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Abstract—A numerical solution for the problem of film evaporation of a liquid droplet on a horizontal
surface is presented. The droplets are small enough to be assumed spherical. Two principal cases are
considered : (1) the horizontal surface is maintained at a constant temperature (case I), and (2) the surface
is insulated while the ambience is hot (case IT). The complete set of equations governing this problem were
solved under the following assumptions : (1) evaporation is quasi-steady, (2) no internal liquid circulation,
(3) constant properties, and (4) the droplet temperature is spatially uniform but temporally varying. The
Lewis number is not assumed to be unity ; gas phase viscous effects, Stefan type convection, and gas phase
inertia are included in the analysis. The total droplet evaporation time was found to decrease with increasing
plate (I) or ambient (II) temperature as expected, and the droplet progressively moves away from the plate
as it evaporates. The numerical results agree with the analytical solution for film evaporation of a droplet
above an adiabatic surface in a hot ambience in the limit of large effective Reynolds number (i.e. potential
flow).

0017-9310/87$3.00+0.00
Pergamon Journals Ltd.

1. INTRODUCTION

THis paper presents a numerical solution to the prob-
lem of Leidenfrost evaporation. The most elementary
configuration is treated here, namely that of an iso-
lated spherical droplet evaporating at a horizontal
surface. The intent is to develop a predictive frame-
work for the evolution of droplet size and temperature
for droplets evaporating at walls. The analysis may
be a first step toward developing a complete model of
the interaction of droplets in a spray with the walls of
a combustor.

Prior work on the film evaporation of liquid drop-
lets at walls has been pursued from both experimental
and semi-empirical viewpoints. Experimental work
has employed a variety of pure liquids, mixtures,
emulsions, and solid suspensions on impermeable and
porous materials. Other approaches of a more ana-
lytical nature have either simplified the droplet
geometry, governing equations, or fluid flow patterns
to provide formulations which nevertheless have been
useful in correlating evaporation time measurements
and in providing insight into the physics of the evap-
oration process (e.g. see refs. [1-11]). However, full
solutions to the governing equations which avoid the
approximations of previous work, in particular those

tPart of this paper was presented at the 1987 ASME-
JSME Thermal Engineering Joint Conference, Honolulu,
23-27 March 1987.

of the geometry, heat transfer, and vapor flow sur-
rounding the droplet, have not been presented.

The primary difficulty in obtaining a solution is in
the complexity of the governing equations written
in an orthogonal coordinate system for which the
coordinate axes coincide with the droplet and the wall.
The problem is further complicated by the fact that
simplifications to the equations which would be obvi-
ous candidates for a first attempt at closed form sol-
utions, namely those of either a Stokes type flow in
the vapor surrounding the droplet coupled with con-
duction only in the gas phase, or the other extreme of
potential flow, would not be valid. This fact may be
seen by noting that in analogy with droplet evap-
oration in an unbounded environment far from the
critical point, the gas phase Reynolds number is
approximately

In(1+ B)

where the Prandtl number, Pr, is also of order unity
and B is the so-called transfer number [12]. Thus
both the inertia and viscous terms would have to be
retained in the momentum equation. Also, the Peclet
number

Pe = Re Pr 2)

is then of order unity so that the convective term in

1497



1498

T. K. NGouyeN and C. T. AVEDISIAN
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NOMENCLATURE

v droplet volume
Y, mass fraction of species i
Y,, mass fraction of vapor at droplet surface.

Greek symbols
a  principal bispherical coordinate
o, gas thermal diffusivity

B principal bispherical coordinate

Bo coordinate corresponding to droplet

y  gas emissivity

&  levitation height

n  transformed coordinate

i, dynamic viscosity

v gas kinematic viscosity

¢ vorticity

IT  total stress tensor

Py gas density

py  liquid density

o droplet surface area

% Stefan-Boltzmann constant

¢  velocity potential

¢, velocity potential at droplet surface

Y stream function.

the energy equation cannot be dropped. The value of
such approximations in the present problem is in the
checks they can provide on the accuracy of the
numerical method employed for solving the full set of
equations when the limiting approximations are
made. The potential flow solution, in particular, is
used in this way (see Appendix A).

Two principal cases are considered. In the first the
horizontal surface is maintained at a constant tem-
perature {case I), and in the second the horizontal
surface is insulated while the ambience is hot {case II).
The droplet shape is taken to be spherical rather than
sessile in the present analysis (which is relevant to
droplets typically found in industrial sprays, and valid
for small droplets generally less than 100 ym in diam-
eter [13]). Several additional assumptions are as fol-
lows: (1} the evaporation process is quasi-steady, (2)
fluid properties are constant, (3) radiative effects are
negligible, (4) spatial nonuniformities of temperature
within the droplet are neglected, and (5) buoyancy
induced flow and internal liquid motion within the
droplet are neglected (see Appendix B).

