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Aktract-Bubble growth within a volatile droplet (liquid 1) at its superheat limit suspended in an 
immiscible nonvolatile field liquid (liquid 2) is analysed by solving the coupled energy and momentum 
equations for the temperature fields in liquids 1 and 2. A numerical solution is presented for a two-phase 
droplet modelled as a vapour bubble growing from the centre of liquid 1. It is shown that when the properties 
of liquids 1 and 2 are appreciably different, the bubble growth rate can experience a sign&mm increase or 
decrease when the thermal boundary layer extends into liquid 2. The present calculations are also compared 
with available data and the agreer&nt-is reasonable. 

1. INTRODUCI-ION 

An understanding of bubble growth within a super- 
heated liquid droplet is important in many appli- 
cations related to mixing of immiscible liquids. These 
include In g spills on water, preparation of emulsified 
liquids, fuel coolant interactions in postulated nuclear 
reactor accidents, and three-phase heat exchangers. In 
these applications a volatile liquid is often dispersed in 
another nonvolatile stagnant liquid in the form of 
droplets. Subsequent heating of the field liquid can 
lead to substantial superheating of the dispersed 
droplets, followed by homogeneous nucleation, and 
finally bubble growth. Our understanding of predic- 
tive methods for the initial conditions for growth 
defined by homogeneous nucleation is rather com- 
plete. Things are different for the bubble growth 
problem. 

Previous work has focused on the effect of the 
droplet on the flow and heat transfer in the external 
field liquid, with a concomitant neglect of processes 
within the droplet. For example, previous analyses 
have used one or more of the following approxi- 
mations: (1) quasi-steady heat transfer in the field 
liquid, (2) assuming the droplet to be a rigid sphere, 
(3) negligible temperature gradients within the droplet, 
(4) neglecting the finite volume of the vaporizing liquid 
and in effect treating the problem as though a bubble 
were growing in an infinite medium, and (5) treating 
part (or all) of the evaporating boundary as planar 
[l-8]. The first three assumptions are reasonable for 
high P6clet number (based on a droplet in a stream 
moving at U,) relative to the Jakob number-in 
particular Pe 9 Jd (this fact may be shown by 
nondimensionalixing the energy equation and bound- 
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ary conditions appropriate to this problem, followed 
by a simple ordering of terms). This condition is 
satisfied in many experiments involving droplets evap- 
orating at low superheats (i.e. far from their superheat 
limits) in a moving stream (e.g. [l-6]). 

The present work considers the limit of low P&let 
number and a droplet at its homogeneous nucleation 
limit-Pe + 0 while 54 - l-100. In this limit the 
evolution of the thermal boundary layer, from its 
movement in the droplet out into liquid 2 (Fig. l), must 
be determined. Neither the thin thermal boundary 
layer nor quasi-steady assumptions are universally 
valid. Unsteady heat transfer in both the droplet and 
ambient liquid must then be included in the analysis. 
The dynamics of growth (i.e. pressure field) may be 
effected from the beginning by the finite mass of 
vaporizing liquid (through its effect on the momentum 
equation) and this is included in the present study. 
While both the temperature field in the droplet and the 
bubble growth rate may be similar to growth in an 
infinite medium during the period in which the bound- 
ary layer resides in the droplet [Fig. l(a)], the problem 
is fundamentally different from bubble growth in an 
infinite medium because of eventual penetration of the 
thermal boundary layer into liquid 2 [Fig. l(b)]. The 
temperature field then becomes a two-domain 
problem. 

This paper presents a Solution to the equations 
governing the dynamics and heat transfer of bubble 
growth within a volatile liquid droplet when the 
droplet is at its limit of superheat in a comparatively 
stagnant, initially isothermal, nonvolatile field liquid. 
We adopt several assumptions commonly made in 
studies of bubble growth in infinite media (e.g. 
[P]-constant properties, incompressible liquids, 
Newtonian fluids no frictional heating, etc.). We also 
assume: (1) liquids 1 and 2 are mutually immiscible, 
(2) the droplet/field liquid system is initially at a 
uniform temperature To which corresponds to the 
homogeneous nucleation limit of liquid 1 at pressure 
PO, (3) a bubble grows from the centre of liquid 1 
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Fig. 1. Schematic illustration of bubble growth in a droplet suspended in an immiscible liquid. (a) Early stage 
where thermal boundary layer (6) is within the droplet; (b) later stage when boundary layer extends into 

liquid 2. 

