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On the electrodynamic balance

By W. H. HArTtunGgt AND C. T. AVEDISIAN

Sibley School of Mechanical and Aerospace Engineering, Cornell University,
Ithaca, New York 14853-7501, U.S.A.

The properties of axially symmetric electrodynamic balances are studied using
analytic and numerical techniques. The levitation ability and stability characteristics
of several balance configurations are determined. A unified theory for the stability
characteristics of all electrodynamic balances which have a non-vanishing quadrupole
field term is derived. Procedures are proposed to optimize the balance shape for
stably levitating particles of maximal mass to charge ratio. The lack of a unique
optimum balance shape is demonstrated.

Nomenclature
a;, by, ¢ coefficients in series expansion of the potential in spherical coordinates
A, B; dimensionless coefficients in series expansion of the potential in
cylindrical coordinates
G dimensionless coefficient in series expansion of the potential in spherical
coordinates
w/on normal derivative of the potential = n-Vo
D, levitation design constant = z,¢,/Venq(t) = (2./2,) C,
D, stabilization design constant = 22¢,/v,,,(t) = (2,/2)* C,
e, radial unit vector in cylindrical coordinates
e, radial unit vector in spherical coordinates
e, axial unit vector in cylindrical coordinates
E.(r,t radial component of the electric field
B (r,t) axial component of the electric field
E(r,t) electric field
E(r) electric field at » induced by a charged particle at
E_(r?) even (+) or odd (—) parity component of the electric field
falr) function, » = 0 or 1
g acceleration due to gravity
. dimensionless gravitational acceleration parameter = g/z, £*
h thickness of the ring electrode for the triple-disc shape
J,(x) Bessel function of the first kind of order » in x
K(x) complete elliptic integral of the first kind in «
Ky drag coefficient
L, radial and axial distance from the outside of the balance to the

bounding cylinder for the double-ring/double-disc shape
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mass of the particle

Legendre polynomial in x of order j

particle charge

radial coordinate in the cylindrical coordinate system

half the thickness of the rings in the single-ring and double-ring shapes
radial coordinate in the spherical coordinate system

radius of the largest sphere that can be inscribed inside the balance
electrodes

radius of the discs for the triple-disc shape

radius of the rings for the single-ring and double-ring shapes

distance from the origin to the ring electrode

position vector

velocity vector

acceleration vector

dimensionless radial coordinate in cylindrical coordinates = r/z,
dimensionless radial distance to the end of the hyperboloidal electrodes
surface of the volume that electrodes must be outside of

second solution for the differential equation in 6

time

dimensionless time = Q¢

scalar electric potential

amplitude of alternating potential applied to the ring electrode

static potential applied to the ring electrode

half the potential difference applied across the endcap electrodes
electric potential induced by the charged particle

potential applied to the ring electrode

electric potential in the absence of the charged particle

even (+) or odd (—) parity component of the potential
dimensionless even parity component of potential = v (2, R,2,%,t)/
Uring(t)

dimensionless odd parity component of potential =v_(2,R,2,%,t)/
vend(t)

jth zero of Jj(x)

axial coordinate in the cylindrical coordinate system

characteristic length defined from an excluded volume of given shape
half the distance between the rings for the double-ring and double-
ring/cylinder shapes

characteristic dimension, usually equal to half the distance between the
endcap electrodes along the z axis

dimensionless axial coordinate in cylindrical coordinates = z/z,
coefficient in the series expansion for the potential in cylindrical
coordinates

coefficient in the series expansion for the potential in cylindrical
coordinates

dimensionless drag parameter = K,,/mQ

dimensionless stabilizing field strength parameter = qu,,/mz2 Q*
generalized dimensionless stabilizing field strength parameter =
- 201 qvac/mztz) Q2 =— 2Ol Cac

dimensionless stabilizing field strength parameter = qu,,/mz2 Q*®
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€le generalized dimensionless stabilizing field strength parameter =
—2C, qug./mzE Q% = —20C, €4,

€enalT) dimensionless endcap field strength parameter = qu,,4(7'/€2)/mz2 Q*

ring (1) dimensionless ring field strength parameter = qu,;,,(7/Q)/mz} Q*

Cring( generalized ring field strength parameter = —2C, qu,;,,,(T/Q2)/mz} Q* =
- 20’1 ering(T)

€ permittivity of space

0 polar angle in the spherical coordinate system

7 parameter for the sverL shape

0, constant for the sVvEL shape = arccos (1/4/3) = 54.74°

A wavelength of plane electromagnetic wave propagation = 2r (speed of

light)/€2

dimensionless even (+) or odd (—) parity radial component of the
electric field

dimensionless even (+) or odd (—) parity axial component of the
electric field

8]

=+

4]
H+

5 &
y X

Z(r) dimensionless electric field at r induced by a charged particle at

E (R, Z) dimensionless even parity component of the electric field =
20 E (2R, 20 Z,1) [ Vying(1)

Z (R, Z) dimensionless odd parity component of the electric field =
20 E (20 R, 202, 1) [Venq(t)

p(r) charge density

o(r) surface charge density, i.e. charge per unit area on a surface

@ azimuthal angle in the cylindrical and spherical coordinate systems

x(r) proportionality factor relating o(r) to v(r) = normalized capacitance
per unit area

Q angular frequency of the alternating potential

1. Introduction

The electrodynamic balance, also referred to as an electrodynamic trap, an
electrodynamic containment chamber, an electrodynamic levitator and a quadrupole
has been the object of growing interest in recent years. It has been used in the study
of a wide variety of subjects, including mass transfer, charge transfer, heat transfer,
charge stability, aerodynamic drag, crystallization, photoemission and molecular
spectroscopy, among many others. More recently, the balance has been used to study
combustion for mechanical engineering applications (see, for example, Spjut et al.
1986 ; Phuoc & Maloney 1988). Several reviews of the development and applications
of the electrodynamic balance can be found in the literature (Davis 1983, 1987;
Straubel & Straubel 1986). An instrument for stored ion spectroscopy has also been
developed by combining the balance with magnetic confinement (see, for example,
Wineland et al. 1983).

The development of the balance can be traced back to Millikan’s oil drop
experiment, in which a charged particle is suspended electrostatically between two
electrodes, one above and the other below it (see, for example, Millikan 1917). Stable
levitation of particles, as a consequence of the Earnshaw theorem (see, for example,
Maxwell 1892), however, is not possible in a purely electrostatic field. Good (1953)
proposed a particle suspension system which would use a time-varying electric field
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in a manner similar to the alternating gradient focusing system developed by
Courant et al. (1952) for charged particle beams. Subsequently, charged particles
were suspended dynamically in a sinusoidally varying electric field produced by a
ring-shaped electrode (Straubel 1955, 1956). The principles of operation of an electric
mass filter (Paul & Raether 1955) were next used to combine the dynamic
stabilization of the ring electrode with Millikan levitation produced by two endcap
electrodes, giving birth to the modern-day electrodynamic balance (Wuerker et al.
1959). Solid particles and liquid droplets in the size range of roughly 0.3 um to
300 pm have been suspended in such balances.

A distinguishing feature of an electrodynamic balance is the contour of the balance
electrodes; a few of the possible balance shapes are shown in figure 1. A number of
investigators have analysed various balance shapes and examined their levitation
ability. Stability analysis is more involved, and the stability characteristics of only
a handful of balance shapes are well understood.

In this paper, a general stability theory for electrodynamic balances will be
derived and applied to identify balance configurations that are optimal for stable
levitation of particles with large masses and small charges. The theory of the
electrodynamic balance will first be briefly reviewed. A generalization of existing
stability theories for specific balance shapes will then be shown to apply to all
balance shapes with axial symmetry and a quadrupole electrostatic field component.
The eclectric fields and shape constants will be calculated numerically for some
different electrode configurations and an analytic solution for a new balance shape
will be given ; the stability and levitation characteristics of these balance shapes will
be compared with known results. Finally, the existence of classes of optimum
balances and the nonexistence of a unique optimum balance shape will be
demonstrated.

