32 x31 −y31 x21 y21



u1

1

u1
2

u2
1

u2
2

u3
1

u3
2


(497)

and thus the membrane strain-diaplcement relation, Bm, may be expressed as:

Bm =
1

2A

 y32 0 −y31 0 y21 0
0 −x32 0 x31 0 −x21

−x32 y32 x31 −y31 x21 y21

 (498)

The foregoing results may be used to construct the finite element matrices re-
quired for the implementation of the formulation.

In the case of the membrane local internal force contribution, a simple linear
formulation is assumed, and an subsequent coupling with regard to bending
effects is handled via coordinate transformations:

F =

∫
Ω

BT
mNdΩ (499)

where the membrane edge loading, N, is furnished as:

N = hCBmU (500)

with C being the usual plane stress constitutive matrix.
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Unlike the plate bending response, the tangent stiffness matrix for the mem-
brane effects does include nonlinear effects and thus the usual, two-part, formu-
lation is adopted:

KT = KLm + KNLm (501)

where the linear matrix appears as:

KLm =

∫
Ω

BT
mCBmdΩ (502)

and the nonlinear matrix as:

KNLm =

∫
Ω

BT
NLmN̂BNLmdΩ (503)

where:

N̂ =

 N̄
N̄

N̄

 (504)

and

N̄ =

[
N11 N12

N12 N22

]
(505)

Additionally,

BNL =
1

2A


−y3 0 0 y3 0 0 0 0 0
x32 0 0 −x3 0 0 x2 0 0
0 −y3 0 0 y3 0 0 0 0
0 x32 0 0 −x3 0 0 x2 0
0 0 −y3 0 0 y3 0 0 0
0 0 x32 0 0 −x3 0 0 x2

 (506)

3.3.3 In-plane rotational response

A useful and simple approach may be adopted in assigning a stiffness to the
in-plane rotational degree of freedom. This approach involves the assignment
of 10−14 times the smallest bending stiffness value in the stiffness matrix; so as
to coincide with the so-called drilling degree of freedom within the shell.

3.4 Inelastic material response

As it is that the foregoing structural elements deal directly in displacements and
stress resultants, it would be cumbersome to attempt to reapply the stress-space
plasticity theories, reviewed earlier, to the case of structural elements. Instead,
an approach wherein a failure surface is postulated to exist in a force-space
derived from element stress resultants, is adopted. It turns out that such a
force-space approach to predicting plastification within structural elements will
lead to significant savings in computation times accompanying the solution of
finite element models comprising large numbers of structural elements.
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3.4.1 Force-space plasticity

The point of departure surrounding the force-space approach for identifying the
onset of plastification within a structural element begins with the notion of a
failure surface. For illustrative purposes, the current discussion will begin with a
force-space formulation that is appropriate for use with the previously developed
frame finite element. Thus, rather than formulating a failure surface within the
three space accompanying a three dimensional principal stress condition, stress
resultants are instead associated with the coordinate axes used to describe load-
ing points within the three dimensional force space considered: axial force, P ,
strong axis moment, Mx, and weak axis moment, My. Where the designation
of strong and weak axes pertains to the sense of the bending moment occurring
about the major and minor principal centroidal axes, respectively. The given
failure surface, so defined in force space, encloses a region within which elas-
tic member response is maintained. Force points that impinge on the failure
surface are then assumed to coincide with the physical condition wherein full
plastic hinging is activated. This assumed behavior is very much consistent with
the notion of elastic-perfectly plastic material response that was maintained in
the earlier discussion pertaining to stress space plasticity. It is further assumed
that the case of constrained plasticity is the rule, and thus it is expected that the
force point will persist on the failure surface unless unloading is explicitly called
for during the analysis. Finally, an assumption consistent with associated flow
plasticity of a stable (in the sense of Drucker) plastic material in stress space
will be adopted in the force space formulation, and thus the plastic displacement
is assumed to be additive to the elastic displacement increment, and to coincide
with the direction of the outward normal to the failure surface; while the force
increment coinciding with this point is assumed to maintain tangency to this
surface. Before describing how to arrive at such a surface, the discussion will
focus on what to do with the foregoing assumptions in order to place the force
space plasticity approach into a context that is convenient for finite element
implementation.