Radiative effects are negligible provided the analy-
sis is restricted to low plate {(case I) or ambient (case
II) temperatures such that for example (case I)
9T} —TH/(k(T,—T)/6) « 1. Though gas phase
properties are considered uniform in this analysis, we
do include the variations of liquid density and specific
heat with temperature to treat the transient heating
period. We consider the simplest model for droplet

heating, namely that the droplet temperature is spa-
tially uniform but temporally varying. Finally, the
Lewis number is not assumed to be unity, and gas
phase viscous and inertia effects, and Stefan type con-
vection, are included in the analysis.

2. FORMULATION

A single component liquid droplet in an inert ambi-
ence starts evaporating above a horizontal surface.
Vapor flows radially outward from the droplet, and
the corresponding streamlines bend due to the pres-
ence of the wall. A pressure field is thus created around
the droplet, and the component of this field normal
to the surface lifts the droplet off the surface. This
state of levitation persists until the droplet completely
evaporates. The problem is to determine the evolution
of the velocity and temperature fields in the gas sur-
rounding the droplet, levitation height, and droplet
diameter.

The equations to be solved are as follows :

continuity V-v=0 3)
1

momentum V-VV = — —VP+2yiv (g

energy V'VT=a VT %

species V-VY, = DV?*Y, ©)

where i=1 (droplet) or 2 (inert ambient} and
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Y,+ Y, = 1. A force balance on the levitated droplet
equates the droplet weight with the net force acting
on the droplet (sum of viscous shear and normal
stresses, and pressure forces)

fi' Ido = g(p—py v M

where ITis the total stress tensor and jis the unit vector
in the vertical direction. In the problem considered the
ambience was a single component inert gas (air) and
the droplet was a single component liquid (water or
n-heptane). By writing the force balance in the form of
equation (7) we neglect effects of droplet acceleration
caused by variations in levitation height in this first
phase of our work.
The boundary conditions are as follows:

V=0 (8a)
on =~ on =0 (80)
solid surface (8c)
T=T, (casel)
8d
o _ 0 ) oo
L= (case
dronl . T=T, (9a)
roplet surface Y=1v, (9b)
V-ooO (10a)
ambience Y, -0 (10b)
T->T,. (10¢c)

Equations (3)-(10) were first cast in the bispherical
coordinate system (Fig. 1). This coordinate system
consists of a family of spheres (# = constant) which
are each orthogonal to a family of spindle shaped
surfaces (¢ = constant). A droplet is the sphere 8 = 8,
and the solid surface corresponds to f = 0. The scale
factor ‘A4’ is given by

A = Rsinh B, an
and the levitation height, 8, is
8 = R{coshf,—1). 12)

Equations (3)-(10) are now written in the so-called
stream function ( )/vorticity (£) form. Equations (3)
and (4) transform to [14]

1 {0/ h oy hy 1,
= huks {EE(ME’E)”’M( o 6ﬁ>} mtY

(13)
and
L 0W,E) 2B 0@ k) _
hihihy 0@ B) kil d@p ~E ¥ (19

The operator E? is defined as
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h (0 hy b0
s by Jo( by ;
E _h,hz{aa(mh, 60:) a;s( P ag)} (13)

Using the definition of E*, equation (14) can be rewrit-
ten as
1 8@, hs8)
hihyhy 8(o, B)

25 a(‘l‘: hl)

oy @y~ E ¢

(16)

The metric coefficients are [15]
A Asina

h =h -3 = .
V7" 7 coshf—cose’ ° coshf—cosa

an

The velocity components in the ¢- and S-direction are

U, = — k_;,l}—x;g%’ Ug = i 1h3 ?ﬁ (18)

The boundary conditions are
Yy=0atau=0 (19a)
Y = aconstant at o = 1 (19b)
¥ = aconstantat f =0 {19¢)
%-Oatﬂ=ﬁo (19d)
E=0atoa=0n (19¢)

Similarly the energy equation (equation (5)) is
u, 0T uz @T &k 1

}l] da hz Bﬁ va h h2h3
¢ (hyh, 0T & (h3h, 8T
{aa( h aa) 579(’? a)§ @
with boundary conditions
or Qata=0 21
Fr ata=0,n (21a)
oT
= 0 {casell)
or at f=0 (21b)
T=7T, (casel)
T=T,ata=§=0. (21c)

