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Abstract-A numerical solution for the problem of film evaporation of a liquid droplet on a horizontal 
surface is presented. The droplets are small enough to be assumed spherical. Two principal cases are 
considered : (1) the horizontal surface is maintained at a constant temperature (case I), and (2) the surface 
is insulated while the ambience is hot (case II). The complete set of equations governing this problem were 
solved under the following assumptions : (1) evaporation is quasi-steady, (2) no internal liquid circulation, 
(3) constant properties, and (4) the droplet temperature is spatially uniform but temporally varying. The 
Lewis number is not assumed to be unity ; gas phase viscous effects, Stefan type convection, and gas phase 
inertia are included in the analysis. The total droplet evaporation time was found to decrease with increasing 
plate (I) or ambient (II) temperature as expected, and the droplet progressively moves away from the plate 
as it evaporates. The numerical results agree with the analytical solution for film evaporation of a droplet 
above an adiabatic surface in a hot ambience in the limit of large effective Reynolds number (i.e. potential 

flow). 

1. INTRODUCTION 

THIS paper presents a numerical solution to the prob- 
lem of Leidenfrost evaporation. The most elementary 
configuration is treated here, namely that of an iso- 
lated spherical droplet evaporating at a horizontal 
surface. The intent is to develop a predictive frame- 
work for the evolution of droplet size and temperature 
for droplets evaporating at walls. The analysis may 
be a first step toward developing a complete model of 
the interaction of droplets in a spray with the walls of 
a combustor. 

Prior work on the film evaporation of liquid drop- 
lets at walls has been pursued from both experimental 
and semi-empirical viewpoints. Experimental work 
has employed a variety of pure liquids, mixtures, 
emulsions, and solid suspensions on impermeable and 
porous materials. Other approaches of a more ana- 
lytical nature have either simplified the droplet 
geometry, governing equations, or fluid flow patterns 
to provide formulations which nevertheless have been 
useful in correlating evaporation time measurements 
and in providing insight into the physics of the evap- 
oration process (e.g. see refs. [l-11]). However, full 
solutions to the governing equations which avoid the 
approximations of previous work, in particular those 

t Part of this paper was presented at the 1987 ASME- 
JSME Thermal Engineering Joint Conference, Honolulu, 
23-27 March 1987. 

of the geometry, heat transfer, and vapor flow sur- 
rounding the droplet, have not been presented. 

The primary difficulty in obtaining a solution is in 
the complexity of the governing equations written 
in an orthogonal coordinate system for which the 
coordinate axes coincide with the droplet and the wall. 
The problem is further complicated by the fact that 
simplifications to the equations which would be obvi- 
ous candidates for a first attempt at closed form sol- 
utions, namely those of either a Stokes type flow in 
the vapor surrounding the droplet coupled with con- 
duction only in the gas phase, or the other extreme of 
potential flow, would not be valid. This fact may be 
seen by noting that in analogy with droplet evap- 
oration in an unbounded environment far from the 
critical point, the gas phase Reynolds number is 
approximately 

Re lnU+B) - ~ = O(1) 
Pr 

where the Prandtl number, Pr, is also of order unity 
and B is the so-called transfer number [12]. Thus 
both the inertia and viscous terms would have to be 
retained in the momentum equation. Also, the Peclet 
number 

Pe = RePr (2) 

is then of order unity so that the convective term in 
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A scale factor (Fig. 1) 
B transfer number 
C, vapor specific heat 
C, liquid specific heat 
d droulet diameter 

u droplet volume 
Yi mass fraction of species i 
Y,, mass fraction of vapor at droplet surface. 

Greek symbols 
D binary gas diffusion coefficient 

9 gravitational constant 
h ,, h,, h3 metric coefficients 

latent heat of vaporization 
unit vector in vertical direction 
gas thermal conductivity 
unit outward normal to droplet 
unit vector in cr-direction 
unit vector in p-direction 
pressure 
droplet radius 
time 
ambient tem~rature 
plate temperature 
droplet temperature 
velocity component in a-direction 
velocity component in B-direction 
velocity vector 
normal velocity at solid surface 

principal bisphe~cal coordinate 
gas thermal diffusivity 
principal bispherical coordinate 
coordinate corresponding to droplet 
gas emissivity 
levitation height 
transformed coordinate 
dynamic viscosity 
gas kinematic viscosity 
vorticity 
total stress tensor 
gas density 
liquid density 
droplet surface area 
Stefan-Boltzmann constant 
velocity potential 
velocity potential at droplet surface 
stream function. 

the energy equation cannot be dropped. The value of 
such approximations in the present problem is in the 
checks they can provide on the accuracy of the 
nume~cal method employed for solving the full set of 
equations when the limiting approximations are 
made. The potential flow solution, in particular, is 
used in this way (see Appendix A). 