The present discussion begins with a normalization of the force axes used
to describe the failure surface. In the case of axial loading, the axial load, P ,
is divided by the squash load, Aσy: the member cross-sectional area multiplied
by the uniaxial yield stress. Similarly, the moments, M , are normalized by
their respective fully yielded capacities, Zσy: the corresponding plastic section
modulus multiplied by the uniaxial yield stress. The subsequently normalized
axial force and moment quantities can be labeled as p,mx, and my, to describe
the axial force, strong moment, and weak moment coordinates, respectively, of
an given force point of interest. In a generic sense, the failure surface may be
expressed as a function of these normalized force quantities:

Φ (p,mx,my) (507)

This failure surface would then be applicable in describing the material con-
dition occurring at each end of a given frame finite element. Considering the
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normality condition accompanying an associative flow hypothesis, the plastic
force increment at the a-end of the frame element may be given as:

duap = λaGa (508)

where Ga is the gradient to the force space failure surface at the loading point
coinciding with the force state at the a-end of the given member:

Ga =


∂Φ
∂pa
∂Φ
∂max
∂Φ
∂may

 (509)

and λa is the magnitude of the plastic displacement increment, in a constrained
plasticity context. A straightforward extension of the foregoing, to admit the
possibility of plasticity at both ends of the frame element, appears as:

dup =

[
duap
dubp

]
=

[
Ga 0
0 Gb

] [
λa

λb

]
= Gλ (510)

As it is that the total deformation increment is assumed to satisfy the additive
decomposition given as:

du = due + dup (511)

the role of the matrix, G, is to reduce the extensional and rotational resistances
at plastified member ends, and to constrain the elastic displacement increment
to be tangent to the failure surface: yielding the admissible (in the sense of
Drucker) force increment of the form:

dF = KLdue (512)

where KL is the usual linear elastic stiffness matrix. Based on the orthogonal-
ity of the plastic displacement increment and the tangent force increment, the
following relationship follows immediately:

dup · dF = λGT dF = 0 (513)

which, on account of the arbitrariness in λ, leads to:

GT dF = 0 (514)

From Equations (514) and (512) it is noticed that:

GTKLdue = 0 (515)

and thus an application of Equation (511) results in:

GTKL (du− dup) = 0 (516)

An application of Equation (510) within the foregoing yields:

GTKL (du− λG) = 0 (517)
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and thus,
GTKLdu = λGTKLG (518)

and so

λ =
GTKL

GTKLG
du (519)

Additionally, from Equations (512) and (511) it is observed that:

dF = KL (du− dup) (520)

and so from an application of Equation (510) it is observed that:

dF = KL (du−Gλ) (521)

and then applying Equation (519), and distributing, results in:

dF =

(
KL −

GTKL

GTKLG
KLG

)
du (522)

or, by defining a new stiffness quantity as:

KM = −KLG
GTKL

GTKLG
(523)

and so then the force increment is expressible as:

dF = (KL + KM ) du (524)

It is pointed out that the possibility for elastic unloading at the member end
is indicated when a negative sign appears within one, or more, or the entries
in Equation (519). This indicates that the given solution increment should be
restarted with the the corresponding entries in G zeroed out.

4 Stability analysis

4.1 Linearized eigenvalue buckling analysis

There is an increasing availability of commercial finite element software that
permits the consideration of the effects of geometric nonlinearity in structural
analysis. Oftentimes these software systems will have the capability to treat
stability problems through eigenvalue extraction routines applied to the global
system stiffness matrix; an approach referred to, alternately, as buckling, eigen-
value buckling, or linearized eigenvalue buckling analysis.

This type of a stability analysis is attractive from the standpoint that it
is computationally inexpensive. As compared with a more general incremen-
tal analysis that traces the entire nonlinear equilibrium path of the structural
system, the eigenvalue buckling approach concerns itself with only one or two
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points on the equilibrium path. In addition, results obtained from eigenvalue
buckling analyses, when applied to stability problems exhibiting bifurcation in-
stability, are usually quite accurate [7]; and this accuracy is obtained without
much concern on the part of the software user. However, care must be taken
when applying this technique to problem types exhibiting other manifestations
of instability (e.g. limit point instability).

In practice, situations may arise in the design office where the application
of eigenvalue buckling may seem attractive for problems involving elastic beam
buckling (e.g. lateral torsional buckling of a beam or planar truss) or elastic
snap-through buckling (e.g. lattice dome, arch, or shallow truss assembly). In
the domain of stability research, too, linearized eigenvlaue buckling is often-
times attractive as a means for identifying a seed imperfection for application
in a more detailed incremental nonlinear finite element analysis of a beam or
framework, for instance. In all of the foregoing, there are finite structural de-
formations prior to the onset of instability that are additive to the governing
buckling mode (as compared to a bifurcation instability where the pre- and
post-buckling deformations may be thought of as being orthogonal to one an-
other). This fact creates an inconsistency with regard to assumptions made in
the formulation of the linearized eigenvalue buckling procedure itself.

