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Ultrafast optics is a rapidly-evolving field encompassing much scientific activity
and generating an increasing number of applications. The primary tool of ultra-
fast optics, solid state lasers producing energetic femtosecond pulses, remain as a
complicated, large and expensive equipment.

This thesis presents an experimental and theoretical study of high-energy, fem-
tosecond fiber lasers. The primary emphasis has been the development of practical
femtosecond fiber-based sources with performance similar to that of bulk solid state
lasers. Since the limitations to performance limitations to pulse energy originate
in the strongly-nonlinear nature of the pulse generation dynamics, a thorough un-
derstanding of these dynamics has been indispensable. Novel schemes for pulse
generation in the presence of strong nonlinearity have been explored.

The concept of nonlinearity management has been suggested as a route to two
orders of magnitude improvement in the pulse energy of soliton fiber lasers by in-
troducing an optical medium with (effective) negative cubic nonlinearity. A fiber
source based on a medium-energy fiber laser seeding an integrated fiber amplifier
has been demonstrated to be an energy-scalable approach for the generation of
high-energy pulses. The concept of self-similar pulse evolution within the optical

cavity has theoretically been suggested and experimentally demonstrated to avoid



the break-up of pulses due to excessive nonlinearity. With this method, unprecen-
dented pulse energies can in principle be obtained, approaching 1 uJ. As a first
step in this direction, a Yb-doped fiber laser has generated 50-fs, 5-nJ pulses, cor-
responding to the highest peak power obtained from a fiber laser. The pulse energy
is currently limited by the saturable absorber mechanism. Finally, an investigation
of high-energy pulse dynamics in the presence of a failing saturable absorber has

been conducted.
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Chapter 1

Introduction

Ultrafast optics is a rapidly growing field. Not only the scientific interest in ul-
trafast optical phenomena is increasing but ultrafast optics is proving to be an
important tool for many branches of science. In addition many industrial and
medical applications have been demonstrated and their importance can only be
expected to rise.

Ultrafast pulse lasers producing intense femtosecond pulses are the main tools
of ultrafast optics and as such, they have diverse applications, including time-
resolved studies in chemistry, novel imaging techniques in medicine, and optical
communications. Thus, the Frontier of ultrafast optics technology is multi-faceted:
Current research efforts span a wide spectrum, from generating pulses shorter than
two optical cycles, to powerful lasers racing beyond the 100 W limit, and toward
extreme control on the pulses with carrier-envelope phase-stabilization. Another
facet of the Frontier is the effort to make femtosecond lasers more befitting to
wide-spread use. It is this facet of the Frontier to which this thesis strives to
contribute.

To date, the dominant platform for femtosecond pulse generation has been the
bulk solid state laser technology. These systems, most notably Ti:sapphire lasers,
provide the highest peak powers and the shortest pulse, while their reliability
has increased considerably within the last decade. However, despite tremendous
commercially-motivated effort, these systems are still prohibitively complicated,
expensive and unreliable for many applications outside of the research laboratory.

Sources that are significantly more compact, more robust, and inexpensive can have



a major impact on the proliferation of ultrafast optics applications. Fiber lasers
are very promising in this regard since they can be constructed of inexpensive
components with highly-integrated and miniaturized cavities. Fiber lasers have
one major drawback: The effective coefficient of nonlinearity for a fiber laser is
10,000 times greater than that of a bulk solid state laser.

This thesis reports theoretical and experimental studies conducted for the
goal of developing practical, high-performance, passively mode-locked, fiber-based
sources of femtosecond pulses in the near-infrared region. We have striven to im-
prove the performance of fiber lasers to the level of bulk solid state laser technology
without trading-off their practical advantages.

Fiber lasers have major inherent advantages: Rare-earth doped fibers can pro-
vide up to 40 dB small signal gain, have high saturation energies due to long
gain relaxation times (in the ms range) which translates to a high tolerance for
linear loss, diode laser pumping wvia fiber which is reliable, efficient and free of
misalignment. Finally fiber itself is an excellent guiding medium that can be bent,
and stored compactly. Furthermore, the large surface area to volume ratio makes
fiber lasers virtually immune to thermal problems. Thus, fiber lasers already of-
fer superior practical features due to these properties. In addition, many of the
components are inexpensive since they are produced in large quantities for the
optical-fiber communications market. However, it has been a challenge to obtain
performance comparable to that of bulk solid-state lasers in terms of the pulse
energy and duration. Fiber lasers, prior to the studies reported in this thesis, did
not compare favorably to a standard laser based on the bulk solid state technol-
ogy: The pulse energy was ~ 5 times lower and pulse durations were ~ 2 longer

than that of a standard commercial Ti:sapphire laser, corresponding to an order



of magnitude lower peak power. As will be discussed in length in this thesis, all
major limitations of fiber lasers can be traced to the strongly-nonlinear nature of
the process of pulse generation.

In recognition of the fact that nonlinearity is the main limitation to improving
the performance of fiber lasers rather than technological limitations (loss, pump
power, etc.), this thesis study strives to achieve maximal understanding of the
dynamics of short pulse generation in fiber lasers and the use of such knowledge
for controlling and/or suppressing the various nonlinear phenomena that dominates
an energetic, femtosecond fiber laser. In this thesis, the term “fiber oscillator” is
used to denote a laser consisting of a cavity formed predominantly by optical fiber.
The term “fiber laser” serves a more general purpose, used to describe a fiber
oscillator seeding a fiber amplifier in a highly-integrated geometry, as well as a
stand-alone fiber oscillator.

Here, we describe three approaches to generating high-peak power pulses from
fiber lasers: the use of negative nonlinearities for controlling nonlinearity (non-
linearity management), the development of high-energy fiber oscillators through
self-similar pulse shaping, and the development of fiber lasers consisting of a
moderate-energy fiber oscillator seeding a powerful fiber amplifier. Studies have
been conducted at two commonly-used wavelengths of operation, 1.55 pm and
1.0 pm, using on Er-doped and Yb-doped fibers as the gain medium, respectively.
Nd-doped fibers, although promising, have been excluded from this study due to
unavailability of high-power single-mode diode lasers for pumping during the time
period of this study. The operational wavelength of the Er-doped fiber is inter-
esting because fibers with both anomalous and normal dispersion are available.

Furthermore, 1.55 um corresponds to the primary telecommunications window.



Therefore, the cost and the availability of optical components is highly-favorable
in comparison to 1.0 um. On the other hand, Yb-doped fibers have superior per-
formance and the fact that standard fiber has normal dispersion has advantages
from concerning the pulse dynamics. It is the Yb fiber lasers that this thesis is
primarily concerned with.

The evolution of femtosecond pulses in the presence of temporal dispersion and
nonlinear response of the medium, coupled with the feedback nature of a laser,
results in complicated dynamic behavior. Thus, numerous simulations based on re-
alistic models of the pulse generation were performed, assisted by simple analytical
models wherever possible. Thanks to the ease of constructing and experimenting
on fiber lasers, it was possible to construct and conclude experiments in a matter
of days in some instances. A short turn-around time for experiments made it pos-
sible to iterate between theory and experiment. On the other hand, the feedback
nature of the lasers and the short time scale over which changes occur makes it
difficult to perform controlled experiments and to characterize the experimental

system fully.

1.1 Organization of the Thesis

The rest of the thesis is organized as follows. Section 1.2 provides a brief intro-
duction to short-pulse propagation. Section 1.3 summarizes various theoretical
approaches to pulse formation in lasers and is intended to serve a guide to the
existing literature. Section 1.4 briefly summarizes the development fiber lasers
and describes their main limitations. Section 1.5 builds on the previous sections
to develop a categorization of different pulse shaping mechanisms applicable to

femtosecond oscillators.



Chapter 2 describes the concept of nonlinearity management, analogous to
dispersion management, for high-energy femtosecond fiber lasers. Application of
nonlinearity management to soliton and dispersion-managed fiber oscillators are
discussed.

Chapter 3 describes an alternative approach to the generation of high-energy
pulses by utilizing a fiber source consisting of a simple, moderate-energy fiber
oscillator seeding an all-fiber amplifier. This is an energy-scalable approach and
these scaling properties are discussed.

Chapter 4 describes a new mechanism of pulse shaping that is particularly
suited to the generation very high energy pulses. The system dynamics are set
such that the pulses undergo self-similar evolution as a result of which stable
solutions can be scaled up to much higher energies.

Chapter 5 presents the first results utilizing the concepts discussed in Chapter
4 to avoid breaking of the pulse due to nonlinearity. A fiber laser that exceeds
the peak power of the previous best fibers laser by ~ 5 is reported. This laser is
presently limited in energy due to overdriving the saturable absorber mechanism.

Chapter 6 describes the effect on the pulse dynamics of a non-monotonic sat-
urable absorber. A theoretical model which does not assume small changes per
roundtrip is constructed. Period-doubling route to multiple-pulsing is predicted
by this model when the SA mechanism is overdriven. Experimental observations
confirm this expectation. The implications of this behavior on the understanding
of pulse formation in fiber lasers are deep and are discussed in detail.

Finally, we conclude with an overview in Chapter 7. Also contained is a sum-
mary of future directions. Appendix A describes the computational aspects of the

numerical techniques used in this thesis. Appendix B describes the practice of



constructing high-energy, femtosecond fiber oscillators.

1.2 Propagation of Short Pulses in Optical Media

An equation of motion describing the propagation of short-pulses with a given
polarization in an optical medium in the absence of resonant interactions can
be derived starting from the wave equation obtainable from Maxwell’s equations.
Ref. [1] provides an easily-readable summary of the derivation as well as references
for the original development. Here, we provide a coarse outline.

In general, the polarizability of any medium is a function of intensity of the
electric field. This is the origin of the nonlinear response. The case of temporal
pulse can treated by considering a wave packet, in the form of a carrier frequency
(corresponding to the central frequency of the wave packet) under a pulse enve-
lope. The treatment is usually simplified by invoking the slowly-varying envelope
approximation (SVEA), namely that the envelope varies slowly in comparison to
the carrier modulation, which is a good approximations for pulses containing many
cycles at the carrier frequency. Transforming to the reference frame of the prop-
agating pulse and making appropriate normalizations, the following equation can

be obtained
oa 6 T 0w
( : ) +1 a

o€ EX

(&, 7) = irla(&, T)[*a(€, 1), (1.1)
where a(§,7) is the pulse envelope, F(&,7) = u(€, 7)exp(iw.T) in the reference
frame moving with the pulse. v = w.no/(cAcss) is the coefficient of Kerr nonlin-
earity, which is typically the dominant nonlinear polarization term. Kerr nonlin-
earity arises from x?, third order susceptibility. A.s; is the effective area of spatial
confinement, w, the carrier frequency, ¢ speed of light in vacuum. %ﬁ—w“’ describes the

dependence of index of refraction on frequency, and it can be expanded in powers



of w:
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Here, the first term of the expansion is a constant phase shift with no physical
consequence. The second term with frequency is the phase velocity and can be
absorbed into the definition of the carrier frequency. The third term is referred to
as group velocity dispersion (GVD). The fourth term in the expansion is referred
to as third order dispersion (TOD). Typically, it is sufficient to consider GVD only
but TOD will be seen to play an important role with short pulses within this thesis.

Therefore, keeping only GVD and Kerr nonlinearity, we obtain the (1+1)-

dimensional nonlinear Schrédinger equation (NLSE)

2
3a§§’7) +iaar2“(§m) = iyla(&, 7)[*a(€, 7). (1.3)

NLSE can be integrated using the inverse scattering method and admits soliton
solutions [2]. The details will not be discussed here, except within the context of
mode-locking theory and the reader is referred to the extensive literature (see, for
example Ref. [3, 4, 5]).

When the pulse intensity is very high and the pulse duration corresponds to a
few optical cycles, correction terms need to be added to NLSE for an accurate de-
scription. These effects include higher order dispersion, Raman-scattering (which
causes the pulse spectrum to self-shift to higher wavelengths), and self-steepening
(which is a first correction to the SVEA). For a discussion of these effects, see
Ref. [1] and references therein. For most of the discussions in this thesis, these

higher-order effects will not be significant.



1.3 Mode-locking of Lasers

Mode-locking refers to the phase-locking of the many axial modes of a laser cavity.
Passive mode-locking refers to the situation that the dynamics of pulse propagation
in the resonant cavity promote the formation of a short pulse from intra-cavity
noise without any external agent. This method results in the generation of shortest
pulses. All of the studies presented in this thesis utilize passive mode-locking. A
nice overview of active and passive mode-locking and its historical development,
written by one of its main contributors can be found in Ref. [6].

Passive mode-locking is the establishment of coherence, or phase-locking be-
tween the many, initially incoherent modes of the laser cavity. It is an inher-
ently nonlinear phenomena because the phase-locking between the modes is self-
promoted as a result of their nonlinear coupling. Thus, passive mode-locking is
another example of the broader phenomena of emergence of synchrony in complex
nonlinear systems.

Passive mode-locking is much easier to understand if there is a fast saturable
absorber. A saturable absorber (SA) imparts nonlinear loss which decreases with
increasing intensity. Therefore, in the presence of a saturable absorber, fluctuations
in the field distribution inside the cavity (i.e., intra-cavity noise) build up over
many roundtrips as the higher intensity results in lower loss. Since the intra-cavity
energy is approximately constant, the lowest-loss condition for the laser operation
is the formation of a single, short pulse that maximally saturates the absorber.
A theory of passive mode-locking with a fast SA has been developed by Haus [7].
This treatment is concerned with pulses that are long enough with intensities low
enough for Kerr nonlinearity and dispersive effects can be neglected.

In the case of ultrafast lasers, the shortening of the pulse continues unabated



until the pulse intensity becomes so large that Kerr nonlinearity becomes an impor-
tant factor and the pulse bandwidth increases to the point that dispersive effects
and gain bandwidth start to play a major role. The analytic theory of passive
mode-locking with soliton-like pulse shaping and a fast SA has been described in
Ref. [8], which is a generalization of Ref. [7].

The solution to the master equation of Ref. [8] is of the form of a hyperbolic

secant with a linear frequency chirp
u = ugsech*™P7™ (1 /7,) (1.4)

where [ characterizes the linear chirp and 7 is the pulse width. Recall that the so-
lution to the master equation of Ref. [7] which neglects dispersion and nonlinearity
is of the same sech(r) form. In either case, there is a relation the amplitude and
the width of the hyperbolic secant pulse has to satisfy. Introducing a linear chirp
permits the amplitude and phase modulations to be connected and the optical
effects acting on the envelope and the phase of the pulse become interconnected.
A necessary condition for stability of the solution is that there is no net gain for
small intensities (cw light). Otherwise, the wings of the pulse grow, destabilizing
the pulse.

In these treatments, one does not describe in the initiation of mode-locking.
It is true that the cw-solution is unstable and since the pulsed solution can be
an attractor, it follows that mode-locking can be self-initiated. This expectation
is verified with realistic, numerical models of mode-locking starting from a con-
tinuous initial field with noise. However, recently, a direct treatment based on a
statistical approach has shown that ordering of the modes in the presence of a
SA and a slowly-saturating gain medium is a first order phase transition [9]. The

same authors have later extended their analysis to include dispersion and Kerr



10

nonlinearity [10]. This way, the presence of a power threshold for mode-locking is
placed on a firm theoretical basis.

Various different approaches have been formulated for understanding pulse for-
mation in solid state and fiber lasers. The reader is referred to Ref. [6] for further
information. These approaches make the assumption of small changes from each
different effect. However, this assumption of small changes per roundtrip can be
drastically violated in fibers lasers where the pulse duration can vary by 50 times
and the pulse energy by 20 times in a fiber laser. Furthermore, the different effects,
such as Kerr nonlinearity, dispersion, linear and nonlinear gain are assumed to be
uniformly distributed over the laser cavity. Such an approach is inadequate for a
thorough understanding of pulse evolution in different fiber lasers considering that,
for example, the main difference between soliton and stretched-pulse lasers is the
non-uniform distribution of dispersion over the cavity. Extensions on these usual
assumptions have been made in the form of a perturbative analysis [11].

More realistic descriptions of mode-locking have been provided in the context
of the complex Ginzburg-Landau equation (CGLE) (see Ref. [12] for a review vari-
ous physical phenomena described by the CGLE, including nonlinear waves). One
intuitive way of understanding the difference in roles played by the NLSE and the
CGLE is to recall that NLSE is a non-dissipative, Hamiltonian equation. There-
fore, NLSE cannot have attractor solutions and is thus relevant to propagation of
pulses in the absence of loss and gain. Furthermore, Hamiltonian systems cannot
pulsating soliton solutions, and if initial conditions are such, solutions nevertheless
evolve to stationary solutions. On the other hand CGLE is a dissipative equation
which can have attractor solution and is able to describe the formation of pulse

solutions starting from arbitrary initial conditions for an appropriate choice of its
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parameters.

Several authors have used the CGLE to describe passive mode-locking. The
reader may find the introductory paragraphs of Ref. [13] to be a useful resource
for a summary of such efforts. Similarly, Ref. [14] contains a thorough review of
CGLE-based efforts. However, in all of these cases, the laser cavity is comprised
of a single, homogeneous optical medium.

The amplification process in the gain medium is modeled in various levels of
realism. In the simplest case frequency-dependence of the gain is ignored. This is
only valid if the pulse spectrum is much narrower than the gain bandwidth. A more
realistic approach is to assume a parabolic frequency dependence, which is valid
as long as the spectral width is several times smaller than the gain bandwidth.
Generalizations have been outlined [15] where the gain medium is treated as a
two-level atomic system, described by Maxwell-Bloch equations [16]. A complex
Lorentzian gain spectrum can be obtained within this formalism, if the homoge-
neous broadening assumption is made [15, 17]. This generalization is necessary for
a quantitative description of pulse generation and propagation in fiber lasers and
amplifiers for sub-100 fs pulses. The dynamic saturation of the gain medium can
typically be neglected due to extremely long upper state lifetimes of fiber amplifiers

(typically ~ 1 ms), and the saturated gain can be expressed as

90
JB) = —=20 1.5
g ( P) 1 Ep/Esat ( )

where E, is the pulse energy, gy is the small signal gain, and F,, = Eg% with E|
is the gain saturation energy, Ty is the temporal separation between successively
pulses, T is the upper state lifetime (for example, see [13]).

Due to the complexity of the underlying dynamics and the fact that fiber lasers

are typically comprised of several segments of fiber with different optical proper-
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ties, a detailed understanding of pulse generation typically requires a numerical
solutions. While this is a time-consuming process due to fact that a nonlinear
partial differential equation needs to be solved, it is possible to obtain quantitative

agreement with the experiments as will be shown in this thesis.