Two principal cases are considered. In the first the 
horizontal surface is maintained at a constant tem- 
perature (case I), and in the second the horizontal 
surface is insulated while the ambience is hot (case II). 
The droplet shape is taken to be spherical rather than 
sessile in the present analysis (which is relevant to 
droplets typically found in industrial sprays, and valid 
for small droplets generally less than 100 pm in diam- 
eter [13]). Several additional assumptions are as fol- 
tows : (1) the evaporation process is quasi-steady, (2) 
fluid properties are constant, (3) radiative effects are 
negligible, (4) spatial nonuniformities of temperature 
within the droplet are neglected, and (5) buoyancy 
induced flow and internal liquid motion within the 
droplet are neglected (see Appendix B). 

Radiative effects are negligible provided the analy- 
sis is restricted to low plate (case I) or ambient (case 
IX) temperatures such that for example (case I) 
Xy(T: - Ti)/(k(Tp - Tk)/6) << 1. Though gas phase 
properties are considered uniform in this analysis, we 
do include the variations of liquid density and specific 
heat with temperature to treat the transient heating 
period. We consider the simplest model for droplet 

heating, namely that the droplet temperature is spa- 
tially uniform but temporally varying. Finally, the 
Lewis number is not assumed to be unity, and gas 
phase viscous and inertia effects, and Stefan type con- 
vection, are included in the analysis. 

2. FORMULATION 

A single component liquid droplet in an inert ambi- 
ence starts evaporating above a horizontal surface. 
Vapor flows radially outward from the droplet, and 
the corresponding streamlines bend due to the pres- 
ence of the wall. A pressure field is thus created around 
the droplet, and the component of this field normal 
to the surface lifts the droplet off the surface. This 
state of levitation persists until the droplet completely 
evaporates. The problem is to determine the evolution 
of the velocity and temperature fields in the gas sur- 
rounding the droplet, levitation height, and droplet 
diameter. 

The equations to be solved are as follows : 

continuity v-v=0 (3) 

momentum V*VV = - :VP + FV’V (4) 

energy V*VT= u,V=T (5) 

species V*VY, = DV=Y;, (6) 

where i = 1 {droplet) or 2 (inert ambient) and 
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Y, + Y2 = 1. A force balance on the levitated droplet 
equates the droplet weight with the net force acting 
on the droplet (sum of viscous shear and normal 
stresses, and pressure forces) 

f 
j*IIdc = g(pt--p,)c (7) 

where II is the total stress tensor and j is the unit vector 
in the vertical direction. In the problem considered the 
ambience was a single component inert gas (air) and 
the droplet was a single component liquid (water or 
n-heptane). By writing the force balance in the form of 
equation (7) we neglect effects of droplet acceleration 
caused by variations in levitation height in this first 
phase of our work. 

The boundary con~tions are as follows : 

( v=o @a) 

I av,_w o 

an 
-----_ 

an @b) 

solid surface (gc) 

T = Tp (case I) 

aT 
(84 

z = 0 (case II) 

droplet surface 
T= T, 

Y= r,, 
Pa> 
W 

v-*0 (104 
ambience Y, +o (lob) 

T-+ T,. (104 

Equations (3 j(l0) were first cast in the bispherical 
coordinate system (Fig. 1). This coordinate system 
consists of a family of spheres (j? = constant) which 
are each orthogonal to a family of spindle shaped 
surfaces (CL = constant). A droplet is the sphere fi = #I0 
and the solid surface corresponds to p = 0. The scale 
factor ‘A’ is given by 

A = Rsinh& (11) 

and the levitation height, 6, is 

S = R(cosh PO - 1). (12) 

Equations (3~(10) are now written in the so-called 
stream function (~)/vo~city (<) form. Equations (3) 
and (4) transform to 1141 

Using the de~tion of E2, equation (14) can be rewrit- 
ten as 

(16) 
The metric coefficients are [ 151 

h,=h*= A 
cash /I - cos a’ 

h3 = 
Asina 

cash #I - cos tl’ (17) 

The velocity components in the a- and /I-direction are 

1 a+ 1 a* -- 
” = - h2h3 a/3’ ‘9 = h,h,& (18) 

The boundary conditions are 

$=Oata=O 

tj = a constant at d! = 7t 

$ = a constant at fl= 0 

Wa) 

(lob) 

(19c) 

w 
aS=oatB=Bo (194 

c=Oata=O,n. (lge) 

Similarly the energy equation (equation (5)) is 

with boundary conditions 

ar 
~=Oat~=O,n (2la) 

aT 
-&=o (case II) 

or at@=0 (2lb) 
T = T, (case I) 

T= T,ata=fl=O. (2lc) 

The transient droplet temperature, T,(t), is dete~ined 
from an energy balance at the droplet surface 

p,h,,u8da+ $ (inR”p,C,T,) 

(214 
where pI and C, are time dependent through their 
variations with temperature. The initial condition on 
droplet temperature is that T, = T,. 