The present discussion examines the underlying assumptions within the for-
mulation of the eigenvalue buckling method in order to highlight the problem
types that most readily lend themselves to solution by this method. In addition,
problems presenting responses that violate these fundamental assumptions are
also examined. In this latter case, it becomes very important to understand
the nature of the implementation of eigenvalue buckling in the given software
system (example problems, variously solved with MASTAN2, ADINA, ANSYS,
and ABAQUS, are included in this discussion); certain implementations will
make application of eigenvalue buckling, to other than bifurcation problems,
extremely problematic. The present discussion related to the various finite ele-
ment buckling formulations employs a single, standardized notation to allow for
a transparent comparison of underlying assumptions.

4.2 Overview of dominant finite element buckling analysis
approaches

The literature adopts the term buckling analysis when referring to a family
of finite element techniques applied to structural systems for the identification
of critical load levels through the solution of an eigen-problem arising out of
assumptions made relative to changes in structural stiffness; and concomitant
applied loadings. While the technique is applicable to structures that exhibit
critical responses arising from limit point as a well as bifurcation of equilibrium,
the term buckling is nonetheless universally applied. While this may seem incon-
sistent, since buckling is normally associated with the condition of bifurcation
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in the equilibrium path only, the nomenclature is defensible nonetheless, as a
result of the fact that the eigen-problem posed within the finite element con-
text resembles the case where the vanishing of the determinant of the stiffness
matrix is associated with a form of the Sturm-Liouville problem [12] [3]. All
formulations within the present discussion will be presented in a standardized
notation (to facilitate comparison) that is defined subsequently.

Since the analyses considered here are strictly static, time will be used to
signify an equilibrium point within the configuration space of a given structure;
corresponding to certain load level. Definitions for several left subscripts are now
introduced to facilitate subsequent discussions. A generic place holder term, Ω,
will be used to show the relative locations of the subscripts:

• oΩ ≡ generic quantity, Ω, evaluated at the equilibrium configuration as-
sociated with the trivial case of no external actions.

• tΩ ≡ generic quantity, Ω, evaluated at an intermediate equilibrium con-
figuration occurring between the unloaded and critical configurations.

• ∆tΩ ≡ denotes the change in a generic quantity, Ω, occurring as a result
of movement from location t to t+ ∆t on the equilibrium path.

• t+∆tΩ ≡ generic quantity, Ω, evaluated at an intermediate equilibrium
configuration occurring between the unloaded and critical configurations;
that is arbitrarily close to tΩ.

In subsequent discussions, it will also be helpful to define three applied loading
conditions that are used to reckon an assumed characteristic change in the
system stiffness. In general, the applied loading will be denoted with P .

• {Pbaseline} ≡ loading condition used to bring the structure to a point in
configuration space associated with the left subscript t.

• {Pcharacteristic} ≡ loading condition used to bring the structure to a point
in configuration space associated with the left subscript t+ ∆t.

• {Pcr} ≡ the critical load associated with the equilibrium configuration at
incipient instability.

Structural stiffness will be denoted by the usual quantity [K], amplified as
follows:

• [oKo] ≡ linear elastic stiffness matrix whose elements are independent of
the current structural configuration

• [τKσ] ≡ initial stress matrix dependent on the state of stress at an ar-
bitrary time, τ . This matrix is populated with terms that include both
linear and quadratic dependencies on the current displacement field.
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The sum of the foregoing two stiffness matrices is typically what is referred to
as the tangent stiffness matrix, associated with a specific equilibrium point in
configuration space. Some readers may be more familiar with the notion of the
tangent stiffness being associated with the linear terms of a Taylor series ex-
pansion of the internal force vector about the current configuration during the
solution, while others may recognize it as emanating from the stationarity of the
total potential functional whose internal energy term includes the influence of
finite strains. While other options exist for the population of the tangent stiff-
ness matrix [13] [9] [5] the former definition has emerged as the most dominant
to date. Other stiffness quantities associated with structural state under consid-
eration may be characterized using tangent stiffness measures defined according
to the following:

• [Kbaseline] ≡ the instantaneous stiffness of the structure arrived at by
retaining only the linear terms in a Taylor series expansion of the load-
deflection response of the structure about the point in configuration space
corresponding with the the applied loading {Pbaseline}

• [Kcharacteristic] ≡ the instantaneous stiffness of the structure arrived at
by retaining only the linear terms in a Taylor series expansion of the load-
deflection response of the structure about the point in configuration space
corresponding with the applied loading {Pcharacteristic}