The transient droplet temperature, T,(¢), is determined
from an energy balance at the droplet surface

k oT dfa |
J‘h2 aﬁda = fpvhf8u5d0+a;(§ﬂR p|C|Tg)

(1d)

where p; and C, are time dependent through their
variations with temperature. The initial condition on
droplet temperature is that 7, = T,

Finally, the species conservation equation (equa-
tion (6)) is
u, 0Y, ug 0y aY, D
h, éa ' h, 88 h,h2k3

8 {hyh, 8Y, & {hsh, 8Y
"{5&<%5?)+aﬁ(32 6:83)} @2
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surface—// / 7 / / ]

coordinate system

Fi1G. 1. Coordinate system,

with boundary conditions

ar,

Fra Oata=0,n (23a)
Y,
E—Oatﬂ—o (23b)
and
D 07,
T (1—=Yy,)ug at § = B,. (23¢)

Y, is unknown and was obtained from the assump-
tion of vapor/liquid equilibrium at the droplet surface.
The levitation height is determined by equation (7)

4
f[(—P+Tﬂﬂ)nﬂ + 7,40, ] jdo = §7TR *9(pi—py)
(24)

where the stress components at the droplet surface are
given by

. (sinh B)u, 4 1 duy
“ = ~H % (coshf—cosa) " h; Ba

1 Ou,
A5

(sin o) (ug)
h,(cosh f—cos o)

—(sina)u,

T = 2 {h2(coshﬁ—cosa) h, 7371_

1 du
+— "}. (26)
The pressure P is obtained from the momentum
equation (equation (4)).

The droplet evaporation time is obtained by inte-
grating the equation

4 d
§7za(p1R3) =p, 'fuﬁ do. (V)]
The physical properties used in the solution were
evaluated at the ambient pressure (0.101 MPa) and at
an arithmetic average temperature and concentration
between the droplet surface and the ambience (other
rules used for evaluating the physical properties did
not affect the form of the solution). The temperature
and concentration dependence of these properties was
obtained from formulations given in ref. [16].

3. METHOD OF SOLUTION

One difficulty of obtaining a solution is the possi-
bility that the moving droplet boundary could reside
between adjacent grids in the finite difference scheme.
A coordinate transformation which immobilizes the
droplet boundary was accordingly used. This trans-
formation is as follows:

_Bo—B

"="g (28)




Numerical solution for film evaporation of a spherical liquid droplet

where B, is the droplet surface and the domain of
the solution is in the range 0 < f < . The droplet
surface is then transformed to a fixed line # = 0, and
the wall is at = 1. The o—# plane thus represents a
rectangular grid fixed in time. Equations (13)-(27)
were written in the a—# system (the results are too
lengthy to present), and then put in finite difference
form.

The finite differenced equations and boundary con-
ditions were solved using a successive overrelaxation
scheme [17]. The iterative solution centered around
the levitation height. With R and T, initially known,
a value of 4 was selected after which f, was determined
from equation (12). The conservation equations
were then solved for the temperature, velocity, and
concentration fields. For this purpose a (21 x 21) grid
was chosen to yield a combination of acceptable accu-
racy and a reasonable computational time. Appendix
B discusses the accuracy of the numerical scheme.
Optimum relaxation factors of 1.4 for the stream func-
tion, 1.2 for the vorticity, and 1.85 for both the energy
and species equation were used. Typical CPU times
for one complete evaporation time determination at
each preselected ambient (case II) or surface (case I)
temperature averaged about 1 h on an IBM 4381. The
droplet radius at the next time increment (dimen-
sionally, about 0.2 ms for the present calculations)
was then obtained from equation (27), followed by a
determination of the new T, from equation (2le).

The calculations were terminated when the droplet
was small enough so that it reached over 90% of
its evaporation time. The evaporation time was then
inferred by extrapolation to R = 0. The reason for
this extrapolation is that §/R rapidly diverges (but is
not infinite) as R — 0 so that convergence of the force
balance to yield the levitation height becomes par-
ticularly difficult to achieve as the droplet size dimin-
ishes.

4. DISCUSSION OF RESULTS

Calculations are reported for water and n-heptane
droplets initially S0 um in diameter. Figure 2 shows
streamlines around an n-heptane (Fig. 2(a)) and water
(Fig. 2(b)) droplet evaporating above an isothermal
surface at the start of evaporation (¢ = 0). In all the
calculations, 7,, = 300K. The streamlines exhibit a
form similar to a point source near an infinite plane
with streamline curvature providing a measure of the
pressure gradient around the droplet. While the
streamlines are normal to the droplet surface so that
the vapor flow is only in the radial direction there,
the tangential velocity gradient will be nonzero. This
gradient contributes to the viscous and inertia terms
in the momentum equation which, when multiplied
by the normal vapor velocity at the droplet, balance
the pressure gradient around the droplet surface with
the weight of the droplet. The droplets in Fig. 2 were
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positioned at their levitation height, which was
obtained by satisfying equation (24).

