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INTRODUCTION

If two immiscible liquids of different volatility are mixed such that one of the liquids (the volatile
one, hereafter referred to as liquid 1) is dispersed in the other (liquid 2) in the form of droplets, the
droplets may be heated by direct contact heat transfer across the liquid/liquid interface. This heat
may be transferred by

1. Conduction or convection
2. Nucleate boiling
3. Film boiling

In the absence of preferred nucleation sites, single-phase conduction or convection could exist far
beyond the normal saturation state of liquid 1. In this event liquid 1 is said to become superheated.
The stable, superheated state can exist as long as the droplet does not come in contact with a
vapor phase with which it is in equilibrium. An upper limit to the temperature any liquid can
sustain at a given pressure (or a lower limit of pressure at a given temperature) exists at which
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a phase change must occur. This temperature is called the superheat limit. At this temperature
an intrinsic phase transition is initiated by the molecular processes of homogeneous nucleation
within the bulk of the encapsulated droplet. These processes are characterized by creation of a
vapor phase within bulk liquid in the form of tiny (~ 10 A diameter) bubbles (critical size nuclei)
such that they are in metastable equilibrium with the surrounding liquid. Subsequent growth of
these initial bubbles completes the phase transition process and is manifested by the boiling-up
of the superheated liquid droplet. Two steps in the phase change process relevant to superheated
liquid droplets are therefore

1. An initial stage during which microscopic bubbles form within the droplet by molecular
processes.

2. A second or bubble growth stage during which the initial microscopic bubbles grow as the
liquid droplet vaporizes.

Detailed discussions of both stages are given in this chapter.

Bubble growth beyond the critical size is governed by, in turn, the effects of molecular evaporation
across the phase boundary, surface tension, liquid inertia, and thermal diffusion. The compendium
of these processes is manifested by the macroscopic behavior of the droplets when they vaporize.
Superheated droplets may vaporize in an explosive-like manner and generate blast waves in the
surrounding liquid, or boil quiescently as characterized by a comparatively gradual disappearance
of the liquid phase and a concomitant emergence of a vapor bubble within the droplet. What little
is known about the intensity of vaporization of droplets at their superheat limit suggests that
boiling intensity is influenced by such factors as ambient pressure in the field liquid, and physical
properties.

This chapter reviews the processes of initial bubble formation and growth within liquid droplets
at the superheat limit. The essential configuration considered is that of droplets of a pure volatile
liquid (liquid 1) encapsulated in an ambient nonvolatile field liquid (liquid 2) of infinite extent. A
summary of applications in which this configuration may be encountered in industrial settings is
given in the next section. The problem is then formulated in more formal terms in the following
section. A review of the mechanism by which bubbles are created within superheated liquids is
presented in the next section, and the bubble growth problem is then discussed. Those aspects of
bubble growth in infinite media related to the present problem are reviewed and modifications to
the classical theories required by the finite mass of the vaporizing liquid are discussed. Finally,
experimental methods used to provide the foundation of our understanding of bubble nucleation
and growth within superheated liquid droplets are described in the final section.

APPLICATIONS

The energy released by a liquid at its limit of superheat is approximately equivalent to the
sensible heat above normal saturation. If a significant fraction of this energy appears in the form
of a thermal detonation wave, or if bubbles grow at a rate which exceeds the ability of the surround-
ing liquid to acoustically respond, the resulting phase transition is called a “vapor explosion.” This
energy is orders of magnitude less than that typical of chemical explosions. However, the destructive
capability of vapor explosions, produced when a hot nonvolatile liquid comes into intimate contact
with a cold volatile liquid, is well documented in the literature [1-3].

To bring a liquid to a state at which there is a high probability for the type of phase transition
characteristic of a vapor explosion, the liquid must be devoid of any extraneous nucleation aids.
This requirement will most readily (though not always) be satisfied when one liquid is dispersed
in another relatively nonvolatile liquid with which it is immiscible. In this case, the “container”
for the volatile liquid is the liquid/liquid interface. As the structure of such an interface is not funda-
mentally different from that of the bulk, the only way for a phase change to occur would be by
the same molecular processes as that under which critical size nuclei form. The attendant liquid
state will correspond to the deepest possible penetration of the liquid into the domain of metastable
states (due account being taken of the effect of the interface)—the limit of superheat—and therefore
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create the possibility for a vapor explosion. The precise mechanism of vapor-explosive boiling is
not well understood due to a lack of fundamental experiments. Our observations and understanding
of the phenomenon are at present rather qualitative. Vapor explosive boiling has been observed
during spillage of liquified natural gases on water, preparation and burning of certain alternative
fuels, melt-down of nuclear reactor fuel rods in a (as yet hypothetical) nuclear reactor accident,
mixing of water and molten metal during the cold mold arc-melting and casting processes, and
dissolving of molten salt in water during paper pulping operations. The effect of these explosions
have ranged from detrimental, creating a hazard to life and property [3] to potentially beneficial
in the case of burning alternative fuels [4, 5].

Conditions which must be satisfied for vapor explosions to occur vary widely and defy generaliza-
tions. Though several reviews have recently appeared on the subject [1, 3, 6, 7] no unique mechanism
has yet been formulated which can explain all observed phenomena. At present, two necessary
conditions for a vapor explosion appear to have received general agreement:

1. A volatile and nonvolatile liquid must come into intimate contact.

2. The temperature of the nonvolatile liquid must be heated to some well defined minimum
value which is greater than the boiling point of the volatile liquid—below the threshold tem-
perature, or well above it, vapor explosions will not occur.

The potential for vapor explosions appears to be influenced as much by the way the two liquids
are brought together as it is by the heating requirements of the volatile liquid: even if the requisite
temperatures are achieved, the method of mixing apparently influences the ability of the volatile
liquid to vapor explode.

Other factors such as ambient pressure [8—11], liquid phase composition [12-15], and wetting
characteristics of the two liquids [16, 17] have been observed to effect the intensity of boiling after
the triggering mechanism of homogeneous nucleation has occurred. Thus by itself, more information
must supplement the preceding necessary conditions in order to provide a complete account of the
potential for vapor explosions in any interaction between two liquids of different volatilities. T.he
missing information is provided by the dynamics of growth of the initial bubble. These dynamics
are influenced by precisely those factors which have been observed to influence the intensity of
boiling of a liquid at its superheat limit. Thus we may conjecture a third condition for a vapor
explosion which involves bubble growth:

3. Growth of the initial bubble must be sufficiently rapid so as to produce shock waves in the
surrounding liquid.

The production of shock or blast waves will usually require a high pressure source (vapor in the
bubble itself) and rapid expansion of the liquid/vapor interface. Experimental evidence is suggestive
of the necessity of a large enough pressure initially existing in the bubble to support such a shock
wave [11, 18].

The necessity to consider the dynamics of bubble growth in connection with vapor explosion
has been recognized [e.g. 2, 3, 6, 8, 19]. Little work has, however, been done to quantify the dynamics
and heat transfer of bubble growth for the configuration most typical of that encountered as a
result of the type of mixing processes already outlined—droplets of one liquid in another. Most
previous work in connection with the vapor explosion problem has simplified the problem by not
considering the finite extent of the vaporizing liquid-droplet, and has, instead, drawn on results for
bubble growth in infinite media to explain qualitative expectations for phenomenon associated
with droplets [e.g. 2, 3, 20]. This extension can be valid for certain ranges of the important param-
eter which will be shown to govern bubble growth in the fifth section. In the general case, however,
discrepancies in the growth rate and therefore in the expectations one is likely to predict pertaining
to the rate at which the liquid phase vaporizes may be expected.

Finally, the emphasis in this section has been on problems associated with the vapor explosion
phenomenon. The present work is, however, not about vapor explosions, but about bubble growth
in droplets. The perspective of vapor explosions is convenient to show the importance of the
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essential configuration considered in this chapter—droplets of a volatile liquid encapsulated in a
nonvolatile liquid of infinite extent. In other respects, the subsequent discussions are not restricted
to any unique application.

DESCRIPTION OF THE PROBLEM

Figure 1 illustrates the basic geometry of interest in this chapter. A spherical droplet of a volatile
liquid (liquid 1) is suspended in a nonvaporizing nonvolatile liquid of infinite extent (liquid 2). The
two liquids are mutually immiscible. The nonvolatility of liquid 2 is such that the potential exists
for altering its thermodynamic state to induce intrinsic bubble formation within the bulk of the
liquid 1 droplet without jeopardizing the stability of its stable state. This requirement means that
the normal saturation temperature of liquid 2 is higher, at a given ambient pressure, than the limit
of superheat of liquid 1 at the same pressure. Both liquids are assumed to be free of any extraneous
nucleation aids which would tend to initiate a phase transition at conditions less extreme than
would be realized in the presence of such aids. Thus we assume an absence of any dissolved gases,
unwetted solid particles, or minute gas bubbles in both liquids. In this event the present work will
be distinguished from previous studies of phase change in droplets suspended in immiscible liquids
[e.g. 21-26] in that the droplets considered here remain liquid at reduced temperatures typically
greater than 0.9 corresponding to reduced pressures greater than about 0.04 before boiling.

The problem considered is as follows. At time t = 0 a vapor bubble (created by the process of
homogeneous nucleation) appears within the bulk of the liquid 1 droplet. The initial temperatures
of liquids 1 and 2 are the same and there is no relative motion between the droplet and the field
liquid. The unstable equilibrium of the bubble is then perturbed in such a manner that the bubble
starts to grow. This perturbation may be an incremental increase in bubble size beyond the initial
value corresponding to static equilibrium, and be brought about by a slight reduction of ambient
pressure, P,, or increase in ambient temperature, T,. Subsequent growth of the bubble consumes
the volatile liquid 1 until the initial mass of the droplet is entirely vaporized, after which a vapor

XFIELD LIQUID (LIQUID 2)

OROPLET (LIQUID 1

_— - B —_— T - — Figure 1. Schematic of droplet/field liquid
system illustrating appearance of initial bub-
B ble (t > 0).
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bubble of finite size in static equilibrium with liquid 2 remains. The radius of this final bubble is
Ri=(1-¢7'7%, ()

At this radius, liquid 1 has completely vaporized. For a bubble growing in an infinite medium of
liquid 1 (i.e, S, — o), the vapor bubble in principle grows to infinite size.
We now proceed to a discussion of the two main developments pertinent to the present work:

1. The initial conditions for bubble growth characterized by formation of critical size nuclei
within the bulk of the droplet.
2. Growth of the initial bubble within the droplet.

A review of those aspects of nucleation theory relevant to predicting the initial conditions for bubble
growth is given in the fourth section. A discussion of the bubble growth problem itself is presented
in the fifth section.

INITIAL CONDITIONS FOR BUBBLE GROWTH
Superheated Liquids

The terms “superheated liquids” and “limit of superheat” have been used in connection with the
initial liquid droplet state at which vaporization is initiated. In this section we wish to more precisely
define these terms and to present useful methods for quantitative prediction.

The essential requirement of a superheated liquid is transgression of its normal or saturation
phase boundary. “Normal” in this sense is rather arbitrarily defined. By convention the term refers
to a special case of equilibrium across a flat-phase boundary, r - co where r is the radius of
curvature of the phase boundary.

Figure 2 illustrates two of a possible infinity of paths a pure liquid may follow to transgress its
normal-phase boundary. The illustration is made on conventional pressure-temperature and
pressure-volume projections on a phase diagram. The two paths illustrated are isobaric heating
(a-c) and isothermal decompression (b-c). The latter path is more commonly associated with
cavitation processes. The solid line illustrated in Figure 2A which separates the stable liquid and
stable vapor regions corresponds to the normal equilibrium boundary. Transgression of this phase
boundary implies an absence of a planar interface between the two phases. Hence any vapor present
within the superheated liquid regions shown in Figure 2 must be in the form of bubbles (r < o).
The radii of curvature of these bubbles defines the depth of penetration of the liquid in the meta-
stable region.

The initial bubbles are in mechanical equilibrium. Hence,

= 20,

P+ii-P,=—>0 2

where ii is the outward normal to the bubble surface.

The gas pressure, P, is not precisely the same as the equilibrium vapor pressure, P(r — o) at
temperature T. This is seen by considering the consequences of phase equilibrium across flat and
curved phase boundaries illustrated in Figure 3. In both configurations, equality of chemical poten-
tials defines equilibrium. For the planar inteface in Figure 3A

H(P, T) = u(P, T) (3a)

while for equilibrium between the gas in the bubble and the surrounding liquid (Figure 3B) at the
same temperature,

WP, T) =" (P,T) (3b)
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Assuming, for simplicity, the liquid to be incompressible and the gas phase to be ideal, it can be
shown that

(P, T) — (P, T) = v/(P, — P,) (C)]
and
P,
WP, T)— p'(P,T) = AT In P S)]

Combining Equations 2—5 yields the desired result:

P ~ P, exp [% P, — P,)] (6a)

For multicomponent mixtures a similar expression applies where P is the partial pressure of com-
ponent i in the ideal gas mixture within the bubble [29]

P~ Py, exp [% (P, — Ps)] (6)

P, is the mixture bubble point pressure of gas-phase composition y;,, and v; is the corresponding
liquid partial molar volume of component i. The exponential terms in Equations 6 are usually very
close to one for liquids at the superheat limit. Figure 2 schematically illustrates the locus of vapor
states defined by Equation 6a for a pure liquid.