4.2.1 Classical formulation

The initial treatment of the finite element buckling analysis appeared in the
literature prior to the formal naming of the finite element method [8]; this
earliest reference identified the approach as being based on the discrete element
procedure. In light of the foregoing, and based on a survey of the literature, it
appears that in the most commonly held definition of the classical formulation
for finite element buckling analysis, the following problem is solved [6] [9] [5] [4]

det ([oKo] + λ[tKσ]) = 0 (525)

It is frequently assumed in the literature that the equilibrium point at time
t is very close to the initial configuration at time 0, but this is not a strict
requirement. The subsequent buckling load is computed as:

{Pcr} = λ{Pbaseline} (526)

4.2.2 Secant formulation

The present discussion adopts the name secant formulation to describe the vari-
ation of the finite element buckling problem that is referred to variously as
the secant formulation [2] [1] and the linear and nonlinear analysis [9]. This
problem is posed as:

det ([Kbaseline] + λ ([Kcharacteristic]− [Kbaseline])) = 0 (527)
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and the subsequent buckling load is computed as:

{Pcr} = {Pbaseline}+ λ ({Pcharacteristic} − {Pbaseline}) (528)

4.3 Example problems

In the following examples, comparisons of results from the two approaches to
finite element buckling analyses are considered (i.e. those involving software
packages employing buckling approaches characterized by Equations (525) and
(526), and (527) and (528), respectively). In some instances the results from
closed form solutions are also presented. In addition, some cases also include
results from manual implementation of the finite element buckling approaches
as encapsulated in equations (525) and (526).

This discussion begins by distinguishing between bifurcation and limit point
instability in a formal way. Consider the classical form of the finite element
statement of the incremental equilibrium equations:

([oKo] + [tKσ]) {t+∆t∆u} = {t+∆tR} (529)

where {∆u} are the incremental nodal displacements, and {R} is the residual
force vector representing the imbalance between the internal forces at time t,
and the desired load levels associated with some set of external forces, {P}.

We may use the standard form of the eigenvalue problem to compute eigen-
values, ωi, and eigenvectors, {φ}i for the tangent stiffness matrix according to:

([oKo] + [tKσ]) {φ}i = ωi{φ}i (530)

This leads to the spectral representation of the tangent stiffness matrix:

[KT ] =
∑
i

ωi{φ}i{φ}Ti (531)

These same eigenvectors may also be used to define a projection operator that
takes the original displacement and load vectors and projects them onto a new
vector space, spanned by the eigenvectors, {φ}i, such that

{t+∆t∆u} =
∑
i

αi{φ}i; {t+∆tP} =
∑
i

ρi{φ}i (532)

where {P} is the externally applied load vector on the structure and ρi =
{φ}Ti {P}. The transformations embodied in Equations (531) and (532) effec-
tively diagonalize Equation (530) and result in the following transformation
[11]:

ωiαi = λρi (533)

In an elastic structure, the first critical point occurs when the equilibrium equa-
tions become singular, or in other words, when the tangent stiffness matrix is
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no longer positive definite. Well ordered eigenpairs result from this being one
case of the Sturm-Liouville problem, and thus it can be recognized that loss of
positive definiteness of the stiffness occurs when ω1 = 0; at which point the con-
dition λρ1 = 0 occurs. Based on this fact, it can be recognized that a distinction
between bifurcation and limit point instability exists [11]. If ρ1 6= 0, then it is
clear that the eigenvector is not orthogonal to the externally applied loading
vector {P}, and thus λ will have to be zero in order for λρ1 = 0 to be true. In
this case, a limit point instability condition exists (this point will become more
clear subsequently). Conversely, ρ1 = 0, when the loading is orthogonal to the
eigenmode, and buckling is occurring. This may be summarized as follows:

• Limit point instability: ω1 = 0, and {φ}T1 {P} 6= 0;

• Bifurcation instability: ω1 = 0, and {φ}T1 {P} = 0

These results lead to the following interpretation. In the neighborhood of limit
points on the equilibrium path in configuration space, there is no increasing load,
and the eigenvector is not orthogonal to the external load vector. Conversely, if
an increase in loading is possible in the neighborhood of the critical point, and
the eigenvector is orthogonal to the load vector, then bifurcation instability is
present.

4.3.1 Bifurcation instability

Two classical examples of bifurcation instability are considered next. In these
problems, pre-buckling deformations are small, and thus the assumptions in this
regard, that underlie the linearized eigenvalue buckling approach, are preserved.
The first problem considers a one dimensional structural idealization of a three
dimensional problem, while the second example treats a two dimensional ideal-
ization of a three dimensional case.