1.4 Limitations of Femtosecond Fiber Lasers

The generic fiber laser is the soliton laser, comprising of a gain fiber providing
both anomalous dispersion and nonlinearity, and a fast SA mechanism such as
nonlinear polarization evolution (NPE) or a nonlinear optical loop mirror (NOLM).
However, soliton fiber lasers [20] are limited in pulse energy to ~ 30 pJ and ~ 300
fs, ultimately due to an instability arising from the period perturbations on the
soliton as a result of gain and loss [21].

A major improvement on pulse energy was achieved with the introduction of the
stretched-pulse fiber laser [22]. In this laser, two fiber segments with anomalous and
normal dispersion form a dispersion map. In close analogy to dispersion manage-
ment [23] in optical communications, breathing solutions (dispersion-management
solitons) are obtained. As a result of the large variations in pulse duration, the
average pulse intensity is reduced by an order of magnitude. With such a reduc-
tion in the effective nonlinearity, pulse energies have been improved by more than
an order of magnitude over the soliton fiber lasers, and the highest pulse energies
prior to this thesis study was 2.7 nJ [24]. A stretched-pulse fiber laser routinely
produces 1-nJ, 100-fs pulses with very good stability, and some distortion in the
pulse shape.

Although higher energies were achieved, the fundamental limitation imposed

by excessive nonlinearity was not eliminated: This limitation manifests itself as
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a tendency to multiple pulsing as energy is increased. The stretching and com-
pression ratio cannot be increased indefinitely without undesirable effects on the
pulse dynamics. Stretched-pulse lasers remain with peak powers about an order
of magnitude below that of typical bulk solid state lasers.

From the point of view applications, the lack of higher pulse energies and peak
powers are the leading drawback of fiber lasers if they will indeed become an

alternative technology to bulk solid solid state lasers.

1.5 A Catalog of Pulse Shaping Schemes in Fiber Lasers

The rich interplay of dispersion and nonlinearity in short-pulse fiber lasers gives rise
to many different pulse shaping mechanisms, such as soliton-like pulses, dispersion
management, nonlinearity management, and self-similar pulse propagation. Sig-
nificant advances in the pulse properties, in particular in pulse energy have been
achieved by considering various pulse shaping mechanisms beyond the basic case
of soliton-like pulse shaping.

In this thesis, several of these mechanisms are proposed and studied for the
first time. It would be desirable to place the different mechanisms into a unifying
picture and catalog within a general structure. In addition, one may hope to
discover other useful, even better mechanisms. In this section, we attempt to
provide a complete list of all pulse shaping mechanisms with regards to dispersion
and nonlinearity for a two-segment laser cavity.

It should be emphasized that dispersion and nonlinearity typically dominate
pulse shaping in femtosecond fiber lasers, but they are not the only mechanisms
responsible for pulse stabilization. Hence, the enumeration presented here will

overlook mechanisms such as bandwidth-limited operation of highly-chirped pulses



14

under normal dispersion. However, the consideration of dispersion and nonlinearity
alone is necessary to keep the task manageable. The restriction to two different
segments is motivated by practical constraints on the complication of a laser cavity.

Here, the main goal is to identify the main features of a given pulse shaping
scheme, as determined by the combined effects of dispersion and nonlinearity. Once
promising schemes are identified, realistic corrections can be considered. A laser

cavity is represent by a two-by-two matrix,

D, D, (1.6)
NL, NL,

where D; and Dy are the GVD coefficients of the first and the second optical
segments (the first and the second columns, respectively) comprising the cavity.
Similarly, NL; and N L, are the effective nonlinearity coefficients of the two optical
segments. We allow the elements of the matrix to take on values of 1, -1, and 0
only, representing a large positive, a large negative, or a negligibly small value.
A negative nonlinearity coefficient corresponds to self-defocussing nonlinearity as

described in Chapter 2. For example, a generic soliton laser would be represented

by

(1.7)

In this case the two columns are identical since the cavity is formed mainly by one
segment with anomalous GVD and positive nonlinearity. A stretched-pulse laser

(supporting dispersion-managed solitons) would be represented by

1 -1
(1.8)
1 1

Even though the net cavity dispersion can be normal, we set the GVD coefficients
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Figure 1.1: A complete list of two-segment soliton-like pulse shaping schemes.

to 1 and -1; equal magnitudes need to be interpreted as an equality within an order
of magnitude.

A complete list of two-segment pulse shaping schemes can then be constructed
under these assumptions (Fig. 1.1). Although there are as many as 81 different
combinations, many of them are physically equivalent through a reordering of the
columns or an overall multiplication by -1. The identifiable schemes are labeled.
Schemes which don’t result in pulsed operation as a result of a balance of dispersion
and nonlinearity are labeled as trivial. Schemes that remain unexplored are left
without a label.

Within this list, the familiar schemes are solitons (labeled as soliton), dispersion-
managed solitons (labeled as DM-S), self-similar pulse evolution (labeled as sim-
ilariton, discussed in Chapter 4), nonlinearity-managed solitons (labeled as NLM
soliton, discussed in Chapter 2), split-step solitons [25] (labeled as split soliton).
The combination of nonlinearity management and self-similar pulse formation is
worthy of mention (labeled as NLM similariton). Self-similarity and nonlinearity
management are two concepts that promise large improvements in the maximum

pulse energy obtainable from a fiber laser. The combination of these two ap-
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proaches can be synergical, however this possibility has not been explored in detail

during this thesis study.
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Chapter 2
Nonlinearity Management: A Route to

High-Energy Soliton Fiber Lasers!
This chapter describes a proposal to use negative (self-defocusing) nonlinearities to
control nonlinear phase shifts in soliton fiber lasers toward the goal of high-energy
pulse generation. By analogy to dispersion management, this scheme is referred
to as nonlinearity management. We first describe a map which can be regarded as
a combination of nonlinearity management and dispersion management. The map
is designed to support solitons in two segments of alternating sign of nonlinearity
and dispersion. Analytical and numerical calculations demonstrate that this map
can be essentially free of spectral sideband generation. By suppressing the spectral
sidebands, pulse energies 100 times greater than those of existing soliton fiber lasers
should be possible.

We also discuss the less ideal case of direct reduction of average nonlinearity by
use of self-defocusing nonlinearity segments, without optimizing dispersion. The
second scheme has the advantage of easier implementation. Practical implemen-

tations with existing materials are discussed.

2.1 Introduction

Fiber lasers have emerged as attractive alternatives to solid state lasers for gen-
eration of femtosecond pulses at near-infrared wavelengths. Fiber lasers possess

considerable advantages over solid state lasers, most notably the simplicity of op-

"Most of the results presented in this chapter have been published in Ref. [1]
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Figure 2.1: Schematic of a generic soliton laser consisting of segments with self-

focusing nonlinearity, anomalous dispersion and amplitude modulation (AM).

eration. The high stability compared to solid state lasers, combined with their
compact size, offers the possibility of wide-spread application. The drawbacks of
fiber lasers are insufficient environmental stability for use outside the research lab-
oratory, and lack of high-pulse energies directly from an oscillator. The obstacles
to generation of higher-energy and shorter pulses can be traced back to accumula-
tion of excessive nonlinear phase shift. Previous approaches to this problem have
been based on an indirect reduction of effective nonlinearity. We consider direct
management of nonlinearity in fiber lasers, which can be realistically considered
with the demonstration that nonlinear phase shifts of either sign can be generated
with femtosecond pulses [2, 3]. Similar approaches in telecommunications have
been theoretically considered previously [4, 5].

A schematic drawing of a soliton laser is depicted in Fig. 2.1. Amplitude mod-
ulation (AM) produced by a real or artificial saturable absorber (SA) is necessary
for the initial formation of a soliton-like pulse, and to stabilize the pulse against
perturbations. We refer to an “artificial” SA if there is no real absorption; non-

linear transmittance is obtained through a nonlinear phase shift. An example of
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an artificial SA is nonlinear polarization evolution (NPE) [6]. Gain fiber with self-
focusing nonlinearity and anomalous dispersion can support solitons. Several gain
materials are available for use at near-infrared frequencies. The most common
dopants are Er, Yb and Nd. Among these, only Er-doped fiber benefits from the
availability of anomalous dispersion in ordinary fiber.

The best reported results with Er fiber soliton lasers are several-hundred fem-
tosecond pulses with energies of tens of picojoules. The most important obstacle
to generation of shorter and/or higher energy pulses is the perturbation that arises
from variations of pulse energy over the cavity period due to loss (including output
coupling) and gain. This perturbation manifests itself in the formation of discrete
sidebands in the spectrum and is known as spectral sideband generation (SSG).
A first-order treatment shows that the offset of the frequencies of the sidebands
from the center of the spectrum are given by Aw, ~ £1 /TPW, where n
is the order of the sideband [7, 8]. Here z is the cavity length, z, = 7/2 (72/8") is
the soliton period, 8" is the group velocity dispersion (GVD), and 7, is the pulse
width. It is experimentally found that z./z; must be limited to < 3 to avoid in-
stability [9]. Thus, SSG places a lower limit to pulse width. In the soliton regime,
E,7, = 2 (8"/7) (E, is the pulse energy, and 7 is the Kerr nonlinearity), so this
limitation becomes an upper boundary to pulse energy for given fiber nonlinearity.

In order to achieve higher pulse energies or shorter pulses, two possibilities
emerge: the use of a shorter cavity or the reduction of the Kerr nonlinearity. There
are limitations to a shorter cavity, one of which is imposed by the minimum length
of fiber necessary for adequate gain. Additionally, a laser with a shorter cavity is
more likely to be plagued by Q-switching. Reduction of nonlinearity is therefore,

the preferable alternative for most situations. For femtosecond-pulse fiber lasers,
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Figure 2.2: Typical autocorrelation of the stretched-pulse laser in our laboratory.

Inset: The corresponding spectrum.
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this has been addressed most effectively by the stretched-pulse laser [10]. The
stretched-pulse laser essentially implements dispersion management (DM), which
has been very successful in optical communications [11]. As a result, SSG is sup-
pressed [12]. Pulse stretching has resulted in the generation of 100-fs pulses of
~ 2.7 nJ energy [13]. In this approach, the effects of nonlinearity are reduced
indirectly, through the effects of dispersion.

There are limitations to the stretched-pulse approach. Highly-chirped, picosec-
ond pulses are switched out of the laser and these are compressed externally, in
a dispersive delay line. The need for an external compression stage is an incon-
venience for applications. Although effective nonlinearity is reduced and higher
energies are achieved, it is clear that the fundamental limitation imposed by exces-
sive nonlinearity is not eliminated: This limitation manifests itself as a tendency
to multiple pulsing as energy is increased. The stretching and compression ratio
cannot be increased indefinitely without undesirable effects on the pulse dynamics.
Increasing the dispersion contrast by using higher dispersion fiber in both sections
of the dispersion map is limited by available fiber parameters, and it is clear that
increasing the total positive dispersion will result in larger deviations from a lin-
ear chirp. Increased nonlinearity of the chirp limits compression and distorts the
pulse shape. A typical interferometric autocorrelation and spectrum produced by
a stretched-pulse laser in our laboratory is shown in Fig. 2.2, and similar results
have been reported previously [14]. The structures in the spectrum and time pro-
file can be undesirable for many ultrafast applications, as well as amplification.
Furthermore, DM is only possible for Er-doped fiber around ~ 1.55 ym. Fiber
lasers are needed at shorter wavelengths, where only normal dispersion is avail-

able. Novel microstructured fiber may provide anomalous dispersion. However,
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due to small effective areas, these fibers have increased nonlinear effects, which
would be a limitation to high-energy pulse generation.

In this report, we propose direct management, of nonlinearity by use of negative
(self-defocusing) nonlinear phase shifts. In Sect. 2, we describe the concept for
a fiber laser that is essentially free of spectral sidebands. This is achieved by
utilizing dispersion and nonlinearities of both signs. In Sect. 3, we consider the
use of negative nonlinearities without optimizing dispersion. This is a less ideal
scheme, but one that will be easier to implement. In Sect. 4, we discuss practical
implementation of nonlinearity management in fiber lasers. Section 5 summarizes

our main conclusions.

2.2 Nonlinearity- and Dispersion-Managed Solitons

The use of negative nonlinearities is a degree of freedom that has not been previ-
ously explored in short-pulse fiber laser design. Let us consider a general dispersion
and nonlinearity map described by the nonlinear Schrodinger equation (NLSE)

written in normalized units:

du 1 d2u . 2
i ZED(Z)— =i['(2)|ul*u (2.1)

where D(z) and I'(z) can take the values —1 to +1 across the map. Although
one can consider arbitrary variations, in practice, it is realistic only to consider
piece-wise constant maps composed of a small number of segments. In particular,

we will consider the following simple map:

+1 for 0 <z < &z
D(z) =T(z) =

—1 foréz. < z < z.
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Figure 2.3: Block diagram of the proposed laser consisting of fiber, compensator
and SA. We envision a ring cavity for the increased ease of self-starting. The

sequence of the components in the diagram are the same as in the simulations.

where £ : 0 < £ < 1 and determines the relative strength of the two segments. The
conceptual model of a laser based on this map is illustrated in Fig. 2.3. Both seg-
ments support formation of a soliton with identical parameters. However, the signs
of the dispersion and nonlinearity operators are reversed. Hence, it is expected that

the solution for the fundamental soliton becomes:
u = sech(t) exp(id(z)/2) (2.2)

where §(z) = D(z) = I'(z). For the special case of & = 1/2, the effects of each
segment are exactly compensated by the following segment. Indeed, any input
field is an eigensolution. We call this scheme “full compensation”.

In a real system the implementation cannot be ideal and there will be departures
from a full compensation. An equally attractive approach is to implement the map
such that & # 1/2, which we denote as “partial compensation”. In this case, the
map has a reduced effective length, defined as z..s; = |26 — 1|2.. The phase shift

accumulated by the soliton will be proportional to the difference of normalized
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lengths of the two segments, as opposed to the total length. This has important
consequences for SSG: The sidebands are expected to move toward larger frequency
offsets from the center of the spectrum. Adapting a simple model of SSG similar
to that of Ref.[7], we introduce lumped loss (e.g. output coupling) at the end of

the map, balanced by linear gain throughout the map:

2
Z—Z - Z%D(z)% = il'(2)[ul’u + g u, (2.3)
where D(z) and I'(z) are defined as before. The lumped loss at the end of the
second segment is described by u — u exp(—gz.). With the transformation u —
A(z) u it can be shown that the energy variation due to loss and gain is equivalent
to a variation in the effective nonlinearity experienced by the soliton, with A(z)
characterizing this variation. With simple algebraic manipulation, Eqn. 2.3 takes

the form:

m(z)— — i—i = i A%(2)|ul?u, (2.4)

where m(z) = —1/D(z) = —1/I'(z). Using the scaling properties of NLSE, the

non-perturbed solution can be expressed as
u =1 sech(n(t — wz)) explid(z)(wt — kz)], (2.5)

where k = (w? — 7?)/2. We look for a solution of this form for Eqn. 2.5, and
replace A%(z) with its Fourier series expansion. A first-order expansion for small
perturbations shows that resonances occur for [j kd(z)dz = 2mn. The integral
equals the difference between the total phase accumulated by the perturbed soliton
and the dispersive waves, and is proportional to the effective map length, z..y.
Hence, the frequencies at which the sidebands are formed become a function of a

(smaller) effective map length, not the total map length. The sideband frequency
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offsets are given by

Awy ~ £1/7, /812 /(226 — 1)) - 1. (2.6)

The sidebands can be pushed out to large offsets, where there is little energy, by
choosing & close to 1/2. Thus, SSG is effectively suppressed. This is the main
result of this section.

We used numerical simulations to evaluate this concept in detail. Since we
envision the application of these ideas to femtosecond fiber lasers, the simulations
were done assuming a fiber laser based on the proposed map. We consider a ring
laser design for increased ease of self-starting. The first segment consists of gain
fiber with finite gain bandwidth. The compensating segment has normal dispersion
and self-defocusing nonlinearity, and it is labeled the “compensator.” In order to
illustrate the concept, normalized units were used in the simulations. Implemen-
tation with realistic parameters is discussed later in the text. The length of the
compensator ((1 — £)z.) was increased, starting from zero, while shortening the
fiber such that the total cavity length was kept constant at z. = 10. For every
simulation, a control simulation was run corresponding to a laser consisting only
of gain fiber with physical length equal to z..ss. The dispersion and nonlinearity
of the fiber and the compensator are chosen such that the characteristic disper-
sion and nonlinear lengths Lp = 72/8" =1 and Ly = 1/(yP,) = 1 (P, is the
peak power). Gain is modeled as distributed over the length of the fiber and sat-
urating with total intra-cavity energy (F) with a Gaussian frequency dependence:
9(E,w) =gy (1 — E/FEyu) exp(—(w — wy)?/Q2,). Here E,,; is the gain saturation
energy, wp is the carrier frequency and €, is the gain bandwidth. Small signal
gain is approximately 30 dB and E,,; is set to the energy of a fundamental soliton

in normalized units. If the normalized pulse duration is assumed to be 100-fs in
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physical units, the gain bandwidth corresponds to ~ 50 nm. SA and output cou-
pling (linear loss, in general) are modeled as a transmission function of the form
u—ul(l—a—pB)+asin?(ml/I)].- Here I denotes the instantaneous intensity,
and I, is the saturation intensity, which is set to the peak intensity of the soliton
unless stated otherwise. S = 10% is the output coupling, and o = 10% is the
modulation depth. Thus, the round-trip loss of the laser for cw light is 20%. We
note that the exact value of linear loss is not crucial if the gain is strong enough,
since the nonlinearity of the subsequent segment can be set to offset a decrease in
energy.

We begin by considering partial compensation for varying z..sr. All the sim-
ulated cases resulted in self-starting stable solitary pulses (the build-up of the
pulse from noise for z..;y = 1 is illustrated in Fig. 2.4). The departure of the
sidebands from the center of the spectrum with increasing compensation ratio is
illustrated in Fig. 2.5(a), and offset of the first sidebands is plotted in compari-
son to control simulations in Fig. 2.5(b). For the highest compensation that was
simulated (z.er; = 0.1), the pulse energy is increased by a factor of 100 in the
proposed scheme, while the offset of the first sideband is equivalent to that in the
uncompensated soliton laser.