The temporal variation of droplet diameter (d?) is
illustrated in Fig. 3. There is a short initial transient
period during which the droplet actually grows larger
than its initial size. This effect is related to liquid
density variations with temperature and is a charac-
teristic of isolated droplet evaporation in an infinite
gaseous medium [12]. If the transient heating period
is ignored the diameter (d?) decreases monotonically
with time.

During the transient heating period, the droplet
temperature approaches a steady state wet-bulb value
as shown in Fig. 4. This temperature (338.4 K for an
n-heptane droplet corresponding to the conditions of
our calculations) is the same for both the case I and
case II calculations and is below the n-heptane normal
boiling point of 371 K. When the ambient and surface
temperatures are the same for cases I and II (which it
was for the calculations shown in Fig. 4), the asymp-
totic wet-bulb temperature will be the same for evap-
oration above an adiabatic and isothermal surface.
Also illustrated in Fig. 4 is that the droplet tem-
perature overshoots its infinite medium wet-bulb tem-
perature when evaporating at an isothermal surface,
but asymptotically approaches this value for evap-
oration at an adiabatic surface (when the ambient
temperature is the same for both cases). At an iso-
thermal surface the proximity of the hot surface to
the cold droplet results in a higher heat transfer rate
compared to a droplet at an adiabatic surface in a hot
ambience. As a result, the droplet temperature will
be higher for a droplet evaporating at an isothermal
surface when boundary temperatures are the same for
cases I and II. Eventually, the droplets approach the
same steady state wet-bulb temperature as the effect
of the wall diminishes because the droplet moves away
from the surface as it evaporates. This latter effect is
shown in Fig. 5 for a droplet at an isothermal surface.
Also illustrated is the effect of the transient heating
period on the levitation height. A droplet initially
resides closer to the surface when transient heating is
accounted for than when the droplet is assumed to
already be at its wet-bulb temperature.

The variation of levitation height illustrated in Fig.
5 did not exhibit any periodic or oscillatory behavior.
Oscillatory behavior of the calculated levitation height
may have been expected based on prior experimental
observations for larger sessile shaped drops, even when
free convective effects are neglected [7]. The absence
of droplet oscillations (i.e. a periodic alternate move-
ment of a droplet toward and away from the surface)
in the present calculations may be due to neglecting
the acceleration term in the force balance of equation
(7) as previously mentioned.

The calculated increase in levitation height with
time shown in Fig. 5 is at variance with several pre-
vious more approximate models, results from which
have shown that a droplet moves toward an iso-
thermal surface as it evaporates (e.g. refs. [1, 2, 4, 11]).
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n - heptone, isothermal surfoce : T¢= 600k, Ty =300k, R =25 um
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F1G. 2. Calculated streamlines around an n-heptane (a) and water (b) droplet evaporating in nitrogen.

Though these models have been useful for correlating
evaporation time measurements, they have been based
on modelling droplets as essentially truncated spheres
with flat bases to which heat transfer occurs to the
exclusion of evaporation over the upper surface of the
droplet. As the droplet gets smaller, the base area
rapidly decreases and the droplet must reside closer
to the surface to compensate.

Figures 6 and 7 illustrate the variation of the total
evaporation time with surface (case I) or ambient
(case IT) temperature for an n-heptane droplet initially
50 um in diameter. These calculations are essentially

the loci of times corresponding to d” = 0, obtained by
varying the surface or ambient temperature. Cal-
culations were carried out over the temperature range
of 500-700 K. The lower limit is above the Leidenfrost
point for heptane [8]. Results show that the evap-
oration time decreases with increasing surface (case
I) or ambient (case II) temperature. This fact is in
accordance with many previous experimental case I
observations for much larger and initially non-spheri-
cal droplets; no data have yet been published cor-
responding to the small initially spherical droplets
considered in the present calculations. Also, the
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ISOTHERMAL SURFACE, TPLATE=600 K ... UNSTEADY
N—HEPTANE, TINITIAL=300 K, TAMB=300 K - STEADY
Rl = 25 MICRONS
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Fi6. 3. Variation of d? (cm?) with time (s) for an n-heptane droplet evaporating above an isothermal
surface. Ty, = 300K, T, = 300K, 7, = 600K, R; = 25 um. ————, Steady state. - - - -, Unsteady state.
DROPLET HEATING, TAMB=600 K, TPLATE=600 K ... ISOTHERMAL
N—HEPTANE, TINTAL=300 K e ADIIEEHC
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FI1G. 4. Temporal variation of droplet temperature, T,, for n-heptane evaporating above an isothermal
() or adiabatic (~~~~-) surface. T, = 300K, T, = T, = 600K, R, = 25 ym.
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ISOTHERMAL SURFACE, TPLATE=600 K . UNSTEADY
N—HEPTANE, TINITIAL=300 K, TAMB=300 K == STEADY
Rl = 25 MICRONS
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F1G. 5. Variation of levitation height with time for an n-heptane droplet evaporating above an isothermal
surface. T, = 600 K, T, = T, = 300 K, R, = 25 ym. ————, Steady state. - - - -, Unsteady state.
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FIG. 6. Effect of plate temperature on total droplet evaporation time for n-heptane at an isothermal surface.
To= T, = 300K, R, = 25um. - - - -, Unsteady state. ————, Steady state.
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N—HEPTANE EVAPORATION TIMES, RI=25 MICRONS