2. Theory

An electrodynamic balance must (i) levitate a particle and (ii) keep it stable. The
equations of motion for a particle travelling inside the balance determine its
performance. Assuming a non-relativistic velocity, the particle’s motion is governed
by Newton’s second law, for which the electromagnetic force on the particle is
needed. We first review the theory of electrostatics briefly, and then derive the
general equations of motion for a particle in a balance. We use these equations to
analyse levitation, and then show that they can be linearized to obtain a general
stability theory applicable to all balance shapes.

(@) Klectrostatics

In the absence of significant external magnetic fields and when the time variation
in the charge density p is sufficiently slow, electrodynamics reduces to electrostatics.
The Maxwell equations in potential form then reduce to the Poisson equation

Vi = —(1/¢,) ps (1)

which relates the scalar electric potential » to the charge density p. The electric field
E'is given in terms of v by
E=—-Vu (2)

When p is varying in time, (1) and (2) do not apply exactly. For example, when p
varies sinusoidally in time, the relative error in » that results from assuming p to be
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Figure 1. Sectional view of some possible electrode configurations for an electrodynamic balance.
All shapes are axisymmetric. (a) Ideal hyperboloidal electrodes (surfaces extend to infinity). The
ring electrode satisfies »2 —2z% = r2; the endcap electrodes satisfy 2 —2z% = 222. (b) One form of the
‘triple-disc’ configuration (Ataman & Hanson 1969). (¢) Single-ring configuration (Miiller 1960).
This shape does not incorporate electrodes for balancing gravity, so it can only suspend particles
in dynamic equilibrium. (d) Double-ring configuration (Berg et al. 1970; Davis et al. 1990). (e)
Double-ring/double-disc configuration (Weiss-Wrana 1983; Ward 1989). This shape is usually
called a double-ring balance. (f) Spherical endcap electrodes and a cylindrical ring electrode (Berg
& Gaukler 1969). (9) Bihemispherical configuration (Richardson & Spann 1984). (k) Spherical void
(sviL) configuration (Arnold & Folan 1987). (4) ‘Pillbox’ configuration.

static is of the order of z2/(A*+2}), where z, is the characteristic length over which
v varies spatially. For an electrodynamic balance, z, is typically of the order of 1 cm
and the frequency is typically of the order of 100 Hz, in which case the relative error
in » is about 107'7. The error becomes significant at sufficiently high frequencies,
however.

Equation (1) reduces to the Laplace equation,

Viy = 0, (3)

in regions where p is zero. In an electrodynamic balance, this condition is satisfied
everywhere inside the volume bounded by the electrodes except at the location of the
levitated particle. Neglecting the effect of the particle’s charge makes the calculation
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of v much more tractable, so p will be assumed to be zero everywhere inside the
balance and (3) will then apply everywhere inside the balance. The validity of this
idealization is examined in Appendix A.

When solving (3), it is useful to think in terms of boundary conditions on v
produced by p rather than solving for v as a functional of p. The requirement that
p be slowly varying in time becomes the requirement that the boundary conditions
be slowly time varying. Boundary conditions on the electrode surfaces (and at
infinity, if necessary) determine a unique solution for v. For perfectly conducting
electrodes, v is constant on an electrode surface (Dirichlet boundary condition).
Another permissible boundary condition, which can sometimes be applied by
symmetry, is that dv/0n = 0, i.e. the electric field is tangent to the surface (Neumann
boundary condition).

When a medium other than vacuum is present, additional bound charge may exist
on its boundaries. The normal component of E is discontinuous due to the bound
charge at the interface between two media of different dielectric constant (for
isotropic linear media). For air, the dielectric correction is usually negligible, but for
media such as insulators, it can be significant. Dielectric regions are included in some
of the calculations discussed herein.

(b) Electrostatics applied to the electrodynamic balance

To derive the series expressions for the potential and fields in a balance, we follow
essentially the established procedure (Frickel et al. 1978; Davis 1985), but use a
slightly different approach to facilitate the subsequent analysis. We consider an
electrode configuration consisting of two endcap electrodes, across which a static
potential difference may be established to provide an upward force on the levitated
particle, and a ring electrode, to which a stabilizing potential may be applied, and
impose the following restrictions: (i) the electrodes are axisymmetric, so that the
potential in cylindrical coordinates (r,z,¢) is independent of ¢; (ii) the origin of
coordinates is inside the balance (not inside an electrode) and the potential is finite
in some open region containing the origin; and (iii) the electrode configuration is
symmetric under reflection about the z = 0 plane.

Restriction (i) implies that » depends only on r,z and ¢. For an axisymmetric
problem, writing (3) in spherical coordinates (ry, 6, ) and separating variables yields
a general solution for v in terms of Legendre polynomials and another set of
orthogonal functions (Frickel et al. 1978):

0030) = 3 (087 ) a(eos 0+, 7,00 @)
j=— S
The starting value j = —1 is used here because the first term in the series does not

contribute to the electrodynamic force, as will become evident later on.

Restriction (ii) requires that all of the b, and a; coefficients in (4) vanish.

Transformation of the remaining terms into cylindrical coordinates yields an infinite
series in terms of harmonic polynomials :

v(r,2,t) = c_; Fcoz+cq (B2 —32) + ¢y (22 —32r?) + ¢y (24 — 3222 + &rt)
+ ¢, (25 — 52072+ Lart) + ¢ (25 — Ligh 2 4 124 — 546)
+ (27— 2202 4 108230 80,06y 4 (5)
The potential can depend on t because of the possible time dependence in the
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boundary conditions, and hence in the ¢; coefficients. It is convenient to resolve v into
the sum of two functions of opposite parity:

v(r,z,t) = v, (r,2,t)+v_(r,2,1), (6)

where v, (r,2,t) = v, (r, —2,t) is an even parity solution to the Laplace equation
and v_(r,z,t) = —v_(r, —z,t) is an odd parity solution. It is evident from (5) that
v, (r,2,t) will contain only the terms in the series for v(r,2,t) with even powers of z
and v_(r,z,t) will contain only the terms with odd powers of z. Associated with v,
and v_ are two components of the electric field, E, = —Vv, and E_ = —Vu_.

With one ring electrode and two endcap electrodes, the boundary conditions for
v(r,z,t) can, in general, be set up by applying three independent potentials to the
three electrodes. However, because the electric field depends only on the gradient of
v, we are free to choose an arbitrary reference potential. It is convenient to choose
this reference potential to be the average of the two potentials applied to the endcaps
and to set to it equal to zero. Then only two potentials remain: if potentials v,;,,(f)
and ve,4(t) are applied to the ring electrode and the upper endcap electrode,
respectively, the potential applied to the lower endcap electrode is —wv,,4(t). Because
the Laplace equation is linear, the potential v(r, z, ) corresponding to these boundary
conditions can be obtained by first solving for the potential with v,,4(t) set to 0, then
solving for the potential with v, (¢) set to 0, and finally adding these two potentials
to get the actual result. Restriction (iii) implies that the potential must have even
parity when ve,4(t) = 0 and odd parity when v,;,,(f) = 0; hence the two components
of the potential are just v (r,z,t) and v_(r,z,t).

Dimensionless coordinates I and Z can be defined in terms of the distance z, to the
endcap electrodes along the z axis. Similarly, the two components v, and v_ of » can
be normalized using v,;,,(t) and v,,4(t) to obtain dimensionless potential components
V.(R,Z) and V_(R,Z). The linearity of the Laplace equation guarantees that if
V.(R,Z) is 1 on the surface of the ring electrode and 0 on the surface of the endcap
electrodes, then v (r,z,t) will satisfy the requirements given above; likewise the
requirements for v_(r,z,t) will be satisfied if V_(R,Z) is 0 on the surface of the ring
electrode, 1 on the surface of the upper endcap electrode, and —1 on the surface of
the lower endcap electrode. The problem of finding v(r, 2, ) subject to three arbitrary
time-dependent potentials is thus reduced to the problem of finding V, (R, Z) and
V_(R,Z) under the time-independent boundary conditions just stated, with the full
time-dependent potential given by

U(Ta 2, t) = 7)ring(t) V+(7‘/20, z/zo) + vend(t) V-A(V/zo: 2/Z0). (7)

Equation (5) can be resolved into components and non-dimensionalized to obtain
series expressions for V,_ and V_:

V.(R,Z) = C_, +C,(Z* —1R?)+ Oy(Z* — 3Z°R* + iR%)