For full compensation (corresponding to vanishing z..ff), the enhancement in
energy is smaller than for z..;; = 0.1. Spectral sidebands are eliminated at an
order of magnitude higher energies compared to the ordinary soliton laser. The
proposed laser produces pulses with a time profile virtually indistinguishable from
that of the soliton laser with 10 times higher pulse energy (Fig. 2.6). The energy
can be increased to larger values. However, deviations from ideal compensation

due to non-instantaneous recovery of the loss begin to distort the pulse. On the
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Figure 2.4: The build-up of a solitary pulse from intra-cavity noise is plotted for

the proposed laser with 2z, .rf = 1.
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Figure 2.5: Upper panel: Spectra (as offset from the carrier frequency) for ef-
fective map lengths of (top to bottom): z..;r = 10, 8, 6, 4, 2, 1, 0.5, 0.1. Lower
panel: Frequency offset of the first sidebands for the proposed laser and the control

simulation are plotted.
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Figure 2.6: Results of simulations for full compensation (£ = 1/2): SSG is elimi-
nated and similar pulse duration is achieved at 10 times higher energy than in the

soliton laser. The traces are displaced horizontally for clarity.

other hand, full compensation has a remarkable feature. It constitutes a mode-
locking mechanism that is not dominated by soliton effects, but by the SA: The
peak intensity of the pulse is determined by the saturation intensity of the SA. The
reduced influence of solitary effects explains the result mentioned above, namely,
that full compensation does not scale to as high energies as partial compensation.
If the saturation intensity of the SA is set to a value that does not correspond to the
fundamental soliton (intra-cavity energy is constant), breathing pulses result. If the
gain bandwidth is much larger than the pulse bandwidth, the peak intensity of the
pulse increases linearly with the saturation intensity of the SA. This linear increase
saturates as the pulse bandwidth becomes comparable to the gain bandwidth.

The consequences of an ideal compensation of the effects of the fiber are ob-
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vious from an elementary consideration of the NLSE . On the other hand, the
benefits that we expect from this approach pertain to reduction of the effects of
perturbations. In the presence of perturbations, the compensation is inherently
not ideal. Thus, it was not clear a priori that these expectations would prevail
in a real fiber laser. We see from numerical simulations that self-starting solitary
pulse formation at high energies is possible. To summarize the substantial benefits
of this approach:

(1) The idealized system with full compensation is essentially independent of
pulse shape and energy. As a consequence of this, SSG is not present even for
higher power fiber lasers, and SA dominates pulse dynamics.

(2) For a more realistic implementation, we consider partial compensation.

Compensation such that z..¢; < 1 practically eliminates SSG.

2.3 Nonlinearity Management Without Dispersion Opti-

mization

The use of nonlinearity and dispersion of either sign to create a fiber-compensator
pair is very promising. However, the desired parameters, particularly sufficient
dispersion of correct sign for the negative-nonlinearity segment, may not be pos-
sible or practical to achieve for many applications. In this section, we briefly
consider alternative approaches that are less ideal but that can provide significant
advantages.

It will be difficult to compensate the GVD of more than several meters of fiber.
It is, however, possible to produce large negative nonlinear phase shifts. This

leads us to consider nonlinearity management without fine control of dispersion.



33

Er—doped fiber
n<o0 n<o AM
anomalous dispersion

Figure 2.7: Schematic of a fiber laser with reduced average nonlinearity.

Reduction of average nonlinearity should permit formation of higher-energy pulses.

Numerical simulations were performed to investigate this expectation. A soliton
fiber laser was chosen over a stretched-pulse laser since it is better understood
quantitatively. The simulated laser is depicted schematically in Fig. 2.7. The
model used in the simulations is the same as described in the previous section.
However, the compensating segment provides only negative nonlinear phase shifts
and it has negligible dispersion. A simulation without the compensating segment
serves as the baseline. Relative to this, gain saturation energy was increased to two,
three, and four times that of a fundamental soliton, respectively. The magnitude
of the compensating nonlinearity was increased accordingly, such that the increase
in pulse energy was balanced by the decrease in the average nonlinearity. The
intensity profiles of the resulting pulses are shown in Fig. 2.8. Increasing the
energy by a factor of two is managed well by decreasing the average nonlinearity.
However, for a three-fold increase, the resulting pulse sheds radiation visible as
small intensity fluctuations away from the pulse. When the energy is increased
to four times the original value, the pulse breaks into two, resulting in irregular
double-pulsing.

The order in which nonlinearity and dispersion act on the pulse matters. From
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a physical point of view, this limitation means that the pulse in the first segment
should not be severely distorted before it reaches the compensating segment. From
the numerous simulations performed, we see that, as a rule of thumb, a total
nonlinear phase shift of ~ 7 is the maximum that can be compensated without
dispersion optimization. Further increases in energy can be achieved without pulse
break-up and multiple-pulse formation by introducing additional compensating
segments at equi-distant positions in the cavity. Unfortunately, the benefits of
such an approach will be proportional to the number of compensating segments.
The use of more than two compensating segments seems impractical. In summary,
the reduction of average nonlinearity by the addition of compensating materials is
promising for soliton and DM fiber lasers, but in practice, improvement appears
to be limited to a several-fold increase in pulse energy.

As another example, we briefly consider the use of negative nonlinearities for
the design of fiber lasers at A\ < 1.3 ym. An all-fiber, high-energy femtosecond
laser in the 1.0 — 1.3 um region is highly desirable for applications, such as medi-
cal imaging. However, at these wavelengths, ordinary fiber has normal dispersion.
Anomalous dispersion can be obtained with prism pairs or diffraction gratings,
but these offset the primary advantages of fiber lasers. Microstructured fibers offer
anomalous dispersion through the use of large waveguide dispersion to offset the
material dispersion, and may be useful for soliton pulse shaping. An alternative
approach is to form solitons with ny < 0 and positive GVD. This approach has
already been demonstrated experimentally for a bulk solid state laser [2]. Numer-
ical simulations using existing material properties show that generation of 100-fs
pulses with more than 100-pJ energy is feasible with this approach.

In conclusion, reduction of average nonlinearity offers limited but significant
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Figure 2.8: Results of numerical simulations of a soliton fiber laser showing the
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improvement over existing soliton and stretched-pulse lasers and is considerably
easier to implement than the fiber-compensator pair. We have considered the
addition of one segment with ny < 0 of negligible dispersion. It is likely that one
can achieve better results through optimization of the map by the use of more than

one type of fiber and careful consideration of the ordering of the segments.

2.4 Implementation of Nonlinearity Management

The experimental implementation of nonlinearity management relies on the pres-
ence of suitable materials with negative (self-defocusing) Kerr nonlinearity. Semi-
conductors have large self-defocusing refractive nonlinearity (~ 1000 times that of
fused silica) for hv > 0.7 Epgnagep- However, the negative nonlinearity is associated
with strong two-photon absorption (TPA), which is a nonlinear loss. Large TPA
becomes detrimental for short-pulse formation at rather low intensities since the
modulation depth of the SA is limited. Thus, these materials are unattractive for
high-energy fiber laser design. An alternative to semiconductors is the effective
negative nonlinearity produced by cascaded quadratic processes [15]. Liu et al.
have shown that A®NL ~ 7 can be impressed on femtosecond pulses with small
(< 1%) loss to second harmonic generation by use of the cascade processes at large
phase mismatch [2, 3].

Consider the construction of a fiber laser based on this concept, with Er-doped
fiber as the gain medium for ~ 1550 nm. Fiber with anomalous dispersion of
several ps®/km and small third-order dispersion is available. Several crystals can
be used as the quadratic medium. In particular, periodically poled lithium niobate
(PPLN) in waveguide geometry is promising [16]. Dispersion of PPLN for type-I

phase matching is ~ 100 ps?/km at 1550 nm. Thus, the dispersion of 1 m-long



37

gain fiber can be compensated with a PPLN waveguide a few cm in length. With a
70-mm-long waveguide, we estimate that the nonlinear phase accumulation of fiber
~ 10 m in length can be compensated at AkL large enough to avoid the detrimental
effects of GVM for 100-fs pulses. Thus, dispersion, rather than nonlinearity, will
be the limiting factor in the construction of a compensator. Similarly, for the
construction of a soliton-supporting Nd- or Yb-doped fiber laser at ~ 1 um, the
use of cascaded processes in a PPLN waveguide appears to be promising. According
to our calculations, it should be possible to balance the nonlinearity of gain fiber
~ 10 m in length at phase-mismatches necessary to support ~ 100-fs pulses. It is
clear that the implementation of the approaches considered here will require the
solution of challenging material problems. Nevertheless, we see that it is possible
to form a compensator via cascaded processes in existing and available materials.

A fast SA is necessary for femtosecond pulse formation. Nonlinear polarization
evolution (NPE) or the use of a nonlinear optical loop mirror requires the use of
fiber at least several meters long to accumulate the nonlinear phase needed for suf-
ficient modulation depth. This requirement imposes a challenging minimum length
of fiber to be compensated. Additionally, due to the interferometric nature of these
techniques, there is a maximum energy for a given pulse shape, beyond which loss
increases with increasing pulse energy. This is referred to as the saturation of NPE.
For this purpose, NPE produced by the use of cascaded quadratic nonlinearities
[17] should be advantageous, because it can be implemented in a several-cm-long
frequency-doubling crystal. Saturation of NPE can be avoided since the saturation
energy can be set to high values through the choice of phase-mismatch and crystal
parameters. NPE works equally well with negative or positive nonlinear phase

shifts. Therefore, it may be possible to accomplish AM in the compensator itself.
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In a real implementation, in addition to the perturbations on the pulse inherent
to the operation of a pulsed laser, precise matching of the fiber and the compensator
may be difficult. We tested the robustness of the proposed laser by intentionally
mismatching the parameters in the numerical simulations. Mismatches of 10%
in either parameter are easily tolerated even for a high degree of compensation
(corresponding to z..sr = 1) (Fig. 2.9). The resulting pulse shape does not change
appreciably, and the sideband frequency offset from the center of the spectrum
decreases by only a few percent. Finally, we would like to note that it is possible
to consider hybrid approaches for which the average dispersion of the fiber section
is decreased by the use of dispersion-compensating fiber, as in DM systems. A
potential advantage of such an approach is that obtaining sufficient dispersion in
the compensator is likely to be a greater limitation than nonlinearity. As long
as the combined effect of the two fibers is a good approximation to a single fiber
of uniform dispersion equal to their average dispersion, the degradation in the
laser operation will be small. In summary, despite the difficulties that need to
be confronted for a practical application of nonlinearity management, we see that

existing materials already offer some promise.

2.5 Conclusion

In conclusion, we propose the use of negative nonlinearity as a new degree of
freedom in the design of short-pulse fiber lasers. We describe a nonlinearity- and
dispersion-managed map and demonstrate that it is essentially free of spectral
sideband generation. This approach permits the pulse energy in a soliton fiber
laser to be increased by two orders of magnitude. Implementation by the use of

existing materials appears to be feasible, but challenging. As another application
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of nonlinearity management, we consider the less ideal, but easier-to-implement
approach of reducing average Kerr nonlinearity by the inclusion of a negative
nonlinearity segment into the cavity. This approach offers significant benefits but
is limited due to non-commutation of self-phase modulation and group velocity
dispersion. Work is in progress for experimental implementation. Although we
focus on applications to high-energy or shorter pulse formation from fiber lasers,
the concept is general and applies to passive propagation of short pulses in optical
fiber. Consequently, nonlinearity management is likely to be useful in soliton
communications, as a way to avoid spectral sidebands and excessive nonlinear

phase shifts.
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Chapter 3

High-Power, Femtosecond Pulses from a

Fiber-Based Source!

In this chapter, we describe the second approach that we pursue toward genera-
tioin of high-energy pulses: We report the amplification of femtosecond pulses at
1.03 um in standard Yb-doped single-mode fiber. Pulse energy of 8 nJ and average
power of 400 mW are obtained, limited by available pump power. These are the
highest pulse energy and average power obtained from an integrated, single-mode
fiber amplifier. After dechirping, 120 fs, 6 nJ pulses are obtained. A practical,
fiber-based source with performance comparable to that of a bulk solid state laser

is thus demonstrated, and scaling to substantially higher powers will be possible.

3.1 Introduction

There is rapidly growing, application-driven interest in ultrafast lasers. The devel-
opment of efficient, compact and highly-stable femtosecond lasers and amplifiers
promises to have a major impact on the use of ultrafast optics outside the laser
research laboratory. Fiber lasers offer a number of practical advantages over bulk
solid-state lasers, including compact size, better stability and freedom from mis-
alignment. However, maximum pulse energies are around 1 nJ, limited by the
inherent fiber nonlinearity. This is in contrast to 5 — 10 nJ pulse energies available
from bulk solid-state lasers and demanded by many applications. Thus, amplifica-

tion is necessary to generate pulses with energies that can equal and surpass those

"Most of the results presented in this chapter have been published in Ref. [1]
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of bulk solid state lasers.

There is great interest in practical short-pulse sources at wavelengths between
1.0 and 1.3 pm. In particular, biological applications such as optical coherence
tomographies, multi-photon microscopy and laser-assisted eye surgery benefit from
tissue transparency in this wavelength range. Aside from bulk solid-state lasers, a
source of 8-nJ, femtosecond pulses based on amplification in Yb-doped fiber has
been demonstrated [2]. The performance is good, but the setup is complicated:
Pulses are generated with a fiber oscillator at 1.5 ym, Raman-shifted to 2.1 pm,
converted to 1 um through second-harmonic generation, and finally amplified in
double-clad fiber pumped by a multimode diode laser. is an attractive gain medium
for high-energy, femtosecond pulse generation owing to its high efficiency and broad
emission spectrum at 1 ym. Furthermore, amplification in the presence of normal
dispersion avoids pulse breakup induced by soliton effects at high energies [3]. This
feature has been exploited in parabolic amplification, which permits accumulation
of large nonlinear phase shifts [4, 5]. Practical, all-fiber chirped-pulse amplifiers
at 1.5 pum have attracted much attention, but pulses shorter than 400 fs could
not be obtained, and the maximum pulse energy after dechirping was limited to
~ 3 nJ [6]. Currently, there is much excitement surrounding fiber amplifiers with
tens of watt average power or up to millijoule pulse energies[7]. These amplifiers
utilize multimode fibers and double-clad geometry for pumping with multimode
diodes. Double-clad pumping technique requires the use of longer fibers which
increases the strength of the nonlinear effects. Multimode fibers are typically used
to offset the nonlinear effects. These techniques represent a significant deviation
from the simplicity of standard single-mode fibers (SMF) and thus offset some of

the advantages of fiber. The fiber-equivalent of bulk solid state lasers using only
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readily-available components could have broad impact.

Two relevant, enabling advances have recently occurred: The first is the devel-
opment of high-energy Yb fiber lasers. The first reliable and compact femtosecond
YD fiber lasers were limited to ~ 60 pJ[8]. Ideally, an amplifier should be fiber-
coupled to the oscillator for simplicity and freedom from misalignment. To prevent
instabilities and to ensure high-quality seed pulses, only a small fraction (< 10%)
of the pulse energy can be diverted into the amplifier. Recently, we have demon-
strated a YD fiber laser[9] with pulse energy in excess of 1 nJ, which can be used
to reliably seed an amplifier using a small fraction of its pulse energy. The second
advance is the development of pump lasers: 980-nm diode lasers that deliver more
than 500 mW in single-mode fibers have become commercially available. The use
of single-mode diodes permits the construction of an all-fiber amplifier.

Here we explore the limitations to a femtosecond pulse source using standard
SMF only. A simple and compact source delivering 6-nJ and 120-fs pulses at
1.03 pm with a repetition rate of 50-MHz is demonstrated through the use of a
short gain fiber. These are the highest pulse energy and average power obtained
through amplification in standard SMF to our knowledge. Overall, we obtain
close to an order of magnitude increase in peak power, as well as a ~ 3-fold
increase in average power compared to previous all-fiber devices [6]. The setup
consists of a Yb fiber amplifier seeded by a fiber oscillator. The use of single-mode
fiber and pump diodes permits a high level of integration and excellent stability.
Except for wavelength tunability, this approach offers and will eventually surpass

the performance of a standard Ti:sapphire laser.
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Figure 3.1: Experimental setup of the amplified laser.

3.2 Experimental and theoretical results

The experimental setup is shown in Fig. 3.1. A stretched-pulsed Yb fiber oscilla-
tor seeds the amplifier with 100-fs pulses. Ideally, the seed pulses should be clean
and unstructured for highest-quality amplification. Therefore, the oscillator was
designed to operate at small, anomalous dispersion (—0.02 ps?). The pulses are
directed into the amplifier via a ~ 7% fiber coupler placed after the gain fiber in
the oscillator. The coupled energy is ~ 0.1 nJ. The pulses are then dispersively
stretched to ~ 15 ps in 20 m-long single-mode fiber (SMF) to minimize nonlinear
effects [10] and amplified in highly-doped Yb fiber (23,600 ppm doping, NA =
0.12, core diameter 6 pym). The Yb fiber consists of two ~ 20 cm-long segments
and is pumped by two 980-nm diode lasers providing 1 W total power through
wavelength-division multiplexed (WDM) couplers. The pulse energy after ampli-
fication is 8 nJ, corresponding to 400 mW average power. A single segment of Yb

fiber can be used if a 1 W diode laser is available or if the pump light from the



46

two diode lasers can be efficiently combined.

The experimental results are compared with numerical simulations. Propaga-
tion in each fiber segment is modeled using an extended nonlinear Schrodinger
equation that accounts for GVD, third order dispersion (TOD), Kerr nonlinearity
with Raman contribution, and gain in the Yb fiber. The gain saturates with total
energy and has a parabolic frequency dependence with a bandwidth of 40 nm.
These simulations indicate that consideration of Kerr nonlinearity, GVD and gain
saturation are sufficient for a qualitative understanding of the amplification pro-
cess. Raman scattering is found to be negligible. Quantitative agreement can be
obtained with the inclusion of gain bandwidth and an effective frequency-filter im-
posed by the WDM couplers. The results of simulations are summarized in Fig. 3.2.
Amplification is simulated for various pulse energies corresponding to stretching in
10 m and 20 m of SMF. Peak power is maximized with optimal dechirping (linear
losses are ignored). As the pulse energy increases, broader spectra are obtained,
which produce pulses with smaller full-width at half maximum duration. This is
balanced by distortion of the pulse shape; a larger fraction of the energy resides in
the wings of the pulse. As a result, an approximately linear dependence of peak
power on pulse energy is obtained. The need for a minimum length of SMF to
avoid distortion is evident; a square-like spectrum develops at 8 nJ with 10 m
of SMF, whereas clean pulses are obtained with 20 m of SMF. The experimental
spectra for 8-nJ pulse energy agrees well with the results of simulations (Fig. 3.2).
The simulations also demonstrate that at least an order of magnitude higher pulse
energies can be accomodated by stretching the seed pulses in a longer segment of
SMF. The pulse shape is not degraded despite larger uncompensated TOD (mostly

from the grating compressor), gain narrowing, and Raman scattering.
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spectra with experimental results for 8-nJ pulse energy.
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Figure 3.3: (a) Experimental (solid line) and calculated (dashed line) spectra of
the amplified pulses. Inset: Spectrum of the pulses from the oscillator. (b) Inter-

ferometric autocorrelation of the dechirped pulses.