Finally, the species conservation equation (equa- 
tion (6)) is 

The operator E2 is defined as 
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coordinate system 

FIG. I. Coordinate system. 

with boundary conditions 

rBB = -2’ 

- (sin a)u, 1 au, 

h,(coshB-cosa) + h, s . (26) 

ay, -=Oatcc=O,n aa 

aY, ---=Oat/?=O au 

. 
@a) The pressure P is obtained from the momentum 

equation (equation (4)). 

(23b) 
The droplet evaporation time is obtained by inte- 

grating the equation 

and 4 d 
3rcdl@,R3) = pV 

i 
usda. (27) 

R $$ = (I- Y,$)u8 at /? = PO. (23~) The physical properties used in the solution were 
2 evaluated at the ambient pressure (0.101 MPa) and at 

an arithmetic average temperature and concentration 
Y,, is unknown and was obtained from the assump- between the droplet surface and the ambience (other 
tion of vapor/liquid equilibrium at the droplet surface. rules used for evaluating the physical properties did 

The levitation height is determined by equation (7) not affect the form of the solution). The temperature 
and concentration dependence of these properties was 

s [(-P+~BB)nB+Z,gn,l’jda = ~~~3d~~-_pv) obtained from formulations given in ref. [16]. 

(24) 3. METHOD OF SOLUTION 

where the stress components at the droplet surface are 
One difficulty of obtaining a solution is the possi- 

given by 
bility that the moving droplet boundary could reside 
between adjacent grids in the finite difference scheme. 

1 au, 
A coordinate transformation which immobilizes the 

(sinh B)u, 
z ap= -p h,(cosh/LI-coscr) + h, aa 

droplet boundary was accordingly used. This trans- 
formation is as follows : 

+ (sin 4(ufl) i au, 
h2(cosh~-cosCo + h, @ > (25) 
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where /I,, is the droplet surface and the domain of 
the solution is in the range 0 < /I < PO. The droplet 
surface is then transformed to a fixed line q = 0, and 
the wall is at rl = 1. The a-l plane thus represents a 
rectangular grid fixed in time. Equations (13)-(27) 
were written in the a-q system (the results are too 
lengthy to present), and then put in finite difference 
form. 

The finite differenced equations and boundary con- 
ditions were solved using a successive overrelaxation 
scheme [17]. The iterative solution centered around 
the levitation height. With R and T, initially known, 
a value of 6 was selected after which Do was determined 
from equation (12). The conservation equations 
were then solved for the temperature, velocity, and 
concentration fields. For this purpose a (21 x 21) grid 
was chosen to yield a combination of acceptable accu- 
racy and a reasonable computational time. Appendix 
B discusses the accuracy of the numerical scheme. 
Optimum relaxation factors of 1.4 for the stream func- 
tion, 1.2 for the vorticity, and 1.85 for both the energy 
and species equation were used. Typical CPU times 
for one complete evaporation time determination at 
each preselected ambient (case II) or surface (case I) 
temperature averaged about 1 h on an IBM 438 1. The 
droplet radius at the next time increment (dimen- 
sionally, about 0.2 ms for the present calculations) 
was then obtained from equation (27), followed by a 
determination of the new T, from equation (21e). 

The calculations were terminated when the droplet 
was small enough so that it reached over 90% of 
its evaporation time. The evaporation time was then 
inferred by extrapolation to R = 0. The reason for 
this extrapolation is that S/R rapidly diverges (but is 
not infinite) as R + 0 so that convergence of the force 
balance to yield the levitation height becomes par- 
ticularly difficult to achieve as the droplet size dimin- 
ishes. 

4. DISCUSSION OF RESULTS 

Calculations are reported for water and n-heptane 
droplets initially 50 pm in diameter. Figure 2 shows 
streamlines around an n-heptane (Fig. 2(a)) and water 
(Fig. 2(b)) droplet evaporating above an isothermal 
surface at the start of evaporation (t = 0). In all the 
calculations, T,, = 300 K. The streamlines exhibit a 
form similar to a point source near an infinite plane 
with streamline curvature providing a measure of the 
pressure gradient around the droplet. While the 
streamlines are normal to the droplet surface so that 
the vapor flow is only in the radial direction there, 
the tangential velocity gradient will be nonzero. This 
gradient contributes to the viscous and inertia terms 
in the momentum equation which, when multiplied 
by the normal vapor velocity at the droplet, balance 
the pressure gradient around the droplet surface with 
the weight of the droplet. The droplets in Fig. 2 were 

positioned at their levitation height, which was 
obtained by satisfying equation (24). 

The temporal variation of droplet diameter (d’) is 
illustrated in Fig. 3. There is a short initial transient 
period during which the droplet actually grows larger 
than its initial size. This effect is related to liquid 
density variations with temperature and is a charac- 
teristic of isolated droplet evaporation in an infinite 
gaseous medium [12]. If the transient heating period 
is ignored the diameter (d*) decreases monotonically 
with time. 