O, (725 —BZAR: + 87 R — ERS) + ..., (8)
VR, Z) = Oy Z+ Cy(ZP —3ZR?) + O, (Z5 — BZR? + BZRY)
+ Oy (47— B PR+ B3R —BLR + ..., (9)

with the coefficients defined by
[z{)“ ¢;/Vpng(t)  forjodd,

C, =
! 1%“6]~/vend(t) for j even.
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It is also useful to transform from E, and E_ to the dimensionless electric field
components =, and Z_ defined in terms of v,;,,,(t), vonq(f) and z,. Series expressions for

Z, and E_ can be obtained by differentiating (8) and (9) using (2), which yields
E (R, Z) =|C,R+3C,(2Z*R—3iR?)+15C,(Z*R—37°R* +1R%) + ... ] e

¥

— (20, Z+20,(27° — 3ZR*) +3C(22° — 10Z*R* + BZRY) + .. ]e,, (1)
Z (R, %) = [3C,ZR +50,(2Z*R—3ZR%) + .. ]e,
—[Co+ 30y (72 —1RY) +50,(Z— 3Z2R* + 2R + .. Je,. (12)

The electrostatics problem is solved by finding the potential v(r,z,?) inside the
balance, which, as shown above, can be done by finding V (R, Z) and V_(R,Z) and
then obtaining v(r, 2,t) using (7). If all the series coefficients (; can be calculated,
V, and V_ can be obtained from (8) and (9). Expressing the solution in terms of these
coefficients is useful in analysing the motion, as will be discussed below. Known
results expressed in terms of the series coefficients are summarized in table 1. The two
most popular shapes are the hyperboloidal shape (figure 1a), for which all the odd
coefficients in the potential expansion after €| are zero in the ideal case, and the
triple-disc shape (figure 1b), for which all the even coefficients in the potential
expansion after C; are zero in the ideal case.

(¢) Hquations of motion

The first step in stability analysis, formulation of the general equations of motion
for a particle in the electrodynamic balance, will now be reviewed in preparation for
the derivation of a unified stability theory. It is also possible to simplify the
equations of motion by assuming a rapid, small-scale oscillation superposed upon a
slower, large-scale motion (Wuerker et al. 1959 ; Richardson & Spann 1984 ; Arnold
& Hessel 1985; Arnold & Folan 1987). The approximate theory gives insight into the
dynamics of trapping the particle, but because it applies only for small-amplitude
stabilizing potentials, it is no substitute for the full analysis which we will discuss.

The electric force on a particle can be obtained by finding V,(R,Z) and V_(R, Z),
calculating v using (7), and obtaining E from (2). The force on a particle of charge ¢
at position r at time ¢ is then ¢E(r, t). The gravitational force is —mg e, for a particle
of mass m when the z axis is directed vertically upward. The aerodynamic drag force
will be expressed as —K 7, with the drag coefficient K, assumed constant (the
stokesian low velocity limit); correction terms must be included for large velocities,
but numerical analysis has shown that the high Reynolds number correction to the
drag is unimportant in a typical electrodynamic balance (Ataman & Hanson 1969).

Under the above assumptions, the vector equation of motion for a particle can be
written as

mF = qE(r,t)—mge,— Ky ¥ (13)

(buoyancy, drag due to a uniform fluid flow, and other position-independent and
time-independent vertical forces can be easily incorporated by proper redefinition of
the mg term).

In cylindrical coordinates, the three vector components of (13) are

m(F—r@?) = qli,(r, 2, 1) = Kp 7, (14)
mz = ql,(r,z,t)—mg— Kz, (15)
m(r+ 2i¢) = — K, rgo. (16)
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Equation (16) describes exponential decay of the angular momentum of the particle
about the z axis. If ¢ is initially zero, ¢ is a constant of the motion and the ¢ term
in (14) drops out. In this analysis, the motion will be assumed be to confined to a
plane of constant g, although motion in the ¢ direction could be excited by injecting
the particle with a velocity component normal to the rz plane.

The equations of motion can be non-dimensionalized using the dimensionless
coordinates R and Z, the dimensionless fields Z, and Z_, and a dimensionless time
T = Qt, where Q2 is a characteristic angular frequency. With ¢ =0, (14) and (15)
become

A2R/AT? = €,y (T) E, (R, Z) + 6ona(T) E_ (R, Z)— 8 AR /AT, (17)
AZ)AT? = 640y (T) E,y (R Z) + 6ona(T) E_ (R, Z)—G—dZ/dT. (18)

Equations (17) and (18) are the governing equations for levitation and stability.

(d) Levitation
When the particle is motionless, (17) and (18) reduce to

6ring(/jw) E+,r(R>Z)+€end(T) E~,T(R7Z) = 03 (19)

Ering(1) By (B, Z)+eeno(T) E_ (R, Z)—G = 0. (20)

Equations (11) and (12) suggest that the origin might be a good location for

levitating the particle since Z, =0 and Z_ = —C( e, there. At the origin, (19) is
satisfied automatically and (20) is satisfied if

eend(T) = _G/OO: (21)

or, in dimensional form, if
vend(t) = —ngU/QOO (22)

A particle can thus be levitated at the point R =0, Z = 0 (the ‘null point’ of the
balance) by applying a static potential given by (22) across the endcap electrodes;
the coefficient C, is a scale-independent measure of the levitation ability of a balance,
and will be called the ‘levitation strength constant’ of a balance.

(e) 4 unifying stability theory

A particle is stably levitated in a balance if the solutions R(7") and Z(T)) to (17) and
(18) go to 0 as T'—oc0. Solutions to (17) and (18) depend on the balance shape because
of the presence of the shape-dependent fields = (R, Z) and Z_(£,Z) in (17) and (18).
To obtain particle trajectories for more than one balance shape, one must in general
analyse each shape separately. For stability, however, only small perturbations from
equilibrium need be considered. We will now show that, in the limit of small
perturbations, the formerly shape-specific solutions to (17) and (18) become unique
and applicable to all balance shapes with non-zero €, hence the notion of a ‘unifying
stability theory’. The existence of such a theory has been suggested or implied in
prior work (Miiller 1960 ; Ward 1989). This section will show that a unified stability
theory does in fact exist, as a consequence of the form assumed by the equations of
motion for small perturbations from the null point.

In the limit of small perturbations from the null point, (11) and (12) reduce to

Z.(R.Z)=C\(Re,—2Ze,), (23)
E(RZ)=—C,e,. (24)
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Substituting (23) and (24) into (17) and (18) and using (21) to correctly balance the
gravitational force yields

A2R/AT? 48 AR /AT — €5, (T) C, R = 0, (25)
A2/ AT + 8 AZ AT+ 26,,,,(T) C, Z = 0. (26)

In contrast to (17) and (18), in which the shape-dependent fields Z (R,Z) and
Z_(R,Z) appear, (25) and (26) contain no unknown functions of R and Z. Equations
(25) and (26) can consequently be solved without choosing a specific balance shape;
the only needed parameters are 4, €,,,(7"), and C,, and these can all be taken to be
independent parameters (unlike =, (R,Z) and £_(R, Z), which are rather difficult to
treat as independent). Thus, in contrast to (17) and (18), general solutions R(7, 4,
Oy, [€ringl) and Z(T, 0, 04, [€44ng]) to (25) and (26) can be found (the brackets indicate
that R and Z are functionals of €,,,(7")). Since the stability characteristics follow
directly from the solutions to (25) and (26), unique stability results that apply to all
balances will emerge from solutions to (25) and (26). The balance shape affects the
motion, and hence stability, only through C,, which will be called the ‘stabilization
strength constant’ of a balance. The value of C; for a particular balance shape must
still be obtained by solving (3).

The coefficient € appears only as a factor in the product €,,,(7) C; in both (25)
and (26), so it can be incorporated into a generalized parameter €;;,,(7"), with the
result

A*R/AT?+ 8 AR /AT + g, (T R = 0 (27)

A2Z /AT +8dZ)AT — €y, (T) Z = 0. (28)

ring

Equations (27) and (28) have general solutions R(T, 9, [ey,g]) and Z(T', 0, [€}5,,]), SO
that stability depends only on ¢ and €;;,,,(7'). Once obtained, the general solutions can
be applied to any specific balance by using the value of C, for that balance to convert
from e, (7) to €n (7). Likewise, results for a specific balance shape can be
generalized using the C; value for that balance to convert from €,;,,(7) to €1, (7).
This result applies to all balances with C, # 0. When C, = 0, (23) gives Z,(R,Z) = 0,
and the next term in the expansion becomes important.