ADIABATIC SURFACE
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TEMPERATURE=AMBIENT TEMPERATURE

2.40x107 — T
2.20x107 |-

2.00x107 |-
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6.50x10*
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Fi1G. 7. Effect of ambient temperature on total droplet evaporation time for n-heptane at an adiabatic

surface. Ty, = 300K, R, = pym. -+

neglect of droplet heating results in a lower evap-
oration time as expected.

5. CONCLUSIONS

A numerical solution to the problem of Leidenfrost
evaporation of isolated spherical droplets has been
presented. The results showed that streamlines eman-
ating from a droplet evaporating either above an iso-
thermal (case I) or adiabatic (case II) surface exhibit
a form similar to a point source above a plane wall.
The total droplet evaporation time progressively
decreases as the wall (case I) or ambient (case II)
temperature increases, and the evolution of droplet
diameter squared may increase above its initial value
when droplet heating effects are considered. For evap-
oration above an isothermal surface the droplet
temperature exceeds the wet-bulb temperature cor-
responding to evaporation in an unbounded ambience
during evaporation, then asymptotically approaches
the infinite medium wet-bulb temperature. In the
potential flow limit, the numerical results were in
agreement with the analytical potential flow solution
to this problem.
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APPENDIX A

An analytical solution to the quasi-steady Leidenfrost
evaporation problem for spherical droplets on an adiabatic
surface can be obtained in the limiting case of neglect of
both the viscous term in equation (4) and transient droplet
heating, and for a Lewis number of unity. The solution is
then similar to that previously published for two droplets
evaporating or burning in an unbounded ambience and sep-
arated by a known distance [18, 19]—a so-called tandem
droplet problem. Prior solutions to the tandem droplet prob-
lem have assumed that the interdroplet spacing (or what
would equivalently be the levitation height in the Leidenfrost
problem) is constant during evaporation. This assumption is
not valid for the Leidenfrost problem as the levitation height
must continuously change during evaporation to satisfy the
force balance around the droplet. The value of the potential
flow solution to the Leidenfrost problem for spherical drop-
lets resides in checking the accuracy of the numerical method
employed for solving the full problem.

The equations to be solved are equations (3), (5), and (6),
together with the equation for the velocity potential

Vip=0 (Al
where
Vé =p.V. (A2)

Equations (24) and (27) under the potential flow assump-
tion can be written as

1 4
- TmJ(V¢'V¢)n'id0 = §"R39(pn—0v) (A3)
and

fn-qu do = — gnpld—(;?. (Ad)

The energy and species conservation equations may be
coupled by defining

C(To=T) _ ¥,

b= =11, (A3)
so that equations (5) and (6) become
k
V:Vb=-—V3. (A6)
Cv
The boundary conditions for equations (Al) and (A6) are
b 09
E—E_Oatﬁ_o (A7)
b=B,¢=¢ atf=p, (AB)
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b=¢=0ata=p=0. (A9)

The particular solution to equations (A6)—(A9) is

 1—expl4C, /K]
b= B exp[6,C. A (A10)

where
B = G —T) (A11)
he
and
k
¢, = — Fln (1+B). (Al12)

The solution for the velocity potential via separation of
variables is

¢ = ¢ \/2(coshf—x)? Y P,e Dk
n=0

cosh [(n+1/2) B}

X coshlnt 1B, AP

where x = cosha and P, are Legendre polynomials of the
first kind of degree n. Equations (A3) and (A4) can now be

written as
L
R*=|Z 1% Al4
[2 go.(p1—py) (Al4)
and
dRZ |¢l| . © e—(n+l/2),‘)o
& T b Y S v iR A1
where
1
1(Bo) = .[1 S(x,Bo)dx (Ale)
and