The spectra of the seed and the amplified pulses are presented in Fig. 3.3(a),
along with the results of numerical simulations. The amplified pulses are subse-
quently dechirped in a grating compressor. After dechirping, the pulse energy is
reduced to ~ 6 nJ owing to loss at the gratings. Interferometric autocorrelation
of the dechirped pulses is shown in Fig. 3.3(b). The calculated pulse duration is
125 fs, assuming a sech? pulse shape. The intensity and phase profiles were inferred
by the use of a pulse retrieval algorithm based on fitting the measured interfero-
metric autocorrelation and spectrum[11]. The corresponding pulse width is 115 fs
which is close to that of the constant-phase transform of the pulse spectrum. The
benefits of normal dispersion are evident; in the presence of anomalous dispersion,
the stretched pulses (~ 0.6 kW peak power) would be significantly reshaped as
a nonlinear phase shift in excess of 7 is accumulated towards the end of the gain
fiber and in the 1-m-long SMF of the WDM coupler.

Since the amplifier is completely integrated, the overall stability is identical

to that of the oscillator. The grating compressor is decoupled from the nonlin-
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ear dynamics and does not degrade the stability. Uninterrupted operation can be
maintained for at least several weeks. The setup is inexpensive in comparison to a
bulk solid-state laser, more stable, and easy to duplicate since only standard com-
ponents are used. Performance comparable to that reported in Ref.[1] is obtained
in a much simpler device. The current setup occupies < 0.05 m? volume and could

be made smaller.

3.3 Conclusion

In conclusion, we have demonstrated amplification of femtosecond pulses from
a Yb fiber laser up to 8 nJ (400 mW average power) in single-mode Yb fiber
diode-pumped through fiber couplers. Following dechirping, 120-fs, 6 nJ pulses are
delivered. We obtain performance similar to that of a bulk solid-state laser by use
of a scheme that employs single-mode fiber and diodes only. Equally significantly,
this approach can be scaled to higher energies as more powerful pump diodes
become available. Energies of 20 nJ at 50 MHz repetition rate can reasonably
be expected in the next few years. An all-fiber Yb laser would allow a further
level of integration. Recently, 100 fs and 1 nJ pulses have been obtained from
a Yb fiber laser that employs a photonic crystal fiber for dispersion control[12].
With this approach, an all-fiber laser can ultimately be constructed of polarization-

maintaining fiber and serve as the basis of environmentally stable pulse generation.
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Chapter 4
Self-similarly Evolving Parabolic Pulses

in a Fiber Laser

In this chapter, we describe the third approach described in this thesis toward
the generation of high-energy pulses. The possibility of a fiber laser supporting
ultrashort, parabolic pulses propagating self-similarly is demonstrated theoretically
and experimentally. Observation of the self-similar pulses in the laser for over 10
cavity periods implies exact stability. In addition to constituting another example
of self-similarity arising in nonlinear optics, these results are distinguished from
previous reports with the degree of stability. This regime of operation constitutes
a new type of pulse shaping applicable to short-pulse lasers which in principle
allows scaling to unprecedented pulse energies, removing a fundamental barrier

arising from soliton properties.

4.1 Introduction

Self-similarity is a recurring theme in the description of many mathematical and
natural phenomena. The emergence of self-similarity in complicated, nonlinear
phenomena can be particularly informative about the internal dynamics: Self-
similarity arises after the the fine details of initial and/or boundary conditions
have faded away, but the system is still far from ultimate state [1]. Furthermore,
the presence of self-similarity implies an inherent spatial and/or temporal order
which can be exploited in the mathematical treatment of the governing equations

to apply reduction of symmetry techniques, effectively reducing the dimensionality

o1
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of the system [2]. Self-similar phenomena have been previously reported in nonlin-
ear optics, albeit in a limited number of instances. One example is the theoretical
demonstration of self-similar propagation of short pulses with a parabolic intensity
profile in optical fibers with normal dispersion and in the presence of a strong non-
linearity [3]. Recently, parabolic pulses have been shown to propagate self-similarly
in an optical fiber amplifier with constant gain and normal dispersion theoretically
with the technique of symmetry reduction, and experimentally [4]. Later, these
results have been generalized to an arbitrary dependency of gain on the propaga-
tion distance [5]. Previous experimental observations of self-similar phenomena in
nonlinear optics were naturally limited to a small number of characteristic lengths
due to practical limitations such as the total fiber amplifier length and achievable
total gain. More importantly, we are not aware of any experimental observation
of self-similarity in ultrafast optics where the system entailed strong feedback.

In this letter, we demonstrate the first laser to our knowledge to support a
pulse that propagate self-similarly in optical fiber which comprises most of the
cavity. The pulse assumes a parabolic intensity profile with a linear chirp, and is
stable indefinitely. These results constitute experimental observation of self-similar
pulse evolution in a system with strong feedback and large fluctuations from other
effects that contribute to pulse-shaping. This regime of operation constitutes a
new type of pulse shaping, distinct from the well-known soliton [7] and dispersion-
managed soliton [8] regimes. From a laser engineering point of view, establishing
the possibility of self-similar pulse shaping is exciting since such a laser can, in
principle, can be scaled to support unprecedented pulse energies. There is much
interest in obtaining high-energy, femtosecond pulses from fiber lasers since fiber

lasers have excellent practical features and can potentially become a standard tool



93

in nonlinear optics.

The operation of lasers producing ultra-short (femtosecond duration) pulses
is dominated by an interplay between dispersion and nonlinearity, in the form of
soliton dynamics [9]. These pulses are not exact solitons, because the laser cavity
constitutes a dissipative system. Hence, their basic features can be understood
within the formalism of a complex Ginzburg-Landau equation [6]. Soliton-like
dynamics are particularly strong in fiber lasers with cavity lengths corresponding
to several soliton periods. The laser cavity comprises of an amplifier fiber with
anomalous dispersion and a mechanism for obtaining saturable absorber. The
latter is responsible for initiation of pulsed operation from intra-cavity noise, and
subsequent stabilization of the pulse. In the steady state, a short pulse propagates
in the cavity indefinitely, undergoing small changes in shape, size, and duration,
maintaining a balance between dispersion and nonlinearity. Soliton fiber lasers are
limited to low pulse energies (100 pJ or less) [7]. At higher energies, the nonlinear
effects become excessive, causing wave-breaking [10], which leads to a transition
to multiple-pulsing (more than one pulse circulates in the cavity). The pulse can
tolerate only a small amount of net nonlinear phase shift (®¥X << 7) within one
roundtrip before instabilities occur.

Fiber lasers comprising of segments of anomalous (soliton-supporting) and nor-
mal (non-soliton-supporting) dispersion have been developed [11], implementing
the concept of dispersion management(DM) [12] from optical telecommunications,
and supporting the analog of DM solitons. This pulse shaping method has led to

the generation of shorter pulses with an order of magnitude higher energy [13].
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4.2 Theoretical Results

The propagation of both solitons and DM solitons in non-dissipative environment
can be stable for arbitrary lengths. Solitons propagate unchanged, and DM solitons
undergo breathing a periodicity matching that of the dispersion map. Therefore,
their periodicity is a necessary (not a sufficient) condition for existence within a
laser cavity.

In contrast to soliton and DM solitons, parabolic pulses that propagate self-
similarly are asymptotic solutions to the governing equation. As such, the evolu-
tion of their properties (e.g., the pulse duration) is monotonic. Such a non-static
solution cannot satisfy periodic boundary conditions. Additional mechanism is
required to completely undo the changes that occur within a cavity period. An-
other issue must be addressed before self-similarly evolving parabolic pulses can be
supported in a laser: The pulses in a laser will, in general, evolve to fill available
gain bandwidth. However, self-similar propagation of intense pulses are disrupted
if the spectrum of the pulse is clamped by bandwidth limiting effects [14].

Numerical simulations exhibit stable pulse formation over a wide range of pa-
rameters. The results of these simulations are compared to a laser supporting DM
solitons. The simulations demonstrate that the cavity designed to implement self-
similar propagation does not improve the maximum pulse energy in comparison
to the stretched-pulse laser when the intra-cavity GVD is anomalous (fue; S 0).
However, for increasing Bne; > 0 (normal dispersion) the maximum pulse energy di-
verges dramatically for the two cases (see Fig. 4.1). Qualitatively, if the anomalous-
GVD section of the laser has negligible Kerr nonlinearity, the pulse evolves to a
parabolic shape that maintains a monotonic chirp even in the presence of strong

nonlinearity. The inset of Fig. 4.1 illustrates that the stretching ratio for the laser
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with self-similar pulse evolution decreases exponentially at fixed pulse energy as
the intra-cavity GVD is increased. Thus, the energy-scaling can be thought of as
tolerating (an exponential) increase in pulse energy that maintains a fixed stretch-
ing ratio with increasing GVD. The pulse evolution along the cavity is illustrated
in a contour plot (Fig. 4.2).

Consider the following conceptual model for a fiber laser that tackles both of
these issues: A long stretch of single-mode fiber (SMF) with normal dispersion
forms the bulk of the cavity. Amplification is provided by a Yb-doped fiber set
to the shortest length possible to provide adequate gain. The pulse experiences
negligible dispersion and nonlinearity during amplification, effectively decoupling
bandwidth filtering from the self-similar evolution that takes place in the SMF. The
gain fiber is followed by a SA mechanism that initiates mode-locking and stabilizes
the pulse against small perturbations. The final element is a group delay module
that provides anomalous dispersion with negligible nonlinearity. Here, self-similar
evolution is confined to the SMF which is the dominant source of nonlinearity.
Finally, the gratings compensate for most of the chirp accumulated during self-
similar propagation in the SMF. Since the parabolic pulses evolve self-similarly
and maintain a (positive) linear chirp, removing the excess bandwidth by filtering
in the gain medium and the excess chirp with the anomalous dispersion from the
gratings, it is plausible that all changes can be undone at the end of one roundtrip.

Although the scheme described above is suggestive, it is not clear a priori that
it should work. Lasers are feedback systems, requiring an exact fit of any conceived
solution to the constraints imposed by the cavity (periodic boundary conditions).
Furthermore, the solution should be a global attractor, for it to be accessible since

mode-locked operation should ideally self-initiates from intra-cavity noise.
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To address these question, we have constructed a numerical model of the laser,
assuming parameters corresponding to the experimental setup which will be dis-
cussed below. The cavity is comprised of three main sections. A long segment of
SMF (~ 4 m-long), connected to a gain fiber (~ 20 cm-long), and a grating-pair
to provide anomalous group velocity dispersion (GVD). Propagation within each

section is modeled with an extended nonlinear Schrodinger equation

DA(E, ;.
% +ifas 5 A6, T) =

7| A, ) PAE ) + 9(Epuise) A, 7), (4.1)

where £ is propagation coordinate, and 7 is time scaled to the pulse width, B, =
23fs?/mm is the GVD, and v = 0.0047(Wm)~! is the effective coefficient of
cubic nonlinearity for the fiber section. ~ is set to zero for the section providing
anomalous GVD, the magnitude of which is adjusted to achieve a desired total
dispersion of the cavity. The pulse energy is given by Ep,yse = _T%é 32 |A(&,7)|%dT
and Tk ~ 30 ns is the cavity roundtrip time, determined by the choice of the fiber
lengths. g(Epuse) is the net gain which is non-zero only for the amplifier fiber.

The gain saturates with total energy according to

— gO,w
1 + Epulse/Esat’

g(E;Dulse) (42)

where go,, ~ 30 dB is the small signal gain with a parabolic frequency dependence,
and a bandwidth of ~ 40 nm is assumed. The effective gain saturation energy,
E,u, is set to 0.5 nJ. The SA is assumed to be monotonically-saturating, placed at
the end of the fiber section, and it is modeled with a transfer function describing

1ts transmittance
lo

T'=1- ——F7—7—
14 P(7)/Psat’

(4.3)
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Figure 4.2: Calculated contour plot of the similariton evolution within the cavity.

where T is the transmittance, lp = 0.2 is the unsaturated loss, P(7) is the in-
stantaneous pulse power at the end of the fiber section and P,,; = 2000 W is the
saturation power. The pulse amplitude is scaled down by a factor of ~ 10 after
the SA to account for other lumped linear losses as incurred in the experimental
setup as described below.

Numerical simulations exhibit stable pulse formation over a wide range of pa-
rameters. The results of these simulations are compared to a laser supporting DM
solitons. The simulations demonstrate that the cavity designed to implement self-
similar propagation does not improve the maximum pulse energy in comparison
to the stretched-pulse laser when the intra-cavity GVD is anomalous (Bpet S 0).

However, for increasing fBne; > 0 (normal dispersion) the maximum pulse energy di-
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verges dramatically for the two cases (see Fig. 4.1). Qualitatively, if the anomalous-
GVD section of the laser has negligible cubic nonlinearity, the pulse evolves to a
parabolic shape that maintains a monotonic chirp even in the presence of strong
nonlinearity. The inset of Fig. 4.1 illustrates that the stretching ratio for the laser
with self-similar pulse evolution decreases exponentially at fixed pulse energy as
the intra-cavity GVD is increased. Thus, the energy-scaling can be thought of as
tolerating (an exponential) increase in pulse energy that maintains a fixed stretch-
ing ratio with increasing GVD. The pulse evolution along the cavity is illustrated
in a contour plot (Fig. 4.2).

The numerical simulations strongly suggest that parabolic pulses can exist in
such a fiber laser. Furthermore, these simulations predict at least two orders
of magnitude improvement in pulse energy over existing lasers at large, normal
intra-cavity dispersion. We emphasize that the predicted increases in energy may
not be achieved experimentally due to competing effects such as overdriving the
SA mechanism. If an interferometric SA such as nonlinear polarization evolution
(NPE)[15] is used, there is a trade-off between avoiding overdriving the NPE and

ease of self-starting.

4.3 Experimental Results

We have constructed a Yb:fiber laser for experimental confirmation (Fig. 4.3. A
ring-geometry is chosen for self-initiation of mode-locking [17]. Here, the Yb fiber
can be as short as 23 cm long because of its high doping concentration (23,600
ppm). The short Yb fiber permits decoupling of gain filtering from nonlinear pulse
shaping. Pump light is delivered by a wavelength-division multiplexing (WDM)

coupler. The pump diode delivers 550 mW into single-mode fiber. The linear
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Figure 4.3: Experimental setup: The pulse evolution is indicated.

anomalous-GVD segment is implemented with a pair of diffraction gratings. NPE
is implemented as the SA. Mode-locked operation is initiated and stabilized by
NPE, and the output is taken from the NPE rejection port. B,e; of the cavity can
be varied by adjusting the grating spacing. Single-pulse operation was verified by
monitoring the pulse train with a fast detector (~ 0.5 ns resolution) and long-range
(200 ps) autocorrelation.

The laser mode-locks easily upon the adjustment of the wave-plates for the NPE
action. The pulse energy is approximately 2 nJ. Experimental spectrum obtained
at Buey > 0.01ps? is presented in Fig. 4.4(a), in comparison the spectrum deter-
mined from numerical simulations. The simulations correspond to experimental
conditions apart from a much higher pulse energy of 20 nJ. The experiments are
performed at low pulse energies to avoid over-driving NPE and minimize the effect
of NPE on the self-similar pulse shaping. Separate work is under way to overcome

the limitations of NPE. A signature of the self-similar regime is the spectrum,
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Figure 4.4: (a) Experimentally measured pulse spectrum. (b) Spectrum of the

simulated pulses.

which develops the unique shape predicted numerically. This shape is in contrast
to that of DM solitons where the spectral shape is approximately a Gaussian [16].

The pulse is extracted from the cavity at a position where it is expected to have
maximum positive chirp. Intensity autocorrelation measurement reveals that the
pulse duration is ~ 2 ps. After dechirping the pulse with anomalous dispersion in a
grating compressor external to the cavity, the inferred full-width at half maximum
(FWHM) of the pulse is 70 fs (Fig. 4.5), corresponding to an initial stretching
factor of ~ 30. The dechirped pulse duration is close to that of the temporal
profile obtained from a Fourier transform of the experimental spectrum, assuming
a zero phase. Thus, the chirp of the extracted pulse is inferred to be essentially
linear, and the small deviation can be attributed to the presence of third-order
dispersion from the gratings. The interferometric autocorrelation of the dechirped
pulses shows small amount of secondary structure (inset of Fig. 4.5).

The amount of dispersion required to fully dechirp the pulses is —0.170 ps?. The
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magnitude of dispersion imparted by the gratings within the cavity is —0.150 ps?
which is not sufficient to completely dechirp the pulse before it is coupled into the
SMF. The pulse duration at the beginning of the SMF can be estimated to be
approximately 250 fs. Thus, the overall stretching and compression ratio within
the cavity is ~ 8. The pulse temporally stretches and compresses monotonically
in the segments of normal and anomalous dispersion, respectively and maintains
a net positive chirp throughout the entire cavity, as expected theoretically. The
temporal behavior is in contrast to DM solitons which are stretched and compressed
twice per roundtrip and maintain negative and positive chirp for equal portions
of propagation time. This change in periodicity of stretching and compression is
another signature of the self-similar evolution. Another well-known mode of pulsed
operation is pulse shaping through bandwidth filtering in the presence of large
normal dispersion. The pulse maintains a positive chirp at all times in this mode
of operation as well. However, in this mode the temporal profile is essentially
unchanged during propagation. Self-similar operation is distinguished from this
mode by the large stretching-compression ratio.