To solve (27) and (28), the time dependence of €};,,(7), i.e. of v,,(f), must be
chosen. The conventional choice is to apply a potential to the ring electrode of the

form

Vpine(t) = Vg + U, COS £2¢. (29)

ring
By defining suitable dimensionless parameters e,, and ¢,, and their generalized
counterparts €}, and e, we can write ey, (7) = €3, + €, cos 7. Equations (27) and
(28) then become

d2R/dT*+ 0 dR /AT + (e}, + €5 cos T) R = 0, (30)
d*Z/dT*+8dZ/dT — (e}, + €y cos T) Z = 0. (31)

The three dimensionless parameters governing stability in (30) and (31) are ¢
(proportional to the drag coefficient), €}, (proportional to the static potential applied
to the ring), and €, (proportional to the alternating potential applied to the ring).
For given values of these three parameters, a particle’s motion is either stable or
unstable. An understanding of the stability characteristics of a balance implies
knowing where the particle’s motion is stable and where it is unstable in the deg, €},
‘stability space’. This knowledge can be obtained by solving (30) and (31), which,
according to the unifying theory, yields universally stable regions, universally
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Figure 2. de;, stability diagrams. (a) Stability diagram for motion in the Z direction only for

€q. = 0 obtained by numerical integration of (31). Symbols represent scaled results of Mathieu

theory for the hyperboloidal (o) balance and of numerical integration for the triple-disc (a) balance.

Stability diagrams for (b) €}, /¢;, = 0, (c) €5./€,, = 0.1, and (d) €}, /€], = —0.1, considering motion in

both the £ and Z directions, obtained by numerical integration of (30) and (31).

unstable regions and a universal boundary dividing them. As such, the stability
boundary for any balance, when normalized with the value of €, appropriate to the
shape, should coincide with the universal boundary.

Figure 2a (solid line) illustrates the universal stability boundary for motion in the
Z direction obtained from the solution to (31) for the case €}, = 0. This curve was
calculated numerically using methods described elsewhere (Hartung & Avedisian
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1990). The curve defines the regions of stable operation for any balance shape once
C, is known. Also shown in figure 2a (symbols) are previously reported theoretical
results for two specific balance shapes, the hyperboloidal shape (Davis 1985) and the
triple-disc shape (Ataman & Hanson 1969), normalized with the appropriate C,
values. As expected, the stability boundaries for these balances coincide with the
universal boundary.

We note that stability boundaries have conventionally been plotted only for Z,
because stability regions for R can be obtained simply by scaling ¢, and €}, by a
factor of 2. However, a particle can be stably levitated only when its motion is stable
in all directions. To underscore this fact, e}, stability diagrams for motion in both
R and Z are shown for three different values of €./¢;, in figure 26—d. The diagrams
were obtained by numerical integration and stability analysis of (30) and (31). The
changes in the Z instability regions produced by varying €j./e;. are in agreement
with previous calculations (Davis 1985). However, our results are more complicated
than we anticipated : figure 2 depicts the appearance of new instability regions near
€. = 0 and simultaneous shifts in the R instability regions as ej /¢, varies. These
effects were not reported previously, although a new instability region for Z was also
found by Frickel et al. (1978) in the case of ej, = 0.1, which is in qualitative
agreement with figure 2e¢.

3. Field calculations

In the previous section, it was shown that the levitation and stability
characteristics of a particular balance shape can be deduced solely from the
levitation strength constant €, and the stabilization strength constant C,, both of
which are coefficients in the series expansion of the potential. In this section, the
potential components will be calculated by solving (3) numerically and analytically
for some balance shapes that have not been analysed previously. Values of € and C,
for these balance shapes will then be obtained from the potential components.

(@) Numerical methods

The porsson group of programs (Winslow 1967; Warren et al. 1987) was used to
obtain the potential and electric field numerically for several electrode configurations.
Tt was necessary to impose an artificial boundary condition on part of the defined
region, because the codes use a finite-difference mesh which cannot model infinitely
large regions. Boundary segments connecting the ring electrode to the endcap
electrodes were added to make the regions finite. In most cases, these segments were
chosen to be approximately parallel to the electric field and a Neumann boundary
condition was applied on them. Values of () and C; were obtained from the
numerically calculated potential components V. (R,Z) and V_(R,Z) by fitting these
functions to the relations (8) and (9). More details on the numerical calculations are
given in Hartung & Avedisian (1990).

(b) Hyperboloidal configurations

To test the numerical algorithm for solving the Laplace equation, a numerical
solution for the known hyperboloidal shape was sought. The hyperboloidal
configuration with r,/z, = 1/2 was approximated using the region shown in figure
3a, b. The region differs from the ideal because the electric field is required to be
perpendicular to a straight line segment connecting the ring electrode to an endcap
electrode. The segment was chosen to be perpendicular to the asymptote r/z = /2
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|

z/cm

Figure 3. Equipotential lines (solid curves) and electric field lines (dashed curves) calculated for
various balance shapes. (@) Even parity component, (b) odd parity component, and (c) analytically
calculated approximation for the odd component (Davis 1985), for hyperboloidal electrodes with
/%o = V/2. (d) Even parity component for the bihemispherical shape with a mesh size of 0.0164z,.
0dd parity component with (¢) a Neumann and (f) a Dirichlet boundary condition on the cylinder
(equipotential lines only) for the double-ring/double-disc shape with a mesh size of 0.0130z,, and
boundary conditions imposed on a cylinder a distance 1.753z, away from the balance. All results
except (c) are from numerical calculation.

and to intersect it at B =R ,. Since the ring electrode surface and the endcap
electrode surfaces become parallel to the asymptotes at infinity, this boundary
condition is correct in the limit R, —0c0. It is reasonable to expect that choosing R,
large enough should yield a solution identical to the analytical solution to the
accuracy of the numerical results. The difference between the numerical and analytic
solutions was found to be a strong function of the mesh size and a weak function of
R, for R . > 2. For the range of values of R, and mesh sizes investigated, R, = 4
and a nominal mesh spacing of 0.02z, yielded the optimum numerical solution.

Figure 3a, b shows equipotential lines (on which » is constant) and electric field
lines (tangent to E) near the origin for the two components of this solution. The
electric field lines plotted in figure 3 are spaced so that the electric flux through a
surface of revolution connecting two adjacent lines is a constant; the field lines are
plotted by finding equipotentials of an ‘electric vector potential’. The numerical
result for the even component in figure 3a agrees very well with the analytic results
of Wuerker et al. (1959). For the odd component, the only known analytic solution
(figure 3¢) is approximate (it is correct only in the limit 7,/z, +0), and the numerical
result which accounts for the presence of the ring electrode (figure 36) is noticeably
different from it. The numerical result suggests that the ring electrode affects the
odd-parity field components significantly.

Calculated values of C, were found to have a very weak dependence on balance
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Figure 4. Dependence of C; and €, on the balance design parameter r,/z, for the hyperboloidal
balance with R, = 4. The solid curve represents the exact analytic solution for €, ; the dashed lines
represent the exact values in the limit »,/z,->00. Symbols refer to numerical results. Bars are based
on estimated lower bounds on the error in the values due to the numerical calculation. In many
cases, the estimated error is too small to be visible.

radius R, for R, > 1.5, which suggests that €, can be predicted accurately for the
ideal shape (£, ~o0). Figure 4 compares our results for (', as a function of r,/z, with
previously reported values (Sloane & Elmoursi 1987). The value for r,/z, >0c0 is an
analytic result (Davis 1985). The values from different sources are reasonably
consistent with one another. Calculated values of €, did not show any statistically
significant dependence on R, for R, , = 2. Our calculated values of (| as a function
of r,/z, are also compared with the theoretical values in figure 4. For r,/z, > 1, the
numerical values agree very well with the exact values; for r,/z, > &, they deviate
from the exact result, but by an amount about equal to the estimated error. This
indicates that the numerical technique is capable of producing accurate results, but
not always precise ones.

