The Effect of Solidification Pathway on Grain Boundary Fractality

The intense heat source used in additive manufacturing (AM) causes rapid cooling

Interface velocity R [m/s]

Exploit access to metastable phases via rapid cooling to design microstructure

Two grades of stainless steel (304L and 316L) with different phase metastability were printed at fixed process parameters (P=200W, v=6 mm/s, h=2 mm) as a proof of concept

Element	304L	316L
Cr	18-20	16-18
Ni	8-10	10-14
Cr _{eq} /Ni _{eq}	1.52	1.39

304L and 316L have different ratios of austenite-stabilizing and ferrite-stabilizing elements that influence solidification pathway

References

J Kim, A Wakai, A Moridi. J. Mater Res, (2020) Froend, M. et al. Mat. Sci Eng. (2020) Basinski, Z. et al. Pro Roy Soc of Lon. (1955) Lehto, P. Ultramicroscopy, (2021) Khanbareh, H. et al. J. Mater Sci, (2012)

⇔Click Zoom button to talk to me

Akane Wakai¹, Kate Shanks², Amlan Das², Atieh Moridi¹ ¹Laboratory of Advanced Materials and Manufacturing, Sibley School of Mechanical and Aerospace Engineering ²Cornell High Energy Synchrotron Source, Cornell University

304L and 316L have vastly different microstructures with three key distinctions

1. Grain size distributions Wider range of grain size in 304L compared to 316L

2. Misorientation

There is noticeably more dislocation accumulation in 304L than in 316L

Misorientation map: Shows dislocation density (thus forming deformation cells)

Geometrically Necessary Dislocation Density

3. Rough vs smooth grain boundaries: roughness via Fractal Dimension To quantitatively compare the roughness of grain boundaries, we applied a geometrical concept to index the irregularity of a geometry

into a 'fractal dimension' (D)

The outlines of forty grains from each sample were indexed for their fractal dimensions

304L have Grains OŤ higher fractal dimensions

Click button to see distributions

Operando time-resolved X-ray Diffraction at Cornell High Energy Synchrotron Source (CHESS) illustrates different solidification pathways

Mechanism behind fractal grains

Direct solidification into austenite:

- (a) Liquid \rightarrow austenite (γ)
- (b) Austenite cells grow
- (c) Complete solidification

Designing fractal grain boundaries

Fractal grain boundaries improve mechanical properties by: \succ Increased friction between grains (prevents grain rotation) Elongated crack propagation path

Changing chemical composition to tune solidification pathway can be a new grain boundary design criteria quantifiable by fractal dimensions

E-mail: aw846@cornell.edu

Ferrite-to-austenite (FA):

(e) Liquid \rightarrow ferrite (δ) (f) Ferritic dendrites deform in fluid flow of AM (lower yield strength in ferrite above 600 °C); nucleation of γ (g) Solid-state transformation of $\boldsymbol{\delta}$ into γ , retaining deformation

The Effect of Solidification Pathway on Grain Boundary Fractality

Microstructural differences

304L has a wider range encompassing many small grains (~4 μ m) embedded within larger grains

> Median SS304: 6.7±14.1 μm SS316: 19.1±13.6 μm

SS304 SS316

Bimodal distribution of dislocation cells in 304L points to the existence of grains with many small dislocation cells and those without dislocation cells (where cell size = grain size) Median SS304: 10.67±7.77 μm SS316: 25.24±9.98 μm

2. Misorientation

Voltage: 25kV Pixel size: 0.61 µm View field: 300 µm

Higher fractal dimensions of grains in 304L reflects the higher roughness of grain boundaries in 304L

Click home to return ⇒

Median SS304: 1.20±0.05 SS316: 1.10±0.04

The Effect of Solidification Pathway on Grain Boundary Fractality

CHESS setup

20 (°)

304L

316L

The incoming X-ray beam probes the sample as it undergoes the melting and solidification process of AM.

comparable thermal history when processed at fixed parameters.