During the transient heating period, the droplet 
temperature approaches a steady state wet-bulb value 
as shown in Fig. 4. This temperature (338.4 K for an 
n-heptane droplet corresponding to the conditions of 
our calculations) is the same for both, the case I and 
case II calculations and is below the n-heptane normal 
boiling point of 371 K. When the ambient and surface 
temperatures are the same for cases I and II (which it 
was for the calculations shown in Fig. 4), the asymp- 
totic wet-bulb temperature will be the same for evap- 
oration above an adiabatic and isothermal surface. 
Also illustrated in Fig. 4 is that the droplet tem- 
perature overshoots its infinite medium wet-bulb tem- 
perature when evaporating at an isothermal surface, 
but asymptotically approaches this value for evap- 
oration at an adiabatic surface (when the ambient 
temperature is the same for both cases). At an iso- 
thermal surface the proximity of the hot surface to 
the cold droplet results in a higher heat transfer rate 
compared to a droplet at an adiabatic surface in a hot 
ambience. As a result, the droplet temperature will 
be higher for a droplet evaporating at an isothermal 
surface when boundary temperatures are the same for 
cases I and II. Eventually, the droplets approach the 
same steady state wet-bulb temperature as the effect 
of the wall diminishes because the droplet moves away 
from the surface as it evaporates. This latter effect is 
shown in Fig. 5 for a droplet at an isothermal surface. 
Also illustrated is the effect of the transient heating 
period on the levitation height. A droplet initially 
resides closer to the surface when transient heating is 
accounted for than when the droplet is assumed to 
already be at its wet-bulb temperature. 

The variation of levitation height illustrated in Fig. 
5 did not exhibit any periodic or oscillatory behavior. 
Oscillatory behavior of the calculated levitation height 
may have been expected based on prior experimental 
observations for larger sessile shaped drops, even when 
free convective effects are neglected [7]. The absence 
of droplet oscillations (i.e. a periodic alternate move- 
ment of a droplet toward and away from the surface) 
in the present calculations may be due to neglecting 
the acceleration term in the force balance of equation 
(7) as previously mentioned. 

The calculated increase in levitation height with 
time shown in Fig. 5 is at variance with several pre- 
vious more approximate models, results from which 
have shown that a droplet moves toward an iso- 
thermal surface as it evaporates (e.g. refs. [ 1,2,4, 111). 
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n- heptone, isothermal swfoce : T,= 600k, TpD = 300k, Ri = 25 pm 

Droplet 

R (cm) 

I 
.06 

Woter, isothermol surface : Tp = 600k, To = 300k, Ri = 25 ,urn 

Droplet 

@I R (cm) 

FIG. 2. Calculated streamlines around an n-heptane (a) and water (b) droplet evaporating in nitrogen. 

Though these models have been useful for correlating 
evaporation time measurements, they have been based 
on modelling droplets as essentially truncated spheres 
with flat bases to which heat transfer occurs to the 
exclusion of evaporation over the upper surface of the 
droplet. As the droplet gets smaller, the base area 
rapidly decreases and the droplet must reside closer 
to the surface to compensate. 

Figures 6 and 7 illustrate the variation of the total 
evaporation time with surface (case I) or ambient 
(case II) temperature for an n-heptane droplet initially 
50 pm in diameter. These calculations are essentially 

the loci of times corresponding to d2 = 0, obtained by 
varying the surface or ambient temperature. Cal- 
culations were carried out over the temperature range 
of 500-700 K. The lower limit is above the Leidenfrost 
point for heptane 181. Results show that the evap- 
oration time decreases with increasing surface (case 
I) or ambient (case II) temperature. This fact is in 
accordance with many previous experimental case I 
observations for much larger and initially non-spheri- 
cal droplets ; no data have yet been published cor- 
responding to the small initially spherical droplets 
considered in the present calculations. Also, the 
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ISOTHERMAL SURFACE, TPiATE=BOO K 
N-HEPTANE, TINITIAL=300 K, TAM=300 K 
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FIG. 3. Variation of dZ (cm*) with time (s) for an n-heptane droplet evaporating above an isothermal 
surface. T,,, = 300 K, r, = 300 K, Z’,, = 600 K, Ri = 25 pm. ----, Steady state. * ., Unsteady state. 

DROPLEr HEATING, TAMB=600 K, TPLATE=600 K 
N-HEPTANE, TINll’lAL=300 K 

. . . . . . . . . lSO&IE&.u ______. m 

RI = 25 MICRONS 

1503 

FIG. 4. Temporal variation of droplet temperature, T,, for n-heptane evaporating above an isothermal 
(. ’ .) or adiabatic (----) surface. T& = 300 K, T, = TP = 600 K, R, = 25 pm. 
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ISOTHERMAL SURFACE, TPLATE=600 K 
N-HEPTANE, TINITIAL=300 K, TAMB=300 K 
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FIG. 5. Variation of levitation height with time for an n-heptane droplet evaporating above an isothermal 
surface. T, = 600 K, T,, = ‘I’, = 300 K, R, = 25 pm. -P-p, Steady state. ., Unsteady state. 