A classical Euler column example is depicted in Figure 20. This figure dis-
plays the problem geometry, along with boundary condition, cross-section, and
material response information. The well known solution of the example prob-
lem is given below as:

Pcr =
π2EI

L2
(534)

and ultimately leading to an exact answer of Pcr = 238kips for the example
problem shown in Figure 20. Clearly this agrees well with both linear eigen-
value buckling solutions (also shown in Figure 20), irrespective of baseline load-
ing, Pbaseline.

The second bifurcation instability example is given in Figure 21. This plate
buckling problem, also, has a well known solution:

σcr = k
π2E
√
η

12 (1− ν2)
(
b
t

)2 (535)
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Figure 20: Euler column example

Figure 21: Plate buckling example
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Substitution of the problem parameters described in Figure 21 yields a critical
stress of 1.114 ksi. As might be expected, this is in close agreement with finite
element buckling results presented in the same figure; for both finite element
buckling approaches under discussion.

Based on the two simple bifurcation buckling examples presented, it may
seem as though linearized eigenvalue buckling approaches satisfactorily predict
critical loads in this type of problem. However this is not always the case
[7] and the reader is cautioned against merely accepting the buckling loads
from finite element software; even under the favorable conditions of bifurcation
buckling. For example, it is noted here that in the case of the ADINA two-
point buckling formulation (known as the secant formulation in the ADINA
literature), it is not possible to know what the load level of Pcharacteristic is since
the information contained in the output file and porthole file are incomplete in
this regard. This is considered to be a critical shortcoming in ADINA in terms of
reliance on the so-called secant formulation for finite element buckling analysis.
As will be seen subsequently, it is not possible to employ the secant method
intelligently when using ADINA, since insufficient information regarding the
underlying solution process is available to the user, and thus critical judgment
related to the specification of Pbaseline, or even simply the interpretation of
results, is severely compromised.

4.3.2 Limit point instability

The remaining cases for discussion all exhibit limit point (snap-through) insta-
bility, and thus pre-buckling deformations tend to be finite. Strictly speaking,
this may be viewed as a violation of the underlying assumptions used in the
formulations of Equations (525) and (527). Thus, it might be reasonably con-
cluded that finite element buckling analyses are, technically, not applicable to
such instances. However, the fact remains that engineers do employ this type
of approach to cases that are not strictly in consonance with the underlying
assumptions of the formulation; and thus it is important to consider this class
of problems within the present discussion. In addition, it is not possible to es-
cape the fact that, under certain circumstances, very good answers are obtained
when comparing finite element buckling results with the results of more exact
methods of analysis.

In the subsequent discussion, it will be useful to refer to a class of diagrams
known as eigenvalue plots [4] [9]. Such a plot depicts a graph of Pcritical versus
Pbaseline (both normalized by dividing by the exact critical load). An example
of such a plot appears in Figure 22. The depiction of the eigenvlaue plot in
Figure 22 is useful to consider in the case of limit point instabilities, since it
highlights the dependence of the finite element buckling solution on the selection
of a reasonable baseline loading, Pbaseline. The predicted critical loading from
the finite element buckling solution is arrived at by multiplying the eigenvalues
by the baseline loads, as described in Equations (526) and (528), respectively,
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Figure 22: Representative eigenvalue plot

Figure 23: Truss-arch example

for the classical and secant approaches. The results presented in Figure are con-
sistent with what is expected, from the standpoint that the approximate finite
element buckling loads improve in accuracy as the magnitude of the baseline
load increases.

Considering now the case of a truss arch, we may study instances involving
various height-to-span ratios. In all of the following examples, the span length
is held constant at 20 inches, and the height is varied from 2 to 17 inches (see
Figure 23.) The truss arch is a particularly useful example, since it affords the
opportunity to easily obtain results using hand calculations. In the case of the
truss arch from Figure 23, with a height of 2 inches (i.e. shallow case), an energy
formulation involving the stationarity of the total potential yields a critical load
of 85.4 kips. For this particular truss arch geometry, finite element buckling
results were obtained using MASTAN2, ANSYS and ADINA. In the case of the
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Figure 24: Truss-arch example results for shallow case

first two software packages, only a very small axial force is considered in the
formulation of the tangent stiffness matrix used in the classical approach from
Equation (525). These results, along with a hand calculation meant to parallel
the classical formulation, as presented in Equations (525) and (527), appear
in Figure 24. From Figure 24 it is clear that MASTAN2, ADINA, ANSYS,
and the hand calculation all agree reasonably well for small values of Pbaseline.
However, as Pbaseline grows, MASTAN2 and ANSYS remain constant in their
predictions, since their implementation of the classical method does not admit
the possibility of a varying Pbaseline. In addition, while the hand calculations,
and ADINA, both permit a variation in Pbaseline, the agreement at high levels
is less favorable than at low values of Pbaseline. This may be as a result of sub-
tle differences in the way the classical formulation is implemented in ADINA;
but as an unfortunate byproduct of a lack of inclusion (within the .out files of
ADINA) of intermediate values in the solution process, it very difficult to test
any theories aimed at understanding the nature of the observed differences.