The external liquid pressure, P,, may be either compressive on the bubble wall or extensive (as
in the case of tensile strength measurements [30—32]). In the present discussion we shall be concerned
primarily with compressive ambient liquid pressures so that

P-P =1 (1)

defines the initial equilibrium state of the bubble.
For a vapor bubble P > P,and r < co. As a consequence T(P,) > T(P,). In principle all allowable
liquid states are those for which T(P,) < T..

Thermodynamic Limit of Superheat

There is an absolute limit to the extent to which a liquid droplet can be isobarically heated. At
this limit the liquid is inherently unstable with respect to any small perturbation in its thermo-
dynamic state. The system comprising the liquid then breaks up into two or more portions, the
separation being called a phase transition [33].

The limit of stability, or so-called thermodynamic limit of superheat, is defined by the basic extreme
principle of thermodynamics which asserts that the entropy of an isolated system is a maximum
in a stable equilibrium state with respect to small variations of its natural variables, U, V, n,, n,...
[34]. Alternatively, the Helmholtz function, F, assumes a minimum value in a stable equilibrium
state for an open system with respect to variations of T, V, n,, n, . . . . For variations from a stable
state (i.e., virtual processes),

AF >0 ®)

To explore the consequences of Equation 8, AF is expanded in a series about a stable equilibrium
state. Such an expansion will accurately represent AF if enough terms are retained. Thus, for varia-
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tions from a stable state
1 1
AF=6F+562F+3—‘53F+'--20 )

For simplicity we consider the stability of states along an isotherm (6T = 0). Only small variations
in the natural variables are considered such that the first nonvanishing term in Equation 9 is also
the largest. The vanishing of certain of these terms defines several thermodynamic states of interest.
For systems in a stable state

F=0 (10a)
and
?F>0 (10b)

defines stability of this equilibrium. At the thermodynamic limit of superheat equality of Equation
10b applies,

8F=0 (11a)
and
BF=0 (11b)

defines the stability of states at this limit. A critical point is defined such that

PF=0 (12a)
and its stability is determined by

F=0 (12b)
Interest here is in exploring the consequences of Equations 10 and 11 for a liquid not at its critical
point (Equation 12). States defined by Equation 11a correspond to the deepest possible penetra-
tion of a liquid in the domain of metastable states.

For F(T, V, n,, n,, ...) Equation 10b can be written (6T = 0)

0?F = F,(0V)? + F,,0,(6n))® + F,,n,(60,)* + - - - + 2[F,,,6Vén, + F,,,,6Vén, + - -

+ Fp 000,00, + F, 6n,6ny+ -+

>0 (13)

Subscripts denote differentiation with respect to the indicated variable:

F
= a— = —P (14a)
OV |t
oF
e = (14b)
on; T,V,ny
0°F
Foo==—— (14c)
OV Onily .,
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Equation 13 is a homogeneous quadratic form. The requirement that it be positive (hence that
the state be stable) is equivalent to the requirement that discriminants of the matrix

FVV FVI‘I‘ Fvnz Fvﬂn
_ Fvnx me anz e Fn,n,,
A= Fo, Fame Fasn, ©° Fagna (15)
Fvnn annn Fnznn annn
all be positive [35]. Hence,
F,,>0
FVV FVn] > 0 (16)
FVI’H Fﬂ|n1
[A] >0

From the Gibbs-Duhem equation we can write that

v
A 2‘ -0 17)
2
Thus,
|A| =0 (18)

whether or not the state under consideration is stable. The limit of stability is then defined by the
discriminant which first vanishes from those constructed from the first n — 1 rows and columns of
the n x n matrix A. It can be shown that this discriminant will always be the determinant of the
(n — 1) x (n — 1) matrix of A [34]. Therefore, at the thermodynamic limit of superheat

Fvv va e Fvn.,-l
vny ning ninp- g =0 (19)
Fvnn Fﬂlﬂn F"nflﬂnfl

To illustrate, for a pure substance F(T, V, n). Along an isotherm, Equation 19 yields

P o (20)

Fo=—7o| =
YT oV,

For a binary mixture, F(T, V, n,, n,). From Equation 19 the thermodynamic limit of superheat is
defined by .

Fvvam - F\%m =0 (21)
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with

_ 0P

F,,=— >0
vv aV

T.ny,n2

Equation 21 may be cast in a more useful form by using the definition of an ideal gas limit where
V - o and

AT fv%

=0 + RTIn ==+ [ =0

dv (22)

T,ni,n2

Combining Equations 14 and 22, performing the indicated differentiations in Equation 21, and
taking n = n; + n, = 1 yields

w 0°P AT| 0P oP B
[r—= dv + =25 +|— =0 23)
v anl T,V.n2 Xy aV T.,n1,n2 anl T,V,n2
This procedure may be extended to higher order mixtures using the Legendre transform theory

[36].

The loci of states defined by Equation 19 in the general case (Equation 20 for a pure substance
or Equation 23 for a binary mixture) defines the so-called “spinodal” curve of a substance. The
characteristic form of this curve for a pure substance is shown in Figure 2B. Thermodynamic states
outside the domain of unstable states defined by the spinodal curve are theoretically accessible.

States on the spinodal curve define the deepest possible transgression of the normal-phase bound-
ary a liquid droplet can sustain before it must change phase. Prediction of these states requires a
pressure-explicit equation of state applicable in the metastable region. Unfortunately, no such equa-
tion of state currently exists (except possibly for water [37]). One is then forced to rather arbitrarily
extrapolate existing equations of state into the region of metastable states; there is a paucity of
physical property data for superheated liquids. This fact puts a limitation on the ability to predict
the thermodynamic limit of superheat.

For example consider the simple van der Waals equation of state for a pure substance,

(P + %) (V —b)= AT (24)

where a and b are constants (determined from the critical point definition, Equation 12a). This
equation is known to inaccurately represent the saturation state of most substances. It will, however,
serve a useful purpose in the present discussion. The spinodal curve (Equation 20) for the van der
Waals equation of state is

a 2ab
P=gi— V7 (25)

Given a pressure P, V may be eliminated between Equations 24 and 25 to yield the thermodynamic
limit of superheat, T — T,. This procedure generally requires an iterative solution (except when
P — 0 in which case Equations 24 and 25 yield T = 33T, [38]). A simple correlation of T, corre-
sponding to Equations 24 and 25 which obviates this iterative procedure is [39]

27 5 (T,\'°
ToaT|o+ == 26
( C[32+32 (Tc:) :l 9

Table 1 lists the thermodynamic limit of superheat for six pure substances at 0.101 MPa calculated
from Equation 26 (T,). These temperatures are substantially above the normal boiling points of
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Table 1
Thermodynamic Limit of Superheat of Some Pure Liquids at Atmospheric Pressure

Substance T, T‘l T,2 T T, J(T, 2)
n-pentane 309 405 431 426 470 8 x 1024
n-heptane 372 468 499 494 540 8 x 10%¢
n-octane 399 494 525 514 569 2 x 1026
methanol 338 442 477 466 513 102°
ethanol 352 447 482 472 516 103%°
water 373 552 596 575 647 9 x 1028

T,— Normal boiling point (K) at 0.101 MPa.
T,,— Calculated thermodynamic limit of superheat (K) at 0.101 MPa using the van der Waals equation of state.
T,,—Calculated thermodynamic limit of superheat (K) at 0.101 M Pa using the Peng-Robinson equation of state.
T,,— Highest measured liquid phase temperature (K) at 0.101 MPa [64].

J— Nucleation rate ( nuclei/cma-s) at T,, and .101 MPa.

the respective liquids, thus indicating that in principle the liquid phase could sustain significant
superheating. This is confirmed by experiment. However, the spinodal curve is a second-law de-
fined limit. The best experiments may thus be expected to yield maximum temperatures (or mini-
mum pressures) such that

T(Pg) > Tn(P) @n

(rather like the inability to precisely reach 0 K). Calculated values using the van der Waals limit
must therefore be rejected because measured superheat limits would then fall in the region of un-
stable states and thus constitute a violation of the second law. A different result is obtained if the
Peng-Robinson equation of state is used to predict the thermodynamic limit of superheat. This
equation [40],

P RT _ a (28)
(v—b) vZ+2bv-—b?
(a and b are constants and v is molar volume) yields for the spinodal curve (Equation 20)
AT 2. b
a(v + b) -0 29)

(v—1b)2  (vZ+ 2bv — b?)?

Equation 27 is now satisfied as shown in Table 1. However, using another equation of state would
yield yet a third value of T,. This fact illustrates a dilemma one faces when attempting to calculate
the thermodynamic limit of superheat.

The situation for mixtures is even more tenuous owing to increased difficulty in accurately repre-
senting mixture properties. Figure 4 illustrates the variation of thermodynamic limit of superheat
with mole fraction at 0.101 MPa for ethane/n-propane mixtures [41] using the Peng-Robinson
equation of state in Equation 23. Results reveal the expected over-prediction of measurement. In
view of the somewhat arbitrary value of predicted mixture thermodynamic superheat limits (differ-
ent equations of state yield different predictions), it is not known if the dashed line in Figure 4
actually constitutes a true upper boundary of measured limits of superheat.

Assuming T, predicted from the Peng-Robinson equation of state yields correct values (a ten-
uous assumption), differences between T, and T,, are outside the range of the experimental uncer-
tainty of the measurements reported in Table 1 and Figure 4. The approach to the thermodynamic
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limit of superheat then evidently triggers other phenomenon within the liquid whereby the liquid
becomes “aware” of an impending violation of the second law. This conjecture forms the foundation
for a mechanistic viewpoint of a phase transition which yields a practical upper limit on the super-
heat a liquid droplet can sustain. This mechanism defines the initial, realizable, condition for bubble
growth within a droplet.

Kinetic Limit of Superheat
Introduction

A superheated liquid droplet (indeed any macroscopic liquid mass) is not quiescent on the
microscopic level. Incessant random molecular motion creates local density variations. These den-
sity fluctuations in turn create “holes” or “nuclei” within which the molecules may be gas like in
terms of their molecular spacing and potential energy. These nuclei grow or decay by the acquisition
or loss of individual molecules until a certain size nucleus is produced such that it is in unstable
equilibrium with the surrounding liquid. These bubbles are known as critical size nuclei: their
appearance defines the initial condition for bubble growth within a liquid droplet.

Homogeneous nucleation theory provides a means for predicting the rate of formation of critical
size nuclei at a given temperature, pressure, and composition. The mean rate of forming nuclei
which continue to grow to macroscopic size is called the nucleation rate (units of nuclei/volume-
time or nuclei/area-time for nucleation within the bulk of a liquid or at a surface, respectively.)

Kinetic theory [42] provides a mechanistic viewpoint for critical nucleus formation. From this
theory the steady-state nucleation rate is proportional to the exponential of the energy of forming

the nucleus:
AD*
KT

J = TRy N, xp [ o (30)
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or in terms of T

AD*[  [TkwN,\ 7!
T=Ti=— [m (%)] 31

The temperature T, in Equation 31 is called the kinetic limit of superheat. A®* is the minimum
energy of forming a critical size nucleus and is given by the following well-known expression [43]

16n03
AD* = __JYL_Z (32)
3P*—-P,)
where P* is given by Equation 6 (P — P*). T is a factor which takes into account the detailed
mechanism by which critical size nuclei form within the molecular network of the liquid. In the
process of determining an explicit expression for T, three problems must be solved:

1. The energy of a nucleus of any size must be determined as a function of the number of mole-
cules it contains.

2. The origin of the exponential dependence of J on A®* must be determined.

3. The mechanism by which the component molecules form critical size nuclei must be described.

Thermodynamics of Bubble Formation

The following assumptions are made to assist in determining the energy required to form a
bubble within a superheated liquid droplet:

1. The temperature and pressure of the droplet in which the bubble forms is constant and
uniform.

2. The bubble is bulk-like in terms of its thermophysical properties.

3. The bubble does not rotate, translate, or vibrate.

4. The gas within the bubble is ideal.

The so-called “capillarity approximation” which constitutes the second assumption is justified on
the grounds that experimentally measured properties at the high liquid superheats typical of those
characteristic of homogeneous nucleation (i.e., T, 2 0.9 at P, > 0.04) are in excellent agreement
with predicted bulk values [44, 45].

The minimum work to form a nucleus within a homogeneous liquid under pressure P, and tem-
perature T is equal to the change in availability A®:

W= —-A®
where in general [46]

®=V({P,—~P)+Y un + 0¥ (33)

Consider the homogeneous liquid system shown in Figure 5A, composed of a solution of n com-
ponents at pressure P, and temperature T (essentially a droplet which, relative to the bubble,
appears to be of infinite extent). From Equation 33, the availability is

?, = Z My (34)
For the system in Figure 5B which includes a vapor bubble,

Dy =Y, pioniz + 3 uim; + V(P — P) + 0 (33)
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where n, is the number of molecules in the vapor nucleus. Conservation of species requires that
nj; = nj, + n; = constant

Also, since n;, » n; is reasonable to assume

My = iy = (T, P, 0, nj, ..o, mp) (36)
Hence,
A® = @y — @, = V(P, — P) + Y. 0 — ) + 0 @7

In view of the ideal gas approximation, and assuming an incompressible liquid, the chemical
potential difference in Equation 37 may be written as

P .
w/'(P;, T) — py(P,, T, 0, n%,...,0n) = KT In pr + KTIn Zi (38)
Yi

For a spherical bubble, V = 4xnr® and & = 4nr?. Equations 37 and 38 may then be combined to
give

4 P .
A®=-nr’(P,—P+Pln—)+4nr% + KTY n;In 2 (39)
3 p* f y¥

Equation 39 is an expression for the minimum energy required to form a bubble of radius r with
gas phase composition y; in the superheated droplet.