N-HEPTANE EVAPORATION TIMES, RI=25 MICRONS .........UNSTEADY 
ISOTHERMAL SURFACE, TAMB=300 K ______. -y 
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6.oox10~~ ’ ’ ’ 4 ’ 1 ’ ’ j ’ j 1 
5.00110' 5.50x10' 6.0ox10' 6.5ox10' 7.00x10' 

TEMPERATURE (K) 

FIG. 6. Effect of plate temperature on total droplet evaporation time for n-heptane at an isothermal surface. 
T, = T, = 300 K, R, = 25pm. ., Unsteady state. ----, Steady state. 
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N-HEPTANE EVAPORATION TIMES, RI=25 MICRONS ......._.UNSTEADY 
ADIABATIC SURFACE -_____. my 

TEMPERATURE=AMBIENT TEMPERATURE 
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5.00x10' 5.50x10= 6.00x10' 6.50x101 7.00x10' 

TEMPERATURE (K) 

FIG. 7. Effect of ambient temperature on total droplet evaporation time for n-heptane at an adiabatic 
surface. T,,, = 300K, RI = nm. ., Unsteady state. ----, Steady state. 

neglect of droplet heating results in a lower evap- 
oration time as expected. 

5. CONCLUSIONS 

A numerical solution to the problem of Leidenfrost 
evaporation of isolated spherical droplets has been 
presented. The results showed that streamlines eman- 
ating from a droplet evaporating either above an iso- 
thermal (case I) or adiabatic (case II) surface exhibit 
a form similar to a point source above a plane wall. 
The total droplet evaporation time progressively 
decreases as the wall (case I) or ambient (case II) 
temperature increases, and the evolution of droplet 
diameter squared may increase above its initial value 
when droplet heating effects are considered. For evap- 
oration above an isothermal surface the droplet 
temperature exceeds the wet-bulb temperature cor- 
responding to evaporation in an unbounded ambience 
during evaporation, then asymptotically approaches 
the infinite medium wet-bulb temperature. In the 
potential flow limit, the numerical results were in 
agreement with the analytical potential flow solution 
to this problem. 
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APPENDIX A 

An analytical solution to the quasi-steady Leidenfrost 
evaporation problem for spherical droplets on an adiabatic 
surface can be obtained in the limiting case of neglect of 
both the viscous term in equation (4) and transient droplet 
heating, and for a Lewis number of unity. The solution is 
then similar to that previously published for two droplets 
evaporating or burning in an unbounded ambience and sep- 
arated by a known distance [18, 191-a so-called tandem 
droplet problem. Prior solutions to the tandem droplet prob- 
lem have assumed that the interdroplet spacing (or what 
would equivalently be the levitation height in the Leidenfrost 
problem) is constant during evaporation. This assumption is 
not valid for the Leidenfrost problem as the levitation height 
must continuously change during evaporation to satisfy the 
force balance around the droplet. The value of the potential 
flow solution to the Leidenfrost problem for spherical drop- 
lets resides in checking the accuracy of the numerical method 
employed for solving the full problem. 

The equations to be solved are equations (3), (5), and (6), 
together with the equation for the velocity potential 

V’fp = 0 (Al) 

where 

v4 = P”V. (A2) 

Equations (24) and (27) under the potential flow assump- 
tion can be written as 

- $- (V+*V4)n*jde = {nR’g(p,--p,) (A3) 
” I 

and 

s 4 d(R’) n*V4du = - ?rtpIdt. C44) 

The energy and species conservation equations may be 
coupled by defining 

b ~ C,(T,-T) YI =p 
h l--Y,. 

(AS) 
fB 

so that equations (5) and (6) become 

V*Vb = -&V’b. 
Y 

(A6) 

The boundary conditions for equations (Al) and (A6) are 

ab a4 
dn=an=Oatp=O 

(A8) 

The particular solution to equations (A6HA9) is 

1 -exp WV/4 
b= B1-exp[+lC”/k] 

B= Cv(Tm-Ts) 
h k 

(A9) 

(AlO) 

(Al 1) 

and 

4, = -gln(l+B). (A12) 
” 

The solution for the velocity potential via separation of 
variables is 

co& Kn+ l/WI 
’ cash [(n+ l/2)8,] 

(A13) 

where x = coshcc and P, are Legendre polynomials of the 
first kind of degree n. Equations (A3) and (A4) can now be 
written as 

R2 = [;spv(~~pv)12’312~’ (‘414) 

and 

dR* _ = -2!!!?!sinhb,, ‘f e-‘“+ ll%3~ 

dt PI _,cosh[(n+l/2)/?,] (A15) 

where 

Z(Bo) = s _, f(x>Po)dx (‘416) 

and 

f&/X,) = (xcoshB,-1). f P” c-‘“f l/2)& 
n=O 

x(n+l/2)tanh[(n+l/2)&]+1/2(cosh&,--x)-l 

x sinh PO f P. e-(“+ “‘)flo ‘. (A17) 
n=il 1 

Equations (A14) and (A15) combine to yield the evolution 
of BO, hence droplet radius and evaporation time (B,, -+ co), 
as 

s uo W-V% 
x 

m e-‘“+ W)Uo dB, 6418) 

” z”3Sinh8”~~0cosh[(n+lj2)~,,] 

where 6 and A will be as defined in equations (11) and (12). 
The initial value of /I in equation (All)-&-is determined 
from equation (A14) by setting R = Ri (the initial droplet 
radius) and then solving for j30 + /J, together with equations 
(A16) and (A17). 