©

P e+ 128
n
=0

S(x,B0) = (xcoshﬂo—l)'[

x (n+1/2) tanh [(n+ 1/2) Bo]+ 1/2(cosh By —x) "

) 2

xsinhfy Y P, e”("*”z)”"] . (A1)
n=0

Equations (A14) and (A15) combine to yield the evolution

of B, hence droplet radius and evaporation time (f, — o),

as

__ [lzg’peca.—pv)Z]‘“
pilél

JW dl/dg,
X o«

5 qus sinh B Z _._LH/ZL

* Socosh [(n+1/2) o]
where 6 and 4 will be as defined in equations (11) and (12).
The initial value of B in equation (A18)—f,—is determined
from equation (Al4) by setting R = R; (the initial droplet
radius) and then solving for f, — B, together with equations
(A16) and (A17).

Predictions of evaporation time and droplet radius are
exact if equations (A16)-(A18) can be integrated analyti-
cally. However, no analytical evaluation of I, and hence ¢
in equation (A18), exists. The function f(x, f,) defined by
equation (A17) is particularly difficult to integrate for small
Bo. Predictions from the potential flow solution must then
be recognized as involving some degree of numerical inac-
curacy. This inaccuracy is minimized for the range of initial
droplet sizes, and hence values of §,, considered here.

dfe (AlB)
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The question of accuracy of the numerical solution is now
addressed in two parts: one relates to convergence of the
numerical scheme as grid spacing is reduced, and the other
concerns the accuracy of the numerical method itself (i.e. is
the solution correct or physically meaningful?). The two
questions are interconnected : in principle for a fine enough
grid spacing the converged solution is also accurate. The
question of accuracy is best answered by comparison with a
related analytical solution. The solution used for this purpose
is from the potential flow problem described above.

Figure Al shows the effect of grid spacing (in the o—
n plane) on the evolution of diameter squared. For these
calculations, droplet heating was neglected. It is evident that
as the grid becomes finer, convergence occurs; it is also
true that the computational time increases substantially. For
example convergence required about 4 h of computational
time on an IBM 4381 for the 31 x 31 grid, but only about 1
h for the 21 x 21 grid. The small differences shown in Fig.
Al justify using the 21x 2l grid to generate the results
discussed in Section 4.

Figure A2 compares the analytical potential flow solution
with the solution obtained by setting u = 0 in the discretized
form of equations (11)-(27) (for case II). For this purpose
the variation of d* with time is used as a basis of comparison.
The numerical solution again neglected droplet heating, as
the analytical solution only applies for this case. The very
small differences in diameter squared in the two solutions
shown in Fig. A2 are indicative of the accuracy of the numeri-
cal solution. Differences in the total evaporation time (cor-
responding to d? = 0) are also very small as shown in Fig. A2,
The close agreement between the analytical and numerical
solutions is thus indicative of the accuracy of the numerical
method employed in the calculations presented in Figs. 2—
7 and Al.

APPENDIX B

Two possible sources for internal circulation within a
droplet evaporating near a wall are the following: (1) an

external non-radial flow which creates a shear stress at the
droplet surface, and (2) surface tension gradients.

The existence of surface tension gradients is specifically
ruled out by the assumption of a spatially uniform droplet
temperature. For the small droplets considered in this study,
on the order of 50 um diameter, this assumption is valid.

An external non-radial flow around the droplet can be
created in three ways. In the first, the gas phase temperature
difference between the droplet, ambience, and wall could
create a buoyancy induced flow around the droplet. To
assume buoyancy effects can be neglected requires dem-
onstrating that the evaporation induced (i.e. Stefan) flow is
much greater than the buoyancy induced gas flow. For this
purpose a characteristic free convective velocity is defined
through an order of magnitude analysis on the momentum
equation by equating the buoyancy term with the inertia
term

Vo ~ [gxATd]'"? (BI)

where x is the isothermal compressibility. An order of mag-
nitude of the evaporation induced velocity at the droplet
surface is

a,In(1+B)

V., 4

(B2)
Free convection is taken to be negligible if Vi/V, « 1.
Assuming d ~ 50 um, and typical orders of magnitude for
the fluids studied of &, ~ 0.1 cm*s™ %, k= 107*% ', B~ 1,
and AT ~ 200 K we find that V,/V, ~ 0.02. For larger drop-
lets, free convective flow around the droplet may be import-
ant. This flow may give rise to the complications leading to
oscillatory motion of larger droplets. As evaporation pro-
ceeds and the droplet gets smaller such oscillations disappear.
Oscillations generally do not occur for droplets on the order
of less than about 1 mm diameter, thus demonstrating the
possible reduced influence of buoyancy induced flow for
smaller droplets.