It has been argued [47, 48] that nucleus formation will proceed in a manner which maintains the
gas composition close to the value it would have at the critical size. Hence y; — y} and P —» P*
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(though Equation 2 will not apply for subcritical nuclei because such nuclei are not in static
mechanical equilibrium). This assumption, though strictly valid only for a critical size bubble,
introduces little error because its effect on the final result is only to alter the expression for I'. In
view of the ideal gas approximation

PV =¥ nKT (40)

Equation 39 becomes

27)2/3 *
Ad(n) = [367: (g) ] n3 — [KT P = P°]n (41a)

The qualitative variation of A® with n is shown in Figure 6. The maximum in A® depicted in
Figure 6 defines the critical nucleus state. For this nucleus Equations 2 (with P — P*), 40, and 41
may be combined to yield Equation 32.

The stability of a critical size nucieus can be examined by twice differentiating Equation 41
(dA®/dnl, - .. = 0)

_ _(KTy @ =P <0 (41b)
eme \P* 32n63

d2AQ|
D =—-
" dn?

Thus, A® does indeed exhibit a maximum at the critical size as expected. Such a nucleus is there-
fore in unstable equilibrium with the surrounding liquid; Equation 32 represents an effective energy
barrier to bubble nucleation, and hence to bubble growth.

Kinetic Mechanism of Bubble Formation

The mechanistic view to nucleation yields a means by which nuclei may overcome the energy
barrier defined by Equation 32. Among the first to propose such mechanisms were Frenkel [42],
Volmer [49], and Reiss [50]. Additional theoretical work (e.g., [51-59]) has formalized the theory.
Vapor nuclei are considered to grow or decay by a series of single molecule reactions. A molecule
entering the nucleus results in its incremental growth: its escape causes an incremental decrease in
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size (recent modifications of the classical theory accounting for nuclei-nuclei interactions are not
considered here [60]).

Following the classical line of reasoning, the primitive steps in nucleus formation may be mod-
eled by the following set of “reactions”

E, + B, e E,., “2)
where n=1,2,...,n*...,G —2 and E, refers to a bubble containing n molecules. There is
one such reaction for each class of nucleus. The set terminates when n > G — 2 where G > n*
[42, 52, 53], and the reaction in the set of Equation 42 for which n = G — 1 is irreversible. The for-
ward and reverse “rate constants,” k., and k., ), are molecular evaporation and condensation
rates, respectively. For an ideal gas, the condensation rate is approximated by the ideal gas collision
frequency,

Si(n) 3)

kl'“
@ \/2 KT 5 J—

where S;(n) is the surface area to which the species i has access for condensation, and an accommo-
dation coefficient of unity has been assumed. The molecular evaporation rate is not known a priori,
but may be related to k,,, as discussed in the following.

The nucleation rate I, in the reaction sequence of Equation 42 is the following:

Tne = ke - vfa— 1.0 = KenfTa, o @4

f.. is the number of nuclei at time t in a unit volume which contain n molecules. The subscript,
t, reflects the possibility that this distribution may be time dependent. A quasi-steady assumption
for nucleus formation is commonly invoked. In this assumption, the time to establish a steady state
nucleation rate (I,, — I,) is much shorter than the characteristic experimental time required to
bring the liquid droplet into the metastable state at which the probability for formation of a critical
size nucleus would be likely [59, 61]. Thus

of,
2t =L~ I1=0 (45)

Hence,
=1, =14y = =15 =J = constant (46)

where J is the steady-state nucleation rate. This rate represents the net rate at which nuclei over-
come the energy barrier to nucleation and continue to grow. This is also the rate of forming nuclei
containing G molecules. For such nuclei, the corresponding reaction in the set of Equation 42 is
irreversible.

The specific form of f; is unknown. It can, however, be related to an analogous distribution con-
ceived to exist in either

1. A superheated liquid constrained to be in hypothetical equilibrium such that J =0 [e.g,,
42, 52, 53].
2. In the reference normal phase equilibrium state corresponding to r — oo [57] and J — 0.

The latter approach avoids the artifice of an equilibrium distribution in a metastable liquid, while
the former assumption requires some means whereby such a hypothetical equilibrium could be
created. In either approach, f — N so that Equation 44 with I = 0 yields

N,
Kiwe 1y = ke o N 47)

n+1
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Equation 44 can then be written (I — J)

f,  foes
T = kiwNa| -~ (48)
n n+1

Assuming that
f,— N, asn—1

(the population of nuclei containing the smallest number of molecules is effectively the same as the
equilibrium population) and

f,—0 asn—-G

(there are no large nuclei present in the steady-state population), the device of summing Equation
48 from n =1 to n = G yields

J=— 49)

R

The constrained equilibrium distribution, N,, is classically determined by assuming the out-
wardly homogeneous superheated liquid droplet is an ideal dilute solution of vapor bubbles as
solute and single molecules as solvent. On minimizing the availability of mixing such a solution it
can be shown that

A(p(n)] 50

N, >N, exp[— KT
Figure 7 illustrates the qualitative variation of N, with n (consistent with Equation 41). Equation
50 should be regarded more as a mathematical identity than as an expression for a distribution
of nuclei which could actually occur in a superheated liquid droplet. This distribution is meaning-
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?\/ n Figure 7. Schematic variation of hy-
, N pothetical equilibrium (N,) and actual
A Sy | (f,) distributions of nuclei with n.
n¥ G Starred quantities represent the critical

n nucleus state.
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less if n is large enough such that N, > N,. However, {5 — 0 before this happens (provided G is
not chosen too large).

If Equation 48 is partially summed from n =1 to some n < G and the result combined with
Equation 49, we find that

f,
_n<l
N,

n

This inequality, together with the boundary conditions on f,, define the qualitative variation of f,
with n. This variation is shown in Figure 7. The device of summing Equation 48 [53] has obviated
the need to determine a precise form of the actual distribution function f,. Whether the equilibrium
distribution is defined in the classical manner [42, 52, 53, etc.] or identified with a real distribution
which exists in a saturated liquid [57] is unimportant with respect to predicting the superheat
limit: differences in the two approaches will translate to minimal differences in the limiting liquid
state at which a critical size nucleus is most likely to form in a liquid superheated droplet.

The present interest is in determining the thermodynamic state at which a critical size nucleus
will form at the rate J in a droplet. Liquid properties appear in the distribution N, and K¢ (as yet
unspecified). Equation 49 may of course be solved by iteration by including as many terms in the
series as would be required to achieve a specified accuracy. This is a cumbersome approach. By
treating n as a continuous rather than a discrete variable [62, 63] the summation can be converted
to an integral [53]. Furthermore, the dominant contribution to this integral will occur in a region
around the critical nucleus state. The consequences of this fact are two-fold:

1. A series expansion for A®(n) truncated after the first nonzero term—a quadratic approxima-
tion (Figure 6)—is sufficiently accurate to represent the true behavior of the integral over the
span of n.

2. The limits of integration may be extended from —oo to oo because the exponential term
(Equation 50) behaves like a delta function [54]. Equation 49 then reduces to Equation 30
with

m 1 1 . -1
r= [f_m exp[5 By (= )2] dn:l (51)

The continuous approximation for n also yields a more illuminating relation between K+ 1) and
K¢ than given by Equation 47. In view of Equation 50 and the definition of a derivative, Equation
47 in the continuous approximation (An = +1 — dn and n » 1) becomes

(I)n
Kem) = Ke(n) CXP[*E} (52)

where @, = dA®/dn. With reference to Figure 6 and Equation 41, for n < n*, @, > 0 so that K <
K.(n)- Subcritical nuclei will degenerate because of the propensity for molecular condensation over
evaporation; the opposite is true when n > n* because ®, < 0. The relative values of K¢ and ki,
are fundamental manifestations of the tendency for molecular transfer to or from the nuclei and
can be considered a measure of the difference in chemical potential between liquid and vapor.
Integrating Equation 51, noting that ke = k,» (Equation 52), and combining the result with
Equations 42 and 43 gives

1/2 y
Tkyn = [7} Zﬁ (53)

(For a pure substance, y; — 1, and m; - m).
Equation 31 may now be solved for the kinetic limit of superheat, T, (= T), given a nucleation
rate. Because I'k;N, = 1035, a precise value of J need not be known to estimate T,. In this respect,



148 Properties of Dispersed and Atomized Flows

30 nuclei
Imax T 10 cm3-s ?
Py = constant —
£ T T
'
$
S
o
Q
3
z
g T T
Jo & /II\ | l\ Figure 8. Variation of nucleation rate with temper-
0 AT, ATZ\ AT, ature (not to scale). Peak rate (~ 103° nuclei/cm?3-s)
AT, is shown corresponding to the thermodynamic limit
AT=T-Tg of superheat.

T, is a very weak function of J as schematically illustrated in Figure 8. Table 2 illustrates in numbers
what Figure 8 schematically displays (using water as an example substance), and Figure 9 shows
the variation of liquid temperature (Equation 31) at which critical size nuclei would form at rates
J =1, 10% 10'°, and 10?° nuclei/cm>-s in n-octane (CgH ) at various pressures P,. The range in
nucleation rates shown in Figure 9 is typical of all experimental methods thus far used to mea-
sure the limit of superheat of liquids [64]. Several facts are worth noting about the kinetic limit of
superheat.

The initial condition for bubble formation within a liquid droplet is not a precise value. This
fact reflects the statistical nature of nucleation, yet it is usually within experimental error and thus
undetectable except in the most precise measurements.

The limit of superheat increases as pressure increases. This is in agreement with experimental
facts. The variation of T, with J is not generally experimentally detectable.

Table 2
Limit of Superheat and Nucleation Rate of Water at Atmospheric Pressure

T P P, r x 107 J Waiting time/cm? (~1/J)
500 25.8 25.2 25.2 <107%° >10°! years

550 59.1 61.0 6.76 <107%° <10°! years

560 68.3 71.0 5.2 1.7 x 1077¢ 1.2 x 10°® years
570 78.5 82.0 39 8.5 x 1072° 3.7 x 10! years
575 83.9 88.0 34 57 x 1073 1.8 x 107 sec

580 89.6 94.4 29 43 x 10° 2.3 x 10710 sec

590 101.6 108.9 2.1 43 x 1023 23 x 107 2% sec

T—temperature (K)

P—pressure in vapor nucleus (atm)

P,—equilibrium vapor pressure (atm)
r—radius of critical size nucleus (cm)
J—nucleation rate (. nuclei/cm3 -sec)
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For constant J, the variation of T, with P, (solid line) appears to approach the critical point.
However a solution could not be extended to the critical state while maintaining J constant in
Equations 31, 32, and 53 for the n-octane properties used: P, — P* for some P* < P,. This fact
may reflect inaccuracies in physical property prediction (most notably ¢, and P,) near the critical
point. Another reason could be the existence of a limiting pressure above which homogeneous
nucleation would not be possible at a given rate J. Above this limiting liquid pressure, P, > P and
a bubble could not exist in equilibrium with a superheated liquid. This conjecture could provide
a practical restriction on the ambient pressure at which a bubble could form within a superheated
liquid droplet. The increasing difficulty of detecting the macroscropic manifestation of critical nu-
cleus formation within a superheated liquid droplet (droplet vaporization) as ambient pressure is
increased [29, 65] has been experimentally observed. Part of the reason for this is undoubtedly a
decrease in the bubble growth rate as pressure is increased. For example, above P, ~ 0.75, it is not
possible to observe any outward changes of n-heptane droplets initially about 1 mm diameter in
an immiscible field liquid of glycerine when the droplets are heated close to their critical point when
J < 10'° nuclei cm*-s [29]. Calculations for several other liquids did not exhibit the limitations
shown in Figure 9.

The kinetic limit of superheat at a given pressure must be lower than the thermodynamic limit
of superheat. This fact creates a consistency test for calculated thermodynamic and kinetic superheat
limits. Better agreement is also obtained between the kinetic superheat limit and measurement, as
shown, for example in Figure 4.

Given that T, < T, and that J increases with T,, some range of pressures and temperatures over
which the solution to Equations 31, 32, and 53 is carried must be rejected; otherwise the state so
calculated would fall in the domain of unstable states (Equation 19) in Figure 2B. These boundary
states imply the existence of a maximum nucleation rate for < T< T, (J - 0 as T — T, and
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T - T, so that it must pass through a maximum). Table 1 lists nucleation rates at 0.101 MPa
corresponding to thermodynamic superheat limits calculated from the Peng-Robinson equation of
state. The orders of magnitude of J,,., listed in Table 1 conform to values suggested in the literature
[66-68] which fix this maximum at about 10%® to 10°° nuclei/cm*-s.

Approximate Methods

The motivation for seeking approximate methods for predicting the kinetic superheat limits of
liquids resides in the difficulty of accurately predicting the relevant physical properties required to
solve for T,.. The most difficult property to predict, and coincidently the one on which the superheat
limit exhibits the greatest sensitivity, is surface tension. (This problem is particularly severe for
mixtures.) A successful method for predicting the superheat limit, and therefore the initial condition
for bubble growth within a superheated liquid droplet, should obviate the need for surface tension
data. A number of successful approaches have recently appeared which satisfy this intent.