Predictions of evaporation time and droplet radius are 
exact if equations (A16)-(A18) can be integrated analyti- 
cally. However, no analytical evaluation of I, and hence t 
in equation (Al8), exists. The function f(x, b,,) defined by 
equation (A17) is particularly difficult to integrate for small 
Do. Predictions from the potential flow solution must then 
be recognized as involving some degree of numerical inac- 
curacy. This inaccuracy is minimized for the range of initial 
droplet sizes, and hence values of /Ii, considered here. 
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~APO~TION OF A WATER DROPLET 
ON AN ADIABATIC SURFACE 
TAMB=600 K, RI=25 MICRONS 

3.OOxlO~ 

TIME (SEC) 

FIG. Al. Effect of grid spacing on calculated steady state evolution of droplet diameter (d*) and total 
evaporation time [t(& = 0)] for a water droplet at an adiabatic surface. T, = 600 K, T, = 7’,, = 300 K, 

R~=25~m:~~~~31x31;----,21x21;----,11x11;----,7X7. 

The question of accuracy of the numerical solution is now 
addressed in two parts: one relates to convergence of the 
numerical scheme as grid spacing is reduced, and the other 
concerns the accuracy of the numerical method itself (i.e. is 
the solution correct or physically meaningful?). The two 
questions are interconnected : in principle for a fine enough 
grid spacing the converged solution is also accurate. The 
question of accuracy is best answered by comparison with a 
related analytical solution. The solution used for this purpose 
is from the potential flow problem described above. 

Figure Al shows the effect of grid spacing (in the CL- 
r~ plane) on the evolution of diameter squared. For these 
calculations, droplet heating was neglected. It is evident that 
as the grid becomes finer, convergence occurs; it is also 
true that the computational time increases substantially. For 
example convergence required about 4 h of computational 
time on an IBM 4381 for the 31 x 31 grid, but only about 1 
h for the 21 x 21 grid. The small differences shown in Fig. 
Al justify using the 21 x 21 grid to generate the results 
discussed in Section 4. 

Figure A2 compares the analytical potentiai flow solution 
with the solution obtained by setting p = 0 in the discretized 
form of equations (11)(27) (for case II). For this purpose 
the variation of d* with time is used as a basis of comparison. 
The numerical solution again neglected droplet heating, as 
the analytical solution only applies for this case. The very 
small differences in diameter squared in the two solutions 
shown in Fig. A2 are indicative of the accuracy of the numeri- 
cal solution. Differences in the total evaporation time (cor- 
responding to dZ = 0) are also very small as shown in Fig. A2. 
The close agreement between the analytical and numerical 
solutions is thus indicative of the accuracy of the n~eri~l 
method employed in the calculations presented in Figs, 2- 
7 and Al. 

APPENDIX B 

Two possible sources for internal circulation within a 
droplet evaporating near a wall are the following: (1) an 

external non-radial flow which creates a shear stress at the 
droplet surface, and (2) surface tension gradients. 

The existence of surface tension gradients is specifically 
ruled out by the assumption of a spatially uniform droplet 
temperature. For the small droplets considered in this study, 
on the order of 5Opm diameter, this assumption is valid. 

An external non-radial how around the droplet can be 
created in three ways. In the first, the gas phase temperature 
difference between the droplet, ambience, and wall could 
create a buoyancy induced flow around the droplet. To 
assume buoyancy effects can be neglected requires dem- 
onstrating that the evaporation induced (i.e. Stefan) flow is 
much greater than the buoyancy induced gas flow. For this 
purpose a characteristic free convective velocity is defined 
through an order of magnitude analysis on the momentum 
equation by equating the buoyancy term with the inertia 
term 

I’.s N [g?cATd]“’ (Bl) 

where K is the isothermal compressibility. An order of mag- 
nitude of the evaporation induced velocity at the droplet 
surface is 

v, * 
a, In (1 +B) 

d ’ 032) 

Free convection is taken to be negligible if V,jV, cc I. 
Assuming d - SOpm, and typical orders of magnitude for 
the Auids studied of u, N 0.1 cm’ s-‘, K z 10e4k~-‘, B - 1, 
and AT N 200 K we find that V,/V, N 0.02. For larger drop- 
lets, free convective flow around the droplet may be import- 
ant. This flow may give rise to the complications leading to 
oscillatory motion of larger droplets. As evaporation pro- 
ceeds and the droplet gets smaller such oscillations disappear. 
Oscillations generally do not occur for droplets on the order 
of less than about 1 mm diameter, thus demonstrating the 
possible reduced influence of buoyancy induced flow for 
smaller droplets. 