[Fig. 2(a)] and its centre does not move, and (4) bubble 
oscillations and effects of evaporation-induced in- 
stabilities characteristic of vapour explosions [ 10, 1 l] 
are not considered (the present analysis thus applies to 
ambient pressures high enough that such effects are 
absent--P, > O-2-0.4 for most organic liquids [S]). 

The second assumption provides a direct relation 
between vapour pressure and ambient temperature (no 
dissolved gas effects), and it also implies that the 
bubble will reside entirely within the droplet during its 
growth (the case in which a bubble leaves the droplet 
sometime during growth is treated in Ref. 6). In an 
initially isothermal droplet the location of the critical 
size nucleus defined by homogeneous nucleation is 
indeterminate in that there are no constraints with 
which to determine its position within the droplet (for 
a nonisothermal droplet, however, it would be reason- 
able to assume the nucleus forms at the hottest 
location). The simplest case was, therefore, treated 
first+ bubble in the geometric centre of a droplet 
[Fig. 2(a)]. For an eccentrically located initial 
bubble-Fig. 2(b)-(i.e. initially nonisothermal drop- 
let), experimental evidence (e.g. [2]) has shown that 
when as little as 1 oA (by weight) of liquid has vaporized 
for many organic droplets, liquid surrounding the 
bubble essentially exists in the form of a thin film (due 
to the large liquid to vapour density ratio). Eccentricity 
effects will then be unimportant. Thermal resistance in 
this film may not, however, generally be neglected. 
Discrepancies between calculated and measured 
growth rates caused by assuming a concentric bubble 
configuration [Fig. 2(a)] vs. an eccentric location 
[Fig. 2(b)] might, most likely, be experienced during 
the early stages of growth when the thickness of the liquid 
film surrounding the bubble is still signigcant (in the 
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Fig. 2. Geometric model for bubble growth in a liquid 
droplet. (a) Model used in present analysis (pressures cor- 
respond to values at indicated interface& (b) eccentric bubble 
geometry for initially nonisothermal droplet such that initial 

bubble appears at liquid l/liquid 2 interface. 
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limit R, -B 0 this film thickness would simply be S,). 
However, the source of any discrepancies seems to 
point to experimental uncertainty and other effects not 
included in the present analysis as mentioned in 
Section 4. The neglect of buoyancy and other possible 
causes of motion of the growing bubble (there will be 
no surface tension driven or nonradial flow in this 
spherically symmetric system) is certainly valid during 
the early stages of growth due to the small initial 
bubble size--typically lo- ’ cm. Buoyancy effects on 
heat transfer to the internal bubble could conceivably 
become important sometime during growth. However, 
in view of the comparatively large volume occupied by 
the internal bubble early in its growth, we do not 
include this complicating effect in the present analysis. 

2. FORMULATION 

Consider a vapour bubble growing from the centre 
of liquid 1 which in turn is suspended in liquid 2 
[Fig. 2(a)]. The velocity, pressure and temperature 
fields in the two liquids are governed by the solution to 
the following set of continuity, momentum and energy 
equations for liquids 1 and 2: 

f; (r20i) = 0 

au* aui 
dt+u’&= ----+v* ii 2 [;!&z??)_y 

ac aq m dt+Uiar=‘Xi’a r2- 
r2 ar ( > ar 

and p” =fG) 

liquid l/liquid 2 boundary, the purely radial velocity in 
this problem is continuous there. This velocity is 
determined by integrating eq. (1) in the two domains of 
liquids 1 and 2 and applying an overall mass balance 
around the bubble. The result is 

R2 
ui= E-Ii, 

I.2 (7) 

‘which is the same as for bubble growth in an infinite 
medium [P]. 