Further support for self-similar nature of the pulse evolution comes from cross-
correlation of the chirped and dechirped pulses. Due to the large compression
ratio, the dechirped pulse can be approximated as a delta function with respect
to the chirped-pulses, exposing the chirped pulse shape from the cross-correlation
trace. Figure 4.6 compares the cross-correlation trace to the temporal profile of the
chirped pulses obtained from the numerical simulation. Note that good agreement

is obtained with the expected parabolic intensity profile.
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Figure 4.6: (a) Experimentally measured cross-correlation of the chirped and

dechirped pulses. (b) Temporal intensity profile of the simulated pulses. Parabolic

(dashed lines) and Gaussian (dash-dotted lines) fits are indicated.
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4.4 Conclusion

In conclusion, we have shown that self-similarly evolving parabolic pulses with a
linear chirp can exist in a fiber laser under appropriate conditions. Experimental
observations agree well with the numerical simulations, and this agreement allows
us to conclude that pulse energies ~ 100 times larger than those of existing lasers
should be possible in the future. This represents a new regime of pulse generation,
characterized by monotonic evolution of the pulse in the nonlinear medium, a
peculiar spectral shape with sharply decaying wings, and ability to withstand large
nonlinearities. We believe that these are the first steps and further developments
will be possible. The concept of self-similarity may be the route to the generation
of the most energetic femtosecond pulses from a laser, eliminating the limitations
of cubic nonlinearity for a generation of femtosecond lasers. The key factor here

would be to overcome the limitation posed by overdriving the SA.
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Chapter 5

50-fs, 5-nJ Pulses at 1.03 um from a

Wave-breaking-free Fiber Laser!

This chapter reports the application of the concepts described in the previous
chapter to the construction of a high-energy fiber oscillator. We report the gen-
eration of 6 nJ chirped pulses from a mode-locked Yb fiber laser at 1.03 ym. A
linear anomalous-dispersion segment suppresses wave-breaking effects of soliton-
like pulse shaping at high energies. The dechirped pulse duration is 50 fs and the
energy is reduced to 5 nJ after dechirping. This laser produces twice the pulse en-
ergy and average power, and approximately 5 times the peak power, of the previous
modelocked fiber lasers with highest pulse energy, average power and peak power.
It is the first fiber laser that directly offers performance similar to solid-state lasers

such as Ti:sapphire.

5.1 Introduction

Short-pulse fiber lasers can have wide-spread application as practical alternatives
to bulk solid-state lasers, offering compact size, better stability and freedom from
misalignment. However, fiber lasers have generated pulses with energies signifi-
cantly lower than solid-state lasers due to the inherent fiber nonlinearity.

The dynamics of femtosecond pulse formation is dominated by an interplay be-
tween anomalous group-velocity dispersion (GVD) and positive Kerr nonlinearity

of the fiber [2]. Fiber lasers can be constructed entirely of anomalous-GVD fiber

"Most of the results presented in this chapter have been published in Ref. [1]
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to operate in the soliton regime, or with segments providing normal-GVD and
anomalous-GVD to operate in the stretched-pulse regime[3]. At 1 pum, standard
fiber has normal dispersion only. Thus, Nd- and Yb-doped fiber lasers at 1 pym
have been constructed with prisms or diffraction gratings to provide the necessary
anomalous GVD. Recently, a Yb fiber laser that employs a photonic crystal fiber
(PCF) for dispersion control has generated 100 fs and 1 nJ pulses [4]. The highly
nonlinear PCF can be expected to present a formidable barrier to higher energies.
Stretched-pulse erbium-doped fiber lasers have generated ~ 100 fs, 2.7 nJ pulses,
which are the highest pulse energy and peak power from a femtosecond fiber laser
[5]. Significant energy resides in the wings of the pulse, which extend to ~ 1 ps.
Generation of 50 fs and 1 nJ pulses from a Nd fiber laser has been reported[6]; these
pulses have approximately the same peak power as the 2.7-nJ laser. A Yb fiber
laser generated 50 fs and 0.7 nJ pulses[7]. The highest average power generated

directly from a femtosecond fiber laser is ~ 100 mW [13, 7].

5.2 Theoretical Background

The stretched-pulse technique successfully reduces, but does not eliminate, the
effects of nonlinearity through dispersion management. Direct management of
nonlinearity has been proposed for substantial increases in pulse energy [8], but
has not been demonstrated experimentally. Nonlinearity can limit pulse energy
through two mechanisms: (i) Excess energy can result in wave-breaking through
the combined effects of dispersion and nonlinearity. (ii) The artificial saturable
absorber (SA) can be overdriven at high peak powers, which leads to multiple-
pulsing. The former limitation is the more fundamental of the two, which motivates

us to explore it.
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Here, we recognize the importance of minimizing the Kerr nonlinearity in the
anomalous-GVD segment of a stretched-pulse laser designated for maximum pulse
energy. We first consider the differences between the extreme cases of nonlinear and
completely linear segments of anomalous GVD. The availability of highly-doped Yb
fiber enables partial decoupling of gain filtering from the nonlinear pulse shaping.
Extensive numerical simulations demonstrate that the limitation to pulse energy
through wave-breaking can be suppressed with a linear anomalous-GVD segment
and a short gain fiber. We exploit this approach to demonstrate a fiber laser that
maximizes the pulse energy and the peak power.

Although it is well-known that soliton-like effects in the anomalous-GVD fiber
need to be minimized for best pulse quality[9], it has not been fully-explored ex-
perimentally, nor have its implications for the pulse shaping been investigated. We
focus on a cavity design similar to that of [6] in order to allow direct comparison
to experiment. The oscillator is modeled as comprised of three sections: A section
of single-mode fiber (SMF), followed by a short gain section, and a final section
with anomalous GVD. Diffraction gratings or a hypothetical fiber (with mode area
equal to that of the SMF) provide anomalous GVD for the linear and the nonlinear
cases, respectively. For increased computational speed, the SA is modeled with a
transfer function, the exact form of which was found not to be important. Pulse
propagation is described by an extended nonlinear Schrodinger equation that ac-
counts for the effects of GVD, Kerr nonlinearity and gain for the Yb-doped fiber.
Gain in the Yb-doped fiber is modeled as saturating with total energy and has a
parabolic frequency dependence with a bandwidth of 40 nm.

The qualitative features of stretched-pulse operation are determined primarily

by the total GVD (Bne) and to a lesser extent by the length of the normal- and
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anomalous-GVD sections. If the gain fiber is sufficiently short, most of the non-
linear shaping occurs in the SMF, decoupled from the bandwidth filtering in the
gain fiber. Numerically-simulated cavities with linear and nonlinear segments of
anomalous-GVD produce stable pulses with similar energies for £, < 0. However,
for increasing fpe; > 0 (normal dispersion) the maximum pulse energy diverges for
the two cases. Qualitatively, if the anomalous-GVD section of the laser has neg-
ligible Kerr nonlinearity, the pulse evolves to a shape that maintains a monotonic
chirp even in the presence of strong nonlinearity [11]. A higher pulse energy gener-
ates increased bandwidth, which in turn leads to larger pulse stretching. Increased
stretching reduces the peak power, so nonlinear and dispersive effects balance.
For instance, at Bne; = 0.012 ps? wave-breaking can be avoided at a pulse energy
~ 25 times higher than that of a laser with a nonlinear anomalous-GVD section. A
quantitative discussion is beyond the scope of this study and will be presented else-
where. We emphasize that the predicted increases in energy may not be achieved
experimentally due to competing effects such as overdriving the artificial SA. If
an interferometric SA such as nonlinear polarization evolution (NPE)[12] is used,

there is a trade-off between avoiding overdriving the NPE and ease of self-starting.

5.3 Experimental Results

Following this approach, we built a Yb fiber laser (Fig. 5.1). A unidirectional ring
geometry was chosen for self-starting operation [10]. The pump light is delivered
by a wavelength-division multiplexing (WDM) coupler. The Yb fiber is only 23
cm long because of its high doping concentration (23,600 ppm). The pump diode
delivers 550 mW into single-mode fiber. Mode-locked operation is initiated and

stabilized by NPE, and the output is taken from the NPE rejection port [13].
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Figure 5.1: Experimental setup. HWP: half-wave plate, QWP: quarter-wave plate,

PBS: polarizing beam splitter.

Following the free space section, there is a segment of SMF. S, of the cavity can
be varied by adjusting the grating spacing. The laser produces positively-chirped
pulses which are dechirped with a grating pair external to the cavity. Single-pulse
operation was verified by monitoring the pulse train with a fast detector (~ 0.5 ns
resolution) and long-range (200 ps) autocorrelation.

The length of the SMF and [, were varied systematically to optimize pulse
energy and peak power. The SMF was initially chosen to be 3.5 m long (50 MHz
repetition rate). The pulse energy could be increased while (3¢, was reduced from
an initial value of —0.020 ps?. At Bue; = 0.00140.002 ps?, the pulse energy reached
4.5 nJ, limited by the pump power. The dechirped pulse duration was 70 fs.

In order to determine the maximum pulse energy, the repetition rate was low-
ered to 40 MHz by increasing the length of the SMF by 1 m. For the same

Brnet, pulse energy could not exceed 4.1 nJ. Therefore, S, was increased. The
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Figure 5.2: Spectra of the pulse from the NPE rejection port (solid line) and of the
pulses from a reflection off a diffraction grating (dashed line). Inset: Experimental
(solid line), calculated (dashed line) spectra and a gaussian fit (dotted line) plotted

on logarithmic scale.
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Figure 5.3: Experimental (full trace) and calculated (envelopes only) interferomet-
ric autocorrelations of the dechirped pulses. Inset: Intensity autocorrelation of the

pulses directly from the oscillator in comparison to that of the dechirped pulses.

maximum pulse energy of ~ 6nJ (235 mW average power) was obtained at
Buet = 0.004 4 0.002 ps?. The corresponding power spectra from the NPE port
and a beam reflected from the first grating are shown in Fig. 5.2. The pulse en-
ergy exiting the Yb fiber was determined to be ~ 7.5 nJ and the energy of the
pulse coupled into the SMF was estimated as ~ 0.3 nJ. With this information,
accurate numerical simulations using experimentally-determined parameters could
be performed. The spectrum produced by the numerical simulations agrees with
the experimental spectrum (inset of Fig. 5.1). The wings of the spectrum decay
faster than those of a gaussian pulse, which describes the pulse shape for a typical

stretched-pulse laser with a nonlinear anomalous-GVD section [14].
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The interferometric autocorrelation of the dechirped pulses is presented in
Fig. 5.3 along with the autocorrelation of the simulated pulses. The inferred pulse
duration is 50 fs. Comparison of the intensity autocorrelations before and after
dechirping reveals a compression factor of 30 (inset of Fig. 5.3). The dechirped
pulse energy is 5 nJ, owing to loss at the grating compressor. Overall, the pulse
energy and average power obtained directly from the laser are improved by factors
of 2.0 and 2.3, respectively, in comparison to [4]. The peak power is ~ 80 kW, im-
proved by ~ 5 times over previous top-performance fiber lasers[13, 6]. In addition,
the laser is more practical than the previous top-performance lasers because it is
diode-pumped with a WDM coupler.

The pulse energy was limited not by pump power, but by the onset of double-
pulsing. According to our calculations, at least an order of magnitude higher
pulse energies should be possible by increasing (- Experimentally, mode-locking
becomes difficult for B,e; > 0.004 ps?. Increasing the SMF length by 2 m did not
enable operation at larger (B,.. We conclude that the pulse energy is currently
limited at 6 nJ and we attribute the difficulty to modelock at larger (e to failure

of the NPE action.

5.4 Conclusion

In conclusion, we have demonstrated a Yb fiber laser that generates the highest
pulse energy, peak power and average power of any modelocked fiber laser. Its effi-
ciency is 43%, which is the highest of any short-pulse laser, to our knowledge. The
improvements in pulse energy and peak power are possible through the avoidance
of soliton-like effects in the anomalous-GVD segment and by partially decoupling

gain filtering from nonlinear pulse shaping. Preliminary observations and calcu-
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lations indicate that this device may be a first step toward a laser that supports
self-similar pulses[15, 16, 17]. Work is in progress regarding this exciting possibil-
ity. The stability of the laser is similar to that of the all-fiber stretched-pulse Er
lasers in our laboratory. We attribute the high stability to diode-pumping with a
WDM and the existence of fewer modelocking regimes due to the linearity of the
anomalous-GVD section. Fiber lasers with bulk components can thus be viewed
as a class of devices that offers performance comparable to bulk solid state lasers

with nearly all of the advantages of stability and compactness of “all-fiber” lasers.
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Chapter 6
Period-doubling Route to

Multiple-pulsing

6.1 Introduction

In this chapter, we present a new approach for describing high-energy operation
of soliton-like laser with a fast artificial saturable absorber (SA) that has a multi-
modal dependence of transmittance on pulse energy. Multi-modal transmittance
is typical of fast SA since these mechanisms are based on the conversion of relative
nonlinear phase differences between two modes to amplitude modulation through
interference. In the previous chapters, the focus was on maintaining the stability
of a pulse at the highest possible energies against wave-breaking, and the limita-
tion to pulse energy arising from soliton-like pulse shaping have been described in
detail. The utilization of self-similarity and nonlinearity management in principle
remove this limitation, suggesting that unprecedented pulse energies can be ob-
tained. However, the potential for two orders of magnitude improvement in pulse
energy as promised by nonlinearity management and self-similar pulse shaping
(and possibly more, through a proper unification of the two separate, but compat-
ible approaches) will not fully materialize unless over-driving the SA is prevented.
Therefore, a detailed understanding of transition to multiple-pulsing through over-
driving the SA can be invaluable.

Here, we present a theoretical and experimental study of over-driving the SA
of an energetic, soliton-like fiber laser. The SA has a sinusoidal dependence of

transmittance on intensity: The loss initially saturates with increasing intensity,

78
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promoting pulse formation, but this trend is reversed at much higher intensities,
finally destabilizing the pulse. The theoretical expectations are experimentally
confirmed, with profound implications on the dynamics of a fiber oscillator.

In addition to the direct relevance to constructing high-energy fiber lasers, we
note the ease with which various features characteristic of nonlinear dynamical
systems can be observed repeatably in fiber lasers. This suggests that fiber oscil-
lators can be an attractive experimental platform for studying various phenomena

in nonlinear dynamical systems with a simple, inexpensive system.

6.2 Overdriving the Saturable Absorber

Over-driving of the saturable absorber (SA) mechanism as a limitation to pulse
energy in fiber oscillators has its origins in that fast saturable absorbers with a
large modulation depth and suitable for use in fiber lasers are all interferometric in
origin [1]. The most commonly used techniques are nonlinear polarization evolution
(NPE) [2], nonlinear optical loop mirrors (NOLM) [3], and their variants. In
each case, the pulse energy is distributed to two modes with unequally. Thus,
the two modes acquire a relative nonlinear phase shift upon propagation in a
nonlinear medium (typically a fiber). The magnitude of the phase difference is then
proportional to the pulse energy. The phase difference is converted into amplitude
modulation by a proper superposition of the two modes. In the case of NPE,
this is accomplished through a linear polarizer acting on right- and left-circular
polarization modes. In the case of a NOLM, the two modes are pulses counter-
propagating through a fiber loop, and conversion to amplitude modulation takes
place at a fiber coupler that serves as the entry and exit port of the fiber loop. As

a result of their interferometric nature, these techniques are sinusoidal functions
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Figure 6.1: Experimentally-measured transmittance of a typical NOLM for oper-

ation at 1550 nm.

of the pulse energy. Hence, the loss of the SA begins to diminishes and finally
increases as the pulse energy is increased. Figure 6.1 illustrates experimentally
measured transmittance of a NOLM.

We define the peak intensity (or energy, for given pulse shape) corresponding
to the point of maximum transmittance through the SA to the over-driving in-
tensity /energy. Beyond this value transmittance begins to decrease, promoting
lower peak intensity for the pulse. The over-driving energy can be increased with
proper linear biasing (Fig. 6.2), or by decreasing the energy difference between the
interfering modes. However, these changes result in decreasing transmittance for

increasing intensity, or an overall reduction of the transmittance at low intensities,
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ation at 1550 nm, biased for operation at higher pulse energies.

respectively. Either way, initiation of mode-locking from intra-cavity noise be-
comes difficult, if not impossible. Self-starting operation is an essential feature for

practical utility, rendering these approaches unacceptable for most applications.

6.3 Theoretical Model

In this section we develop a basic model for a soliton-like laser mode-locked with a
non-monotonic, fast saturable absorber exhibiting multiple transmission maxima.
We will use this model to obtain an equation for the pulse energy evolution. The
model will be loosely based on soliton fiber lasers, but many of the results should

apply to other types of lasers, in particular to dispersion-managed and self-similar
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Figure 6.3: Block diagram of a generic soliton-like laser consisting of an optical

medium with positive Kerr nonlinearity, anomalous GVD, and gain and a fast SA.

fiber lasers. A block diagram of the model laser cavity is presented in Fig.6.3.
For simplicity, we consider the optical medium to be a single-mode fiber pro-
viding uniformly-distributed Kerr nonlinearity (n, > 0) and anomalous GVD.
Generalization of this approach to a dispersion-managed scheme where at least
two segments of fiber with normal and anomalous GVD should be possible based
on the formalism developed by the MIT group [6].
Pulse propagation through the fiber segment is modeled with the nonlinear

Schrodinger equation:

0%a(T, 1) 0?

Tn-La(T,t) = —iD e 4 ia(T, 1) Pa(T ) + (g~ b — Dy o )a(T, 1), (6.1)

or

Here, a(T,t) is the slowly-varying pulse envelope, ¢ is a time scale in the order
of the pulse duration. The propagation direction is parametrized by T = z/c, a
time scale in the order of the cavity roundtrip time T, instead of the usual z in
analogy to the master equation for mode-locking developed by Haus [4]. D; is the
intra-cavity GVD, D, = g/ is the gain dispersion. Q7 is the half-width at half
maximum (FWHM) gain bandwidth. The coefficient for self-phase modulation

(SPM) arising from the Kerr nonlinearity is 6 = (27)/(XoAess)noLeysr, where ng
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is intensity-dependent refractive index, A.;; and L.y are the effective mode area
and path length of the fiber segment, respectively, and A is the center wavelength
of the pulse. g is the gain coefficient and [; is the linear intra-cavity loss, including
loss due to output coupling.