One such approximation has already been presented as Equation 26 [39]. However, this approxi-
mation represents the thermodynamic limit of superheat corresponding to the van der Waals equa-
tion of state and therefore is not relevant to the present study. A more useful approach must be
based on the kinetic superheat limit.

The reduced superheat limits (T/T,) of a large number of substances have been shown to be
quite close to one another at the same reduced pressure [68, 69] as illustrated in Figure 10 [68].
This fact is suggestive of a method based on corresponding states theory [70, 71]. This theory
assumes that an intrinsic property of a substance, o (such as the limit of superheat corresponding
to a pressure P, and rate J), may be expressed in terms of a universal function of reduced tem-
perature and pressure as

a=oyT,, P)

Lienhard [72] recently explored this approach for the limit of superheat of pure substances by
correlating reduced nucleation pressure, P, = P/,/P,, in terms of both acentric factor

o= —1-logy Pr!Tr=7
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Figure 10. Reduced temperature and pressure for several substances indicating correlation
of both saturation and limiting superheated liquid states [68].
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and reduced superheat limit, T,. Guided by the result from homogeneous nucleation theory, Equa-
tion 30, written in terms of pressure, is

P,=P (16 >m o (54)
o = - el VT /=
3 VKT, VIn(C/J)

where T, = T, and C = ['k¢,+N,. Lienhard and Karimi [66] argued the substitution of T, by T,
and a successful correlation was then obtained in the form [72]

f.

P,=Pg— ﬁ (1 — T, 83 (55a)
where

f, = 112.82 + 224420, (55b)
and

p=In(J)—-C (55¢)

P = Poi/Pe;

P = P,/P,

Troi = Tui/ Tei-

The term in temperature on the right-hand side of Equation 55a conforms to the classical expec-
tation o ~ (1 — T,,)'"/® [71]. Fortunately C is nearly constant for a wide range of substances:
45 < C < 85[68, 73, 74]. The utility of Equation 55 resides both in relative accuracy and sim-
plicity; no surface tension data are required. (In view of this accuracy, surface tension of a super-
heated liquid may actually be calculated by combining Equations 54 and 55 and solving for ¢.)
Figure 11 illustrates calculated (Equation 55) and measured superheat limits of a number of pure
liquids. The data are predicted within a pencil width [72] and no surface tension data are explicitly
required in the calculation.

A recent extension of the corresponding states methods for the superheat limit of a pure liquid
has been made to mixtures [74]. The reduced mixture superheat limit was shown to be a mole
fraction weighted average of the reduced limits of superheat of the individual components in an
n-component mixture

Trm = Z Xi’rmi (56)

where T,, = T,/T,, and the T,,; (=T,/T,) are evaluated at the same reduced pressure P,
(=P,/P,,) as the mixture. Thus these quantities are themselves implicit functions of mole fraction
through the variation of P, with x;. The T,; must be evaluated independently. This may be done
by direct measurement or by using Equations 31 or 55 (depending on the availability of physical
property data for the mixture in question). They are relatively constant over the range of critical
pressures corresponding to 0 < x; < 1 at constant P, for many substances, so the T,; may be deter-
mined at only one reduced pressure and then constrained to be constants in Equation 56 over the
span of x; with little loss of accuracy [74]. The variation of T, with x; for the mixture is then car-
ried entirely in T, and the explicit linear relation with the x;. It should be noted that while the
reduced superheat limits calculated from Equation 56 exhibit a linear variation with mole fraction,
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the superheat limit itself will not generally vary linearly with x;. Only when
Tcm = Z xiTv:i
i=1

and the T,,; are all the same over the span of x; for constant P, does Equation 56 yield the often
quoted result

Te= Y xTy (57

i=1

Figures 12A and B illustrate the variation of T, with x; for two binary mixtures. It is evident that
inaccurate predictions may generally be expected if Equation 57 is assumed to be universally valid.

Conclusions

The practically attainable superheat limit of a liquid corresponds to the kinetic limit of superheat.
This limit may be either measured or predicted using the approach based on classical homogeneous
nucleation theory or from one of the recent approximate corresponding states methods. Though
this discussion has been in the context of liquid droplets, the results are independent of droplet
volume as long as the liquid state is not appreciably altered from the ambient by the droplet/field
liquid interfacial tension. In any case, the result gives the thermodynamic state—pressure, temper-
ature, and composition—at which super-critical nuclei (the initial bubbles) form within the bulk
of the droplet at a particular nucleation rate. However, merely defining the thermodynamic state
for initial bubble formation does not provide information concerning the dynamics of phase change.

BUBBLE GROWTH IN DROPLETS
Introduction

Critical size nuclei are in static (unstable) equilibrium and would remain in this state unless per-
turbed by a change in pressure, temperature, or composition. Such a perturbation is inherent in the
nucleation process itself in that the nucleation rate prescribes the rate of forming supercritical nuclei
(containing n > n* molecules). These nuclei are not in static equilibrium in as much as ke, > ke,
(Equation 52). Inherent in the nucleation process is thus the further growth of supercritical nuclei.
The process of homogeneous nucleation itself is considered to end with the appearance and sub-
sequent growth of these nuclei.

As the initial bubble grows both its pressure P and temperature T, decrease (path 2 — 2’ in Fig-
ure 2A). Growth continues until P — P, and T, — T,. Finally, when liquid 1 completely vaporizes,
the final vapor bubble at T, must be reheated to T, to regain thermal equilibrium. These aspects of
bubble growth are well documented with reference to bubbles growing in infinite media (see, for
example, the excellent reviews in References 75 and 76).

The dynamics of growth within a droplet may be affected from the beginning by the finite mass
of vaporizing liquid. For both small liquid/liquid interfacial tensions and differences between the
two fluid densities, the initial bubble exhibits a growth similar to its growth in an infinite media
(S — o). The initially isothermal field within the droplet is perturbed due to expansion of the bub-
ble. A thermal boundary layer is created at the evaporating boundary which may initially be far
removed from the boundary of the droplet (depending, of course, on the physical location of the
initial bubble in the droplet; regardless of this location there will be some period of growth. that
is, the boundary layer does not penetrate into the field liquid). Figure 13 illustrates the qualitative
picture. As the bubble grows and its temperature continues to drop, the thermal boundary layer
propagates progressively farther into the vaporizing liquid and eventually reaches the droplet



154 Properties of Dispersed and Atomized Flows

LIQUID 2 (
BUBBLE

BOUNDARY LAYER EDGE
LIQUID |

R R+ S

BOUNDARY LAYER INSIDE DROPLET

R S R+§

BOUNDARY LAYER OUTSIDE DROPLET

Figure 13. Schematic illustration of
bubble growth in a droplet suspended
inan immiscible liquid: (A) early stage
where thermal boundary layer (d) is
within the droplet; (B) later stage
where boundary layer extends into
liquid 2.

boundary (Figure 13B). Until that time growth will be very similar to that which would occur in an
infinite medium, as the temperature field in liquid 2 remains unperturbed. The conservation equa-
tions governing bubble growth in a droplet will then be identical to those for bubble growth in an
infinite media. When the thermal boundary layer extends into liquid 2 the temperature and pres-
sure fields in both liquids must be determined at each instant of time, as well as the radial history

of the bubble.
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Review of Bubble Growth in Stationary Infinite Media
Governing Equations

Consider an isolated bubble expanding in a pure inviscid constant property uniformly super-
heated liquid at temperature T, and pressure P,. We shall utilize all assumptions made in an earlier

study of this problem [77]. Viscous effects are also neglected [76]. For a stationary spherical bubble
growing in a stagnant inviscid liquid the velocity field is [77, 78]

v=¢— R (58)
r
where ¢ = 1 — p,/p,. When Equation 58 is combined with the inviscid momentum equation,
D5, 1 _

i __{p. 59
D g (59)

(where i = 1 denotes the droplet and i = 2 is the immiscible field liquid) and integrated
sfe . 3 R?R* 1 ps
I {r—z [RR? + 2R?R] — 2¢ T‘} dr= - Ji ap, (60)

the classical Rayleigh equation emerges when S — oo and Equation 2 is used to replace interfacial
pressure in the liquid with surface tension and radius [76, 77, 79]:

. P-P, 2
RR+R2<2-E>= il 1)
2 &Py ep R

The energy equation governing the temperature field in liquid 1 (which is effectively infinite dur-
ing the time for which 6 < S — R) is

2 Y T2
VT =TT, (62)

(where i = 1). The boundary and initial conditions are the following:

r=R: T, =T,\) (63a)
k, %Tri,:n = p,heR (63b)

r — o0: T, -T, (63c)
t=0: T, =T, (63d)
R=R, (63¢)

R=0 (63f)

The phase equilibrium condition which couples Equations 61-63, neglecting nonequilibrium effects
[80, 81], is

P = P(T() ©%)
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The specific form of this relation depends on the fluid under consideration. In general the often used
linearized Clausius/Clapeyron equation (e.g., [82, 83])

P[T()] =P, + p,/[Tt) — Ty(P,)] (64)

where .o/ is a constant dependent on the specific fluid, will not generally be accurate at the high
liquid superheats of interest here (T, — T, > 100 K at P, ~ 0.04) except when P, — 1.

The unknowns in Equations 61-63 are T (r, t), P(t), T,(t), and R(t). A rather large number of
solutions to this set of equations has appeared in the literature, which range from approximate
analytical solutions to fully numerical treatments that involve no further approximations than are
already incorporated in the governing equations as written. These solutions may be divided into
three classes:

1. Solutions in which only the momentum equation (Equation 61) is solved.
2. Solutions in which the full set of Equations 61-63 is solved simultaneously.
3. Solutions for which only the energy equation is solved.

Approximate Solutions

Inertia controlled growth. The initial temperature field is isothermal so that growth is controlled
by the difference in pressure which exists across the liquid/vapor interface (AP = P — P,). This
pressure difference may be large for a droplet at its superheat limit. For example, for critical size
nuclei R, ~ 1077 cm and ¢ ~ 3 dyne/cm (typical of many organic liquids at T, ~ 0.9). Therefore,
AP ~ (10 atm).

The solution of Equation 61 yields a bubble growth rate in the form

R=C,

where [76, 79, 83, 84]
2P—P, R,\? 2 R, \? 112

c,=14% of g (Do) | _ 20y D (65a)
3 ep, R ep,R R

When R » R, and the surface tension term is neglected, C, becomes independent of R such that

2P -P,)'?
C, ~ {- "} (65b)
3 epy

The evolution of bubble radius then takes the form
R ~C,t9 (66)

where q = 1.

Immediately after the bubble starts to expand, the gas pressure as well as both the gas tempera-
ture and temperature of the liquid adjacent to the bubble wall begin to drop. Eventually, T, — T,
and P — P, (though in fact AP is never identically zero). The temperature gradient at the bubble
wall then controls growth (Equation 63b) and this gradient is determined by solving the energy
equation (Equation 62); the momentum equation is not now needed.

Heat transfer controlled growth. Various analytical solutions to Equations 62 and 63b yield a
bubble growth law of the same form as Equation 66 with

(67

[N

q:
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[77, 83-86]. The solutions differ in the growth constant C,. Scriven [77] discovered a similarity
variable for Equation 62 and showed that C, is obtained by numerically solving

Ja = 28 exp[B? + 266%] [7 X2 exp[ —X? — 2:°X '] dX (68)
where the Jakob number is defined as

- plcpl(To - Ts)

Ja (69)
pvhfg
and
G,
B =50 (70

(The Jakob number has also been found to be an important parameter for defining the intensity of
vaporization of droplets [27].) Birkhoff et al. [86] used the same similarity variable as Scriven and
arrived at a similar result.

Approximate solutions to Equation 62 were obtained by Plesset and Zwick [83] and Forster and
Zuber [85] in the form

C, =Ja-(Ca,)'? (71a)
where

C = n[85] (71b)
or

C= 1_n2 [84] (71¢)

Plesset and Zwick employed the assumption of a “thin” thermal boundary layer in their analysis.
This assumption requires that Ja > 1 [76]. At lower superheats wherein this approximation is no
longer valid, the growth constant must be determined by numerically solving Equations 68—70.

An approximate analytical expression for C; was presented by Moalem-Maron and Zijl [87]
(for R » R,) which agrees with the limiting values for small (Ja « 1) [77] and large (Ja > 1) [77, 83]
Jakob number:

1/2 2
c, :<3ﬂ> Ja{l + 1 +—"} 72
n 3Ja

The growth law expressed by Equation 66 with q = 4 exhibits a singularity as t - 0. This fact does
not usually cause difficulties. When fluid conditions are such as to render valid the assumption of
heat-transfer-controlled growth, the size range of visible bubbles is usually large enough that this
initial velocity singularity has a minimal effect on predicted bubble radii.

Growth in the intermediate region. The full set of equations (Equations 61-63) must be solved
when the already mentioned asymptotic approximations are not valid. There is no closed-form
analytical solution to this set of equations. Either fully numerical procedures [88-90] or approxi-
mate analytical/numerical methods must be used (e.g., [83, 85, 91, 92]). A review of some of these
solutions is given in Reference 76.

