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ABSTRACT
Deep Brain Stimulation (DBS) is an established therapy for
advanced Parkinson’s disease (PD). Recent studies have ap-
plied the closed-loop control (adaptive DBS or aDBS) using
feedback from local field potential (LFP) signals. However,
current aDBS practices focus on simple feedback like beta
band power and thresholding, without optimized control or
classification algorithms. In this work, we study the capacity
of several classifiers including automatic shrinkage linear dis-
criminant analysis (LDA) to predict motor impairment. We
use 20 features extracted from both monopolar and bipolar
LFPs in 12 PD patients. In our best setting, we achieve a
median accuracy of 70.2%, sensitivity of 81.2% and predic-
tion lead time of 0.1 s across patients. By including relevant
features other than beta power, a 13.6% improvement in accu-
racy is achieved. Moreover, the Hjorth parameters and high-
frequency oscillation (HFO) features perform best according
to the Analysis of Variance (ANOVA) p-value and classifier
weights. These results suggest a great potential to improve
current aDBS system for PD, by implementing a classifier
with multiple features.

Index Terms— Parkinson’s disease, adaptive deep brain
stimulation, classifier, labeling, motor impairment, Hjorth pa-
rameters

1. INTRODUCTION

Parkinson’s disease (PD) is the second most common neu-
rodegenerative disorder after Alzheimer’s, with a growing pa-
tient population of over 6 million globally. PD mainly af-
fects the motor system, resulting in movement impairments
such as muscle rigidity, resting tremor and akinesia. In the
early stage, levodopa medication is the most frequently used
therapy. Its effectiveness, however, diminishes as the disease
progresses and nondopaminergic brain regions get involved,
when surgery-based treatments become inevitable [1].

Deep Brain Stimulation (DBS) is an established surgi-
cal treatment for advanced PD. It usually targets either the
subthalamic nucleus (STN) or internal globus pallidus (GPi)
with a constant high-frequency (∼ 130Hz) stimulation [2].
DBS leads to an immediate reduction in clinical impairment

and improves the UPDRS (Unified Parkinson Disease Rat-
ing Scale) motor scores by 50% in the long term [3]. De-
spite the success of continuous (i.e. open-loop) DBS, its effi-
cacy is limited due to complex programming process, induced
side effects, and extensive battery usage. The effectiveness of
DBS is highly sensitive to the stimulation parameters such
as frequency, pulse width, and intensity, which may take a
trained clinician over 6 months to program [4]. In addition,
DBS has well known side effects such as speech difficulties
and depression, since the normal physiological communica-
tion is somewhat suppressed by the stimulation current [5].

In order to improve the specificity of stimulation, adap-
tive DBS attempts to control the stimulator according to feed-
back from biomarkers. Brown et al. reported the first aDBS
practice on patients, where the electrical energy consumption
is reduced by 56%, the UPDRS motor score is improved by
27%, and the speech intelligibility during stimulation is im-
proved from 61% to 70% comparing to conventional DBS
[6, 7]. In their study, the stimulator is triggered when the beta
band (13 − 35Hz) power of the local field potentials (LFPs)
recorded in STN exceeds a predefined threshold over a two-
hours-long test session. The superiority of aDBS is confirmed
by several follow-up studies with various stimulation strate-
gies on both mammals and patients [8].

Despite the success of these proof-of-principle studies,
aDBS still faces many challenges on its way to clinical ther-
apy. Limited feedback signals and control algorithms, in ad-
dition to lack of optimization are among the major obstacles
[9]. For example, aDBS has only relied on single feature (beta
power in most cases) as the feedback signal so far. However,
several studies show that beta power in the STN doesn’t cor-
relate with tremor, which suggests that aDBS with only beta
power may not properly control all the symptoms. To include
more features under extreme hardware resource constraints
imposed by the implantable aDBS system, we need to care-
fully select a set of features with balanced performance and
computational resource requirements. Besides, threshold for
the on-off control is determined heuristically so far. The effi-
cacy of aDBS can be further improved by optimized selection
of on-off threshold and stimulation parameters.



# Side Length Impair # Side Length Impair
1 R 320 s 12.7% 9 R 560 s 15.1%
2 L 475 s 10.5% 10 L 82 s 46.6%
3 R 384 s 10.4% 11 R 267 s 81.2%
4 L 351 s 89.7% 12 R 384 s 15.4%
5 L 261 s 55.9% 13 L 262 s 75.1%
6 L 305 s 78.0% 14 L 347 s 87.0%
7 R 559 s 50.0% 15 R 293 s 72.6%
8 L 509 s 19.6% 16 L 279 s 1.4%

Table 1. Clinical details of recordings. (Impair = motor im-
pairment)

In this work, we use state-of-the-art machine learning
techniques to face these challenges and investigate the first
online motor impairment prediction method with selected
features. Though some aDBS practices have successfully
combined beta activity with inertial sensor or neurochemical
recordings as feedback [10, 11], we focus on the critical in-
formation contained in LFPs to avoid the use of additional
sensors, lower the power consumption, and achieve relia-
bility. Overall, we explore 20 different LFP-based features
and employ classifiers with different settings to achieve the
best prediction performance and eventually enable an optimal
on-off control.