The appropriate “Rayleigh” equation for this prob- 
lem is obtained by integrating eq. (2) over r twice: from 
R to S and again from S to Q), 

b av, I[ R 
dt+u*~=-l!5+v pi at f(;g(r22) 

20, -_ 
r2 dr >I (8) 

where fl= S or co. For r = R, 

20, av, Py-PR1=--2p,- 
R I ar r=R 

(continuity) (f) 

(momentum) (2) 

(enem (3) 

(phase equilibrium) (4) 

where i = 1 and 2. 
The boundary and initial conditions are the 

following: 

TI (rr, 0) =T2(r,0) =T, (W 
T, (R, 9 = T,(t) (W 

TI (S, 0 = WS, t) (W 

kl 3 ar s,t 
(54 

Tz(=J, 0 = To w 
R(0) = R, (W 
i(0) = 0 (33) 

and the interface heat balance around the bubble yields 

= pv h, Ii. 05) 

The initial conditions, To and R,, are the limit of 
superheat and initial unstable bubble radius, respect- 
ively, both defined by the critical nucleus state for 
homogeneous nucleation. These quantities are in- 
trinsic properties of liquid 1 and are a function of 
ambient pressure for a given nucleation rate. 

Since there is no mass transfer across the 

and for r = S, 

2012 PSI --Pm =- 
S -2042 -r,g * (10) 

r-s 

Combining eqs (7) and (S), integrating twice as in- 
dicated, and substituting eqs (9) and (10) yields the 
equation of motion for a spherical bubble growing 
from the centre of a spherical droplet: 

[RR+2d2,(l -9 -s$(l-9 

+4vl~(l_p~)=~-~[1+~~] 

(11) 
whereI= 1 - p2/pI and F = 1 -IJ~/I.Q. 

When S -+ 00, or in the early stages of growth when 
R 4 S(R, - lo-‘cm, So N 1 mm and crl > ur2), eq. 
(11) becomes identical to the classical Raykigh equa- 
tion for bubble growth in a superheated liquid of 
infinite extent. At later times, effects of the finite extent 
of liquid 1 reside in 5, ji and TV, *. Even for liquids 1 and 
2 of the same proper&s (ji = il = 0) the finite mass of 
the droplet will effect the temporal variation of bubble 
radius through the term involving a1 2 (if a surfactant is 
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present, though, trf2 + 0). The time domain during 
which P, + PO is, however, usually small compared to 
the total growth time (cf. Section 4). 

Neither an analytical solution to the coupled set of 
eqs (3)-(7), (11) nor a similarity variable exists for this 
set of equations and boundary conditions. Numerical 
methods must therefore be used. 

3. METHOD OF SOLUTION 

The main difficulty in obtaining a numerical sol- 
ution resides in the existence of two moving bound- 
aries: at the vapour/liquid 1 and liquid l/liquid 2 inter- 
faces. A coordinate transformation which immobi- 
lizes these boundaries-the so-called Landau 
immobilization-was used to simplify the determi- 
nation of the locations of these boundaries. This 
transformation is illustrated in Fig. 3 and expressed as 

T - R(f) 
~=qt)-_R(t); -r=f* (12) 

This transformation was first used by Duda et al. [ 121 
in connection with analysing the growth of a single 
vapour bubble in an unbounded liquid (in which there 
is only one moving boundary), later generalized by 
Saitoh [ 133, and subsequently used in connection with 
a variety of melting and freezing problems [14]. 

The following nondimensional quantities are now 
introduced: 

where Ja is the Jakob number of liquid 1. It is a unique 
function of pressure through the coupling of T,, To and 
PO at the superheat limit. As PO -+ P,, To -+ T, and Ja 
-+ 0 (see Fig. 4). A thin thermal boundary layer 
assumption is then clearly inaccurate for a droplet at its 
superheat limit at high pressures. 

Introducing eqs (12) and (13) into eqs (3)-(6) yields 
the transformed energy equations: 

with 

and 

Ai (TV, T) = Fz (s - R )/d, 

B,(q,r)= P/(S--R) 
(1W 

(1W 

C,(q, 7) = &R2 + 
f(SZ_--E17 9-r” 

S”(S- R)2 1 ti/di (15c) 

where i = 1, 2 and 

d, = 1 (0 < r~ c 1) (1W 

d,=y (1 <q<co) (16b) 
and 

P= q(S-R)+R. (17) 

The transformed initial and boundary conditions are 

~1(9,O)=G(‘1,0)= 1 (lga) 

Fl(O, T) = LR” (T) (lgb) 

and 

f=’ 
SO 
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Fig. 3. Coordinate transformation to immobilize moving boundaries in a bubble/droplet system. 
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energy equation again solved to get an improved value 
for the temperature field. This iterative process was 
repeated at each time step until all successively de- 
termined values of temperature at the nodal locations 
were within the specified accuracy. The calculations 
were advanced in time until liquid 1 completely evap- 
orated at which time 

PC 
0 01 0.5 1.0 I5 20 25 

17-S= (I-&)_l’J. (22) 

Further details of the numerical scheme, including a 
discussion of stability, convergence and accuracy, are 
described elsewhere [16]. 