In the case of the 17 inches high truss arch (i.e. deep case), we see a differ-
ence in the trending of the response observed in the eigenvalue plots appearing
in Figure 25. While the MASTAN2 and hand calculations agree well with each
other at low loads, and produce a reasonable estimate for the critical load, the
same is not true for the ADINA results. The ADINA secant results are clearly
diverging from the correct solution (13,000 kips; obtained from a incremental
nonlinear finite element analysis) while the ADINA classical result begin at a
point inexplicably far away from the other two classical implementations.

Prof. Earls, Cornell University 120



Nonlinear finite element analysis: structures 4 STABILITY ANALYSIS

Figure 25: Truss-arch example results for deep case

4.4 Linearized eigenvalue buckling for imperfection seed-
ing in incremental nonlinear finite element analysis

Linearized eigenvalue buckling analysis techniques are sometimes employed as
a means for obtaining a seed imperfection, in order to enable the execution of
a realistic incremental nonlinear finite element analysis (e.g. so as to facilitate
equilibrium branch switching in the study of a bifurcation problem). In such an
approach, it is the eigenvector values at each node that are scaled to define an
initial displacement field that is assigned (as a perturbation) to the ideal nodal
geometries of a mesh employed in an incremental nonlinear analysis. Such an
approach is predicated on the notion of repeatability across commercial codes
(i.e. commercial codes should all yield similar mode shapes from models pos-
sessing identical parameters). However, it has been clearly illustrated that each
of the dominant formulations for eigenvalue analysis solves a slightly different
eigenproblem; as seen in equations (525) through (527), and thus uniformity in
predictions across commercial codes is unlikley. In order to further analyze the
significance of this variation in formulation, eigenvector results are quantified to
facilitate comparison.

The eigenvectors computed with the secant and classical formulations for a
given model may be very similar, or, unfortunately, drastically different. This
difference, or similarity, in results can accompany minor changes in geometry
and/or loading conditions, as well as changes in eigenproblem formulation. Fi-
nite element post-processing software most often scales any reported eigenvec-
tors, in order to facilitate visualization of the mode shape in post processing
facilities. This scaling can cause problems when comparing results from differ-
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TABLE 1. Nominal dimensions of example beams
Measure Case 1 Case 2
Length, L 250” (6,350 mm) 29” (736 mm)
Depth, d 19.00” (483 mm) 8.25” (210 mm)
Flange Width, bf 6” (152.4 mm) 4” (101.6 mm)
Web Thickness, tw 1.00” (25.4 mm) 0.20” (5.1 mm)
Flange Thickness, tf 1.00” (25.4 mm) 0.25” (6.4 mm)

ent commercial programs. In order to more precisely compare the eigenvectors
from different formulations (applied to models with identical geometries and
material paramters), a sampling of eigenvector values along the centerline of
two example beams, (depicted in Figure 10), is taken. A discrete Fourier analy-
sis is then conducted with these data; using the position along the beam as the
independent variable.

Case 1 is a steel I-beam that is loaded with a uniformly distributed pressure
on the top flange. Twist is prevented at the ends of the beam by guiding the rect-
angular stiffener plates to resist out-of-plane deformation. Nominal dimensions
for the two cases depicted in Figure 26 are presented in Table 1. The two beam
cases are modeled in both ADINA and ABAQUS using shell elements. The shell
element formulations are not the same for ADINA and ABAQUS; however any
differences in formulation are not critical in this comparison since the observed
behavior is never outside the elastic, small strain response region (all element
meshes were of equivalent density using linear, 4 node shells; the meshes were
also seen to be convergent). In ADINA the analysis was run twice: once using
the classical formulation, and once with the secant formulation; ABAQUS only
allows for a classical type of analysis (although it is possible to use the ’restart’
option to approximate a secant buckling analysis.) Figure 27 shows that the
resulting Case 1 mode shapes look very similar for both programs.

The eigenvectors obtained from ADINA and ABAQUS post-processing are
normalized, to enable comparison, using the relation:

‖φi‖ =
φi

φmax
(536)

where φ represents the eigenvector in question, with the subscripts correspond-
ing to the discrete nodal contributions to the vector.