The simplest of the approximate solutions and one which also yields limits of validity of the
asymptotic solutions previously discussed was obtained by Mikic et al. [82] and later modified by
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Theofanous and Patel [93]. Their approach was to solve the asymptotic expressions for bubble
growth given by Equation 66 with q = 1 (Equation 65b) and q = 4 (Equation 71c) for T (t), and
then eliminate T,(t) between the two equations. Only small superheats were considered such that
(T, — T,)/(T, — T,) ~ 1 and the linearized Clausius-Clapeyron equation was used to replace P by
T,(t) in Equation 65b. The result was the following:

R = %[(t+ + 1)3/2 — gtz 1] (73a)
where
A
Rt =R (73b)
ct
A2
tr =y (73¢)
&
2 hf pv(T - Ts))l/z
A=(s2 e 7S (73d)
(3 P T,

The utility of Equation 73 lies in its simplicity. It facilitates calculating the temporal variation of
R which spans the range of controlling mechanisms for bubble growth.

The real time domain over which the approximate asymptotic solutions thus far considered may
be valid can be estimated from Equation 73. When t* « 1, Equation 73 yields the correct limit for
inertia controlled bubble growth, while for t* >» 1, the correct limit for heat-transfer-controlled
growth is recovered. At the superheat limit corresponding to P, ~ 0.04 for many organic liquids,
200 < Ja < 300 (Figure 14) which, unfortunately, is outside the range of validity of Equation 73a.
We only intend to use Equation 73 here to establish approximate limits for the validity of the various
asymptotic solutions. The order of magnitude of relevant properties of many organic liquids at
T, ~ 09 is the following: Ja ~ 10%, hy, ~ 10 cal/g, a; ~ 10™* cm?/s, T, ~ 10> K, AT ~ 102K,
p1 ~0.1g/cm?, and p, ~ 10~2 g/cm>. From Equation 73c t* ~ 10%. The temperature field will
then essentially be isothermal for times t « 1 ms. As pressure increases, Ja decreases (Figure 14)
and the time domain for isothermal growth becomes progressively shorter.

300

20 25

R (MPa)

Figure 14. Typical variation of Jakob number (Ja) with pressure (P,) at its superheat limit using
properties of n-octane for illustration.
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Experimentally accessible times for bubble growth measurements within superheated liquid drop-
lets have, with one exception [18], been on the order of 1 ms [11, 27, 28]. The available data are
thus representative of phase change dominated by heat transfer processes.

Bubble Growth in Finite Media—Droplets
Introduction

The application of an analysis for bubble growth in an infinite medium to growth in a liquid of
finite extent (i.., a droplet) requires that the thermal boundary layer does not penetrate into the
region outside of the droplet boundary (Figure 13A). As the bubble grows and the droplet evapo-
rates, the bubble wall approaches the liquid/liquid interface, and clearly the thermal boundary layer
must eventually extend into the field liquid (Figure 13B). In this event, the temperature field is a
two-domain problem and the full set of Equations 61-63 must be solved simultaneously to deter-
mine the temporal variation R, T,, P, and S. A number of solutions to this set of equations have
been obtained which involve various approximations which we shall review here. As a prelude, we
first provide criteria which will ensure that the initial bubble forms within the bulk of the droplet
and not at the liquid 1/liquid 2 interface. Then we shall define an appropriate geometrical con-
figuration for the two-phase droplet.

The liquid 1/liquid 2 interface represents an ideal smooth container for a droplet. The process
of homogeneous nucleation may equally occur at this interface as in the bulk of the droplet. The
relative value of the nucleation rate determines the location of bubble formation, with nuclei form-
ing in the region where J is highest. For most purposes, this requirement is equivalent to determining
where A® (Equation 32) is lowest. Exceptions are sometimes encountered for nuclei forming at solid
surfaces [94]. Five possible locations for nuclei formation may be identified (Figure 15):

1. Completely within the bulk of the droplet (position 1).

2. At the liquid 1/liquid 2 interface but resting entirely within liquid 1 (position 2 in Figure 15):
3. Between liquid 1 and liquid 2 (position 3):

4. At the liquid 1/liquid 2 interface but resting entirely within (position 4):

5. Completely within liquid 2 (position S):

LiQuidb_2
e
LIQUID 1

LIQUID |
INITIAL Cagaat.s O
LIQUID | / uouly' O
INTERFACE
| 2 3 4 5
LiQuD 2

Figure 15. Possible locations of initial bubble appearance within a superheated droplet (liquid
1) relative to interface between droplet and field liquid (liquid 2).
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The basis for expecting nucleation to occur at the liquid 1/liquid 2 interface is determined by the
interfacial forces acting on the vapor lens (position 3) and the energy of the critical size bubble. If
a lenticular nucleus (position 3) is to be stable, then we must assure that [16, 73, 95-97]

012 =0, — 0, (74a)
Otherwise, if

0120+ 0y, (74b)
or

0,20, +0,, (74¢)

the nucleus forms in the liquid with the lower surface tension. This latter possibility is of interest
in the present discussion and corresponds to the tendency of liquid 1 to spread on liquid 2 [98]. The
bubble will then remain within the boundaries of the droplet and liquid 2 will serve only as a medium
for heating the droplet and will not itself affect the ability of the droplet to be heated to its limit of
superheat. Liquid 2 will, of course, affect the bubble growth process when the thermal boundary
layer penetrates into it. If Equations 74a or 74b were satisfied, a bubble might leave the droplet
before all of liquid 1 vaporizes [16, 17, 24, 99]. In the present work the bubble is considered to
remain entirely within the boundary of the droplet and does not penetrate the liquid 1/liquid 2
interface during its growth. The surface tension of the vaporizing liquid is then low compared to
the liquid 2 surface tension and Equation 74c is satisfied.

Geometry of the Two-Phase Droplet

The spatial location of the initial bubble within an isothermal droplet will be random unless tem-
perature gradients exist within the droplet. A simple mass balance on the droplet reveals that this
initial location is unimportant during evaporation of most of the liquid mass of the droplet. A
mass balance shows that the ratio of bubble radius R to droplet radius, S, is

R B x 1/3
5_[1 — (1 —x)] 79

where y is the mass fraction of liquid evaporated. For many liquids, ¢ > 0.9 at T, ~ 0.9. When as
little as 10%; of liquid is evaporated, R/S ~ 0.8; when 50%; of the liquid in the droplet has evaporated,
R/S ~ 0.97.In either case the unevaporated liquid will essentially exist as a relatively thin film around
the bubble. This fact has been observed experimentally [11, 21]. Effects due to eccentricity of the
vapor bubble (Figure 16A) will be minimal after this initial evaporation. The salient features of
evaporation of a bubble within a droplet were therefore examined with the aid of the model shown
in Figure 16B—a vapor bubble growing from the center of a liquid droplet.

Approximations and Previous Work

The equations governing bubble growth in a droplet are Equations 59, 62, and 63 withi =1, 2.
The problem requires solving both the momentum and energy equations simultaneously within
liquids 1 and 2, taking due account of their coupling at the liquid/liquid interface. We first review
here simplifications to this problem which have appeared in the literature.

Main simplifications involved neglect of detailed dynamics and heat transfer processes within the
droplet. Sideman and Taitel [21] and Tochitani et al. [100] assumed the two-phase droplet was a
rigid sphere to determine both the temperature field in the ambient liquid (i.e., the temperature adjusts
instantaneously to changes in droplet radius) and average Nusselt number around the droplet when
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Po:To: P2

BUBBLE Liquid 2
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PV

LIQUID |

A

Figure 16. Geometric model for bubble growth in a liquid droplet. (A) bubble geometry as de-
termined by photographs from several experiments; (B) simplified geometric model used in
present analysis (pressures correspond to values at indicated interfaces).

heat transfer occurred over part of the surface of the droplet. The remainder of the boundary was
considered insulated. Sideman and Isenberg [22] later used this Nusselt number to determine the
temporal variation of droplet radius using the two-phase droplet model shown in Figure 17. A
similar model was used by Moalem-Maron et al. [101] except heat transfer was accounted for over
the entire surface of the droplet. Selecki and Gradon [25] extended this model to an evaporating
(nonrigid) droplet and used the result for bubble growth in an infinite medium (Equation 71) to
describe the temporal variation of droplet radius. Detailed account of the external flow field for
both an expanding and translating droplet was included in the analysis of Mokhtarzadeh and
El-Shirbini [26], while the droplet interior was considered to be at a uniform temperature with
an average heat transfer coefficient used to determine heat transfer to the droplet. An analysis of
bubble growth in droplets when Equation 74b is satisfied (liquid 2 now spreads on liquid 1) has also
been reported such that the bubble was either considered to leave the droplet as soon as it formed
[24] or after moving through the liquid 1/liquid 2 interface [99]. This latter study [99] utilized a
modification of Equations 66, 67, and 71 and included vapor density variations with temperature,
while the former work [24] obtained the temperature and velocity fields within the droplet only
for those periods between departure of the nucleus from the droplet to its subsequent formation
(i.e., for a single-phase droplet exposed to a liquid 2 in uniform motion).

Liquid 2
N~

Insulated
boundary

Figure 17. Model for quasi-steady vaporization
of adropletin animmiscible liquid when thermal
boundary layer extends well into liquid 2 and the
vapor/liquid 2 boundary is assumed insulated
[22].

Liquid |
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The solutions referred to previously employed various approximations including neglect of radial
liquid motion, dominant axial convection (i.e., moving droplets), quasi-steady heat transfer, or taking
full account of the transient temperature field. The importance of translatory motion resides in the
fact that experimental methods often involve moving droplets. The quasi-steady approximation
involves certain assumptions about the characteristic times for heat transport and bubble expan-
sion. Delineation of the important characteristic parameters which govern these approximations
will aid in both classifying the various solutions presented and in establishing the most simplified
form of the equations governing bubble growth in a liquid droplet at the superheat limit. For this
purpose we will initially consider an isolated expanding bubble in uniform motion in a static liquid.
Whether we consider this configuration or focus attention on an internal bubble within a droplet
is unimportant with regard to the present intent. The droplet may expand at about the same rate
as the internal bubble during most of the evaporation. It is only desired here to estimate the stan-
dard order of magnitude of the terms in the energy equation to ascertain which terms are important
and which are not.

For a translating and expanding droplet the velocity field, Equation 58, must be modified. We
follow previous work and neglect viscous effects around the droplet. The velocity field is then
[102, 103]

R? R? .
V,=Uw(1—r—3)cos0+s—2R (76a)
r
R3
Vg = Uoo<1 + F) sin 0 (76b)

where 0 is measured from the vertical. Equations 62 and 76 are combined and nondimensionalized
to yield

6T+ I—{zﬁ pe( 1 R3 6T+Pc 1+R3 sin 0 6T
ot ‘P )|t ™) T or
T\ 1 1 @ oT
)+ ———(sin0— 77
<r 6?)+f2 sin060(sm ae) 77

where the Peclet number is defined as

_U,S,

Pe (78a)
oy
oyt
T= 5 (78b)
-~ T-=T
T= (78¢)
To - Ts
T, R=r1R/S, (78d)

The boundary conditions are approximately given by Equation 63. Translational convection (terms
@ and @) may be neglected in comparison with radial convection (B) if

Ja
Pe « 5 (79)
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where from Equation 63b, R ~ Ja/5 has been used; & is the nondimensional boundary layer thickness
(= 6/R). Now, in analogy with bubble growth in an infinite medium, J is approximated as [76]

5~ 1/Ja (80)
Equation 79 is then
Pe « Ja? (81)

On the other hand if

Pe » Ja? (82)

translational convection dominates.

The validity of the quasi-steady approximation resides in the relative values of characteristic time
for thermal diffusion in the liquid surrounding the bubble, and the characteristic bubble expansion
time. If Equation 81 is satisfied the characteristic time for heat diffusion in the liquid surrounding
the bubble is

RZ
ty ~— (83a)

%y

If radial convection is of negligible importance and translational motion of the droplet dominates
(Equation 82), then approximately

(83b)

¢ R
HUoo

In either case, the characteristic bubble expansion time is estimated from Equations 63b (dT/dr ~
AT/0) and 80 as

RZ
tg ~ 84
R aJa? ©4
When Equation 82 applies,
P
L ~ —ez > 1 (85a)
ty Ja

so unsteady heat transfer in the liquid surrounding the bubble may also be neglected (i.., the time-
dependent term in Equation 62 may be dropped and the quasi-steady approximation is reasonable).
When radial motion dominates (in the limit, Pe — 0)

LI 85b
ty Ja? (855)
The quasi-steady approximation will then be reasonable only for low Jakob number. For many
liquids heated to their superheat limits, Ja ~ 6(10%) at P, ~ 0.04 (Figure 14). The quasi-steady
approximation is then not valid as the thermal boundary layer remains close to the bubble. The
time-dependent term in Equation 62 must be retained in the solution. When T, — 1 (P, — 1 in view
of the fact that the limit of superheat is not independent of pressure) Ja — 0 and the thermal bound-
ary layer is thick relative to the droplet radius. Liquid phase quasi-steadiness may then be assumed.
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(Near the critical pressure, though, gas phase unsteadiness becomes increasingly important to con-
sider.) The fact that this approximation has been used at much lower superheats in previous work
(e.g., [104]) is indicative of extraneous nucleation aids suppressing homogeneous nucleation.