A second source of a tangential velocity at the droplet 
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N-HEPTANE NAPORATION, TAMB=BOO K -~.......NUMERlCAL 
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FIG. A2. Comparison between numerical ( . . .) and analytical (----) potential flow solution for steady 
state n-heptane droplet evaporation at an adiabatic surface. T, = 600 K, Ri = 20 pm. 

surface is conjectured to come from the evaporation process 
itself. Streamlines emerging from the droplet must bend due 
to the presence of the wall. The extent of their curvature is 
governed by the magnitude of the vaporization rate and 
droplet levitation height. Streamlines originating from the 
lower hemisphere of the droplet could in principle bend 
around the droplet even in the absence of free convective 
motion to the extent that along the upper surface of the 
droplet there is a non-zero tangential velocity, and hence 
shear stress. The neglect of the attendant liquid motion is 
contingent on the characteristic time for liquid motion being 
much longer than the characteristic time for droplet evap- 
oration. An order of magnitude estimate for the liquid vel- 
ocity within the droplet is obtained by assuming that shear 
is continuous across the gas/liquid interface. Hence, to an 
order of magnitude 

D 
v, - -7, 

I4 

where a characteristic dimension in the liquid has been taken 
as the droplet diameter. The characteristic time (for a particle 
to traverse the droplet circumference) for liquid circulation 
is approximately 

Pi 
t, - -. (B4) 

7” 

An order of magnitude for the droplet regression time is 
obtained with the aid of equation (B2) as 

t PI d= 
“gNPg~yln(l+E)’ 

We neglect internal circulation if t,/t, >> 1. To estimate T” we 
use values from the numerical analysis discussed in Sections 3 
and 4 which neglected liquid motion, believing that T,, and 
hence V,, would be less if internal circulation were included 
in the analysis. From our numerical results, r, (= rXB from 
equation (25)) - lo-’ g cn-’ s-‘. For a, - 0.1 cm sm2, 
d - 50 pm, p,/p, - 1000 and p, - 0.1 g cm- ’ s- I we find that 

t,lr,, - 217. Since t,/fmer - l/d’, internal circulation could 
become an important effect to consider for larger droplets. 

A third source for a non-radial flow at the droplet surface 
could be created by the progressive motion of the droplet 
away from the surface as it evaporates (cf. Fig. 6). This 
motion is due to temporal variations of levitation height. It 
creates an effective motion around the droplet which is simi- 
lar to a droplet placed in a uniform convective free stream 
moving at a velocity of &5/& The external Reynolds number 
in this situation provides a measure of the extent to which 
internal circulation must be considered. to correctly model 
the evaporation process. 

Defining V, as a free stream gas velocity, the effective free 
stream Reynolds number is Re = V,d/v where Va = tS/at. V, 
was estimated from the present calculations to range between 
about 0.06 cm ss’ as t + 0 to a maximum of about 1 cm s-’ 
as I -+ t,. Taking d = 50 nrn and v - 0.1 cm’ s-’ we have 
that 0.003 < Re < 0.05. At these small Reynolds numbers, 
movement of the droplet caused by temporal variations of 
levitation height, and the attendant possible liquid circu- 
lation, is not expected to exert a strong influence on the 
evaporation rate. 
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SOLUTION NUMERIQUE DE L’EVAPORATION EN FILM DUNE GOU’ITELETTE 
LIQUIDE SPHERIQUE SUR UNE SURFACE ISOTHERME OU ADIABATIQUE 

R&m&-On presente une solution numerique du probleme de l’evaporation en film dune gouttelette 
liquide sur une surface horizontale. Les gouttelettes sont suffisamment petites pour Ctre supposies 
sphiriques. Deux cas sont consider&s : (1) la surface est maintenue a une temperature constante (cas I), et 
(2) la surface est isolee tandis que l’ambiance est chaude (cas II). Le systeme complet d’equations est resolu 
pour les hypotheses suivantes: (1) l’tvaporation est quasi permanente, (2) il n’y a pas de circulation interne 
du liquide, (3) les proprittes thermophysiques sont constantes, et (4) la temperature de la goutte est 
spatialement uniforme mais variable dans le temps. Le nombre de Lewis n’est pas suppose dtre egal a 
l’unite; les effets de viscositi de la phase gazeuse, la convection de type Stefan et l’inertie de la phase 
gazeuse sont inclus dans l’analyse. Le temps de l’haporation totale de la goutte diminue quand augmente 
la temperature de la plaque ou de l’ambiance et la goutte s’tcarte progressivement de la plaque quand elle 
s’tvapore. Les rtsultats numeriques s’accordent avec la solution analytique de l’ivaporation en film dune 
gouttelette sur une surface adiabatique dans le cas des grands nombres de Reynolds effectifs (Bcoulement 

potentiel). 