PO ( MPd 

Fig. 4. Variation of Jakob number with ambient pressure for 
n-octane at its superheat limit. 

4. RESULTS AND DISCUSSION 

4.1. Introduction 
Five independent nondimensional groups control 

- - 

Tl(l, T) = Tz(l, ?) (18c) 

T~(oo. T) = 1. 

The interface heat balance [eq. (6)] is 

the evolution of bubble and droplet radii: Ja, e, p, y and 
C. Results presented encompass properties typical of 
hydrocarbon (liquid l)/glycerine (liquid 2) and hydro- 
carbon/water combinations. fi and 7: were fixed at 

(184 values typical of n-alkane/glycerine combinations, and 
the other parameters were varied to show the form of 
the solution. We) 

The solution may be broadly divided into two 
regions: (1) a period during which the thermal bound- 

(1% 
ary layer resides in liquid 1 and growth is similar to 
growth in an infinite medium, and (2) a later stage of 
growth characterized by thermal boundary layer pen- 
etration into liquid 2. Finally, the transformed momentum equation 

[es_ (1 1)] is 

‘~ritZR’7[I-~~i_~[l_t~] 

++_B;] =a,,-%[I+%;]. (20) 

4.2. Early stages of growth 

Equations (14)-(20) complete the formulation of the 
problem. No assumptions regarding the thickness of 
the thermal boundary layer, or neglect of thermal 
resistance within the droplet, have been made. 

A finite difference technique was used to solve 
eqs (14H20) for Z (a r), T&. T), % (TX P” 0) and I? (T), 
with a simple mass balance around the droplet relating 
S to rT as 

S = [1 +&RJj1’3. (21) 

In the early stages several aspects of bubble growth 
in a droplet are very similar to growth in an infinite 
medium. This is illustrated in Fig. 5, which shows the 
evolution of P,, TV and R for a bubble growing in an n- 
octane droplet in glycerine at Ja = 10. The initial state 
of the droplet-T0 and P,,(T,)-corresponds to the 
homogeneous nucleation limit (for a nucleation rate of 
lo5 nuclei/cm3 - s), and the asymptotic temperatures 
and pressures correspond to saturation conditions. 
The results shown in Fig. 5 exhibit a form similar to 
bubble growth in an infinite medium (because the 
thermal boundary layer is still deep within liquid 1 for 
times shown in Fig. 5). 

The Crank-Nicholson method was used to integrate 
the energy equation at each time step, with second- 
order accurate central differences used to discretize eq. 
(14) [lS]. The momentum equation-eq. (20)-was 
solved using a fifth-order Runge-Kutta method. 

To get the computations started, R was artificially 
increased by a factor of 10-4-10- ‘. Then at each time 
step n the following procedure was used. First the 
mom:ntum equation was integrated to obtain R n+1 
and R “+ l. The coefficients in the energy equation- 
Ai, Bi and Ci-were calculated and the set of dis- 
cretized energy equations was solved simultaneously 
to yield a first approximation to the temperature field 
at time level n + 1. The discretized form of eq. (19) was 
used to determine Fv at n + 1, and the discretized 

The temperature field within the droplet during this 
early period is shown in Fig. 6(a) for the special case Ja 
= 10. The evolution of both the thermal boundary 
layer (8 where F --, 1) and vapour temperature f (II = 0) 
is indicated. For T > 5 x lo-“, F(q = 0) + 0 and the 
analysis becomes a purely thermal problem; the ther- 
mal boundary layer is still close to the bubble wall 
[8 - 10m4 (s - I? )]. The bubble is also still quite small 
at this time (cf. Fig. 5) and the liquid l/liquid 2 
interface has hardly expanded. 