Quasi-Steady Solutions

The quasi-steady approximation has led to a number of approximate analytical solutions for the
temporal variation of droplet radius, which do not involve the equation of motion. In the extreme
case of negligible radial convection (Equation 82) the droplet is considered a rigid sphere and viscous
effects are neglected. Sideman and Taitel [21] and Sideman and Isenberg [22] considered a two-
phase droplet to be a spherical shell of vapor with a puddle of liquid at the bottom (Figure 18A).
Heat transfer over the upper portion of the droplet—the liquid 2/vapor interface—was neglected.
The average Nusselt number characterizing heat transfer to the liquid sheath in a potential flow
field was obtained as [21]

. _ _ Q3!
Nuz——hk2R=2<E‘|:7l 408 ]) ’ (86)

. n eS*

where S = §/S,. Using Equation 86 in an energy balance at the liquid 1/liquid 2 interface, S was
determined as [22]

_ 9 1/2 2)1/3
S=(01- s)“m{l - E[(ﬂ) (1 — &)JaPe'/?t — 1] } (87)

The variations of S with 7 is shown in Figure 18 for one particular set of conditions corresponding
to pentane droplets in water with Pe = 5,000, Ja = 4.3, AT = 5°K, and S, = 1.5 mm [22]. Condi-
tions of their data were such that the origin of the initial bubble was not homogeneous nucleation,
but extraneous nucleation aids of the type not of principle interest here: deliberately introduced
air bubbles or solid particles. The corresponding superheats were far lower than values character-
istic of homogeneous nucleation.

D
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Figure 18. Comparison between predicted and observed droplet radii at various times () and
low superheats. Data from Reference 22 and simplified analyses from References 22 (Equation
87) and 101 (Equation 91).
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Viscous effects in the flow field around the droplet were accounted for in an ad-hoc manner by
Moalem-Maron et al. [101]. The viscous flow Nusselt number around a rigid sphere

2

v

Nu (0.25Pr ~1/3pe)1/2 (88)

was written in a form analogous to the potential flow solution,

2
Nu = 1z Pe‘/z
nl/

by defining [101, 105]
k, = 0.25Pe™ 113 (89

k, was considered a correction by which the inviscid flow solution around a rigid sphere would be
transformed to yield the average heat flux around an expanding sphere in a viscous flow field. Hence,

Pe 1/2
Nu ~2 (- kv> (90)
Vi

Considering heat transfer to occur over the entire surface of the droplet (a more reasonable as-
sumption when liquid 1 spreads on liquid 2), a heat balance yielded

_ 3 12 723 ’
S =[1 +§Ja§Pe”2<k—v> r:l 91)
- .

Figure 18 illustrates the variation of S with 7 for the same approximate set of conditions as reported
by Sideman and Isenberg [22].

Dominant Radial Convection

Equations. All experimental methods used to create superheated liquid droplets involved slowly
moving droplets. With characteristic velocities of all methods on the order of U, ~ 1 cm/s, droplet
diameters in the range of 0.5 m and «; ~ 10™* cm?/s, Pe ~ 500 while Ja ~ 6(100) for droplets at
the superheat limit. Translational effects are neglected (Equation 81). Also, tg/ty > 1 may not be
satisfied so that the time-dependent term in the energy equation must be retained. As a result the
energy (Equation 62) and momentum (Equation 59) equations must be solved simultaneously to
describe the full evolution of the thermal boundary layer as it moves from the liquid 1/vapor inter-
face out into liquid 1, and eventually penetrates into liquid 2.

The finite mass of vaporizing liquid is accounted for in two ways. First, the equation of motion
(Equation 59) is integrated twice: first from R to S, and then from S to co. This yields two equations
for the evolution of the pressure fields within the droplet and liquid 2. These equations are coupled
by matching the radial velocities at the liquid 1/liquid 2 interface (viscous effects are neglected).
Since there is no mass transfer across the liquid 1/liquid 2 boundary, the radial velocity is con-
tinuous across it. The velocity field within liquid 2 is then also described by Equation 58 (for the
droplet geometry shown in Figure 16B). Combining Equations 58 and 59 integrating from R to S
and again from S to co yields

.. ) R R? R* 1
[RR+2R2]<1—§)—87<1—S—4>=;—;(PR1—P51) R<r<S$ 92
1

N ., R RZR* 1
RR + 2R = — 6 —— = — (P, —
L ]S € S e (Ps, — P,) S<r<ow 93)
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Where Py,, Ps;, and Py, are defined in Figure 16B. These pressures are related to radius as

20,

P— Py =—+ 94
R1 R ( )

20
Ps, — Pyy == 95)

where g, is the liquid 1/liquid 2 interfacial tension. Combining Equations 92-95 yields the equation
of motion for a spherical bubble growing from the center of a spherical droplet:

.. . R R? R P—-P, 20, g, R
1-z-)—e—(1-22)= Sk U WL S 96
[RR+2R](1 es> ¢ <1 as> o %R( * oS 96)

where =1 — p,/p,. When S — o0, or in the early stages of growth when R « S and if the last term
in Equation 96 is negligible, Equation 96 reduces to the classical Rayleigh equation (Equation 61).
At later times when R — S the importance of dynamic effects resides in & as & — 1, dynamic effects
will be unimportant when R — S. In general, the time domain over which Equation 96 has to be
included in the analysis may be small—less than the first few milliseconds after nucleation.

Secondly, the temperature field is a two-domain problem. The energy equations for liquids 1
and 2 (Equation 62 with i = 1, 2) are coupled by interface matching conditions. These equations are
the following:

0T, o, 8 ,0T, RR2 4T,
a2 6r(r a) R o R<r<$ ©7
and

0T, a, 8 [ ,0T, RR? 4T,
=2l —e—-2 98
a ca\" o)t a ST ©8)

The interface boundary conditions are the following:

Ti(r,0) = Ty(r,0) =T, (99a)
T,R,)=T, (99b)
TiS, ) =T,S, 1) (99¢)

oT oT
k28,0 =k, —a—r-’- (S, 1) (99d)
Ty(oo, ) =T, (99%¢)

where T, is the kinetic limit of superheat corresponding to the applied pressure P,. An energy
balance applied to the vapor/liquid 1 interface with spherical symmetry yields again Equation 63b.
This equation relates the bubble growth rate to the temperature field, while the momentum equation,
Equation 96, relates P to t.

The statement of the problem is made more general by introducing the following nondimensional
quantities:
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T T-T, _ T R R
= T=— =
To - Ts So So
- RS, tor, o,
R = = ==
%y i S: ' oy
k C, (T, — T, 26,,S,
€=__3 Ja=Pl o1( ) = 212
ky pihg *1P1€
S2 - P(T,)—P, 20,S,
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Equations 96—98 then become

. . R R2 R* - 51, R
[RR+2R2]<1—%)_&(1_z__>=app—”‘[1+"_ﬁ§], R<r<m

2 S* G,
T 2
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-
A
8

oT, 10 (_,dT,| eRR? T,
L 0(ndt2)
oF > of

subject to the following initial and boundary conditions

T, _ JOT,
3 S,7={_ 3 8,7
Ty(0,17) =1

Equation 63b is nondimensionalized to:

: oT
a— =
T =%

=
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(100)

(101)

(102)

(103a)
(103b)

(103c)

(103d)

(103e)

(104)

No known analytical solution to Equations 100-104 exists so numerical methods must be
employed. The main difficulty with a numerical solution is the existence of two moving boundaries:
at the liquid 1/vapor interface, and at the liquid 1/liquid 2 interface. A coordinate system which
immobilizes these boundaries facilitates a solution. Such a coordinate transformation was first
utilized by Duda et al. [106] in connection with analyzing growth of a single vapor bubble in an
unbounded atmosphere (in which there is only one moving boundary), and later generalized by
Saitoh [107] to boundaries of arbitrary shape. This transformation is illustrated in Figure 19 and
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Co-ordinate Transformation:
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wall (moving) wall (fixed)
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m= r-R(t)
S(H)-R(t)

Figure 19. Coordinate transformation to immobilize moving boundaries in a bubble/droplet
system.

expressed as

-8 (105)
Time is untransformed. Introducing this transformation into Equations 101 and 102 yields

Ao T = %[Bm 9 %} -D 9% (106)
with

Afn, 1) =TS — R)/d;

Bi(n,7) =7/(S—R)

D1, 1) = [5R2+ %] R/d, (107)
wherei=1,2

d, =1 (@O<n<l (108a)

d=y (0<n<o) (108b)

f=nS-R)+R (108¢)
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The transformed initial and boundary conditions are:

T, 0)=T,n,0 =1 (109a)
T,(0,7)=0 (109b)
T(1,7)=T,1,7) (109¢)
oT, ot,
Al _ %% 109d
on n=1 on n=1 ( )
Ty(e0,7) =1 (109€)

Finally, the interface heat balance is transformed to

Ja T,

R=(§_R)E1— (110)

n=0

The momentum equation (Equation 100) is independent of r and unaffected by this variable
transformation.

The transformation of Equation 105 makes the transformed energy equation much more compli-
cated. This is more than compensated by the ability to apply the boundary conditions simply and
accurately in the numerical scheme. No assumptions regarding the thickness of the thermal boundary
layer or neglect of thermal resistance of liquid 1 have been made in Equation 106-110.

A Crank-Nicholson method was used to solve Equations 100 and 106—110 simultaneously at each
time step [108]. The initial bubble size was perturbed by 10™* to 1073 to start the computations.
The radius of the droplet, S, is related to the bubble radius, R, at any time by

S =(1 +&R¥)' (111)

Computations were terminated when liquid 1 was completely vaporized (Equation 1). The final
bubble is not in thermal equilibrium with liquid 2 and restoration of equilibrium requires a further
expansion of the bubble beyond R; attendant to its temperature increasing from T, to T,. This
expansion is very small and was neglected.

Four nondimensional groups control the radius-time history of the bubble: Ja, , y, and {. Cal-
culations were performed for values of these parameters typical of hydrocarbon (liquid 1)/glycerine
(liquid 2) and hydrocarbon/water combinations.

The solution may be broadly divided into two regions:

1. A period during which the thermal boundary layer resides in liquid 1 and growth is similar
to growth in an infinite medium.
2. A later stage of growth characterized by thermal boundary-layer penetration into liquid 2.

Early stages of growth. Several aspects of bubble growth in the early stages wherein the thermal
boundary layer resides entirely in the droplet are identical to bubble growth in an infinite medium.
This is illustrated in Figure 20 which shows the evolution of P, T,, and R for a bubble growing
in an n-octane droplet in glycerine (liquid 2) at Ja = 10. The initial state of the droplet (T, and
P(T,)) corresponds to the limit of superheat as calculated by methods described earlier. The asymp-
totic temperatures and pressures (T,(P,) and P(T,)) correspond to saturation conditions. The re-
sults shown in Figure 20 are identical to what would be obtained if the n-octane droplet were
considered to be of infinite radius and & ~ 1.

Figure 21 illustrates the variation of bubble radius during this very early period. The initial
radius (R, in Figure 21) corresponds to the unstable state of the critical nucleus. The characteristic
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Figure 20. Early time variation of vapor pressure, and vapor temperature, and radius of a
bubble growing in a superheated n-octane droplet using model shown in Figure 16B. Initial
conditions correspond to kinetic limit of superheat of octane at indicated pressure.

delay period is shown, followed by relaxation of surface tension and attendant rapid increase in
growth rate. These characteristics are similar to those for growth in an infinite medium (e.g., [76]).

The temperature field within the droplet during this early period is shown in Figure 22 for the
special case Ja = 10. The evolution of both the thermal boundary layer (§ where T — 1) and vapor
temperature T (7 = 0) are indicated. For t > 5 x 1078, T (5 = 0) » 0 and the analysis becomes a
purely thermal problem; the thermal boundary layer is still close to the bubble wall 6 ~107%8 -
R)). The bubble itself, though, is still quite small at this time (Figure 22).
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Figure 21. Variation of bubble radius with time at various Jakob numbers (ie., superheats)
during early stages of bubble growth in an n-octane droplet.
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Figure 22. Variation of liquid temperature with position in a droplet at various early times such
that thermal boundary layer (d) is still within the droplet and vapor temperature is changing
with time (T > 0 at y = 0) [108]. Ja = 10, ¢ = 0.995, { =5, and y = 1.

Later stages of growth. Eventually the thermal boundary layer will extend into liquid 2 before
liquid 1 completely evaporates and the energy equation for liquid 2, and associated matching
conditions at the interface (Equation 109) must be included in the analysis. Figure 23 illustrates
calculated temperature fields at various times for Ja = 10, ¢ = 0.995 (a hypothetical value), { = 5,
and y = 1. For 7 > 0.006 the thermal boundary layer extends into liquid 2. The essentially linear
temperature profile in liquid 1 for > 0.01 shown in Figure 23 could lead to simplifications in the
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Figure 23. Variation of liquid temperature with position in a droplet showing evolution of tem-
perature field T — 0 at # = 0. For t 2 0.006 boundary layer enters liquid 2. Ja = 10, ¢ = 0.995,
{=5andy=1.
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analysis which have not been fully explored. The corresponding simplification associated with
condensation of vapor on an immiscible liquid droplet has been previously studied [109].

The effect of thermal boundary-layer penetration in liquid 2 on bubble growth rate is shown in
Figures 24 and 25 for the indicated ranges of Ja, y, and {. Growth is independent of liquid 2 prop-
erties up to some time, after which the bubble (and droplet) growth rate undergo rather dramatic
changes, depending on the values of { and 7. This initial period where liquid 2 does not effect
growth reflects the fact that the thermal boundary layer is still within liquid 1. { > 1 implies a less
steep temperature gradient in liquid 2 than in liquid 1. This in turn creates a gradient in liquid 1
at n = 1 larger than would be realized if { = 1 (i.e., when properties of liquids 1 and 2 are identical).
This increased temperature gradient at # = 1 translates into a larger temperature gradient at y = 0
(the bubble wall). The bubble then experiences an increase in its growth rate. This behavior cannot
be predicted from an analysis which (1) neglects the thermal resistance of liquid 1, and/or (2) assumes
results from growth in an infinite medium apply to this problem.