2. METHODS

In this Section, we describe our approach to predict motor im-
pairment online, using standard machine learning techniques.
In particular, we develop a labeling method for motor impair-
ment, with a time resolution higher than UPDRS motor score
and an accuracy higher than previous work.

2.1. Data

We study 16 LFPs from 12 Parkinson’s patients recorded at
the University of Oxford (Table 1). The LFPs are measured
in the STN when stimulation is off, along with contralateral
limb acceleration that is simultaneously recorded. Patients
who experience bilateral symptoms are recorded from both
sides. These recordings vary from 1 minute to 9 minutes at a
2 kHz sample rate with 4 channels at different depths.

We read off the LFPs in both monopolar and bipolar ar-
rangements, resulting in a total of 7 channels. For monopo-
lar LFPs, we remove the DC part and filter it using a 7th or-
der Butterworth filter bank with 2Hz stopbands centered at
50Hz harmonics to cancel the power supply noise. For bipo-
lar LFPs, we use the difference between adjacent contacts.

2.2. Labeling

In contrast to epileptic EEG, LFPs in Parkinson’s patients ex-
hibit no visually recognizable pattern during motor impair-
ment. In other words, there is no expert-marked parkinso-
nian LFPs. However, due to the inherent motor dysfunction

in PD, limb acceleration contains key information associated
with motor impairment. Arora et al. have achieved a promis-
ing accuracy in PD diagnosis based on smart phone tri-axial
accelerations, which inspires us to label LFPs with the limb
acceleration data [12].

We extract three features from the limb acceleration time
series, with a 1 s-long moving window and 0.5 s resolution:
tremor band power (spectral power in 3 − 5Hz), peak power
and peak power frequency (in 3 − 18Hz and corresponding
frequency). Then we use K-means with scikit-learn [13] to
cluster the limb acceleration in the feature space with 2 cen-
ters, which converges to the same separation in most cases.
The prediction threshold is set to default in this work, which
can be later adjusted by clinicians to improve the stimulation
efficiency. We remove those marginal data points that belong
to a refractory period, so that the data labeled as motor im-
pairment and healthy are independent. Then, we label the
cluster with higher-mean tremor band-power, peak power and
peak power frequency as our motor impairment cluster, since
some studies suggest that higher peak power frequency can
differentiate motor impairment from regular motion [14]. The
classifier training and test for patients with unbalanced labels
(Table 1) are more challenging compared to balanced cases.

2.3. Feature Extraction

We extract 19 features from 7 individual channels and one
feature across channels, with a 1 s-long moving window
and 0.5 s resolution. The analyzed features are described in
Table 2, and have been shown to exhibit a positive correla-
tion with PD symptoms in perivous studies. These features
cover a wide range of frequency spectrum and computa-
tional complexity, some of which rely on the performance
of the LFP recording system-on-chip (SoC). For example,
high-frequency oscillation (HFO) related features require a
sample rate higher than 1 kHz and filtering of stimulation
artifacts at high frequency; PAC related features require the
chip to perform Hilbert transform efficiently in hardware. In
order to select a subset of most relevant features, we calculate
the Analysis of Variance (ANOVA) p-value with scikit-learn
between each feature and the motor impairment label.

2.4. Classifier Design

We study four common classifiers in scikit-learn: auto-
matic shrinkage linear discriminant analysis (LDA), extreme
gradient-boosting trees (XGBoost) [20], random forest and
multi-layer perceptron (MLP) neural network for the predic-
tion of motor impairment label, where auto-shrinkage LDA
is popular in noisy systems and XGBoost has provided a
hardware-friendly solution to the epileptic seizure detection
[21].

Since motor impairment labels usually congregate in time,
regular cross-validation methods hold the risk of containing a
single label in either training or testing set. In practice, we use
the so called “block testing” method to alleviate this issue.



Feature Description and Related Studies
LowBeta Spectral power in 13− 20Hz
HighBeta Spectral power in 20− 35Hz
Beta CV Coefficient of variation of beta (13− 35Hz)

power
Broad PAC Phase amplitude coupling of broad gamma

(50 − 200Hz) amplitude and beta (13 −
35Hz) phase [15]

HFO PAC Phase amplitude coupling of HFO (200 −
400Hz) amplitude and beta (13 − 35Hz)
phase [15]

Beta Com Lempel-Ziv complexity of binarized beta
(13− 35Hz) power [16]

HFO Ratio Power ratio of sHFO (200 − 300Hz) and
fHFO (300− 400Hz)

Tremor Total spectral power in 3−5Hz and 7−9Hz
HFO Spectral power in 200− 350Hz
Theta Spectral power in 3− 7Hz
Gamma Spectral power in 60− 90Hz
MaxPower Peak power in 3− 18Hz
MaxPower Fre Corresponding frequency of peak power in

3− 18Hz
WE Wavelet entropy [17]
SE Sample entropy [18]
LowGamma Spectral power in 30− 50Hz
Hjo Act Hjorth activity [19]
Hjo Mob Hjorth mobility [19]
Hjo Com Hjorth complexity [19]
i− j Coh 5− 80Hz phase coherence between ith and

jth contact

Table 2. A complete list of features extracted from LFPs.