4.3. Later stages of growth 
Eventually the thermal boundary layer extends into 

liquid 2 before liquid 1 completely evaporates and the 
energy equation for liquid 2, and associated matching 
conditions at the interface [eqs (18) J, must be included 
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Fig. 5. Early time variation of vapour pressure, vapour temperature and radius of a bubble growing in a 
superheated n-octane droplet. Initial conditions correspond to the kinetic limit of superheat of octane at the 

indicated pressure: Ja = 10, y = 1, C = 5, E = 0.96, f = - 1.2. 
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Fig. 6. Variation of temperature with position in a droplet. (a) Early times such that thermal boundary layer 
(a) is still within the droplet and vapour temperature is changing with time (T z- 0 at r) = 0) (Jo = 10,~ 

= 0.96, C = 5 and y = 1); (b) later times indicating boundary layer penetration into liquid 2. 



Non-explosive bubble growth 2255 

in the analysis. Figure 6(b) illustrates the temperature 
field at various times during this later stage for Ja 
= 10, c = 5 and y = 1. For r > 0.006 the thermal 
boundary layer extends into liquid 2 and the tempera- 
ture field is shown to become linear quickly. This is 
caused by rapid thinning of the liquid film of thickness 
(3 - IT ) surrounding the bubble. 

The effect of thermal boundary layer penetration in 
liquid 2 on bubble growth rate is shown in Fig. 7(a) 
and (b) for the indicated ranges of Ja, y and C. As 
expected, growth is independent of liquid 2 properties 
during the period in which the thermal boundary layer 
resides in liquid 1. However, when penetration into 
liquid 2 does occur, the bubble (and droplet) growth 
rate can undergo rather dramatic changes, depending 
on the relative values of c and y. For c z=- 1, a less steep 
temperature gradient exists in liquid 2 than in liquid 1. 
This in turn creates a gradient in liquid 1 at q = 1 
larger than would be realized if [ = 1 (i.e. when the 
properties of liquids 1 and 2 are identical). This 
increased temperature gradient at q = 1 translates into 
a larger temperature gradient at q = 0 (the bubble 
wall). The bubble then should experience an increase in 
its growth rate. The opposite is true when [ < 1. This 
behaviour cannot be predicted from an analysis which 

‘\ , 
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Fig. 7. Later evolution of bubble radius (R ) with time (r). 
(a) Effect of c for y = 1 (properties of n-octane at its superheat 
limit at 1.2 MPA); (b) effect of y for c = 1. Fanning of curves 

signify boundary layer penetration into liquid 2. 

(1) neglects the thermal resistance of liquid 1, and/or 
(2) assumes results from growth in an infinite medium 
apply to this problem. 

Similar results occur when y varies while C is fixed. 
This is shown in Fig. 7(b) for Ja = 10. The bubble 
grows progressively faster as y decreases. For example, 
a lowering of y (for t = 1) when p 1 Cpl is tied (liquid 2 
is changed) means that the heat capacity per unit 
volume of liquid 2, p2C,*, is progressively increased. 
The ability of liquid 2 to supply more heat to liquid 1 
then increases as y decreases, and the growth rate 
correspondingly increases when the thermal boundary 
layer enters liquid 2. 

The very early period of growth wherein the pres- 
sure field is still changing is undetectable on the scale 
of Fig. 7. The region around the origin in Fig. 7 is 
shown on an expanded scale in Fig. 5. For the time 
scales in Fig. 7, P * P,, and F (‘I = 0) N 0, though there 
will always (at least numerically) be a nonzero dif- 
ference in pressure across the evaporating boundary. 
The effect of this small pressure difference on growth 
rate is negligible for conditions of the calculations 
appearing in Fig. 7. 

As liquid 1 evaporates, both the internal vapour 
bubble and the droplet as a whole expand. Figure 8 
illustrates a typical evolution of S and R for Jn = 50 
for one representative set of conditions. When R + s, 
the droplet is completely vapourizcd. It is worth noting 
that the droplet is nearly completely taken up by 
vapour with just a thin layer of liquid 1 around it (s 
- R ) when 7 z- 2 x 10e4 for conditions of the calcu- 
lations shown in Fig. 8. 