(¢) Other configurations

A bihemispherical electrode configuration (figure 1¢) was analysed numerically.
This balance shape consists of two hemispheres and a cylinder, connected by flanges
with insulating rings; dimensions were obtained from a scale drawing (Richardson &
Spann 1984). For the numerical solution, the shape was simplified by omitting the
insulating rings and the outer step in the flanges where the rings were placed. The
region was made finite by imposing the condition that the electric field be vertical at
the outer radius of the flanges. The calculated field components, one of which is
shown in figure 3d, are qualitatively similar to the hyperboloidal results except near
the flanges. The field components calculated for a similar shape (figure 1f) deviated
more from the fields in the hyperboloidal shape.

The ‘double-ring/double-disc’ configuration (figure le) was also examined
numerically. This balance consists of two flat disc endcap electrodes, held in place by
a plexiglass tube, and two metal rings of circular cross-section connected to a
conducting support which serve as the ring electrode. Dimensions given by Ward
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Figure 5. Dependence of €', on the distance to the bounding cylinder for the double-ring/double-
disc balance for both of the possible boundary conditions on the cylinder.

(1989) were used; the thickness of the endcap electrodes and the thickness of the
plexiglass tube were taken to be 0.5 mm and 3 mm, respectively, relative to the
balance characteristic dimension z, =154 mm. The dielectric constant of the
plexiglass tube was set to 3, and it was assumed not to extend beyond the edge of
the endcap electrodes. The effect of the support piece for the rings was neglected.

In contrast to the other balances examined in this study, the double-ring/double-
disc shape has open boundaries over a large area. To approximate the ideal case of
a region of infinite size with a boundary condition imposed at infinity, the balance
was surrounded by a cylinder a distance L, away from the endcap electrodes and
from the plexiglass tube. A Neumann boundary condition was 1mposed on the
surface of the cylinder. The result for one component, with L, = 27 mm, is shown in
figure 3e. Figure 3e suggests that the presence of the rings affects the levitating field
significantly. A Dirichlet boundary condition was also tried to gauge the perturbation
due to the presence of the cylinder, as in the limit L, —~o0, the solution should be
independent of the imposed boundary condition. The result is shown in figure 3f.
Changing the boundary condition significantly influences the fields near the cylinder,
but does not strongly affect the fields inside the balance.

Figure 5 shows €| as a function of the distance L, to the bounding cylinder for both
boundary conditions on the bounding cylinder. The calculated values for the two
different boundary conditions are evidently converging to a common value as
L, —o0. Figure 5 suggests that reasonably accurate results can be obtained without
an excessively large value of L, (note that differences in (', are less than 0.2% for
Ly, > 20 mm). Results for €, (not shown) are similar.

Based on the agreement between the results with different boundary conditions,
one would not expect the field to depend strongly on the thickness of the endcap
electrodes or the amount by which the plexiglass tube extends above them. The same
cannot be said of the dielectric constant and thickness of the plexiglass tube,
however, so their influence on the calculated values of €, and C, was estimated.
Changing the dielectric constant from 3 to 3.25 decreased the calculated C;, by 0.01 %,
while |C}| increased by 0.03% ; changing the thickness of the dielectric from 3 mm to
3.5 mm increased the calculated Cj by 0.1% and decreased |C,] by 0.04%.
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Numerically calculated values of (), €, and several higher coefficients are given
in table 2 for the double-ring/double-disc, bihemispherical and hyperboloidal
balances. The error estimates listed in table 2 are based on the error (i) from the fit
of the potential components, (ii) due to the non-zero mesh spacing, and (iii) due to
the finite region size. The lower error bounds listed in table 2 are based on (i) only.

(d) An analytic solution for the pillbox shape

A particularly simple electrode configuration, for which the fields can be found
analytically, is shown in figure 14. For this ‘pillbox’ shape, the ring electrode is a
cylinder and the endcap electrodes are flat discs. The endcap electrodes touch the
ring electrode in the ideal case, making the potential discontinuous; as with the
spherical void shape shown in figure 14, the electrodes must be separated by some
amount to make the balance practical.

To find the potential for the pillbox shape, it is advantageous to use cylindrical
coordinates (r,z,¢). With axial symmetry, separation of variables yields a general
solution in terms of Bessel functions. Under the restriction that v(0,0) be finite, the
solution takes the form

v(r,z) = X [or, sinh (kz)+ S, cosh (kz)] J,(kr), (32)

k
where the values of k& to be summed over are determined by the boundary conditions.
The potential can be resolved into its dimensionless odd parity and even parity
components to yield expressions for V, (R, Z) and V_(R, Z). The boundary conditions
V. =1land V_ = 0for R = r,/z), require that .Jy(kr,) = 0 for all non-zero k, which gives

V.(R,Z) = 1+ 3 B, cosh (xjﬁz) J, (sz—OR>, (33)
j=1 To To
V.(R,Z) = X A, sinh <xj@Z)JO (sz—"}c). (34)
j=1 "o To

The boundary conditions V, = 0 and V_ = 1 for Z = 1 can be satisfied via the proper
choice of the coefficients A; and B;, with the result

& cosh (x;(zy/79) Z) Jy(2;(24/7,) R)

Nk Z)=1-23 xcoshxz0/¢0)J1(xj) , (35)
V(B 7) =2 5 SP @(20/70) Z) e/ 70) ) 56)

=1 x; smh (2 zo/ro) Jy(x;)

Equations (35) and (36) represent a full solution for the fields in the pillbox balance.

The potential components can be expanded in terms of the harmonic functions of (8)
and (9), which gives

9% 1
Co= 1”(”21 sinh (x;20/7,) Jy(;)’ (37)
__ (% & x;
¢ (70) El cosh (x;2y/ry) Jy(a;) (38)

The above sums converge fairly rapidly except when r,/z, > 1.

The first few terms in (37) and (38) were evaluated for r,/z, between 0 and 8. The
first 30 terms were found to give satisfactory accuracy in that range. The
corresponding values of (', and (', are shown in figure 6. The dependence on r,/z, for
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Figure 6. Dependence of € and | on the balance design parameter r,/z, for the pillbox shape,
based on the first 30 terms in the series expressions (37) and (38).

Table 2. Numerically calculated series coefficients

(The symbol > denotes lower bounds on the error.)

balance shape C,y C, C

2
hyperboloidal 0.802787 —0.499993 0.196 41
ro/20 = V2 (figure 1a) +0.000091 +0.000023 + > 0.00011
hyperboloidal 0.59747 —0.79588 0.5237
ro/2g =2 + > 0.00052 + > 0.00082 + > 0.0024

0.508076 —0.5425379
= 0.000012 + = 0.000000 1
0.834611 —0.3837194
= 0.000033 + = 0.0000002

0.398871
+ 2 0.000029
0.162830
+ = 0.000078

spheres/cylinder
(figure 1f)
bihemispherical
(figure 1g)

I+

-+

double-ring/double-dise 0.8156 —1.690 0.8833
(figure 1e) +0.0067 +0.029 + > 0.0011
balance shape C, c, Cy

hyperboloidal
ro/% = /2 (figure 1a)

—4.91 (107%)
> 0.25 (1079

+

I+

—6.32 (10°?)
> 0.18 (10°%)

—0.2080 (107%)

= 0.0039 (1079

hyperboloidal —2.9 (107%) —0.1942 8.3 (107%)
rof2, =2 +>29 (109 +>0.0074 + 2> 8.3 (10°3)
spheres/cylinder ~0.2067098 0.088090 —0.02496145
(figure 1f) + = 0.0000002 + > 0.000045 + = 0.00000023

bihemispherical
(figure 1g¢)

—7.894039 (10°%)
+ = 0.000016(10°%)

1.93 (10°%)
+>0.12 (10°%)

7.08263 (10 %)
+=0.00013 (10°3)

double-ring/double-dise 2.1026 —2.9401 1.469
(figure 1¢) +>0.0034 + = 0.0079 + > 0.022

the pillbox shape is qualitatively similar to the results one obtains for the spherical
void balance (figure 14) using the expressions for €, and €, given in table 1 and
associating r,/z, with tan 6,,.
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Figure 7. Comparison of de,, stability predictions for v,, = 0 from numerical integration of (30) and
(31) with experimental stability results for the double-ring/double disc balance. Symbols represent
experimentally measured points along the stability boundaries scaled using the numerically
calculated value of C',/C, (0) and an empirical C,/C, value (m) chosen to minimize the difference
between the theoretical curve and the experimental data.

