Operando synchrotron x-ray diffr

action during metal additive manufacturing

to de-convolute the complex nature of the solidification process

Adrita Dass, Atieh Moridi, Sibley School of Mechanical and Aerospace Engineering, Cornell University

Gap in understanding the mechanisms of
non-equilibrium solidification pathway
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Verification via post-processing

1D analysis: Inter-dendritic growth and
formation of secondary phases (Nb2C, 8)
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Tracking grain rotation phenomena from 2D Conclusion:
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Specialized Equipment for CHESS

* Enabling studies of the fundamentals of the solidification process during AM
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Crystallite formation, %rowth and rotation, jagged

nature lines — Azimut

Usually, there are three distinct features as we see from our plots:

1. individual reciprocal lattice points;
2. straight vertical lines (signifying grain growth)

3. curved vertical lines (indicating grain rotation) at a certain angular velocity
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Crystallite formation and rotation
2 : in melt pool
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* Movement of the crystallite in the semi-solid region
depends on the convection effects in the melt pool

* The change in direction of angular velocity can
inform the clockwise or anti-clockwise convection

effects
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The frequency range of ~16.7 Hz indicate
it could be a periodic of movement of the
fluid in the mushy zone, moving the
already grown dendrites in and out of the
diffraction condition
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Inter-dendritic growth and formation of secondary
ohases

* The dendritic + inter-dendritic growth follow a staggered approach
* This accompanied by formation of secondary phases (red and orange arrows) (verified by EDS)
* The asymmetric shoulders of the peaks are due to the inter-dendritic growth, proven by EDS

311 222

A A 004
5 (133)@ 4 Nb,C (023) A A )

) A\ 3 e - " = . A' . .
= TN A, — . Dispersed & phase throﬁughout matrix Nb2C-type carblde pamde

4 _A AL AN & i

XN A A
b 4N A\ . R AN
) AN A Solid Cooling Zone A
x AN A —
Q0 oA A N
a XN N A\
| —} \.J\ A AN

Y A\
C > WLN A A\
(@] o N —A
) A W A
= | A A A
— A A AN
(@] _A A A

I S
® 7 N— -
A A A
b L A\ A
> AN Solidification Zone
) A
cC 4L A
TN

3 4 /\
c . Melt Pool
— N AN ey e — et A o g

12

-
[

20 (°)
EDS maps showing
interdendritic segregation




Mechanisms of grain development — Nucleation and
formation, rotation, dendritic growth

Mechanism: bulk nucleation, crystallite formation and rotation and dendritic growth and formation of
secondary phases

@ Bulk nucleation site ‘ Growing crystallite domain 4R Fragmented crystallite domain
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+ Secondary phase crystallite + Crystallite of matrix @ Epitaxial nucleation O Dendritic growth

Stage 1 Stage 2

* The first step is
v Undercooling induced heterogeneous nucleation in the melt pool
v Formation of nuclei (stray dendrites) act as catalyst to grain formation
* The second step is
v Crystallites may rotate with a certain velocity in the melt pool liquid, grow or break into smaller fragments
v the growth of the smaller grains into larger grains, from stray equiaxed dendrites/crystallites in the melt
pool to grow as dendritic channels.
* The third step is
v followed by the growth of the inter-dendritic region, which solidifies the remaining inter-dendritic network