As the Jakob number increases, the time at which 
liquid 2 effects growth (i.e. when 3 > s - R ) increases 
and the characteristic “fanning” of the growth curves 
shown in Fig. 7 originates at progressively larger times. 
For sufficiently high Jakob number, the thermal 
boundary layer remains within liquid 1 throughout 
nearly the entire period of growth, except when s + R 
at which time the boundary layer must of course 
contact the liquid l/liquid 2 boundary. Growth is then 
independent of liquid 2 properties and resembles 

2 

Fig. 8. Evolution of both bubble (R ) and droplet (s ) radii for 
Jo = 50, C = 5.0 and y = 1. Curves terminate when R + S 

= Rr and the droplet is completely evaporated. 
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growth in an infinite medium. Figure 9 illustrates this 
for Ja = 100. At this high Jakob number,r (‘I = 0) + 0 
at times much shorter than indicated in this figure. 

Two factors affect the bubble and droplet expansion 
rate: (1) the pressure difference AP = P, - PO through 
the equation of motion, and (2) the temperature 
difference AT = T, -TV as it determines the heat 
transfer rate to the bubble. The initial values of these 
“driving forces” are directly related to PO through the 
nucleation rate, but their subsequent evolution as 
shown in Fig. IO- for the octane/glycerine system is 
governed by the dynamics and thermal analysis pre- 
sented here (the thermal boundary layer resided in 
liquid 1 for. time scales indicated in Fig. 10). Variations 
in Ja are in effect. variations in PO (Fig. 4). ‘As PO 
increases (Ja decreases) the initial AT and A P, defined 
by the superheat limit, both decrease as shown in 
Fig. 10. A lowering in AT in particular has a more 
pronounced effect on -growth rate than does a lowering 
in AP be&use dynamic effects are very quickly dis- 
sipated while the bubble has hardly expanded (Fig. 5). 
A reduction in AT (increase in PO) results in a reduced 
growth rate (comparatively less heat supply to the 
bubble), and a longer time to evaporate liquid 1. This is 
evident by comparing the time scales in Figs 7-9. The 
effect of increasing PO noted above has been exper- 
imentally observed [S]. 

It is interesting to explore the similarity of purely 
heat transfer controlled bubble growth in a droplet (i.e. 
finite volume) to the bubble growth law characteristic 
of an infinite medium. For this purpose, we recall that 
the temporal variation of R for growth in an infinite 
medium has the form 

R--r (23) 

where q = l/2. For purposes of comparison, calcu- 
lations for Ja = 10, C = 1 and e = 0.9995 (a hypo- 
thetical value chosen so that s +‘& at a time large 
enough to illustrate the similarity clearly) are displayed 
in Fig. 11 on a logarithmic scale for three values of y. 
For r < 1.1 x lo- 2 in Fig. 11 q = l/2 regardless of 
liquid 2 properties. Growth is then identical to a 

Fig. 9. Evolution of bubble radius within a droplet when the 
thermal boundary layer resides within the droplet throughout 

its entire evaporation. JO = 100 and E = 0.995. 

bubble in an infinite medium of liquid 1 because the 
boundary layer is still within the droplet during this 
period. For y = 1 the indicated line is identical to the 
asymptotic heat transfer limit (e.g. [9]) regardless of 
placement of the thermal boundary layer. On the other 
hand, for genera1 y and T s 1.1 x lo- 2 in Fig. 11 the 
thermal boundary layer extends into liquid 2. q may 
then be larger or smaller than l/2. When y > 1, the 
temperature gradient in liquid 2 is larger than the 
corresponding gradient in liquid 1. The growth rate 
decreases compared to the infinite medium case and q 
< l/2. The opposite is true when y -G 1. Eventually as 
6 s S -R, the thermal resistance of liquid 1 becomes 
of negligible importance, and the temperature field 
resembles that which would exist for a bubble growing 
in an infinite medium of liquid 2, though p, and h, 
would correspond to liquid 1; again, q + l/2. In 
general, q will be a function of the depth of penetration 
of the thermal boundary layer into liquid 2. 