(e) Comparison with experimental results

Several methods can be used to obtain values of €, and €, experimentally. One
standard balance calibration method is the Sprungpunkt technique, in which a
particle is levitated at the null point and the alternating potential (and/or frequency)
is adjusted to find the instability boundary. The levitating potential gives ¢qC,/m
via (22), which is used along with v,, and £ to obtain Cge,.. Values of Cje¢,, =
—4C,/Cy) €, as a function of § can thereby be measured along the instability
boundary. Because the (¢, values differ from ¢, by a factor of —31C,/C, only, an
experimental value of C,/C, can be obtained by scaling the experimental C,e¢,,
against ¢ curve to fit the theoretical instability boundaries in the de;, plane. Stability
data obtained using this method for the double-ring/double-disc balance (Ward
1989, figure 2.4) are compared with a numerically calculated stability diagram in
figure 7, using (i) the numerically calculated value of C,/C, and (ii) an experimental
C,/C, chosen as described above. The two values of C,/C, produce significantly
different results, but the experimental value yields scaled data that reproduce the
theoretical curve reasonably well.

Values of ' and C, obtained experimentally for various balance shapes are listed
in table 3. The result in table 3 for the double-ring/double-disc shape is based on the
above analysis. In all but three cases, only the ratio of () to C; was measured. A
theoretical value for one of the two parameters was often used to calculate the other.
Theoretical values from tables 1 and 2 are also listed in table 3 where possible.

The agreement between the experimental and theoretical values in table 3 ranges
from very good to very poor. The lack of agreement between different experimental
results for the same balance shape suggests that either the theory is inadequate or
the shapes used experimentally are significantly different from those used to predict
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the C}s. The shapes of actual balances are in fact often quite a bit different from the
ideal shapes they are based on. For example, two hyperboloidal balances listed in
table 3 both have a ‘nominal’ r,/z, of 4/2, but the actual balances have r,/z, = 1.33
and 1.54. Figure 4 suggests that perturbations in r,/z, of that order can change C,/C,
by about 10 %. Another example of deviation from the ideal shape is the presence of
holes in the endcap electrodes. In one balance, a hole of a radius 33z, was present in
the upper endcap electrode (Ward 1989). Numerical calculations with such a hole in
both endcap electrodes predict a 2% change in C,/C,, with C; decreasing by 5% and
|C,| decreasing by 7%. These results suggest that the differences between the
experimental and theoretical values might be accounted for solely by differences in

balance shape.

4. Optimum balance shapes

A number of balance shapes that have been used experimentally are shown in
figure 1. Each shape produces a unique electric field environment for particle
levitation and stabilization which depends on the size and shape of the electrodes. It
is natural to expect that there is a ‘best’ or ‘optimum’ balance shape.

If there are no limits to the levitating and stabilizing fields that a balance can
operate with, any balance can stably levitate a particle with any mass m and any
non-zero charge ¢, so that any two balances can in principle levitate a particle with
the same degree of stability via the proper choice of the levitating and stabilizing
potentials for each. Thus, in theory, no balance is better at levitation or stabilization
than another. In practice, however, there are limits on the fields that can be achieved
in real balances. There are limits on (i) the potentials that can be applied to the
balance electrodes (since power supplies only generate finite potentials), and (ii) the
surface electric fields that can be supported by the balance electrodes (above which
phenomena such as arcing or field emission occur).

A balance subjected to these limits cannot suspend a charged particle of arbitrary
m and ¢. Rather, the limits on the allowable surface fields and potentials produce an
upper bound on m/q, above which the particle can no longer be held in the balance.
We assume that the better of two balances is the one which can suspend the particle
with the largest possible m/q when both balances are subject to the same limits on
the applied potentials or the surface fields. This is by no means the only optimization
criterion one could envisage, nor is it an appropriate criterion for all applications.
Other considerations include sensitivity to small perturbations in the applied
potentials or electrode shape, difficulty of particle injection, ete. A criterion based on
maximizing m/q was chosen because of its relevance to applications in which a large
particle mass or a small particle charge (needed for electron stepping measurements,
for instance) are desired. This criterion is particularly germane for combustion
studies in which large droplets of liquid fuels with small charges (a liquid particle’s
charge is limited by Rayleigh instability) are needed.

(a) Optimization with limited potentials

When the available potentials limit the performance of a balance, the applied
stabilizing and levitating potentials can be fixed while comparing different balance
shapes. For stabilization, the stability space parameters €;,, €3., and & can also be
fixed. From the definition of €., we have

m)q =—2C,0v,./€q 25 §2°. (39)
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Thus, for given values of the potential (v,,), stability parameter (¢,,), frequency (£2),
and balance size (z,), the largest m/q is obtained with the largest value of |C|: the
larger |C,|, the better the balance is for stabilization (the same conclusion follows
from the definition of e, if a static potential is also applied to the ring). Similarly,
(22) shows that the larger |C|, the better the balance is for levitation, when v, and
z, are fixed.

The presence of the balance size parameter z, in (22) and (39) shows that the size
of the balance influences its performance: a balance’s stabilization and levitation
abilities improve as its dimensions (via z,) are scaled down and worsen as its
dimensions are scaled up. Consequently, it is important to factor out the influence of
balance size when comparing performance. This can be done by choosing the same
value of z, for all the balances. However, the way in which z is defined for each shape
then becomes significant; any balance shape can be made to appear superior with a
proper definition of z,. To avoid this difficulty, we will require that the particle be
surrounded by a volume of empty space of some given shape. The size of this volume
will be used to obtain a universal length scale to replace z, in the calculation of C,
and C, for all balances. Two balances will be taken to have the same size when they
are built around empty volumes of the same size and shape, i.e. when they have the
same characteristic length z,. We believe that this provides the only meaningful basis
for comparing different shapes. The parameters C;, and C, are now redefined to
incorporate the universal length scale instead of z,:

Co—=>Dy = (2./2,) Oy, (40)
C,—~>D, = (2./2)°C,. (41)

Therefore, the larger |D | and |D,| are, the better the balance. The best balance is the
one for which |Dg| and |D,| are maximized.

As an example, we choose a spherical excluded volume for the comparison
constraint. The sphere’s radius ry, is a suitable choice for the characteristic length z,.
The relation between z, (i.e. ry,) and z, is determined by finding the largest sphere that
can be inscribed inside the balance electrodes for each shape. A plot of theoretical
values of D, against D for several balance shapes in the spherical excluded volume
case, based on both exact and numerical calculations, is shown in figure 8. Unique
balance shapes are represented by points in figure 8; shapes with a variable
parameter are represented by curves. The discontinuity in the slope of the curve for
the hyperboloidal, triple-disc and pillbox balances corresponds to the discontinuity
in the definition of D, and D, at r,/z, = 1.

The spherical void electrodynamic levitator (the sveL balance, figure 14) is clearly
the best balance of those shown in figure 8, since it has the maximum |D,| for any
given D, and the maximum |Dy| for any given D,. For the svEL shape, we see from
table 1 (using the fact that D; = O, for the SVEL shape in this case) that |D| is
maximized when 0, = 90°, whereas |D,| is maximized when 6, = arccos (1/4/3) =
54.74° = 0,. Thus, of the shapes considered, the best balance for levitation is the sVEL
balance with 6, = 90°, while the best balance for stability is also the sviEL balance,
but with 6, = 6,. The latter 6, value was used by Arnold & Folan (1987). At this
point, there is no balance in which both levitation and stability are optimized
simultaneously (see §5, however).

