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Not all defects are bad defects:
Designing superior microstructures in Additive Manufacturing

Jennliffer Bustillos*, Atieh Moridi

o Exploiting lack of fusion defects to design printed duplex microstructure

e Breakdown of columnar prior f3-grains in printed Ti alloys

Ti alloy

o a-globular and a-lath grains enable high strength and ductility in printed

a-grains

Elongated
a-laths
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v'Enhanced ductility by up to 90% as compared to the
baseline (FD-HIP 1)
v'Ductility was achieved at no loss of strength

Materials & methods

Low aspect
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Printing defective parts
Low energy densities
Defects (up to 500 um)

Post-process via hot
isostatic pressing

Local recrystallization
and defect closure 0.8 -

Mechanically superior to conventional
manufacturing routes
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Results & Discussion
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Co-existence of a-laths and dislocation-free a-globules enable the
effective strain transfer to accommodate extended deformation

Universal method to engineered AM microstructures

Duplex microstructure derived from recrystallization and reduction
of surface energy

Mechanically superior microstructure vs. as-printed, HIP-ed, forged,
annealed and STA alloys
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Materials & methods
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LO\_N aspect a-laths ) 5cal recrystallization
ratio a-grains and defect closure

Post-process via hot
Isostatic pressing

900°C -2 h - 100 MPa

100 MM _
— Printing defective parts
Low energy densities

Defects (up to 500 pm)




Results & Discussion

Proposed mechanisms for the evolution of duplex microstructures

Recrystallization driven process

Reduction of free surface ener

v'Takes advantage of highly dislocated nature of as-printed microstructures
v'Intensification of stress states at defect zones

Elimination of a fusion defect (free surface) = release of excess free energy (AGy)

AGpor = —V (AGy — AGy) + Ay — A/aﬁ

LoF defects
(50-500 um)

Pile-up of dislocations
at defect tip
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Results & Discussion
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Results & Discussion
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Region 1, g,,_,,=0.5 Region 2, g_,=0.3 Region 3, g,_,=0.1

v'Deformation via lattice rotation (intragranular
misorientation gradients)

v'Adaptive domain misorientations (DAM) show high
density of dislocations In the form of substructures (cell
walls to reduce strain energy)

v'LoF-HIP has an average cell size of 0.67 = 0.3 um as
compared to FD-HIP with 1.25 + 0.5 um.
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Deformation pathways
1. Selective deformation of primary a-laths with soft configurations

2. Dislocation cell formation: reduction of the dislocation mean
free path.

3. Low aspect ratio grains: experience rotation towards soft
crystallographic orientations for easy slip due dislocation-free -

nature a-laths £ %7 dislocation cells
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In FD-HIP, the energy required for dislocation climb/glide is too
high leading to fracture




Conclusions

Universal method for the engineering of AM microstructures via lack of fusion introduction and subsequent closure
Duplex microstructure results from dislocation-induced recrystallization and reduction of surface energy

Engineered microstructure shows unprecedented plasticity as compared to as-printed, HIP-ed, forged, annealed and
STA alloys

Recrystallized a-grains experience lattice rotations to preferential slip orientations with excellent work hardenability
via dislocation substructures.
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