4.4. Comparison with experiment 
The model developed here applies under non- 

explosive, initially isothermal, conditions such that the 
evaporating boundary is smooth, the bubble does not 
oscillate and there is no relative velocity between 
droplet and ambient. No studies have been reported 
which conform to these conditions in all respects. In 
particular, most previous studies employed slowly 
moving droplets. In view of the small thermal dif- 
fusivity of most liquids-a = 10-3-10-4 cm2/s-the 
Pkclet number can still be quite large even for slowly 
moving droplets (U, - 1 cm/s). Values have ranged 
from about 10 to over 104. Only the experiments 
performed by Apfel and Harbison [l l] corresponded 
to Pe = 0. But the conditions of their experiments were 
such that vaporization was explosive, the droplets 
oscillated and they had an ill-defined shape during 
evaporation. Another experimental method [8] in- 
volving suspended droplets at their superheat limits 
could reach conditions such that evaporation was slow 
enough that droplet oscillations were never observed 
(i.e. pressures above atmospheric). However, the drop- 
lets were slowly moving and in particular Pe - 100, so 
the application of the present analysis to data obtained 
from this method must be discussed further. 

During the period in which the thermal boundary 
layer resides in the droplet, the present analysis can still 
be applied even for a droplet which is moving. This is 
because conditions outside the droplet will not effect 
growth when the boundary layer resides in the droplet 
(cf. Fig. 7). Deviations between measured droplet radii 
and values predicted from the present analysis might 
be expected only after boundary layer penetration in 
liquid 2 because then the energy equation for liquid 2 
enters the analysis. This equation must contain ad- 
ditional contributions (of order Pe/Ja3) in the convec- 
tive terms to account for translational motion of 
liquid 2 (e.g. [2]), while the energy equation of liquid 1 
is unaltered (assuming that this slow external move- 
ment does not induce circulatory motion in liquid 1, 
which we neglect in view of the relative thinness of the 
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Fig. 10. Effect of Jakob number on evolution of vapour pressure, Pv, and vapour temperature, TV, within a 
bubble growing in an n-octane droplet suspended in glycerine. Large time asymptotes correspond to 
saturation temperature (a)and pressure (b) at ambient pressure PO (b). Initial conditions (small time 
asymptotes) are iimit of superheat at PO (a) and vapour pressure within critical size nucleus (b)_ AT and BP 

indicate temperature (a) and pressure (b) driving forces for bubble growth. 

Fig. 11. Effect of time (1) on bubble growth exponent [eq. 
(23)] for heat transfer controlled growth of a bubble in a 
droplet at various 7, and C = 1, G = 0.9995 (a hypothetical 
value). Thermal boundary layer penetrates into liquid 2 at T 

> o-01 1. 

liquid 1 layer around the internal bubble as previously 
discussed). The momentum equation is also altered by 
external motion, but its effect on the temperature field 
will be felt only during the very early period of growth 
during which the pressure within the bubble drops to 
its satur&ion value. During this period the radius 
characteristically hardly changes so the effect of drop- 
let translation on the temporal variation of radius 
through the momentum equation is negligible. As a 
result, measurements obtained using the floating drop- 
let technique [S] were compared with the prcscnt 
calculations. The method was modified to provide a 
chamber with flat glass sides so as to eliminate 
distortion due to curvature. Only s (overall droplet 
radius) was measured, as the experimental method did 
not allow an unambiguous determination of R. 

Figure 12 compares predicted and measured droplet 
radii. Experimental conditions were such that S, 
~0_06cm, Jn - 4, E = 0.91 and Pe = 145 with n- 
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Fig. 12. Comparison between calculated droplet radii and 
values measured using the apparatus of Ref. 8 for an n-octane 
droplet boiling in glycerine at Ja = 4, E = 0.91, y = 1.67, c 
= 4.1 and Pe = 145. The dotted line is a quasi-steady solution 

[ 1,2] from eq. (24). 

octane as the droplet (liquid 1) and glycerine liquid 2. 
Vaporization at these conditions was non-explosive, 
though the n-octane droplet was still at its superheat 
limit. The time for development of a steady vapour 
temperature and pressure was sufficiently small on the 
scale of Fig 12 to be undetectable_ The agreement is 
reasonable for the period in which the thermal bound- 
ary layer resides in the droplet. When 7 > 0.02 the 
boundary layer extends into liquid 2 and the energy 
equation for liquid 2 enters the analysis. 