We assume a gain medium with relaxation time much longer than 7 and a
large saturation energy which is a good approximation for the case of Er- and Yb-
doped fibers serving as the gain media. Therefore, the gain is saturated by a series
of pulses (multiple cavity roundtrips), determined primarily by the average intra-
cavity power. The dynamic gain saturation within the duration of an individual

pulse is ignored. Hence, the gain obeys the average-rate equation

(T’ E)

0 T E
Tn= 2= = =(9(T, E) = go) * = 9(T. B)

P

—. 6.2
- v (6.2
Here, go is the small signal gain, E, is the saturation energy of the gain medium,

T is the gain relaxation time. The pulse energy, E,, is given by
Tr/2 )
E, = / (T, t)[2dt. (6.3)
—Tr/2

The treatment outlined so far is similar to Haus’ the master equation, with the
only notable exception being the absence of the self-amplitude modulation term,
corresponding to the SA. Instead, we treat the SA action as a lumped effect follow-
ing propagation in the fiber segment. The main difference of this treatment from
the master equation and similar treatments is that we do not make the assumption
that nonlinear losses resulting from the SA is small. All methods of SA action in
fiber lasers act on the pulse in a discrete manner at a well-defined location in the
cavity, as opposed to the approximately uniformly-distributed Kerr-lensing effect
relevant to bulk solid state lasers. Changes in the pulse energy can be extremely

large, Ref. [5] reports a fiber laser incorporating NPE as the SA and transmitting
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only 20% of the incident pulse energy. We have observed transmittance values as
a low as 5% through the NPE port in an Er-doped fiber laser constructed in our
laboratory. Although part of the loss in these cases is linear output coupling, the
modulation depth is still very large, in order of 50%, as the indicated by the mea-
surements made exterior to the cavity (for example, see Fig. 6.1). NPE is chosen
as the SA mechanism because it is the most commonly-used technique. However,
the methods and the results described here can easily be generalized to apply other
techniques such as NOLMs.

In soliton lasers, the dominant pulse-shaping mechanism is the soliton forma-
tion [4, 7]. One can make a stronger statement in this direction for fiber lasers,
considering that a femtosecond fiber laser typically incorporates at least several
soliton periods within one roundtrip. This is the main assumption of this treat-
ment, that the combined effects of dispersion and Kerr nonlinearity determine the
pulse shape. In the steady-state the pulse shape within the fiber segment can be

expressed as
a(T,t) = \/Epu(t)exp(iG(T)). (6.4)

For a soliton laser, the pulse shape is given by

u(t) = \/;sech(é), (6.5)

and the phase shift acquired by the soliton is

D, T

0(t) = Ty (6.6)

Here, 7 is the pulse width and is related to the FWHM pulse width by 7ew gy =
1.767. Since the existence of a soliton is through the balance of the dispersive

effects with the Kerr nonlinearity, the width and the energy of a soliton are related
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_ 4Ds|
T = 5E, (6.7)

In the case of pulse shape being maintained as a soliton, the transmittance of
NPE can be expressed as a transfer function. For long, square pulses the trans-

mittance, T, of NPE has been shown [8] to be of the form
1
T = Epyt/Ein = 5(1 —qcos(ml /I, + ¢o)), (6.8)

where E;,, E,; are the incident and the transmitted energies, respectively, ¢ is a
parameter characterization the modulation depth, ¢y accounts for a linear bias, and
I, is the switching intensity beyond which the transmittance begins to decrease
for the case of ¢y = 0.

The pulse shape after being modified by the NPE action is given by

a(T, t)npe = %\/ET,{I — qcos[wf—:isech(t/ﬂ + ¢ol}, (6.9)

for the case of a soliton as the incident pulse shape. In general, NPE can signifi-
cantly alter the shape of the soliton, but all information of this modification will
be erased by the soliton dynamics by the end of another pass through the fiber
segment. Numerical simulations indicate that this assumption retains its validity
for strong strong dynamics (at least several soliton periods within one roundtrip)
even for quite deep modulation (¢ ~ 0.5).

It is necessary to allow for large changes in pulse energy, E, and the gain to be
able to compensate for it because deep modulation by the SA is permitted. It can
be shown formally that increase of E, during propagation through the gain fiber
is equivalent to a ramping up of the SPM, 4. A similar scenario occurs in optical
communications when the slow decrease in pulse energy upon propagation in the

fiber link is compensated by a gain module. The effects of a non-constant pulse
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energy on the soliton propagation have been analyzed [9]. For pulses that are not
excessively short, the soliton adapts to the changes adiabatically. It is a reasonable
approximation, then, that the pulse shape will continue to be determined by the
soliton dynamics even in the presence of large energy fluctuations.

In the case of fiber lasers as described previously in this thesis, even this assump-
tion is not necessary since the gain fiber is much shorter in length in comparison
to the total length of the fiber segment (typically a 20 cm-long Yb fiber is part
of a 4 m-long fiber segment). Hence, the SPM and the dispersion experienced by
the pulse within the gain fiber is negligible compared to the rest of the cavity and
the amplification processes can be considered to be occurring abruptly (lumped
amplification).

Finally, the following picture emerges for the evolution of the pulse according
to this model. The ordering of the three functions, soliton pulse shaping, ampli-
fication, and NPE action, respectively is chosen to correspond to that of actual
fiber lasers, but the exact order only effects some of the details of pulse evolution.

Propagation through the fiber segment corresponds to that of a soliton,

0 . 0%a(T,1)
TRa—TCL(T, t) = —ZDST

+id|a(T, t)|*a(T, t). (6.10)
In the steady state, the launched field, a(0,¢) is assumed to be sufficiently to
close a soliton solution that it will be shaped into one, with some £, and 7 upon
propagation. We have ignored losses due to bandwidth filtering which are small

for fiber lasers with pulse duration more than 100 fs. The emerging soliton will be

amplified in the short gain fiber
a(Leffa t) = a(Leff - Lgaina t) g(Ta E)Lgaina (611)

where Lgqin << Lesr, and SPM and dispersion in the gain fiber is ignored. ¢(7T’, E)
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is given by Eqn. 6.2. After amplification, the pulse is subjected to NPE action as
described by Eqn. 6.9.

In what follows, we consider the evolution of the pulse energy. The treatment
is similar to that of Ref. [10, 11]. Because amplification is now decoupled from the
soliton propagation, it is trivial to recognize that the pulse shaping in the undoped
fiber does not alter the pulse energy. Transmittance through NPE can be shown
to alter the pulse energy according to the following each roundtrip

E,out = %Ep,m /:;ZIZQ u?(t)(1 — qcos(ﬂ%ﬁ(t) + ¢o)dt. (6.12)
E, in and Ej, ,,; are the incident and the transmittance pulse energies, respectively.

The pulse energy after amplification is given by

Ep,out = Ep,ing(Ta Ep,in)/ZOa (613)

where E,;, and E,,,; are the pulse energies before and after amplification, re-
spectively. The linear loss, [y is imparted following amplification. In experimental
systems, linear loss stems predominantly from coupling in and out of fiber and
output coupling. The gain, ¢(T, E, ;,) varies on a time scale of several roundtrips,
T and according to the incident pulse energy.

Eqn. 6.12, together with Eqn. 6.13 completely specify the evolution of the pulse
energy in a soliton fiber laser mode-locked with NPE. Large changes in pulse energy
due to NPE and gain are allowed and the main assumption made is that soliton
dynamics are strong and robust enough that the information of modifications on

the pulse shape by NPE is erased within one roundtrip.
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6.4 Period-doubling in Fiber Oscillators

In this section, the dynamics of the pulse energy evolution is studied. The primary
focus will be on the dynamics in the presence of deep modulation by the NPE
action. In this case, large changes in pulse energy occur within each roundtrip and
the gain will respond accordingly. The temporal gain dynamics is on the time scale
of many roundtrips and as such it will not be able to provide dynamic response to
these changes. Furthermore, our interest is in the steady state, even though that
the steady state may correspond to a periodicity of more than one roundtrip, as

will be shown below. The steady stationary value of the gain on a time scale of

TR is
Tr E
—(9.(E,) — g0) =% — g,(E,)=2 = 0. 6.14
(95(Fp) = g0) 7~ = 95( p)Eg (6.14)
Eqn. 6.14 requires
Onet,
95(E,) = =5, (6.15)
1 E
sat

where gneto = go/lo, and Eyq = Eg% has been introduced for brevity of notation.

Transmittance through NPE, T(E, ;n) = Eput/Ep,n can be calculated from
Eq. 6.12. While an exact evaluation of the integral is not possible, the integral
can be easily evaluated numerically. Figure 6.4 displays transmittance for ¢ =
0.50 as a function of the soliton energy in arbitrary units. The general form of
the transmittance is a slowly-decaying sinusoidal. For most of what follows, the
neighborhood of the first transmission peak is of main interest. Therefore, for

simplicity, the transmitted pulse energy can be approximated as

Ep,out = §Ep,m[1 - q, COS(WE{; + ¢O)] (616)

sw

Here ¢/, order of ¢, is a modified parameter for the modulation depth and E,,,
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Figure 6.4: Numerically-evaluated transmittance of NPE for a soliton as a function

of pulse energy for ¢ = 0.50. The energy scale is arbitrarily chosen.

order of 1/(271,,), characterizes the soliton energy corresponding to the first trans-
mission peak.

The evolution equation for the pulse energy can be determined from Eq. 6.16
and Eq. 6.15. Let E,, denote the soliton energy at the conclusion of roundtrip
n. Then, assuming commutation for the gain and NPE actions for simplicity of
the expression (an exact calculation does not alter the main results to be pre-
sented below), a difference equation describing the energy evolution for successive

roundtrips is obtained

1 Gnet,0 !
Foia=-——"—|1-— FE E 6.17
where the subscript p has been dropped for simplicity and the energy has been
normalized to E,, without loss of generality by the transformation F,, — E,.E,,.

Eq. 6.17 represents a four-parameter (gnet,0, Esat, ¢'s and ¢p) family of nonlinear
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difference equations. The saturating gain ensures that FE,, remains finite for n —
oo. However, the non-monotonic part corresponding to the nonlinear loss of NPE
heralds complicated dynamics. A formal solution is not possible for the general
case, consequently we evaluate Eq. 6.17 numerically.

For the rest of this section, we focus on the case of zero linear bias for the
NPE action (¢ = 0). The net gain, gneto, is a parameter that determines the
self-starting condition and the rate of change in pulse energy. Therefore, we set
Onet,o = 3.5 for most of what follows, which is a reasonable choice for fiber lasers.
These choices reduce the free parameters to two, the modulation depth ¢’ and
the gain saturation energy, F,;. The latter one is the parameter that is most
conveniently controlled in the experiments by adjusting the pump power delivered
to the gain fiber. Thus, it is natural to investigate the dependence of the steady
state pulse energy on F,; for different modulation depths.

For a small modulation depth of ¢’ = 0.1, the steady-state solution to Eq. 6.17
is shown in Fig. 6.5. The transmittance of NPE is also plotted for comparison. At
this low modulation depth operation slightly beyond the first peak of transmission
is possible. For higher pump powers (increasing FE,,;), the steady-state solution
moves to the vicinity of the second peak. At even higher pump powers (not shown)
the system finally destabilizes and the pulse energy does not converge. However,
the modulation depth is too low for it to correspond to actual fiber lasers. A
low modulation depth results in two problems, initiation of mode-locking from
intra-cavity noise is more difficult and the parameter range for stable operation is
significantly contracted. For instance, ideally gn.;o has to assume a lower value
for this modulation depth: Even for vanishing pulse energy, there is net gain

(Epy1/Ey, > 0), which means that the continuous-wave solution is stable and mode-
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Figure 6.5: The steady-state pulse energy (F) as a function of Fy,; (corresponding
to pump power) for ¢' = 0.1. Also shown is the NPE transmittance curve for the

pulse energy on the vertical axis.
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Figure 6.6: The steady-state pulse energy (E) as a function of Fy,; (corresponding
to pump power) for ¢’ = 0.1 and gt o = 2.1. Also shown is the NPE transmittance

curve for the pulse energy on the vertical axis.

locking would never start from noise. But, if gpe o is reduced then the threshold
for stable mode-locking increases dramatically, a highly-undesirable condition for
the laser from a practical point of view (Fig. 6.6).

It should be noted that initiation of mode-locking by itself cannot be treated
within the context of this model, since a soliton-like solution has already been
assumed in the derivation of the equation of motion. As a result, the £,y ~ 0.5 is
taken as the initial condition. However, the model inherently reflects the existence
of a threshold for mode-locking: If the nonlinear gain from NPE is too small soliton

solutions will not be sustainable and the pulse energy will diminish to zero.
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Figure 6.7: The bifurcation diagram for a modulation depth of 0.3. The final
state of pulse energy (E) is plotted as a function of the gain saturation energy.
Super-imposed on the bifurcation diagram is the transmittance corresponding to

the pulse energy of the vertical axis for comparison.

For a modulation depth of ¢ = 0.3 and gner0 = 2.5, the general behavior is sim-
ilar (Fig. 6.7). The main difference is that self-starting operation is lot more likely
to be achieved. Nevertheless, large values of E,, (corresponding to a high pump
power) are needed, resulting in inefficient operation (low slope-efficiency). Even
¢ = 0.3 corresponds to fairly weak amplitude modulation by NPE for fiber lasers
and thus the parameter space of stable, self-starting operation remains contracted.

Increasing the modulation depth to 0.45, we observe an interesting phenomena

(Fig. 6.8): The steady-state pulse energy begins to alternate between two dis-
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Figure 6.8: The bifurcation diagram for a modulation depth of 0.45. The final
state of pulse energy (E) is plotted as a function of the gain saturation energy.
Super-imposed on the bifurcation diagram is the transmittance corresponding to

the pulse energy of the vertical axis for comparison.

tinct values as F,; is increased. The laser remains completely stable, but with a
periodicity of 2Tk. As E,; is further increased, the system progresses through a fa-
miliar period-doubling route to chaos [12]. This is hardly surprising since Eq. 6.17
contains all the ingredients for the period-doubling route to chaos: A nonlinear
difference equation incorporating a function with at least one (infinitely many, in
our case) maxima.

Larger modulation depths of 0.6 and 0.85 exhibit similar behavior, but the

onset of period-doubling and the threshold for mode-locking approach each other.
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Figure 6.9: The bifurcation diagram for a modulation depth of 0.6. The final
state of pulse energy (E) is plotted as a function of the gain saturation energy.
Super-imposed on the bifurcation diagram is the transmittance corresponding to

the pulse energy of the vertical axis for comparison.

For the latter case, the minimum F,,; is larger than the value corresponding to the
first period-doubling bifurcation. However, ¢’ = 0.85 is unrealistically high even
for fiber lasers and we estimate that ¢’ ranges from 0.4 to 0.65 in real fiber lasers.

In summary, for a choice realistic parameters, our model predicts a destabiliza-
tion of mode-locking with increasing pulse energies (experimentally controllable
by the pump power) by the period-doubling route to chaos. A related question
is whether the occurrence of the period-doubling bifurcations should follow the

Feigenbaum progression. Unimodal maps (maps with one maximum) have been



96

141

1.2r

E, arb. units
o
o =

o
o
T

0.4

0.2 P ,

| I\ I l I | | | | 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Esat, T(E), arb. units

Figure 6.10: The bifurcation diagram for a modulation depth of 0.85. The final
state of pulse energy (E) is plotted as a function of the gain saturation energy.
Super-imposed on the bifurcation diagram is the transmittance corresponding to

the pulse energy of the vertical axis for comparison.
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studied extensively. The universal scaling results of Feigenbaum have been shown
to apply regardless of the map shape. However, they need not necessarily apply

to our case since the transmittance function is not unimodal.

6.5 Experimental Observation of Period-doubling Route to

Double-pulsing

The predictions of the previous section are based on a rather basic model. For
experimental verification, we have built a fiber laser similar to that of Ref. [13].
The intra-cavity dispersion was set to —0.02 ps? for soliton-like operation at a
repetition rate of 40 MHz and the length of the Yb fiber was ~ 23 cm.

NPE rejection port and a reflection from one of the gratings were used to
monitor the pulses. The pulse train coming out of these ports was monitored at
these ports. Since the detector response is much longer than the pulse duration.
The combination of the pulse train measurement and long-range autocorrelations
demonstrated whether the laser was exhibiting single- or multiple-pulsing.

Pump power delivered to the gain fiber served as the experimentally-variable
parameter. For low pump powers, mode-locking does not self-start and the laser
remains in continuous-wave (cw) mode. As the pump power is increased beyond
160 mW, mode-locking is achieved. A stable, single pulse circulates the cavity as
evidenced by the pulse train and auto-correlation measurements. As the pump
power is increased to over 200 mW, the expected period-doubling sequence begins.

The pulse trains obtained both from the NPE rejection port and the grating
reflection reveal that the pulse energy alternates between two distinct values. As

the pump power is increased, another bifurcation takes place, resulting in period-
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Figure 6.11: The pulse train recorded from the NPE rejection port showing the

laser in stable, single-pulse mode-locked operation with a periodicity of 47%.

icity of 4T (Fig. 6.11). At higher powers, it is possible to observe periodicities up
to 16, but the bifurcations happen following smaller and smaller increases in the
pump power, as theoretically expected. For high-periodicity operation, trigger of
the oscilloscope by the pulse train becomes increasingly difficult.

The experimental period-doubling progression concludes unexpectedly: Instead
of plunging into chaos and remaining in chaos, the pulse breaks up into two pulses.
The energy content of each pulse is now reduced roughly to half, corresponding
to a pulse energy below that of the first period-doubling bifurcation. Hence, the
laser exhibits stable operation with two pulses circulating in the cavity and with
a periodicity corresponding to 1.

A bifurcation diagram showing the steady-state pulse energies for increasing

pump power is presented in Fig. 6.12. It should be emphasized that the period-
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Figure 6.12: The experimentally-measured bifurcation diagram for weakly-

stretched pulse fiber laser with anomalous intra-cavity dispersion.

doubling transition is repeatedly observable and no reduction in the laser’s stability
is observed even for high-periodicity operation.

Observations of period-doubling in short-pulsed lasers have been reported pre-
viously by several groups, however in most of these cases the underlying nature
of the problem was vastly different. In the case of lasers with additive pulse
mode-locking, the mechanism resulting in the period-doubling is similar, however
the pulse shaping in those systems were not dominated by strong soliton dynam-
ics [14]. The only experimental observation to our knowledge in a system where
soliton dynamics dominate is Ref. [15]. However, in that study the authors have

merely observed double and triple period operation and have not analyzed any
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further.

6.6 Period-doubling Route to Multiple-pulsing

The experimental observation of transition to double-pulsing instead of chaos has
an intuitive interpretation. As instability takes over the pulse at the end of the
period-doubling progression, the pulse gets nearly destroyed. Thus, the situation
resembles the initial states of pulse formation from intra-cavity noise. There are
multiple pulse candidates. However, since the intra-cavity energy is large enough
to drive one pulse beyond the first peak of NPE transmission, it follows that if
that energy is distributed equally to two pulses. Each pulse would be placed in
the vicinity of the first transmission peak of NPE. This is precisely what happens,
and a two-pulse solution emerges. In other words, the system is able to relax
into a stable state by exploiting its extra degrees of freedom corresponding to the
temporal distribution of the field. Such a scenario is clearly impossible in a 1
dimensional system.