Similar effects occur when y varies while { is fixed. This is illustrated in Figure 26 for Ja = 10.
The bubble grows faster as y decreases. For example, a lowering of y means that the heat capacity
per unit volume of liquid 2, p,Cp,, is increased. The ability of liquid 2 to supply more heat to
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Figure 26. Evolution to both bubble (R) and droplet (S), radii for Ja = 50 and { = 5.0. Curves
terminate when R — S = R; and the droplet is completed evaporated.

liquid 1 is then increased as y decreases, and the growth rate correspondingly increases when the
thermal boundary layer enters liquid 2.

The very early period of growth wherein the momentum equation is needed to describe the
evolution of pressure field is undetectable on the scale of Figures 24 and 25 (cf,, Figure 22). For the
time scales in these figures P ~ P, and T( = 0) ~ 0, though there will always (at least numerically)
be a nonzero difference in pressure across the evaporating boundary. The effect of this small pres-
sure difference on growth rate is negligible for conditions of the calculations appearing in Figures
24 and 25.

As liquid 1 evaporates, both the internal vapor bubble and the droplet as a whole expand. Figure
26 illustrates a typical evolution of S and R for Ja = 50 for one representative set of conditions.
When R — §, the droplet is completely vaporized. It is worth noting that the droplet is almost
completely taken up by vapor with just a thin layer of liquid 1 around it when 7> 2 x 1074,

As the Jakob number increases, the time for which liquid 2 effects growth (i.e., when & > S — R)
increases and the characteristic “fanning” of the growth curves shown in Figures 24 and 25 originates
at progressively larger times. For sufficiently high Jakob number the thermal boundary layer
remains within liquid 1 throughout nearly the entire period of evaporation, except when S — R at
which time the boundary layer must contact the droplet boundary. Growth is then independent
of liquid 2 properties. Figure 27 illustrates this for Ja = 100. At this high Jakob number, T(y =

0) - 0 at times much shorter than indicated in Figure 27.

For purely heat-transfer-controlled growth, a simplified analysis similar to that formulated by
Sideman and Isenberg [22] (in which they used the quasi-steady approximation) has recently been
presented [11] based on the droplet geometry shown in Figure 28. Thermal boundary layers were
assumed to be close to the bubble (Ja » 1) over the time domain characteristic of the experiments
reported in Reference 11 (<100 ms). These boundary layers were approximated as growing ac-
cording to the classic planar variation of

3 ~ (ct)'?

A simple energy balance around the two-phase droplet yields

_ R
§={‘1f(2—2)[z+c( 1>1 }"1/2 (112)
dr 4 c 7
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Figure 27. Evolution of bubble radius within a droplet when thermal boundary layer resides
within droplet throughout its entire evaporation. Ja = 100 and ¢ = 0.995.

where Z (a geometrical factor) is given by

1 1-(1-¢8% d4n
Z=2 - [P 5 [ S
005[3 cos { 5 } + 3 J +1 (113)

The constants ¢, and c, were essentially considered as empirical values. Equations 111 and 112
provide an alternative to Equations 66 or 87 for correlating bubble growth data in liquid droplets
by judiciously selecting ¢, and ¢, when growth is heat-transfer-controlled. However, numerical
integration will be required which may make such efforts cumbersome.

It is interesting to explore the similarity of heat-transfer-controlled bubble growth in a droplet to
the bubble growth law characteristic of an infinite medium (Equation 66 with q = 4. For this pur-
pose calculations for Ja = 10, { = 1, and ¢ = 0.9995 (a hypothetical value chosen so that S — R; at
a time large enough to clearly illustrate the similarity) are displayed in Figure 29 on a logarithmic
scale for three values of y. When y = 1 the indicated line is identical to the asymptotic heat transfer
limit of Equations 66 and 67-70 [77] regardless of placement of the thermal boundary layer. For
general y and © 1.1 x 10”2 in Figure 29 the thermal boundary layer extends into liquid 2.q may

172
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Figure 28. Model for  heat-transfer-controlled
growth when thermal boundary layer remains
close to the evaporating boundary [11].
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Figure 29. Effect of time (1) on bubble
growth exponent (Equation 66) for
heat transfer controlled growth of a
bubble in a droplet at various y and
{=1,Ja=10, and ¢ = 0.9995 (a hy-

pothetical value). Thermal boundary
"004 os ocs '(;‘ o oa 06 08 : 2 layer penetrates into liquid 2 at

T 75.011.

then be larger or smaller than 4. When y > 1, the temperature gradient in liquid 2 is larger than
the corresponding gradient in liquid 1. The growth rate decreases compared to the infinite medium
case and q < 1. The opposite is true when y < 1. Eventually as § » S — R, the thermal resistance
of liquid 1 becomes of negligible importance, and the temperature field resembles that which would
exist for a bubble growing in an infinite medium of liquid 2 (through p, and h;, would be that
corresponding to liquid 1); again q — . In general q will be a function of the depth of penetration
of the thermal boundary layer nto liquid 2. This fact could be useful in correlating experimental
bubble growth data in a liquid droplet, using Equation 66, similar to its utility in correlating bub-
ble growth in an infinite medium (eg., [110]).

Exploding Droplets

The present discussion has not specifically addressed the origin of vapor explosions of droplets
commonly observed in the experimental methods discussed in the next section. Such explosions
are defined by the appearance of shock blast waves of such a magnitude as to create an audible
sound when the droplet vaporizes. The origin of these waves is evidently the very rapid movement
and high mass flux at the bubble wall. The theory outlined in the preceding discussion requires
modification in light of some recent experiments.

A mechanism to explain explosive growth of bubbles in liquid droplets has been offered by
Shepherd and Sturtevant [18] which is a significant departure from the classical approach pre-
viously discussed. Under certain conditions (low ambient pressures and high superheats for many
organic liquids), the bubble surface is not smooth (such as occurs at high pressures [11]), but
rather rough and appears wrinkled thus giving the appearance of waves. The mass evaporative
flux across such wrinkled evaporating boundaries was estimated to be two orders of magnitude
greater than that calculated from knowledge of just the bubble radius history, p, dR/dt where p,
is effective vapor density inside the bubble and R is bubble radius.

Figure 30 shows that measured bubble growth data [18] obtained under explosive conditions
are actually bounded by the classical theory—corresponding to bubble growth in an infinite media
(relevant in view of the very early times at which the indicated data were obtained—the first few
micro seconds after nucleation). This similarity between predicted and observed bubble radii is
probably fortuitous. The presence of comparatively large observed evaporative mass fluxes during
explosive vaporization of droplets at the superheat limit (i.e., a vaporization generating blast waves
in the surrounding liquid) led Shepherd and Sturtevant to conjecture the existence of an instability
at the interface driven by mass transfer which effectively wrinkles and distorts it. Similar to the
inertial instability first introduced by Landau [111] in connection with the instability of laminar
flames, this kind of instability may now also be present in the vapor explosion of liquid droplets
at their superheat limit [18]. At elevated pressures, or for certain miscible mixtures which contain
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a nonvolatile component, the interfacial instability at the bubble surface is not present [11, 15],
and vaporization is not explosive. Further work is needed to explore in greater depth this interesting
new idea.

EXPERIMENTAL METHODS

The principle experimental method used to study superheated liquid droplets involves encap-
sulating a droplet of the volatile liquid (liquid 1) in another immiscible field liquid (liquid 2), and
then subjecting the field liquid to such conditions as to bring the encapsulated droplet into the
metastable state. These conditions have consisted of isobarically heating the field liquid [11, 15,
16, 18, 28, 29, 41, 48, 65, 74, 97, 112-122] or isothermally decompressing it [30, 95, 123, 124].
The corresponding loci of states the test droplet experiences as it approaches its limit of superheat
are illustrated by paths a-c and b-c in Figure 2A. When the droplet vaporizes, the ambient pressure
and temperature are inferred from corresponding measurements in liquid 2 (due account being
taken of any droplet underheating). This method, coupled with high speed cine [11, 27, 28, 125] or
spark gap [ 18] photography, has yielded essentially all the information which forms the foundation
of our understanding of bubble growth within liquid droplets at the superheat limit. The first
demonstration of the existence of superheated liquids was made over 100 years ago by a variant of
this “floating droplet” method [126, 127].

The chief advantage of heating droplets suspended in immiscible liquids resides in the fact that
the liquid 1/liquid 2 interface constitutes a hypothetically ideal smooth surface free of any solid
motes or trapped gases which would tend to initiate a phase transition. This interface has essen-
tially a similar microscopic structure as the bulk of the droplet. Any phase transition at this inter-
face would therefore have to occur by essentially the same mechanism as in the bulk of the test
droplet.

The key to successful use of this method is to carefully select the liquid 1/liquid 2 combination
to satisfy the following criteria:

1. The field liquid must have a boiling point higher than the limit of superheat of the most non-
volatile component within the liquid 1 droplet over the entire range of ambient pressures at
which the limit of superheat is to be measured.

2. Both liquids must have low mutual solubility.

. The physical properties of both liquids should be available (or predictable).

4. The-probability for nucleation within the bulk of the test droplet must be higher than at the
droplet/field liquid interface.

w

As we have seen from Equation 74c, this latter requirement dictates that liquid 2 has a relatively
high surface tension. Otherwise, measured phase transition states will essentially have character-
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ized the interface between the two liquids rather than the test liquid itself. Such temperatures (at
a given pressure) are generally far below those indicative of homogeneous nucleation in the bulk
of the test droplet. This fact limits the extent of the various liquids which can be tested by floating
droplet methods. Nevertheless, the method, when the preceding criteria are satisfied, has yielded
some of the most reproducible and accurate superheat limit (and all bubble growth) data thus far
reported.

Two principal variants of the suspended droplet method have been used. The first involves
droplets moving through a static field liquid, and the second involves levitating the droplets in
either a moving field liquid or via imposing a standing acoustic wave on a static field liquid (e.g.,
see Reference 64).

In the first method, the field liquid is usually heavier than the droplet, though experiments with
heavy droplets heated in light field liquids have also been performed [17, 95]. A schematic diagram
of a typical apparatus of this genre is shown in Figure 31. The first to use a variant of this ap-
paratus were Wakeshima and Takata [121] and Moore [95]. The essential components consist
of a vertical tube (called a “bubble column”) which contains the field liquid on which a stable tem-
perature gradient is imposed (e.g., hot at the top of the tube and cold at the bottom for light
droplets), a droplet injector, and instrumentation to measure the temperature and pressure in the
field liquid at which the droplets vaporize. The bubble column itself is glass with inside diameters
which have ranged from as small as 1.3 cm [74] to over 6 cm [18]. Tube length has ranged from
100 cm [112] down to 35 cm [121, 122]. Temperature gradients imposed on the field liquid have
been effected by heating nichrome wire wrapped around the tube with varying pitch, a metal sleeve
fitted around the tube with attached electrical heater, or commercially available rope heaters.
Temperature gradients have ranged from 0.03 K/cm [48] to 10 K/cm [119]. For typical rise velocities
of 1 cm/s to 5 cm/s, test droplets are heated at rates ranging from 0.03 K/s to 50 K/s.
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Figure 32. High speed motion picture sequence of n-octane droplets boiling in glycerine. Num-
ber of frame in the motion picture sequence is shown below each photograph [11]:

(A) Py =0.101 MPa, T, ~ 514 K, S, ~ 0.05 mm, framing rate = 1,033 frames/s;

(B) To = 0.687 MPa, T, ~ 525 K, S, ~ 0.6 mm and framing rate = 933 frames/s;

(C) Py =1.22 MPa, T, ~ 531 K, S, = 0.5 mm and framing rate = 900 frames/s.

The use of high-speed cine photography with this method to measure droplet expansion rates
[11, 27, 28] requires proper synchronization between the emergence of the moving droplet in the
field of view of the (stationary) camera and activation of the camera. This fact limits the usefulness
of this photographic technique for recording the dynamics of vaporization, inasmuch as some luck
is involved with synchronizing the activation of the camera with the start of boiling. The maximum
camera framing rate is limited to that which will yield a high probability of recording vaporization.
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flow rate, a light test droplet injected at the bottom of the test chamber could be levitated. The
experiment as illustrated was designed to study the effect of a dissolved gas (nitrogen) on the super-
heat limit of a single component fluid (ether) over a range of pressures. Droplet vaporization was
not photographically documented. The droplet levitation method employed by Apfel [28, 30] (Figure
36) consisted of imposing a standing acoustic wave on liquid 2 (by a piezoelectric transducer
cemented to the walls of the bubble column) of such a magnitude that the force of the acoustic
pressure just balanced the buoyancy force of the droplet. With the droplet levitated, it was stressed
for those periods of exposure to the negative parts of the acoustic cycle (Figure 36B). When the
magnitude of the negative pressure is high enough and of long enough duration, any cavities formed
by homogeneous nucleation will grow to observable size; otherwise the bubble will collapse as the
acoustic pressure becomes positive. Measured tensile strengths were found to be in excellent agree-
ment with predicted values for several organic liquids. This was the first such agreement using any
experimental method for measuring tensile strengths of liquids. Apfel and Harbison [28] later used
high-speed (3,500 frames/s) cine photography to measure expansion rates of ether droplets at atmo-
spheric pressure. The same problem of synchronizing camera activation with initiation of vaporiza-
tion apparently existed with this levitation method as with the rising droplet method.