In the above example, the ‘best’ balance shape was found to be the shape in which
the electrodes completely enclose the excluded volume chosen as a constraint (i.e. an
empty sphere produces a spherical void shape). This suggests that an optimum
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Figure 8. An electrodynamic balance design diagram showing the relationship between the design
coefficients D, and D, for different balance shapes under the constraint of a spherical excluded
volume. All values are theoretical. The curves for the hyperboloidal, triple-disc, and pillbox
balance correspond to varying r,/z,; the curve for the sveL balance corresponds to varying 0.
Results for the triple-disc shape are obtained from the approximate analytic result (table 1).

balance shape does not emerge independently of the choice of excluded volume. We
are led to the hypothesis that any balance shape can be elevated to the position of
optimum balance shape simply by selecting the shape of the excluded volume to
coincide with the region outside the electrodes in the chosen shape. This hypothesis
is proved in Appendix B. Consequently, no ‘natural’ balance shape emerges
independently of the chosen excluded volume, and no balance shape is intrinsically better
than another in the potential-limited case. There is thus no intrinsic advantage to the
hyperboloidal shape, the triple-disc shape, the SVEL shape, or any other.

An excluded volume must be defined @ priori in order to factor out the influence
of the relative size of different balances in the performance comparison. If the shape
of the excluded volume is left as a parameter to be determined as part of the
optimization, |D | and |D,| can be made arbitrarily large with an excluded volume in
which the distance between the particle and one of the electrode surfaces goes to zero,
producing a highly optimal but completely impractical balance shape. Some
excluded volume shape must be chosen, and the optimum balances that emerge will
incorporate that choice.

The lack of a unique optimum shape does not mean that all balances are just as
good or just as bad for a particular application. Practical concerns can be used to
dictate a choice for the excluded volume shape and hence for the electrode contour.
For some applications, the distance to the electrodes in the z direction may be more
important than the distance to the eclectrodes in the » direction, because the
gravitational force in the z direction can produce vertical oscillations of the particle
when the levitating field is not adjusted to balance it exactly. In such a situation, it
would be more appropriate to choose a cylindrical or ellipsoidal shape rather than a
spherical shape.

Once an appropriate shape is chosen, the electrode configuration must still be
determined. It is shown in Appendix B that, for any given excluded volume shape,
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general
electrode (b)

contour

Vri ng

Figure 9. The electrode configurations for () optimizing levitation and (b) optimizing stability
for a general excluded volume shape (unshaded region).

there are two optimum electrode configurations; one for optimum levitation and the
other for optimum stability. In terms of the polar angle 6 (figure 9a), it is shown in
Appendix B that the balance is optimized for levitation by

(i) applying the positive levitating potential (v.,4) to surfaces between 6 = 0 and
0 =i and

(ii) applying the negative levitating potential (—wv,,,) to surfaces between 6 = in
and 0 = .
On the other hand, the balance is optimized for stability by

(iii) applying the stabilizing ring potential (v,;,,) to surfaces between 6 = ¢, and
0 =n—0, and

(iv) grounding the rest of the surfaces.
The two configurations are illustrated schematically in figure 9 for a ‘general’
excluded volume shape. It should be noted that the optimum electrode configuration
for levitation provides no stability, since there is no ring electrode. The optimum
configuration for stability can provide levitation if we apply a potential across the
grounded surfaces (i.e. apply vo,q to surfaces between 6 = 0 and 6 = 6, and apply
—Vgnq to surfaces between 0 = n—0, and 6 = m), but the balance will be less than
optimal for levitation.

(b) Optimeization with limited surface fields

In practical applications, the operation of a balance can be limited by high surface
electric fields rather than by the available potentials. For example, arcing across the
electrodes may occur before the applied potentials reach their maximum values. In
that event, the surface fields limit the performance of a balance and the available
potentials do not.

In the surface field-limited case, we still want to maximize |C| and |C';| to optimize
levitation and stabilization, respectively, but with the maximum surface fields fixed,
rather than with fixed potentials. For levitation, we see from (12) that maximizing
|Cyl is equivalent to maximizing the dimensionless electric field at the null point
(£ = Z = 0). We can optimize for levitation by maximizing the ratio of the electric
field at the null point to the maximum surface electric field (in magnitude). This ratio
does not depend on the size of the balance, so no characteristic lengths are needed. For
an electrostatic field, the maximum value of thisratio is 1. A field ratio of 1 is obtained
only with a spatially uniform field, which is produced by infinite parallel plates. The
ideal triple-disc shape in which rp, —>00 and % —0 (figure 1b) also produces a uniform
levitating field, so the ideal triple-disc shape is the optimum shape for levitation in the
surface field-limited case.
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The stabilization analysis is a bit more complicated, and we have not found an
optimum shape for stability. We note, however, that the balance size becomes
important again in the optimization of |C,| at a fixed maximum surface field, which
leads us to hypothesize that there may not be a unique optimum shape for stability.
We also note that optimum shapes for the potential-limited situation and optimum
shapes for the surface field-limited situation represent opposite extremes: for any of
the optimum shapes of §4a, the electrodes always touch one another, so that the
surface fields are in theory infinite. Slight modifications to the electrode configuration
will always be required for shapes optimized for potential-limited scenarios. One
should be able to estimate rather easily how close the electrodes can be safely placed
in a given design.

5. Performance enhancement via function sharing

Although no unique optimum balance shape exists in the potential-limited case, it
is possible to optimize the performance of a balance whose shape is given. In §4a, it
was shown that, for a given excluded volume, and the de facto optimum shape in
which the electrodes completely enclose the excluded volume, there are two optimum
electrode configurations in the potential-limited case, one in which levitation is
optimized (with no stability) and one in which stability is optimized (with non-
optimal levitation). A simple refinement to the electrode configuration is now
proposed to allow levitation and stabilization to be optimized simultaneously in a
potential-limited situation.

In the traditional electrodynamic balance, the applied levitating and stabilizing
potentials are spatially distinct: the odd parity levitating field is produced by
applying static potentials of opposite sign to the upper and lower endcap electrodes,
and the even parity stabilizing field is produced by applying an Ac potential (with a
pC component also, if desired) to the ring electrode. The fact that the two field
components have opposite parity, however, means that they can always be resolved.
One can hence start with a balance that has been optimized for stability, divide the
ring electrode into two symmetric halves, and use these halves as both the ring
electrode and part of the two endcap electrodes simultaneously. The balance will
then be optimized for both levitation and stabilization. In terms of the polar angle
0 (figure 9), this means applying

(i) the positive levitating potential (v,,4) to surfaces between 6 = 0 and 6 = ir,

(ii) the negative levitating potential (—wv.,,) to surfaces between 6 =jn and
0 =m, and

(iii) the stabilizing ring potential (v,,,) in series with the levitating potential
between 6 = ¢, and 6 = n—0,.

The two ring electrode halves thus share the function of both ring electrode and
endcap electrode; we call this method of improving performance ‘function sharing’.

The above recipe optimizes the performance for any given balance shape with axial
symmetry. As an example, figure 10 shows the arrangement that is obtained with the
SVEL balance (figure 1%). For the configuration shown in figure 10, D, is equal to the
svEL value with 6,, = 90° (optimum for levitation) and D, is equal to the sveL value
with 6, = 0, (optimum for stability). This electrode configuration, which we call
rsSVEL (function sharing spherical void electrodynamic levitator), optimizes the
spherical void shape for levitation and stabilization simultaneously. Function
sharing can be applied to the pillbox shape (figure 17), by redistributing the applied
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v +v +v cost
end dc ac

-y _+v +v cos
end dc ac

Figure 10. Electrode configuration for a ‘function sharing spherical void’ balance. It should be
noted that the way in which the electrodes are joined together outside the void does not affect the
fields inside the balance; connecting the electrodes via a ‘cone’ joint as in figure 9 produces the
same effect as the ‘flange’ joint shown here.

e —
vend

.

potentials in a similar manner. When r,/z, = 4/2, the stabilizing potential is applied
to the cylinder only and not to the discs, yielding a particularly simple electrode
configuration.

Function sharing optimizes the performance of a given balance shape only when
the electrodes enclose the desired excluded volume. Function sharing can potentially
improve the performance of any balance, however. The levitation ability of the
double-ring/double-disc balance, for example, could be enhanced by applying the
levitating potential across the two rings as well as across the endcap electrodes. It
should be noted that function sharing is already used with the double-ring balance
(figure 1d), allowing the number of electrodes to be reduced to two.
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acknowledged. This work was supported by the National Science Foundation under grant no. CBT-
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Appendix A

We assumed in §2a that p = 0 everywhere except on the electrode surfaces, thus
neglecting the charge of the suspended particle. We now examine the validity of this
assumption by estimating the effect of a single charged particle on the analysis.