EINE NUMERISCHE L&SUNG FUR DIE FILMVERDAMPFUNG EINES KUGELIGEN 
FLUSSIGKEITSTROPFENS AN EINER ISOTHERMEN, ADIABATEN OBERFLACHE 

Zusammenfassung-Es wird eine numerische Losung fiir das Problem der Filmverdampfung eines Fliis- 
sigkeitstropfens an einer horizontalen Oberfllche vorgestellt. Die Tropfen sind klein genug urn als kugelig 
angenommen werden zu diirfen. Zwie prizipielle Fllle werden betrachtet : Fall I : Die horizontale Oberfllche 
wird auf konstanter Temperatur gehalten ; Fall II : Die Obertllche ist isoliert, wlhrend die Umgebung heiB 
ist. Der komplette Satz der Gleichungen, die dieses Problem beschreiben, wird unter den folgenden 
Annahmen gel&t : (1) Die Verdampfung ist quasi-stationlr, (2) Keine interne Fliissigkeitszirkulation, (3) 
Konstante Stoffwerte und (4) Die Tropfentemperatur ist raumlich konstant aber zeitlich verlnderlich. Es 
wird nicht angenommen, da13 die Lewis-Zahl gleich Eins ist. Viskositltseffekte der Gasphase, Konvektion 
vom Stefan-Typ und die Tragheit der Gasphase werden in der Untersuchung beriicksichtigt. Wie erwartet, 
verkiirzt sich die Zeit bis zur vollstlndigen Verdampfung des Tropfens mit steigender Platten(I)-bzw. 
Umgebungs(II)temperatur. Der Tropfen bewegt sich deutlich von der Platte weg, wenn er verdampft. Die 
numerischen Ergebnisse stimmen im Bereich grol3er effektiver Reynolds-Zahlen (speziell bei Potential- 
stromung) gut mit der analytischen Liisung fiir die Filmverdampfung eines Tropfens iiber einer adiabaten 

Oberflache in heiger Umgebung i&rein. 

YkiCJIEHHOE PEIIIEHME 3AJIA9kI IIJIEHOrIHOI-0 MCI-IAPEHMI CQEPkNECKOfi 
XkIflKOR KAI-IJIM HA M30TEPMkNECKOR H AAAAIIATINECKOfi ITOBEPXHOCTRX 

AnuoTalpm-fIony9eHo wuxetutoe peluewe 3anaw nneHoSHor0 ucnapeHHn XCH~KO~~ Kannt4 Ha 

rOpH30HTaJIbHOii nOBepXHOCT&i. He6onbmne pa3MepbI KaneJIb OlTpaBJbIBaIOT nOll)‘lWHHe 06 HX 

C+epH'iHOCTU. PaCCMaTpHBaIOTCK LIBa np&iHWnliaJlbHbIX CJty'laK: (1) TeMnepaTypa rOpH30HTaJlbHOfi 

nOBepXHOCTH nOCTOKHHa(CJly9afi I)H (2) nOBepXHOCTbTellJIOH3OJIHpOBaHa OT HarpeTOii CpenbI(CJIyVair 
II). &M s~oii 3anauu pelueHa nonHan cwTeMa onpenenrroumx ypaeHeH&i npn cnenymwix nonyrue- 

HWRX: (1) ucnapemie KeasucrauHoHapHoe; (2) orcyrcreyer BH~T~~HHX~~ tmpwynnmin xrixrcocrn; (3) 
0eoiicTsa nocTonHHbI; (4) rehnreparypa kannn nocrontnia a npocrpaecree, no H3MeHneTcn no speMewi. 
Yricno JIbfoeca npHHHhfaeTcn HepaaHbIM enEHHue. PaccMaTpHeaxoTcn nn3KBe 3+$eKTbl ra3oeoii +a3bl, 

KOHBeKqHK n0 3aKOHy CTe+aHa, yqTeHa HHepUHK ra30BOi-i KOMnOHeHTbI. KaK W O~KH&3JlOCb, 06luee 

epewi HcnapeHun Kannu yMeHburaeTcn c POCTOM TeMnepaTypH n.nacTBHbt (I) rinn orrpymaromefi cpenbt 
(II), a kannn no Mepe ee ncnapetnm nce 6onbme ynannercn or nnacrmrbr. Honyqeuo xopomee COOT- 

BeTCTBHe WiCJleHHblX pe3yJlbTaTOB C aHa.JlHTA'IeCKAM peJIIeHHeM MK 3aLIa'iH nJleHO'iHOr0 BCnapeHHK 

Kannw Han aJJHa6aTWIeCKOfi nonepxsonbzo B csinbH0 HarpeToii cpene npH 6onbmex ~@*KTHBH~IX 

qiicnax Pefirfonbnca (cnyqaii noremuianbrioro reqetinn). 

“HT 30:7-R 