When using eigenvector data corresponding to the weak-axis displacement
component, from the nodes along the centerline of the web, it becomes appar-
ent that (see Figure 28) the mode 1 eigenvectors are slightly different for this
problem; depending on the formulation used. This difference in mode shape be-
comes more conspicuous once a discrete Fourier transform of the weak-direction
eigenvector displacement data is carried out. Figure 28 displays the results from
this approach, highlighting that the mode 1 shape resulting from the ADINA
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Figure 26: Beam imperfection example cases

Figure 27: Case 1 buckling mode predictions

Figure 28: Case 1 eigenvector plots along the web centerline (left). Discrete
Fourier transformation of these eigenvectors (right)
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Figure 29: Case 2 buckling mode predictions

classical formulation, the ADINA secant formulation, and ABAQUS’ formula-
tion are related. They are obviously all harmonic, and their peaks occur at
the same frequency. The frequency of the Fourier transform in Figure 28 cor-
responds to the number of cycles of the harmonic function which describes the
deformation per length of the member. The peak amplitude of the ABAQUS
Fourier ananlysis is 8% less than the peak amplitude of both ADINA secant
formulation Fourier analysis results. This difference in peak frequency is only
1% between the ADINA classical and secant formulation results. In mode 2 the
difference in Fourier peaks between ABAQUS and ADINA results is 30%.

The Case 2 example problem incorporates an extra stiffener plate at the
center of the I-beam, with loading distributed linearly along the upper edge
of the center stiffener plates (see Figure 26). The nominal dimensions of this
steel beam are, once again, listed in Table 1. Visualization results for this
model, obtained using ADINA and ABAQUS, are shown in Figure 29. The
results vary to such an extent that the discrepancies are clearly not an artifact
of magnification or scaling. Eigenvector values along the centerline nodes are
plotted in Figure 30. The discrete Fourier transform of the weak-axis component
of the eigenvector data (also presented in Figure 30) shows that there is not
only a difference in the peak height of the results, but that the peaks are also
located at different points along the member longitudinal axis. The secant
formulation solution has a much more pronounced harmonic displacement field,
as compared to the classical formulation. In this case the ABAQUS results
are nearly equivalent to those of the ADINA classical formulation. ADINA
classical and secant formulation differ significantly, in that the major peaks do
not coincide in height or location.

4.5 Observations on linearized eigenvalue buckling

Finite element buckling analysis results should be interpreted with great care.
The results of ostensibly identical formulations (as described in theory manuals,
etc.) within various software packages frequently lead to estimates of critical
loads that vary significantly for identical structural configurations.
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Figure 30: Case 2 eigenvector plots along the web centerline (left). Discrete
Fourier transformation of these eigenvectors (right)

It seems reasonable to avoid using such finite element buckling approaches
for all but the simplest cases of bifurcation buckling; but even then care must
be taken when considering the validity of the results.

It also appears that the approach of using eignenmodes, obtained from lin-
earized eignevalue buckling analyses, as an imperfection seed within a more gen-
eral incremental nonlinear finite element analysis, should be approached with
caution; as models with identical geometries and materials properties may re-
sult in very different imperfection fields, depending on the commercial software
that is used, and with what formulation options the analysis is carried out.

4.6 Incremental nonlinear stability analysis

4.6.1 Influence of imperfections: geometric, material, and boundary
conditions

5 Transient dynamic analysis

The standard equations of motion (EOM) in a problem from solid mechanics
take the familiar form emanating from the use of D’Alebert’s Principle, and a
subsequent consideration of an equivalent “statical equilibrium”:

MÜ + CU̇ + KU = R (537)

where M is the mass matrix, C is the damping matrix, and K is the stiffness
matrix. Additionally, The vectors U and R represent the displacement and
applied loads, respectively. When solving the time discrete equations of Equa-
tion (537), it is common to adopt a finite difference approach for the temporal
discretization (as compared with the application of a weak form for the finite
element spatial discretization). Specifically, in the present discussion a focus on
the central difference method (also sometimes referred to as the Crank - Nicol-
son scheme) is adopted.
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Figure 31: Single degree of freedom response example

In the central difference method, the discrete representation of the displace-
ment derivatives are furnished through a consideration of the displacements
themselves; as illustrated in Figure (31) and Equations (538) and (539)

U̇ =
1

2

(
U t − U t−∆t

∆t
+
U t+∆t − U t

∆t

)
=

1

2∆t

(
U t+∆t − U t−∆t

)
(538)

Ü =
Ut+∆t−Ut

∆t − Ut−Ut−∆t

∆t

∆t
=

1

∆t2
(
U t+∆t − 2U t + U t−∆t

)
(539)

Using the foregoing, the following re-expression of the the EOM is possible:

MÜ + CU̇ + KU = R

M

∆t2
(
Ut+∆t − 2Ut + Ut−∆t

)
+

C

2∆t

(
Ut+∆t −Ut−∆t

)
+ KUt = Rt

Rt −
(

K− 2M

∆t2

)
Ut −

(
M

∆t2
− C

2∆t

)
Ut−∆t =

(
M

∆t2
+

C

2∆t

)
Ut+∆t (540)

Based on the form of Equation (540), it is apparent that centered differencing
yields an explicit integration of the EOM in time; that is a form wherein the
solution at time t+ ∆t is obtained directly from the results of previously solved
time steps (i.e. at times t and t−∆t).