We divide the entire data for each recording into 20 blocks
with a 2 s buffer in between, so that train and test data are
independent. Then, we randomly select 75% of blocks for
training and the rest for testing, and repeat this experiment
for 100 times.

In the case of adaptive stimulation, missing a motor im-
pairment is more troubling than a false positive. Therefore,
we adjust the prediction threshold to achieve the best preci-
sion with at least 70% sensitivity in each experiment. The
classifier performance is measured by accuracy, sensitivity
and prediction lead time. The accuracy and sensitivity are
evaluated using each data point, while the lead is evaluated
with respect to the motor impairment onset, i.e., how early
ahead can the model raise an alert. We match every onset in
prediction with an onset in test data within a range of ±2.5 s,
then average the leads of all matching cases for every experi-
ment and recording.

We also store the feature weights in LDA and feature im-
portance in XGBoost to assist us in feature selection task. For
every feature, we count the number of recordings where it has
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Fig. 1. Performance across recordings. The upper part is the
classifier performance with default threshold, while the lower
is for the sensitivity-guaranteed threshold, both under default
settings. We report the accuracy (ACC), sensitivity (TPR) and
lead.

a large (top 10 or 20) weight or importance among all fea-
tures.

3. PERFORMANCE EVALUATION

We test our motor impairment prediction algorithm on each
patient with auto-shrinkage LDA, 1 s window size, 0.5 s res-
olution and bipolar feature set (referred below as default set-
ting) (Fig. 1). We achieve a median accuracy of 70.2%, sen-
sitivity of 81.2% and lead of 0.1 s. The performance signif-
icantly varies across patients due to lack of large amounts of
data (the reported patient recordings in Parkinson’s are usu-
ally several minutes long). Though the results cannot com-
pete with seizure detection problem in epilepsy, it achieves
a reasonable accuracy and sensitivity in such a noisy system
for most patients, except for those with more than 90% mo-
tor impairment or less than 100 s duration. By adjusting the
prediction threshold, we improve the sensitivity by 18.5% at
a cost of 9.7% reduction in accuracy.

3.1. Classifier Settings

We test different classifiers, window sizes and feature sets
to achieve the optimal balance between performance and
computational cost (Fig. 2). In our experiments, XGBoost
and MLP neural network achieve similar accuracy as auto-
shrinkage LDA, but at a much higher computational com-
plexity. Random forest, however, has the lowest accuracy
and sensitivity. In terms of window size, the accuracy re-
mains about the same until we reduce the window size below
1 s. Furthermore, very little improvement in performance
is achieved by increasing the resolution. Finally, the bipo-
lar feature set has slightly better accuracy than monopolar
feature set, while the beta power only achieves 56.6% of ac-



Fig. 2. Performance with different classifier settings. In the
upper, we study the auto-shrinkage LDA (LDA), random for-
est (RF), XGBoost (XGB) and MLP neural network (MLP).
In the middle, we study three different window sizes with res-
olution of half a window except for the 1s∗ with 0.1 s resolu-
tion. In the lower plot, we study the bipolar feature set, the
monopolar, and beta power (high and low-beta band powers).
The control performed with the default setting is presented on
the left, while each test alters only one setting.

curacy. This suggests that beta power leaves out some of the
key information in the LFPs. Therefore, our results provide
a strong evidence that multi-feature classifiers have a great
potential to improve aDBS.

3.2. Feature Selection

We evaluate our features in three different ways: ANOVA p-
value, auto-shrinkage LDA coefficient and XGBoost feature
importance (Fig. 3). The three methods lead to similar re-
sults. As expected, beta band power and PAC have a high
p-value, but are not necessarily the best features for the clas-
sifier. HFO related features are very useful in classification
regardless of the low p-value, which is similar to the case in
seizure prediction [21]. Wavelet entropy is useful, but can be
computationally expensive. The most exciting finding is that
the Hjorth parameters are not only strongly correlated with
motor impairment, but also useful in classification, which has
not been reported so far.
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Fig. 3. Feature importance. The dark columns shows the per-
centage of recordings (averaged over channels) that have a
p-value less than 0.01, or one of the top 10 features in auto-
shrinkage LDA or XGBoost. The light ones show the per-
centage that has p-value less than 0.05, or one of the top 20
features.

4. CONCLUSION

In this work, we explore the online motor impairment pre-
diction technique using LFPs, to support the next generation
aDBS. By clustering limb acceleration in the feature space,
we create an effective motor impairment label with high res-
olution. We further achieve a high accuracy and sensitivity
for most patients using an auto-shrinkage LDA classifier. The
performance with different feature sets shows the necessity
of introducing more features other than beta power. Further-
more, we observe that Hjorth parameters highly correlate with
motor impairmen, followed by the HFO related features that
supply useful information to the classification stage.
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