Basic information obtained from the previously mentioned experiments consisted of temperature
and pressure of liquid 2 at which droplets were observed to vaporize; when photographic methods
were employed to record vaporization of the test droplets, droplet radius as a function of time was
also measured (the methods employed were sufficiently imprecise to resolve the evolution of internal
bubble radii (R) so that only overall droplet radii (S) could accurately be measured).

Figures 32-34 illustrate a series of photographs of n-octane, n-butanol, and ether droplets, re-
spectively, boiling in various field liquids. The droplets are at their (approximate) superheat lim-
its at pressures ranging from atmospheric to about 12 atm. It is evident that vaporization at atmo-
spheric pressure occurred at a time between the first two frames of the motion picture sequences
shown in Figures 32A-34, and thus in less than 1 ms. For the vaporization shown in these pictures
the droplets vaporized with an audible sound and resembled a kind of mini explosion. Subse-
quent events illustrate droplets which have completely vaporized inasmuch as the bubble shown
in the second or third frame in Figures 32A-34 either corresponds to that predicted by Equation



182 Properties of Dispersed and Atomized Flows

T T T T T T T T
25 4
i AN ]
20~ - e o, g
L .’ b\ ’ o__-" |
€ / \ .,’
E - [ ]
- ' ¢ .. e Experiment g
II ——=— Curve of best fit
10— 1 -
!
Lo i .
osl- | _| Figure 37. Measured temporal varia-
| —L initial droplet radius (b | tion of radius of an ether droplet vap-
L L | ) L . \ ) orizing in glycerine at its superheat
0 48 9 144 192 24 288 336 384 limit. P, ~ —0.8 MPa and T ~ 413 K
Time (ms) [28].

1 or is larger. For this kind of explosive vaporization, the final bubbles were always observed to
oscillate. Such oscillations are believed to be a result of the kinetic energy stored in the outward
motion of the vapor/liquid interface moving the interface beyond its final equilibrium size, and
then contracting as the ambient liquid pressure counterbalances the reduction in gas pressure due
to this expansion [18, 28]. Some measurements of droplet radii during oscillatory motion of an
ether bubble during this oscillatory motion are shown in Figure 37 [28]. A theory to explain and
predict the origin of these oscillations has not yet been developed. The line shown in Figure 37 is
a best fit through the data; the analysis of the previous section does not account for bubble
oscillations.

A unique improvement of the method of photographically recording rapid (explosive) evapora-
tion of droplets at the superheat limit has recently been developed by Shepherd and Sturtevant
[18]. This method resolves the early time domain (< 1 ms) which is inaccessible using conventional
high speed cine photography. The technique consists of using the pressure signal generated on a
piezoelectric pressure transducer (immersed in liquid 2) by the blast wave created by an exploding
droplet to trigger a spark gap light source with a variable time delay. Effective observation times
are thus on the order of microseconds. The evolution of phase change of a single droplet is pieced
together from individual observations of a number of droplets, each of which is photographed
at progressively later times in the vaporization process. Fortunately, the vaporization process is
sufficiently repeatable that this does not create problems.

Figure 38 illustrates several photographs of n-butane droplets vaporizing in glycerine at atmo-
spheric pressure which were taken using this technique. Times range from 9 us to about 70 us after
homogeneous nucleation. It is clear that the detail depicted in these photographs is completely
missed using photographic methods which operate on a millisecond time scale. This detail also
permits direct measurement of bubble radius (R) in addition to overall droplet radius (S). The results
are suggestive of only one bubble having been nucleated within the initial butane droplet (1 mm
diameter). This bubble apparently nucleates at a more or less random location at the droplet
boundary (where the temperature is highest due to droplet underheating). As is shown in Figure
38, the evaporating boundary is apparently wrinkled and wave-like. This nonsmooth surface
persists well into the oscillatory phase after complete evaporation (cf., Figure 33). The origin of this
wrinkling requires further investigation. Several other salient features of explosive vaporization of
droplets are discussed in Reference 18.

At sufficiently high pressures, droplets at the superheat limit do not vapor explode inasmuch as

o No audible sound is generated on vaporization.
e No oscillations occur.
o The evaporating boundary is smooth.

Figures 32B and 32C clearly illustrate this for n-octane droplets in glycerine at 0.687 MPa and
1.22 MPa [11] (the indicated temperature is the n-octane superheat limit). As noted in these figures,
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Figure 34. Motion picture sequence of an ether droplet boiling in glycerine. Number below
each photograph indicates time elapsed after frame no. 1. P, = 0.101 MPa, T = 421K, and Sy =
0.55 mm [125].
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Figure 35. Schematic drawing of apparatus used for levitating superheated droplets [123].
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Figure 33. Motion picture sequence of n-butanol droplet boiling in Krytox 143AD (DuPont).
P, = 0.101 MPa, T = 512 K, and framing rate = 2,000 frames/s.

Framing rates corresponding to effective observation times on the order of a millisecond are typical.
(Figures 32-34 illustrate the kind of photographic quality of droplets evaporating at their super-
heat limit one may expect from this method. More will be said about these photographs later.)
Schematic diagrams of two methods used for levitating droplets are shown in Figures 35 and 36
[28, 30, 123, 124]. Droplets were superheated by isothermal decompression (path b-c in Figure 2A)
in these apparatuses. The first method (Figure 35) consists of a test section in the shape of a diverging
channel placed in a flow loop of liquid 2 driven by an impeller pump. By adjusting the liquid 2
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Figure 38. Photographic sequence of an n-butane droplet boiling in glycerine during the first
few microseconds after nucleation at P, =0.101 MPa and T ~ 378 K: (A) 9us <t < 12 ps,
(B) 17us <t < 34 us, (C) 55 us < t < 65 us [18].

the time for complete evaporation progressively increases with pressure. Evaporation of a ~1 mm-
diameter droplet takes about four times longer at 1.22 MPa than 0.687 MPa. This fact reflects a
strong effect of pressure on bubble growth. The origin of this effect is a combination of reduced
influence of dynamic-inertia effects on growth and a decrease in Jakob number, hence temperature
difference and heat supply to the bubble, as pressure increases. This reduced growth rate with
increasing pressure will also bear on the utility of the spark-gap method of Shepherd and Sturtevant
[18] at high pressures. Just how high a pressure the method can be employed before the blast wave
intensity created by rapid movement of the bubble boundary diminishes to a value which cannot
be detected by the transducer requires further investigation. The precise pressure at which a tran-
sition from explosive to nonexplosive vaporization occurs is not known in general, but for n-octane
droplets ~ 1 mm in diameter it appears to be about 4 atm to 6 atm (P, from 0.24 to 0.33).

The model for bubble growth in droplets developed in the previous section applies under the
nonexplosive condition depicted in Figure 32B and C in which the evaporating boundary is also
smooth and the bubble does not oscillate. These observations may provide a test of the usefulness
of the model presented. Figure 39 shows a comparison between measured [11] and predicted (Sec-
tion 5) droplet radii (S) for n-octane. The measurements were sufficiently imprecise to create some
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Figure 39. Comparison between calculated [108] and

measured [11] droplet radii for an n-octane droplet

% ! o.(')z * oo4 Dboiling in glycerine at P, = 1.22 MPa, T = 531 K, and
T indicated parameters.
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Figure 40. Photograph of an n-butane droplet boiling in
water at P, = 0.101 MPa and a few degrees superheat
[128].

uncertainty about the initial droplet size (which enters in the analysis in the definition of 7). Also
shown in Figure 39 is the evolution of internal bubble radius (R), which was not measured. The
time domain for the development of a steady vapor temperature and pressure was sufficiently small
on the scale of Figure 39 to be undetectable; the data shown correspond to heat-transfer-controlled
growth.

Droplets vaporizing at conditions far from their superheat limit occasionally exhibit similarities
to high pressure evaporation at the superheat limit. This is shown in Figure 40 which shows evap-
oration of an n-pentane droplet in water at 0.101 MPa, but only a few degrees superheat [128].
For the droplet nucleation was apparently induced by introducing small gas bubbles or allowing
minute amounts of air to dissolve in the droplet. By contrast, the effect of such impurities on an
n-octane droplet was minimal (Figures 32b and 32c). It may be noted that the two-phase droplet
geometry illustrated in Figure 32 does not correspond to the concentric sphere model which formed
the basis of the analysis discussed in the previous section. However, this photograph was taken
from the 18th (out of 170) of the sequence illustrated in Figure 32C and corresponded to a time
such that only about 109 of the liquid had evaporated. Beyond this time, the liquid sheath becomes
increasingly difficult to discern and the assumed geometry provides a better approximation.

CONCLUDING REMARKS

Bubble growth in a liquid droplet at its superheat limit has been reviewed. The problem was
divided into two parts:

1. An initial phase during which bubbles form by homogeneous nucleation.
2. A later stage characterized by growth of the initial bubble.

Methods were reviewed for predicting the superheat limits of liquids. This information yields the
thermodynamic state of a droplet (its pressure, temperature, and composition) at which the initial
bubble is formed in the absence of any extraneous nucleation aids. Subsequent growth of the bubble
was analyzed by extending the conventional conservation equations which govern bubble growth
in an infinite medium to account for the finite mass of vaporizing liquid. It was shown that the
time domain of dynamic effects wherein the bubble gas pressure is still significantly different from
the ambient pressure is usually less than a millisecond. Classical analysis will have to be modified
to account for bubble oscillations and the wrinkled, nonsmooth, liquid/vapor interface characteristic
of explosive boiling.

At present, our understanding of nucleation phenomena outweighs our understanding of the
dynamics and heat transfer of bubble growth in droplets. Reliable methods are available for pre-
dicting the thermodynamic state of a droplet at which bubbles will form by homogeneous nucle-
ation. A comparatively large data base also exists on the limits of superheat of liquids which forms
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the foundation of our confidence in predictive methods. By contrast, a paucity of data exist relating
to bubble growth in liquid droplets at the superheat limit. As such, more experiments need to be
performed to provide a firmer foundation for more detailed analysis. It is hoped this review stimu-
lates further work on this fundamental and important problem.
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NOTATION
a equation of state constant defined by
Equation 64
b  equation of state constant
C, bubble growth constant (Equation 65a)
c; empirical constants defined by Equa-
tion 112(i=1,2)
C, liquidi(i=1,2)
E, symbol for a vapor nucleus containing
n molecules
F  Helmholtz function
f,. number density of vapor nuclei con-
taining n molecules at time t
h  heat transfer coefficient
he, latent heat of vaporization of liquid 1
I,. nucleation rate of a nucleus containing
n molecules at time t
K@ molecular evaporation rate in a nucleus
containing n molecules
k. molecular condensation rate in a nu-
cleus containing n molecules
k; thermal conductivity of liquid i
i=12
k, velocity factor (Equation 89)
K  Boltzmann constant
m; molecular mass of liquidi (i =1, 2)
n  number of molecules
n; number of molecules of component i in
a vapor mixture
n!  number of liquid molecules
n* number of molecules in a critical size
nucleus
N, number density of nuclei in a hypothet-
ical equilibrium state (Equation 50)
N, number density of molecules
Nu  Nusselt number
P pressure of vapor in bubble
P*  pressure of vapor in a critical size
nucleus
P, critical pressure

e~}

30hu ?S

sl

-

-sww—ll"l

=R

L p PP

NI

=

°

]

S -

°

=1

-

Se x < <8<: c::‘l:ié_-]

mixture critical pressure

Peclet number (Equation 78a)
ambient (or nucleation) pressure
Prandtl number

reduced pressure (= P/P,)

radius

=1/R,

bubble radius

final bubble radius (Equation 1)
gas constant

bubble wall velocity

=R/R,

= R[/ Ro

initial bubble radius

overall droplet radius

initial overall droplet radius

=S/S,

bubble surface area

time

temperature

critical temperature

mixture critical temperature

kinetic limit of superheat

measured kinetic limit of superheat
ambient (or nucleation) temperature
reduced temperature (= T/T,)
=TTy

thermodynamic limit of superheat
temperature of vapor in bubble
internal energy

free stream velocity of liquid 1
volume

liquid specific volume

liquid mole fraction of component i in
a mixture

vapor mole fraction of component i
vapor mole fraction of component i in
a critical size nucleus
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Greek Symbols
@;  thermal diffusivity of liquid i (i = 1, 2) ui;  chemical potential of component i in a
Y =oyfa, liquid mixture in system j
I'  defined by Equations 30 and 51 ui  chemical potential of component i in a
0  thermal boundary layer thickness vapor mixture
AF  change in Helmholtz function pi  density of liquid i (i = 1, 2)
A®  minimum energy to form a vapor nu- py  vapor density in bubble
cleus o;  surface tension of liquid i (i = 1, 2)
A®*  energy of a critical size nucleus 0y, liquid 1/liquid 2 interfacial tension
e =1-pJ/p, v velocity of liquid
g =1-p/p, ®  availability (Equation 33)
{ =ky/k, w  acentric factor
n  transformed coordinate variable (Equa-
ion 105)
Subscripts
i liquidi(i=1,2) s condition at saturation (r — co)
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