A second source of a tangential velocity at the droplet
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state n-heptane droplet evaporation at an adiabatic surface. T, = 600 K, R, = 20 um.

surface is conjectured to come from the evaporation process
itself. Streamlines emerging from the droplet must bend due
to the presence of the wall. The extent of their curvature is
governed by the magnitude of the vaporization rate and
droplet levitation height. Streamlines originating from the
lower hemisphere of the droplet could in principle bend
around the droplet even in the absence of free convective
motion to the extent that along the upper surface of the
droplet there is a non-zero tangential velocity, and hence
shear stress. The neglect of the attendant liquid motion is
contingent on the characteristic time for liquid motion being
much longer than the characteristic time for droplet evap-
oration. An order of magnitude estimate for the liquid vel-
ocity within the droplet is obtained by assuming that shear
is continuous across the gas/liquid interface. Hence, to an
order of magnitude
D
Vi~—1,
13

where a characteristic dimension in the liquid has been taken
as the droplet diameter. The characteristic time (for a particle
to traverse the droplet circumference) for liquid circulation
is approximately

(B3)

H
T,

I3 (B4)

An order of magnitude for the droplet regression time is
obtained with the aid of equation (B2) as
4 d

AT ek (BS)

We neglect internal circulation if ¢,/¢,,, > 1. To estimate 7, we
use values from the numerical analysis discussed in Sections 3
and 4 which neglected liquid motion, believing that ,, and
hence V,, would be less if internal circulation were included
in the analysis. From our numerical results, 7, (= 7,5 from
equation (25)) ~ 107> g ecm™' s7% For a,~ 0.1 cm s72,
d ~ 50 um, p//p, ~ 1000 and g, ~ 0.1 gcm ™' s~ ! we find that
[ty ~ 277. Since t/t; ~ 1/d*, internal circulation could
become an important effect to consider for larger droplets.

A third source for a non-radial flow at the droplet surface
could be created by the progressive motion of the droplet
away from the surface as it evaporates (cf. Fig. 6). This
motion is due to temporal variations of levitation height. It
creates an effective motion around the droplet which is simi-
lar to a droplet placed in a uniform convective free stream
moving at a velocity of 33/91. The external Reynolds number
in this situation provides a measure of the extent to which
internal circulation must be considered to correctly model
the evaporation process.

Defining V; as a free stream gas velocity, the effective free
stream Reynolds number is Re = V;d/v where V; = 35/0t. V;
was estimated from the present calculations to range between
about 0.06 cm s~' as f — 0 to a maximum of about 1 cm s~
as  —t,. Taking d = 50 ym and v ~ 0.1 cm® s~' we have
that 0.003 < Re < 0.05. At these small Reynolds numbers,
movement of the droplet caused by temporal variations of
levitation height, and the attendant possible liquid circu-
lation, is not expected to exert a strong influence on the
evaporation rate.
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SOLUTION NUMERIQUE DE L’EVAPORATION EN FILM D’UNE GOUTTELETTE
LIQUIDE SPHERIQUE SUR UNE SURFACE ISOTHERME OU ADIABATIQUE

Résumé—On présente une solution numérique du probléme de I’évaporation en film d’une gouttelette
liquide sur une surface horizontale. Les gouttelettes sont suffisamment petites pour étre supposées
sphériques. Deux cas sont considérés: (1) la surface est maintenue a une température constante (cas I, et
(2) la surface est isolée tandis que 'ambiance est chaude (cas II). Le systéme complet d’équations est résolu
pour les hypothéses suivantes: (1) I’évaporation est quasi permanente, (2) il n’y a pas de circulation interne
du liquide, (3) les propriétés thermophysiques sont constantes, et (4) la température de la goutte est
spatialement uniforme mais variable dans le temps. Le nombre de Lewis n’est pas supposé étre égal a
l'unité; les effets de viscosité de la phase gazeuse, la convection de type Stefan et I'inertie de la phase
gazeuse sont inclus dans 'analyse. Le temps de I’évaporation totale de la goutte diminue quand augmente
la température de la plaque ou de ambiance et la goutte s’écarte progressivement de la plaque quand elle
s’évapore. Les résultats numériques s’accordent avec la solution analytique de ’évaporation en film d’une
gouttelette sur une surface adiabatique dans le cas des grands nombres de Reynolds effectifs (écoulement
potentiel).

