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Introduction

1. Structural Repair via AM
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Additive
Manufacturing (AM)

1. lllustration of structural repair of metal components using cold spray additive
manufacturing. 2. a) The unit process of cold spray, ultra high-rate metal particle-
substrate impact and subsequent bonding, reproduced by LIPIT, b) bonded interface
characterization, microstructure change and extreme plastic deformation on both
particle and substrate. 3. Spherical impression-based approach for physically-based
constitutive modeling of materials in ultra high-rate deformation.
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3. Physically-Based Modeling of Ultra High-Rate Deformation
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Highlights

Focusing on the unit process of cold spray additive manufacturing, understanding the material
evolution in the process of particle-substrate impact at ultra high velocity.

behavior and microstructure

Material’s mechanical behavior in a wide range of strain rates is measured by nanoindentation and laser induced particle impact test

(LIPIT).

Dislocation-based constitutive model with deformation mechanisms activated at different strain rates.

Predicted material behavior in ultra high-rate deformations, simulation providing estimation of resultant microstructure and plastic

work.

Methods
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Results and Discussion

Plastic Work and Strain Rate
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two impact cases. Bottom
Left: Higher impact velocity
results in higher dislocation
density at the south pole of
the impact crater, evidencing
a more sever dynamic
recrystallization. Right: Plots
of fraction of plastic work
done at different strain rates.
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