An analytical solution for boiling of a droplet in 
another immiscible liquid was presented by Sideman 
and co-workers Cl, 21 for the extreme assumptions of: 
(1) no radial convection, (2) constant and uniform 
temperature in liquid 1, (3) quasi-steady heat transfer 
in liquid 2 such that the temperature field adjusts 
instantaneously to changes in droplet radius, (4) in- 
viscid and uniform translatory motion of liquid 2 
around the liquid 1 droplet and (5) partial heat supply 
to the bubble in a spherical droplet. Heat transfer was 
assumed to be entirely by conduction and translational 
convection in their analysis. These assumptions are 
inappropriate during the early period of growth when 
the boundary layer resides in liquid 1 and the tempera- 
ture field is transient. It. is a better approach after 
boundary layer penetration in liquid 2 when trans- 
lational convection may be important (for a moving 
droplet) and the quasi-steady approximation may be 
more reasonable. In variables defined here, their 
solution is the following: 

2 

I> 113 

x (1 -a)JaPe1’z7 - 1 . (24) 

Equation (24) was developed for a geometry consisting 
of a puddle of liquid at the bottom of a droplet with a 
planar liquid/vapour interface. Figure 12 compares 
droplet radii (s ) predicted by eq. (24) (dotted line) with 
the present solution. The over-prediction of eq. (24) 
during the period in which the boundary layer resides 

in liquid 1 is due to the quasi-steady assumption and 
the neglect of heat transfer in the droplet. The present 
analysis accounts for the temporal variation of the 
temperature field in liquid 1 which results in a slower 
growth during this early period. 

Additional experiments are needed to conform more 
closely to the conditions of the present analysis. These 
experiments should employ levitated droplets at high 
pressure to reach truly isothermal conditions and 
improved photographic methods to increase the ac- 
curacy of the measurements. Work is continuing along 
these lines. Finally, the present solution may be useful 
as a basis for comparison with future treatments of this 
problem, similar to the value full solutions to the 
governing equations for bubble growth in infinite 
media [ 17,181 have had as a test of the value of 
corresponding approximate treatments [ 19,203. 

5. CONCLUSIONS 

Bubble growth in an isolated initially isothermal 
liquid droplet at its superheat limit in another im- 
miscible liquid was analysed by solving the full set of 
coupled momentum and energy equations for the 
droplet and ambient liquid. For sufficiently different 
properties of liquids 1 and 2, the bubble growth rate 
within liquid 1 can be increased or decreased. During 
an early period of growth, or for large Jakob numbers, 
the thermal boundary layer resides entirely within the 
droplet and growth is nearly identical to bubble 
growth in an infinite medium. Only when the thermal 
boundary layer penetrates into liquid 2 do the pro- 
perties of liquid 2 effect growth. Qualitative agreement 
of the present model with experiments involving 
slowly moving droplets exists for the period in which 
the boundary layer resides in the drop. There exists a 
need for more experiments to resolve precisely the 
effects of penetration of the thermal boundary layer 
into liquid 2. 
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NOTATION 

heat of vaporization of liquid 1 
Jakob number [eq. (13)] 
thermal conductivity of liquid i (i = I, 2) 
P6clet number ( = U,S,/a,, where U, is a 
characteristic free stream velocity) 
pressure within liquid i 
pressure at infinity in liquid 2 
pressure within liquid 1 at T = R 
pressure within liquid 1 at r = S 
pressure within liquid 2 at r = S 
equilibrium vapour pressure of liquid 1 
radial position 
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bubble radius 
initial bubble (or critical nucleus) radius 
velocity of bubble wall 
droplet radius 
initial liquid droplet radius 
time 
temperature within liquid i 
homogeneous nucleation limit of liquid 1 at 
saturation temperature of liquid 1 at PO 
vapour temperature within bubble 
radial velocity in liquid i 

PO 

Greek letters 
therma diffusivity of liquid i 

= a2/a1 

density ratio (= 1 - pv/pl ) 
density ratio ( = 1 --p2/pi) 
conductivity ratio ( = k,/k,) 
density of vapour i 
density of liquid i 
surface tension of liquid 1 
liquid l/liquid 2 interfacial tension 
kinematic viscosity of liquid 1 
viscosity of liquid i 
viscosity ratio ( = 1 -p2/p1) 
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