EINE NUMERISCHE LOSUNG FUR DIE FILMVERDAMPFUNG EINES KUGELIGEN
FLUSSIGKEITSTROPFENS AN EINER ISOTHERMEN, ADIABATEN OBERFLACHE

Zusammenfassung—Es wird eine numerische Losung fiir das Problem der Filmverdampfung eines Fliis-
sigkeitstropfens an einer horizontalen Oberfliche vorgestellt. Die Tropfen sind klein genug um als kugelig
angenommen werden zu diirfen. Zwie prizipielle Fille werden betrachtet : Fall I : Die horizontale Oberfliche
wird auf konstanter Temperatur gehalten ; Fall IT: Die Oberfliche ist isoliert, wihrend die Umgebung heif3
ist. Der komplette Satz der Gleichungen, die dieses Problem beschreiben, wird unter den folgenden
Annahmen geldst : (1) Die Verdampfung ist quasi-stationdr, (2) Keine interne Fliissigkeitszirkulation, (3)
Konstante Stoffwerte und (4) Die Tropfentemperatur ist raumlich konstant aber zeitlich veranderlich. Es
wird nicht angenommen, daB} die Lewis-Zahl gleich Eins ist. Viskosititseffekte der Gasphase, Konvektion
vom Stefan-Typ und die Tréigheit der Gasphase werden in der Untersuchung beriicksichtigt. Wie erwartet,
verkiirzt sich die Zeit bis zur vollstindigen Verdampfung des Tropfens mit steigender Platten(I)-bzw.
Umgebungs(IDtemperatur. Der Tropfen bewegt sich deutlich von der Platte weg, wenn er verdampft. Die
numerischen Frgebnisse stimmen im Bereich groBer effektiver Reynolds-Zahlen (speziell bei Potential-
strOmung) gut mit der analytischen Ldsung fiir die Filmverdampfung eines Tropfens iiber einer adiabaten
Oberfléche in heiBer Umgebung iiberein.

YUCJEHHOE PEMIEHME 3AJIAYU IIJIEHOYHOTO UCHAPEHUSI COEPUUYECKON
JKUAKON KAIUIM HA U30TEPMHUYECKON U AITMABATUYECKOMN MOBEPXHOCTSAX

Annoramus—IIosydeHO 4YMCIIEHHOE pellieHHe 3aJaYd IUIEHOYHOrO MCHIAPEHMs J>KHAKOH KaIUld Ha
ropH3oHTaNbHOH moBepxHocTH. HeGonbimme pasmepbl Kameidb ONpaBALIBAIOT AONyiUeHHE 06 HX
cepuuHocTH. PaccmaTpuBaroTcs OBa NPHHUMNMANLHLIX ciydas: (1) TeMmepaTypa rOpHM3OHTaJIbHOM
MOBEPXHOCTH NOCTOsHHA (Ciyyaii I) H (2) NOBEpPXHOCTh TEIUIOM30JHPOBAaHA OT HATrPETOl Cpeant (Cayvaii
II). Ana 3Tod 3amaum pelieHa MOJIHasi CHCTEMa ONpEEJINIOLINX YPaBHEHHMH NpPH CIEAYIOUIMX HOMYyLLe-
HuAx: (1) HcnapeHHe KBa3HUCTalHOHAapHOE; (2) OTCYTCTBYET BHYTPEHHSS LMPKYJAUMS XHAkocTH; (3)
OBOWCTBA MOCTOAHHBI; (4) TeMIlepaTypa KaIUIH IOCTOAHHA B IPOCTPAHCTBE, HO H3MEHAETCH BO BPEMEHH.
Yucno JIpronca NpHHAMaETCA HEpaBHBIM eauKEuue. PaccMaTpuBaroTes Baskue 3ddexThl ra3osoit dasbl,
KOHBEKIHA mo 3akoHy CredaHa, yuTeHa HHepuMs razosoit KoMmoHeHTH. Kak M oxuganoch, obuee
BpEMs HCMAPEHHUS KAITM YMEHBILAETCA ¢ POCTOM TeMNepaTypsl ItacTHHb (I) il okpyxarouieif cpeast
(II), a xan1s no Mepe ee HcmapeHus Bce Gonblue ynansercs OT IacTHHbL IlonyueHo xopolee CooT-
BETCTBHE YHCJICHHBIX PE3yJbTAaTOB C AHAJIHTHYECKHM DELICHHEM Ul 3a/la¥H I[UJIEHOMHOrO MCTApEHHS
KalulM Hal aanabaTHyeckoil MOBEPXHOCTBIO B CWIBHO HarpeToil cpeae mnpu Gosbiumx 3¢deXTHBHBIX
gucaax PeitHonbaca (Cnyyail MOTEHNHAIBLHOTO TEYEHH).
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