With a charged particle inside the balance, we must solve (1), rather than (3), with
specified potentials on the electrode surfaces. We can express the solution »(r) to (1)
as the sum of two component potentials, v,(r) and v;(r), such that v(r) satisfies (3)
with the desired boundary conditions on the electrode surfaces and v;(r) satisfies (1)
with the boundary condition »; = 0 on all electrode surfaces. Because (1) is linear,
v(F) = vy(r) +v;(r) is the exact potential which accounts for both the potentials
applied to the electrodes and the presence of the charged particle. The component
v,(r) is then the charge-free potential discussed previously, while »;(r) is an induced
potential due to the presence of the charge. Finding v;(r) for an arbitrary balance
shape is a non-trivial task. There is, however, an analytic solution for v(r) for a
special case, to wit when the electrodes take the shape of the sverL balance (figure
Lh). We will use this shape to obtain an order-of-magnitude estimate of the effect
of a charged particle for an arbitrary balance shape.

To find v;(r) for the svEL shape, the potential inside a grounded conducting sphere
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containing a particle of charge ¢ must be obtained. This is easily done using the
method of images (see, for example, Jackson 1975). The electric field at position
inside the sphere when the particle is at r is

L (q/7) (20/75)°
E.(r) = 5 Al
) G, = o/ r &
where z, is in this case the radius of the sphere. Since E;(r) depends only on 7, it has

no odd parity component, and only the even parity component of the field is affected.
By using the same non-dimensionalization as for E,, we obtain

1 (Q/Uring z()) (20/7'5)3

Zi(r) = . A2
Expanding (A 2) in powers of r,, we obtain
= L g (rg
Zi(r) = ey v 70 (z0+ ...)es. (A 3)

Comparing this result with our previous expression (23) for Z, in the limit of small
perturbations, we see that the relative error in Z, is of order g/(4me,v,,,2,C)).
Typical values are U, of order 1, 2, of order 1 ¢cm, and v,;,, of order 1000 V. For values
of ¢ on the order of one electron charge, the relative error for such a case is on the
order of 1071%. The error becomes significant for sufficiently large ¢ values.

Appendix B

The purpose of this Appendix is to prove the statements made in §4a about how
to optimize a potential-limited electrodynamic balance for levitation or for stability,
for an arbitrary excluded volume. It was shown in §4a that the optimum shapes for
levitation and stability are obtained by maximizing |D,| and |D,| respectively. The
design constants D, and D, are proportional to the series coefficients ¢, and ¢, in the
expansion for v. Stated in terms of the dimensionless components of v, we will show
that the optimum balance for levitation is obtained with

(i) V. =1 on portions of the surface S, of the excluded volume for which
0<0<inand

(ii) V. = —1 on portions of S, for which in < 0 <,
while the optimum balance for stability is obtained with

(iti) V, =1 on portions of S, for which 6, < § < n—0, and

(iv) V, = 0 on portions of S, for which 0 <0 < 6, or n—0, < 6 < m.

To prove this, we will find expressions for the series coefficients ¢, and ¢, in terms of
the potential components on the surface of the excluded volume, find the potentials
that maximize |¢,| and |c,|, and demonstrate that they are equal to the potentials
described above. It should be noted that the electrod=s must completely enclose the
excluded volume to obtain the above potentials; the optimum balance shape is the
same as the excluded volume shape.

The equivalent of (1) in integral form is
1 (p@)d3

— Uil B1
0= e | (B1)

where the integration must be carried out over a volume that contains all of the
charge. In an electrodynamic balance, the charges are confined to the surface of the
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electrodes, so the right-hand side of (B 1) reduces to an integral over the electrode
surfaces. These surfaces must be either on the surface S, of the excluded volume or
outside the excluded volume. Applying potentials to the electrodes yields a unique
solution »(r) and unique surface charge distributions on the electrodes. In general,
one solves for »(r) in a volume that includes all regions outside the electrodes, and
this volume does not necessarily coincide with the excluded volume, but for this
proof, it is convenient to concentrate on the excluded volume only. The potential
everywhere inside the excluded volume is determined if the potential is known on S..
The potential on S, may be thought of as being established by a large number of
fiducial conductors, each of infinitesimal area and each with an independently
applied potential and induced charge density. All of the charge is then confined to S,,
so that, in the continuum limit, (B 1) becomes a surface integral of surface charge
density over S,:

o) = ! J o(r)ds’ B2
SC

 4me, |r—r

To obtain expressions for ¢, and ¢,, one can use the fact that, according to (5),
¢o = (0)/0z and ¢, = 30%0(0)/0z%. Taking partial derivatives of (B 2) and setting
r = 0 gives expressions for ¢, and ¢, of the form

1
¢ = ‘11—{0; Sefj(r) o(r)ds, (B3)
. z . 22—t
with I =t = (B 4)

The function f(r) is positive for z > 0 and negative for z < 0; in terms of the polar
angle 0, f,(r) is positive for 6 < 3n and negative for 6 > 3r. Similarly, f,() is positive
for 6 < 0, or 0 > n—0, and negative for 6, < 6 < n—0,. Hence ¢, is maximized when
o(r) is as large as possible for 6 < jm and as small as possible for 6 > in. Likewise, ¢,
is minimized when o () is as small as possible for § < 6, or 6 > n—0, and as large as
possible for 6, < 6 < t—0,. Since the design places constraints on »(r) rather than
o(r), a relation between o and v must be found.

If »(r) is known on S, o(r) is determined on S,, and conversely. The electric field
on the surface of a conductor is also determined by o, as E = (0/¢,) n. Use of this fact
and (2) gives

w/on =—a/e, (B5)

on the surface of the conductor. Equation (B 5) contains the information needed
about the relation between o and ». To see this, we can first set ¥ = 0 on all of the
conductors on S, except one, say conductor j, and then vary the potential v; and
surface charge o; on conductor j. When v; = 0, the solution is v = 0 everywhere, so
that dv/dn = 0 on j and hence o; = 0. When »; > 0, conductor j is at the maximum
v, 80 (Ov/0n); < 0 on j and hence ¢; > 0. When v; < 0, similarly, j is at the minimum

v, 80 (0v/0n); < 0 and hence o; = 0. Linearity, in point of fact, requires that
(Qv/dn); = —x;v; (B 6)

for some proportionality constant y,. It is evident from the above considerations that
X; = 0. Substitution of (B 5) into (B 6) gives

Xi0; = 0;/€,. (B17)
Proc. R. Soc. Lond. A (1992)
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The product y;e€, is a positive definite capacitance per unit area.

We can now generalize the above results to the case of arbitrary potentials
imposed on the rest of the conductors by adding a second potential v'(r) that gives
the desired values on the rest of the conductors but equals zero on j. When this
potential is superposed on the first potential, another term enters into (B 6), with the

result 0, = €0, + 6000 On),. (B8)

Since y;e€, is positive definite, o; is maximized by maximizing »;. We conclude that
(1) ¢, is maximized when v(r) is as large as possible for < 1t and as small as possible
for 6 > jm and (ii) ¢, is minimized when »(r) is as small as possible for 6 < 6, or
0 > n—0, and as large as possible for 6, < 0 < —¢,. When o(r) is resolved into its even
and odd parity components V, and V_, maximizing c, requires an odd parity
potential (so that V, = 0) and maximizing ¢, requires an even parity potential (so
that V_ = 0). By using the definition of V_ and the fact that —1 < V_ < 1, we find
that to optimize ¢, we require that on S, V_ must be given by

—1 for Im<O<m.

Likewise, using the definition of V, and the fact that 0 <V, <1, we find that to
optimize ¢; we require that on S,, V, must be given by

0 for 0<0<0,
V=11 for 0,<0<mn—0, (B 10)
0 for m—0,<0<m.

Since the design constants appropriate to the excluded volume will be proportional
to ¢, and ¢;, (B 9) and (B 10) optimize the design constants as well.
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