In this section, the previously-described model is generalized to account for
this scenario. To this end, we allow for two-soliton solutions with pulse energies of
E\,, and E,,, respectively, during the n*® roundtrip. The gain saturates with the

total intra-cavity energy, Ei, + Es,. We obtain the following coupled difference

equations
Eipp1 = ! Iret0 (1 — ¢ cos(mE1n + ¢0))E1n,
’ 21 + (El,n + EZ,n)/Esat ’ ’
(6.18)
Eopi1 = 1 Inet,0 (1 — ¢ cos(mFEsy + ¢0)) Eop-
’ 21+ (EQ,n + El,n)/Esat ’ ’

We numerically solve the above equations for ¢’ = 0.60 and gnero = 3.50
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Figure 6.13: The bifurcation diagram for a modulation depth of 0.60, showing
transition to double-pulsing instead of chaos. Super-imposed on the bifurcation
diagram is the transmittance corresponding to the pulse energy of the vertical axis

for comparison.
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(Fig. 6.13) The initial pulse energies are set to different values to artificially break
the symmetry which would be broken by noise in a real laser. For these condi-
tions, the solution of the equations reveal that for low Fy, the system supports
only one pulse. At F,,; = 0.91, a period-doubling bifurcation occurs. Additional
period-doubling bifurcations take place, single-pulse solution retains its stability
up to Ey,; = 1.47. At this point, the second pulse can be supported stably, and it
assumes an energy equal to that of the other pulse. The double-pulsed, period-1
solution retains its stability until an abrupt transition to chaos at F,,; = 2.1. Of
course, this transition to chaos could also be eliminated if additional pulses are

allowed to exist in the model.

6.7 Conclusion

In conclusion, we have derived a basic theory of mode-locking for fiber lasers domi-
nated by soliton dynamics for the practically-relevant situation of non-monotonically
saturating absorbers. In contrast to previous similar treatments, we do not make
the assumption of small changes per roundtrip. Indeed, the contrary is obtained
which leads to difference equations, instead of the usual differential equation for-
malism used to model mode-locking.

The basic theory reproduces several main features of mode-locked operation,
such as the existence of a mode-locking threshold, the contraction of accessible
phase space for small modulation depths of the SA. In addition, a period-doubling
instability of the single-pulse solution is predicted as the pulse energy increases
to overdrive the SA mechanism. A straight-forward generalization of the model
to account for the possibility of multiple-pulses within the cavity predicts that

the instability reached by the period-doubling progression is followed by a stable,
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multiple-pulsed solution.

We have experimentally observed the period-doubling route at the end of which
the laser assumes a two-pulse, period-1 solution. It is worth emphasizing that the
experimental results are extremely repeatable, and we do not observe any reduction
in stability even during high-periodicity operation.

A significant feature of these results is that, in contrast to the expected conclu-
sion of the period-doubling route, the fiber laser does not plunge into chaos, but
instead exhibits a regular two-pulse, period-1 solution. This is possible due to the
existence of large (indeed, infinite) reservoir of extra degrees of freedom.

However, the main significance of the observation of a period-doubling route
to multiple-pulsing in a femtosecond fiber laser is that the system under scrutiny
is described by (coupled) partial difference equation(s), i.e. possessing infinitely-
many degrees of freedom. Yet, this system admits soliton-like solution, which is
remarkable fact by itself, that virtually consume all the degrees of freedom (corre-
sponding to the pulse shape), except for a few, mainly the energy (or amplitude) of
the soliton. This remaining degree of freedom can then be subjected to wild vari-
ations, behaving like a one-dimensional system, exhibiting the well-known period-
doubling route to instability without disturbing the rest of the (infinitely-many)
degrees of freedom held by the soliton dynamics. The system retains its stability
for macroscopic time periods (> 10'2 Tj).

The extraordinary stability and the repeatability of the experimental obser-
vation of interesting dynamics in short-pulsed fiber lasers strongly suggests that
fiber laser can be invaluable tools in the experimental study of complex, nonlinear
dynamical systems.

Finally, we would like to remark on the emergence of self-similarity in these
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dynamics, as in any period-doubling transition, although we haven’t focused our

attention to that feature in this study.
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Chapter 7

Conclusion

In this thesis, we have presented studies spanning a broad range, from immediately-
applicable improvements in fiber laser performance to fundamental studies of the
dynamical systems.

With regards to improving the performance of fiber lasers, three new concepts
have been proposed, nonlinearity management, an integrated, all-fiber oscillator-
amplifier combination for energy-scaling, and self-similar pulse formation. The
benefits of the latter two have been experimentally demonstrated, each delivering
an order of magnitude improvement in peak powers and promising at least an-
other order of magnitude with further development. It is not difficult to envisage
lasers incorporating all three of these separate but compatible approaches for dra-
matic improvements in pulse energy. We expect the approaches described here to
have a significant impact in the development of high-performance and user-friendly
sources of femtosecond pulses.

In the course of studying limitation to pulse energy from saturable absorber
mechanisms, fiber oscillators have been shown to exhibit deep dynamical proper-
ties. Considering the relative ease at which experiments can be conducted with
fiber oscillators and the richness of the dynamical behavior accessible with sim-
ple modifications of the oscillator, we propose femtosecond fiber oscillators as an
attractive experimental platform for studying complex phenomena.

Furthermore, we expect that the simple, but powerful approach developed in
Chapter 6 to be useful in understanding the pulse generation in short-pulsed oscil-

lators since the theory attempts to cover the previously-neglected regime of large
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variations within each roundtrip.

7.1 Topics for Future Studies

The studies described in this thesis suggest many interesting directions to pursue

for the future. In this section, a selected group of them are briefly discussed.

e Further studies for exploiting the self-similar pulse shaping approach are
likely to result in drastically-improved pulse energies. As described previ-
ously, up to 1 uJ pulses can theoretically be obtained directly from a fiber
laser. There is a challenging limitation imposed by the NPE, as investigated
in detail in Chapter 6. With improved understanding of this mechanism, it
may be possible get around this limitation, either by suppressing the insta-

bility or with a different mechanism for fast SA action.

Our theoretical studies indicate that by incorporating a nonlinear loss or gain
element within the NPE scheme or inside a NOLM, the over-driving pulse
energy can be increased by several times without effecting the transmittance

response at low energies, which is essential for self-starting operation [1].

The brute-force solution to the problem of overdriving the SA, a fast mecha-
nism such as NPE or a NOLM can be set to a large overdriving energy. The
reduction in their self-starting capability can be remedied by the introduc-
tion of a slow, monotonic SA, such a semiconductor structure. Such combi-
nations have been previously utilized successfully(for example, Ref. [2, 3, 4]),

but high-pulse energy operation is yet to be reported.

e In a similar direction, a self-similar laser constructed with double-clad Yb-

doped fiber for high power operation can incorporate a narrow bandpass
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filter. The inclusion of a filter can force the laser to regenerate substantial
amount of bandwidth within each roundtrip. Preliminary experimental and
numerical studies indicate a possibility of improving the maximum pulse

energy that can be extracted.

The concept of self-similarity and wave-breaking-free operation are by no
means unique to Yb-fiber oscillator s at 1 um. By following a similar recipe,
an Er-fiber laser with self-similar pulse generation can be made for improved
pulse energy and ease of mode-locking at the important wavelength of 1550

nm.

The requirement to avoid nonlinearity in the presence of anomalous dis-
persion currently forces these lasers to incorporate bulk optical elements to
obtain anomalous dispersion. However, hollow-core photonic-crystals fiber
based on the creation of a photonic band-gap have been demonstrated to
provide anomalous dispersion. Thus, an all-fiber laser, incorporating such a

fiber for anomalous dispersion can be constructed in the near future.

Another possible approach to the generation of extremely high-energy pulses
from a fiber laser is motivated by the theoretical observance of stable, few-
periodicity solutions beyond instabilities that cause multiple-pulsing. Ordi-
narily, these windows of periodicity are not accessible as the pulse energy
gradually increases during initial pulse formation. However, if a high-energy
pulse is launched magically into the system, it should remain stable. This
observation suggests the following scenario: A “master” fiber oscillator gen-
erating pulse energies in order of few nJ can be amplified by an order of

magnitude. A pulse can then be selectively coupled into a “slave” fiber os-
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cillator. If the launched pulse is adjusted to correspond to a window of
periodicity for the slave oscillator, stable pulse formation at very high pulse

energy may be possible.

e A particularly interesting direction for future studies is the construction of
a fiber amplifier at 1 mJ energy level. Through the use of chirped pulse
amplification (CPA) [10], pulse energies in the mJ range have been obtained.
However, these systems are rather complicated, incorporate single-mode op-
eration of highly multi-mode fiber, and the pulse quality remains low. A
simple fiber amplifier would be highly-desirable. The use of large mode area
photonic crystal fibers [5] along with the nonlinearity management [6] con-
cept, and suppression of Raman-shifts with cascaded quadratic processes [7]

should render such an approach feasible.

Many additions to the list are possible. Fiber lasers are beginning to emerge as
practical alternatives to bulk solid state lasers with competing performance. We
believe that in the near future, the performance of fiber laser will surpass bulk
solid state lasers in various aspects. In addition, the rich nonlinear dynamics of
the pulse propagation and formation may position fiber lasers to be an interesting

experimental platform for the nonlinear dynamics community.
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Appendix A

Numerical Techniques

Numerical simulations of pulse generation and propagation has formed a major
component of this thesis work. These simulations have been performed to study
many different phenomena under disparately different physical conditions. As a
result, the simulations have never converged to standard form. To the contrary,
various subcomponents of the codes have been in a state of constant flux and evo-
lution. The formation of a master code that is able to address all of the phenomena,
previously studied is not practical due to the lengthy nature of the simulations.
Thus, in many instances, it was prudent to preserve only the necessary components
in order to maximize the code running time.

Here, we present a sample code that entails the most commonly-used functional-
ities. The simulations of the pulse propagation and generation have been performed
using FORTRAN 77 programming language on personal computers running Linux
(Redhat Distributions 6.x to 8.0). The original code was written in the MATLAB
programming environment in order to utilize its high-level language. However, it
was recognized that the use of high-level commands can be minimized while the
speed improvement gained from a rudimentary language such as FORTRAN is
impressive. Overall, a speed improvement of approximately 30-fold was obtained
with FORTRAN over MATLAB.

Operationally, the system works as follows: The main code generates raw data,
storing the electric field information at various stages of the pulse propagation
as determined by the user. As the raw data is stored into data files at various

intervals (e.g., at the end of each pulse roundtrip for an oscillator simulation), it
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can be analyzed using additional tools.

In addition to generating the raw electric-field data, the main code is set to
display on screen and log into a data file various information about the optical field.
This information typically includes the pulse energy, peak power, pulse width and
occasionally specific information such as the polarization angle of the field or the
transmittance coefficient of a saturable absorber. Depending on the phenomena
these various bits of information are invaluable in informing the user of how the
simulation progresses. Based on these indicators, the simulation may be concluded
or restarted. In many cases, the code is set to recognize that the field has converged
and to halt, based on these indicators. A typical code is provided as an example
below.

The main tools for analysis of the raw data were written MATLAB and later
adapted to OCTAVE (a freely available MATLAB port) programming environ-
ments since these programs combine sophisticated programming and scripting
features with high-level graphical display capabilities. This way, in addition to
calculating the temporal and spectral intensity and phase profiles, various pulse
parameters can be deduced, autocorrelation traces can be calculated. The resulting
data can be exported in text format for additional analysis or in various graphical

formats. A typical code is provided as example below.

A.1 Sample FORTRAN Program for Oscillator Simula-

tions

The sample program provided below is configured to simulate pulse generation, self-

initiated from intra-cavity noise, in a stretched-pulse Er-doped fiber laser operating
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at 1550 nm.

3k ok ok 3k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok 3k ok ok sk ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok 3k ok ok ok 3k ok ok 3k ok ok ok ok ok ok sk ok ok sk ok ok sk ok k

* *
* OSCILLATOR SIMULATOR *
* By F. Omer Ilday *
* *

ko o K o o K o o K o o K o oK 3K o R o oK K o o K 3K o oK K o oK Ko o K oK o kK ok o K oK o oK K o o KK o o Kok o oK K o o K oK o K ok o oK
program main
parameter (tres = 4096, maxpage=4, totalpages=72)
DIMENSION Elast(tres), Elasti(tres), Elast2(tres)
DIMENSION Epage(tres,totalpages)
DIMENSION criteria(5)
double complex Elast, Elastl, Elast2, Epage
real criteria
character*4 no
character*9 filename
integer di, d2, d3, d4, dummy
integer stepno, zres, totalsteps, totalpasses, To, pageno
integer i, t, pass, page, fres, saveevery
double precision L_1, L2d_1, L3d_1, Lnl_1, Lg_1, Esat_1, g2_1
double precision L_2, L2d_2, L3d_2, Lnl_2, Lg_2, Esat_2, g2_2
double precision L_3, L2d_3, L3d_3, Lnl_3, Lg_3, Esat_3, g2_3
double precision L_4, L2d_4, L3d_4, Lnl_4, Lg_ 4, Esat_4, g2_4
double precision L_5, L2d_5, L3d_5, Lnl_5, Lg_5, Esat_5, g2_5
double precision dz, Ereal, Eimag, Isat, rat, Raman
double precision conv, Treal, k2, k3, n2, Power
double precision Lambda, Aeff, Gamma
double precision Energy, Dtot, Ltot
real Ipeak, Ip_dummy, Iglobal, Icenter
totalpasses = 10000
zres = 32
saveevery = 10
totalsteps = maxpage*zres
To = 4
dz = 1./totalsteps

fres=int (tres)

C A functional shape (such a super-Gaussian) in the spectral domain
C can be defined as the startup condition:

C

C do t = 1, tres/2+1

C Elast(t) = 10.0%exp(-0.0002%(t-1.)**4/To**4)

C & *(0.+1.*sin((t-1.)/40.))

C *xexp((0,1)*2x3.14%(t-1)*tres*3)

C enddo

C

C do t = tres/2+2, tres

C Elast(t) = 10.0%exp(-0.0002*(t-1.-tres)**4/To**4)
C & #(0.-1.xsin((t-1.-tres)/40.0))

C & *xexp((0,1)*2*3.14*(t-1-tres)*tres*3)

C enddo

C

C

C

CALL dfouri(Elast,fres,-1)
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C
C DO t=1,fres
c Elast(t) = Elast(t)/(tres*1.0)
C ENDDQ
C Starting condition as defined in the time domain:
DO t = 1, tres
(¢ Elast(t) = 1./cosh(-(t-tres/2.)/To)
(¢ Elast(t) = 1.xexp(-(t-6.*tres/16.)**2/To*x2/2.)
(¢ + 1.%exp(-(t-10.*tres/16.)**2/To**2/2.)
C + 0.%exp(-(t-12.*tres/16.)**2/To**2/2.)
C Elast(t) = 1./sqrt(50.)/cosh(-(t-tres/2.)/To/50.)
c Elast(t) = 1./sqrt(100.)*exp(-(t-tres/2.)*%*2/(To*100)*%2/2.)

Elast(t) = (1.77*To + rand(t))/(tres+0.01)
ENDDO

3% 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 5k 3k 3k 5k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k >k 3k 3k 3k 3k 5k ok 5k 5k >k 3k >k 5k 3k 5k 3k 3k 3k 3k 3K >k 3k 3k >k 3k 3k 3k %k 3k %k %k %k 3k %k %k 3k %k %k *k %k k

C Uncomment this section to start from a previously saved position:
start = 0000

c open (19,file=’data2200’,status=’0ld’)
c DO t=1, tres
c DO page = 1, 24
c read (19,*) dummy, Ereal, Eimag
c ENDDO
c Elast(t) = (1,0)*Ereal + (0,1)*Eimag
c ENDDQ
c close(19)
st sk sk sk o ok o ok s ok sk ok sk ks sk sk s ok s ok sk ok sk sk ok s sk sk s ok sk ok sk sk s ok s ok sk ke sk sk ok sk sk sk sk ks ok sk ok sk sk ok sk ok sk sk sk ok sk ok sk o ok ok
C Uncomment this section to save the starting condition to a file:
c open (19,file=’data0000’,status=’new’)
c DOt =1, tres

DO page = 1, totalpages
c Ereal = dreal(Elast(t))

Eimag = dimag(Elast(t))

ENDDO
c ENDDQ
c close(19)
st o oo ko ok ok ok ok o ok o ok s ks R o ok ok o ks R s ok o o ks o ok o ok oK ko o K ok ks ok sk o ko oK sk ok K ok o s o sk s ok sk koK o ok o ko ok o ok ok
¢ GENERAL DEFINITIONS:
C
C Open file to record simulation parameters:

open (19,file=’parameters’,status=’new’)

C To/Tfwhm conversion factors for sechant and Gaussian pulse shapes:
conv = 1.763
for sech(t) pulse shape (soliton-like)
conv = 1.665

C for Gaussian pulse shape (DM-soliton-like)
Treal = 100.0/conv

C time scale: Treal is To in real units. So Treal*conv, is T_FWHM in fs.
Power = 1500.0

C power scale: Ipeak (W) = Ipeak * Power
Lambda = 1028.0

C Central wavelength of the spectrum in nm.