Strictly speaking, the form of the mass matrix should take a form that is
consistent with the spatial discretization by the finite element method:

Mij = ρ

∫
Ω

Ni (x)Nj (x) dΩ (541)
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where ρ is the mass density of the medium being discretized. The for the mass
matrix furnished in Equation (541) is known as the consistent mass matrix.
This matrix (along with the damping matrix C) frequently is dense; thus pre-
cipitating the need for a factorization of the coefficients acting on Ut+∆t within
the left hand side of Equation (540). It is frequently possible to increase the
efficiency of the central difference method by:

• neglecting damping

• lumping the mass matrix

Various schemes exist for the lumping of the mass matrix, but the two most
common techniques are the row sum and nodal point integration. In the former
case, the rows of the consistent mass matrix are summed and assigned to the
diagonal location for the particular row:

Mij =

ndof∑
j=1

Mij , i = 1, 2 . . . ndof (542)

The nodal point integration method is more intuitive when applied to structural
elements, and thus can be efficiently illustrated through an example involving
the previously introduced 12 degree of freedom beam element:

M =



m 0 0 0 0 0 0 0 0 0 0 0
0 m 0 0 0 0 0 0 0 0 0 0
0 0 m 0 0 0 0 0 0 0 0 0
0 0 0 M 0 0 0 0 0 0 0 0
0 0 0 0 M 0 0 0 0 0 0 0
0 0 0 0 0 M 0 0 0 0 0 0
0 0 0 0 0 0 m 0 0 0 0 0
0 0 0 0 0 0 0 m 0 0 0 0
0 0 0 0 0 0 0 0 m 0 0 0
0 0 0 0 0 0 0 0 0 M 0 0
0 0 0 0 0 0 0 0 0 0 M 0
0 0 0 0 0 0 0 0 0 0 0 M



(543)

where m = m̄L
2 and M = 3m̄LIm

2A ; with m̄ being the mass per unit length, L
being the beam length, A being the cross-sectional area, and Im denoting the
maximum bending moment of inertia for the beam cross-section. These lumped
quantities are somewhat ad-hoc; with the foregoing conforming to the recom-
mendations outlined in the ADINA Theory Manual [1].

When performing a nonlinear analysis, the central difference method permits
a significant simplification of the incremental solution that was introduced in
earlier discussions on the Newton-Raphson and modified spherical arc length
methods. Indeed, if mass lumping is assumed, and damping is neglected, then
the EOM from Equation (537) may be re-expressed as:

MÜt + Ft = Rt (544)
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where Ft = KUt. In an incremental nonlinear analysis, Ft is recognized as
the internal force in the structure; associated with the previously converged
load increment. The difference between this internal force, Ft, and the newly
applied external action, Rt, represents a residual force imbalance that leads to
an acceleration:

MÜt = Rt − Ft

M

∆t2
(
U t+∆t − 2U t + U t−∆t

)
= Rt − Ft (545)

thus leading to:

Ut+∆t =
∆t2

M

(
Rt − Ft

)
+ 2Ut −Ut−∆t (546)

whereupon each displacement step is arrived at through a simple application
of Newton’s Second Law. It is pointed out that there is no need to deal with
the tangent stiffness matrix and the usual solution of the system of linear equa-
tions associated with the system stiffness matrix. Rather, as a result of the
diagonal mass matrix, the new displaced configuration is obtained through a
series of matrix multiplications (i.e. no factorization is required). Of course
this convenience comes with a price: the explicit central difference method is
only conditionally stable, and thus a restriction exists on the size of the time
increments.

For our particular case of explicit time integration within the wave equation,
we seek to have a Courant number of unity, defined as follows:

C = γ
∆t

h
(547)

where γ is the speed of sound in the mesh, and h is the smallest distance
between any two nodes in the mesh. The critical time step can then be found
from satisfying the condition were C = 1. An equivalent, alternate framing has:

∆tcr =
Tn
π

(548)

where Tn is the smallest period that is resolvable within the given mesh.
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