C Raman Effect: Raman factor is Traman/Tscaling (Traman=5 fs, typically)
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Raman = 5.0%To/(Treal*1.0)

C Total dispersion parameter:
Dtot = 0.0

C Total cavity length parameter:
Ltot = 0.0

C Record the general parameters:

write (19,*) ’zres =’,zres, ’ tres =’,tres, ’ To =’, To,’ conv =’,
& conv, ’ Treal =’, Treal,’ fs’, ’ Power =’, Power,’W’,
& > Lambda =’,Lambda,’nm ’, ’ Raman factor =’,Raman
st ke sk e s e sk e sk e sk e s s sk s ke sk ke ok ke ok ke s o s s s sk sk kK kK ko ko ke ok ok s s ok s sk ok sk 3K K K K kK ko ok ok sk sk sk sk ok ok ok oKk KoK Kk K

C FIBER PARAMETERS:

C _________________
C SEGMENT 1
C __________
L1 = 20.0
Ltot = Ltot + L_1
k2 = 22.4
k3 = 0.10
Dtot = Dtot + k2*L_1

L2d_1 = Treal**2/k2/10.0

L3d_1 Treal**3/k3/10.0

n2 = 2.3

Aeff = 30.0

Gamma = 2.0%3.14/lambda*n2/Aeff/10.0
Lnl_1
All lengths are in cm (hence the 1/10.0 factors for Ld&Lnl).
k2: GVD parameter(ps~2/km) (+ -> normal)

n2: Kerr nonlinearity (107-8 um”2/W)

1.0/ (power*Gamma)

Q Q a Q

Aeff: effective mode area (um~2)
write(*,%) °’L_1 =’,L_1,’ cm’
write(*,*) °’L2d_1 =’,L2d_1,’ cm’
write(*,*) °’L3d_1 =’,L3d_1,’ cm’
write(*,*) ’Lnl_1 =’,Lnl_1,’ cm’
write(19,%)” L_1 =’,L_1,” L2d_1 =’,L2d_1,” L3d_1 =’,L3d_1,
& > Lnl_1 =’,Lnl_1
C Small signal gain
10dB gain -> 1071 = exp(2.30%0.5), Lg = L/gain, here Lg = L/1.15
0.5 is needed since E, not I=E"2 is used.
Lg 1 = L_1/(1.15%3.0)
C Gain saturation energy:
Esat_1 = To%4.0
C Gain bandwidth:
g2_1 = 800.0
C g2(THz) = g2*delta_f, where delta_f = (To/Treal)/tres
write(*,*) ’Lg_1 =’,Lg_1,’ cm’
write(*,*) ’Esat_1=’,Esat_1*Power*Treal/(To*1.0)/1000.0,’ pJ’
write(x,*) ’g2_1 =’,g2_1%1000%(To/Treal)/(tres*1.0), ’ THz’

write(*,*) ’Gain bandwidth = ’,

& Lambda**2/300.0%(g2_1*(To/Treal)/(tres*1.0)),’ nm’
write(19,*) ’Lg_1 =’,Lg 1,’ Esat_1 =’,Esat_1,’ g2_1 =’,g2 1,’ =7,
& Lambda**2/300.0%(g2_1*(To/Treal)/(tres*1.0)),’ nm’

Write(*,*%) 2 ——— e )



aQ Q o

aQ Qo Q

SEGMENT

k3
Dtot
L2d_2 =
L3d_2
n2
Aeff =
Gamma =
Lnl_2 =

All lengths are in cm (hence the 1/10.0 factors for Ld&Lnl).

1.580

Dtot + k2xL_2
Treal**2/k2/10.0
Treal**3/k3/10.0
2.3

100000.0

2.0%3.14/1lambda*n2/Aeff/10.0

1.0/ (power*Gamma)

k2: GVD parameter(ps~2/km)(+ -> normal)
n2: Kerr nonlinearity (107-8 um”2/W)

Aeff: effective mode area (um~2)

write(*
write(*
write(*
write(*
write(1
Small s
10dB ga

,¥) ’L_SMF2 =’,L_2,’ cm’
,*¥) ’Ld_SMF2 =’,L2d_2,’ cm’
,*¥) ’L3d_2 =’,L3d_2,’ cm’
,*¥) ’Lnl_SMF2 =’,Lnl_2,’ cm’
9,%)’L.2 =’,L_2,” Ld_2
ignal gain

in -> 1071 = exp(2.30%0.5), Lg = L/gain, here Lg = L/1.15

=’,L2d_2,’ Lnl_2 =’,Lnl_2

0.5 is needed since E, not i=E"2 is used.

Lg_2
Gain sa
Esat_2
Gain bai
g2_2
write(*
SEGMENT

k3 =
Dtot =
L2d_3 =
L3d_3 =
n2 =
Aeff =
Gamma =
Lnl_3

All lengths are in cm (hence the 1/10.0 factors for Ld&Lnl).

= L_2/(1.15%0.0001)
turation energy:

= Tox*1000.0
ndwidth:

= 5000.0

JK) Pmmmmmmmmmeone
3:
420.0
Ltot + L_3
22.4
0.10
Dtot + k2*L_3
Treal**2/k2/10.0
Treal**3/k3/10.0
2.3
30.0

2.0%3.14/1lambda*n2/Aeff/10.0

1.0/ (power*Gamma)

k2: GVD parameter(ps~2/km)(+ -> normal)
n2: Kerr nonlinearity (10°-8 um~2/W)

Aeff: effective mode area (um~2)

write(*
write(*
write(*

write(*

,%) ’L_3  =’,L_3,° cm’
,%) ’L2d_3 =’,L2d_3,’ cm’
,%) ’L3d_3 =’,L3d_3,’ cm’

,%¥) ’Lnl_3 =’,Lnl_3,’ cm’
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write(19,%)’ L_3 =’,L_3,” L2d_3 =’,L2d_3,’ L3d_3 =’,L3d_3,
& ’ Lnl_3 =’,Lnl_3
C Small signal gain
10dB gain -> 1071 = exp(2.30%0.5), Lg = L/gain, here Lg = L/1.15

0.5 is needed since E, not I=E"2 is used.

Lg_.3 = L_3/(1.15%0.0001)
C Gain saturation energy:
Esat_3 = To%*1000.0
¢ Gain bandwidth:
g2_3 = 10000.0
C g2(THz) = g2*delta_f, where delta_f = (To/Treal)/tres
C write(*,*) ’Lg_3 =’,Lg_3,’ cm’
C write(*,*) ’Esat_3=’,Esat_3*Power*Treal/(To*1.0)/1000.0,’ pJ’
C write(*,*) ’g2_3 =’,g2 1%1000%(To/Treal)/(tres*1.0), ’ THz’
C write(*,*) ’Gain bandwidth = ’,
C & Lambdax**2/300.0%(g2_3*(To/Treal)/(tres*1.0)),’ nm’
write(19,*) ’Lg_3 =’,Lg_3,’ Esat_3 =’,Esat_3,’ g2_3 =’,g2 3
C write(,%) J--—--mmmm oo ’
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C Total dispersion print-out
write (*,*) ’Total dispersion is ’, Dtot/100000.0,’ ps~2’
write (19,%) ’Dtot =’,Dtot/100000.0,’ ps~2’
C Cavity length
write (*,*) ’Repetition rate is ’, 20000.0/Ltot,’ MHz’
C Absorber saturation intensity:
Isat = 1.00
Iglobal = 0.0
close(19)
Close parameters file.
Open file to record simulation statistics:
open (18,file=’statistics’,status=’new’)
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C CAVITY ROUND-TRIP LOOP

DO pass = start + 1, totalpasses

write (*,%) == ——mm o ’
write (*,%) ’Roundtrip = ’, pass

Iglobal = 0.0

Calculate energy:

Energy = 0.0
Ipeak = 0.0
DO t=1,tres

Energy = Energy + Elast(t)*conjg(Elast(t))
Ip_dummy = Elast(t)*conjg(Elast(t))
IF (Ip_dummy.GT.Ipeak) THEN

Ipeak = Elast(t)*conjg(Elast(t))

ENDIF
ENDDO
write (*,%) ’Total energy im is’,
& Energy*Power*Treal/(To*1.0)/1000.0, ’ pJ’

c write (*,*) ’Peak power is’, Ipeak*Power,’ W’



criteria(mod(pass,5)+1) = Energy

write (*,*) criteria(l),criteria(2),criteria(3),

& criteria(4),criteria(b)

IF ((ABS(criteria(5)-criteria(4))/criteria(5).LT.0.000001).AND.
(ABS(criteria(4)-criteria(3))/criteria(4).LT.0.000001).AND.
(ABS(criteria(3)-criteria(2))/criteria(3).LT.0.000001).AND.
(ABS(criteria(2)-criteria(1))/criteria(2).LT.0.000001).AND.
(mod(pass,saveevery) .EQ.1)) THEN
write(*,*) "THE FIELD HAS CONVERGED !!!"

STOP

ENDIF
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C Propagation through SEGMENT 1:

C ______

write (*,*) ’Segment 1’

.

dz = 1./totalsteps
DO stepno = 1,totalsteps
CALL Propagate(Elast, dz, L_1, L2d_1, L3d_1, Lnl_1,
& Lg_1, Esat_1, g2_1, Raman)
IF (mod(stepno,zres).EQ.0) THEN
pageno=stepno/zres
DO t = 1,tres
Epage(t,pageno) = Elast(t)
ENDDO
END IF
Ipeak = 0.0
DO t=1,tres
Ip_dummy = Elast(t)*conjg(Elast(t))
IF (Ip_dummy.GT.Ipeak) THEN
Ipeak = Elast(t)*conjg(Elast(t))
ENDIF
ENDDO
IF (Ipeak.GT.Iglobal) THEN
Iglobal = Ipeak

ENDIF

ENDDO
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C Calculate energy:
C @ —————————————

Energy = 0.0

Ipeak = 0.0

DO t=1,tres

Energy = Energy + Elast(t)*conjg(Elast(t))
Ip_dummy = Elast(t)*conjg(Elast(t))
IF (Ip_dummy.GT.Ipeak) THEN

Ipeak = Elast(t)*conjg(Elast(t))

ENDIF
ENDDO
write (*,%) ’Total energy out is’,
& Energy*Power*Treal/(To*1.0)/1000.0 , ’> pJ’
c write (*,*) ’Peak power is’, Ipeak*Power,’ W’
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C 0C section

C __________

c DO t=1,tres

c Elast(t) = Elast(t)*sqrt(0.3)
c ENDDQ
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write (*,*) Ipeak
Icenter = Ipeak

C Saturable absorber action:

DO t=1,tres
rat = abs(Elast(t))*abs(Elast(t))/Isat
Elast1(t) = Elast(t)*sqrt(1.0 - 0.7/(1.0 + rat))
c Elast1(t) = Elast(t)*sqrt(0.3+0.7*(sin(3.14/2.0%rat))**2)

Epage(t,1) = Elast(t) - Elasti(t)
Elast(t) = Elast1(t)
ENDDO
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C 0C section
C __________
DO t=1,tres
Elast(t) = Elast(t)*sqrt(0.12)
ENDDO
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C Propagation through SEGMENT 2:
C ______

write (*,*) ’Segment 2a’
dz = 1./maxpage
DO stepno = 1,maxpage
CALL Propagate(Elast, dz, L_2, L2d_2, L3d_2, Lnl_2,
& Lg_2, Esat_2, g2_2, Raman)
C IF (mod(stepno,zres).EQ.0) THEN
pageno=stepno + maxpage
DO t = 1,tres
Epage(t,pageno) = Elast(t)
ENDDO
C END IF
Ipeak = 0.0
DO t=1,tres
Ip_dummy = Elast(t)*conjg(Elast(t))
IF (Ip_dummy.GT.Ipeak) THEN
Ipeak = Elast(t)*conjg(Elast(t))
ENDIF
ENDDO
IF (Ipeak.GT.Iglobal) THEN
Iglobal = Ipeak

ENDIF
ENDDO
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C Propagation through SEGMENT 3:

c ______
write (*,%) ’Segment 3’




dz = 1./totalsteps
DO stepno = 1,totalsteps
CALL Propagate(Elast, dz, L_3, L2d_3, L3d_3, Lnl_3,
& Lg_3, Esat_3, g2_3, Raman)
IF (mod(stepno,2).EQ.0) THEN
pageno=stepno/2 + maxpagex2
DO t = 1,tres
Epage(t,pageno) = Elast(t)
ENDDO
END IF
Ipeak = 0.0
DO t=1,tres
Ip_dummy = Elast(t)*conjg(Elast(t))
IF (Ip_dummy.GT.Ipeak) THEN
Ipeak = Elast(t)*conjg(Elast(t))
ENDIF
ENDDO
IF (Ipeak.GT.Iglobal) THEN
Iglobal = Ipeak
ENDIF
ENDDO
write (*,%) ’Overall peak power is’, Iglobal*Power,’ W’
write (18,*) pass, Icenter, Iglobal
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C Save the results to a file:
C —_—
IF (mod(pass,saveevery).EQ.0) THEN
write (*,*) ’Saving rountrip number ’, pass
dl = int(pass/1000)

d2 = int(pass/100 - 10xd1)
d3 = int(pass/10 - 100*d1 - 10xd2)
d4 = int(pass - d1*1000 - d2*100 - d3%10)

dl = dl + 48

d2 = d2 + 48

d3 = d3 + 48

d4 = d4 + 48

no = char(d1)//char(d2)//char(d3)//char(d4)
filename = ’data’ // no

open (19,file=filename,status=’new’)
DOt =1, tres
DO page = 1, totalpages
Ereal = dreal(Epage(t,page))
Eimag = dimag(Epage(t,page))
write (19,%) t, Ereal,Eimag
ENDDO
ENDDO
close(19)
ENDIF
ENDDO
close(18)
stop

end
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SUBROUTINE Propagate(Elast, dz, L, L2d, L3d, Lnl,Lg,Esat,g2,Raman)
parameter (tres = 4096)
dimension Elast(tres)
double precision dz, L, L2d, L3d, Lnl, Lg, Esat, g2, Raman
double precision factor
double complex Elast, zero
integer t
zero = 0.0
CALL PropDS(Elast, L, L2d, L3d, dz/2, Lg, Esat, g2)

CALL PropNL(Elast(1),L,Lnl,dz,Elast(3),Elast(2),Elast(tres),
& Elast(tres-1),Raman)
CALL PropNL(Elast(2),L,Lnl,dz,Elast(4),Elast(3),Elast(1),
& Elast(tres),Raman)
DO t = 3,tres-2
C CALL EdgeFilter(factor,t)
C Elast(t) = Elast(t)*factor
CALL PropNL(Elast(t),L,Lnl,dz,Elast(t+2),Elast(t+1),Elast(t-1),
& Elast(t-2),Raman)
ENDDO
CALL PropNL(Elast(tres-1),L,Lnl,dz,Elast(1), Elast(tres),
& Elast(tres-2),Elast(tres-3),Raman)
CALL PropNL(Elast(tres),L,Lnl,dz,Elast(2), Elast(1),
& Elast(tres-1),Elast(tres-2),Raman)
CALL PropDS(Elast, L, L2d, L3d, dz/2, Lg, Esat, g2)
return
end
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SUBROUTINE PropDS(E, L, L2d, L3d, dz, Lg, Esat, g2)
parameter (tres = 4096, To = 4)
dimension E(tres), Ef(tres)
double precision L, L2d, L3d, dz, Lg, Esat, g2, Energy
double complex E, Ef
integer fres, f
fres = int(tres)

CALL dfour1(E,fres,1)
Energy = 0.0
C Finite gain bandwidth is imposed here:
DO f=1,(fres/2+1)
Ef(f) = E(f)*exp( 2.%(0,1)*(3.141592654*(f-1)*To/fres*1.0)**2

& *L/L2d*dz

& - (0,1)/6.%(2%3.141592654* (f-1)*To/(fres*1.0))**3*L/L3d*dz
C & -(0,1)/24.%(2%3.141592654* (f-1)*To/(fres*1.0) ) **x4*L/L4d*dz
C & =(0,1)/120.%(2%3.141592654* (f-1)*To/ (fres*1.) ) **5*L/L5d*dz

& + (0,1)*((2%(£-1)/g2)-(0,1))
&/ (1+(2%(£-1)/g2)*%2) /2.xdz - dz/2. )
Energy = Energy + Ef(f)*conjg(Ef(£))
ENDDO
DO f=(fres/2+2),fres
Ef(f) = E(f)*exp( 2.%(0,1)*(3.141592654* (f-1-fres)*To/fres)**2
& *L/L2d*dz
& - (0,1)/6.%(2%3.141592654* (f-1-fres)*To/(fres*1.0))**3*L/L3d*dz



C & - (0,1)/24.%(2%3.141592654*(f-1-fres)*To/(fres*1.0))**4*L/L4d*dz
c & - (0,1)/120.%(2%3.141592654* (f-1-fres)*To/(fres*1.))**5*L/Lbd*dz
& + (0,1)*((2*(f-1-fres)/g2)-(0,1))
&/ (1+(2+(f-1-fres)/g2) **2) /2.*xdz - dz/2.)
Energy = Energy + Ef(f)*conjg(Ef(f))

ENDDO
(¢ The saturating of gain is included in the form g = g0/(1+E/Esat).
C There is a division by fres since the magnitude of I increases by
C a factor of fres due to the FFT.

DO f=1,fres

E(f) = Ef(f)*exp(L/Lg*dz/(1.0 + (Energy/fres/Esat)))

ENDDO

CALL dfourl(E,fres,-1)

DO f=1,fres

E(f) = E(f)/fres
ENDDO
return
end
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SUBROUTINE PropNL(E, L, Lnl, dz, Eup2, Eup, Edown, Edown2, Raman)
double complex E, Eup, Eup2, Edown, Edown2
double precision L, Lnl, dz, Raman, Steep

double complex k1, k2, k3, k4

C Adding a d/dt(|A|) term here to account for Raman. Taking derivative using
C (f(x+h) - f£(x-h))/2h, where h=1 (one t-component). BEWARE this method is
C prone to numerical error. This is only a crude approximation
C for smooth pulses.
C dI is d/dt(|Al). Scaling is
dI = (Eup*conjg(Eup) - Edown*conjg(Edown))/2.0
Steep = 0.0
k1=dz*(0,1)*L/Lnl*E*conjg(E)*E
& - dzx(0,1)*L/Lnl*Ramanx*
& (-Eup2*conjg(Eup2) + 8*Eup*conjg(Eup) - 8*Edown*conjg(Edown)
& + Edown2*conjg(Edown2))/12.0%E
(¢ & - dz*L/Lnl*Steep/Ex*
C & (Eup**2*conjg(Eup) - Edown¥*2%conjg(Edown))/2*E
k2=dz*(0,1)*L/Lnl*(E+k1/2.0)*conjg(E+k1/2.0)*(E+k1/2.0)
& - dz*(0,1)*L/Lnl*Ramanx*
& ( -(Eup2+k1/2.0)*conjg(Eup2+k1/2.0)
& + 8% (Eup+k1/2.0)*conjg(Eup+k1/2.0)
& - 8x(Edown+k1/2.0)*conjg(Edown+k1/2.0)
& + (Edown2+k1/2.0)*conjg(Edown2+k1/2.0))/12.0%(E+k1/2.0)
C & - dz*L/Lnl*Steep/(E+k1/2)*
C & ( (Eupt+k1/2)**2%conjg(Eup+k1/2)
C & - (Edown+k1/2)**2*conjg(Edown+k1/2) )/2*(E+k1/2)
k3=dz*(0,1)*L/Lnl*(E+k2/2.0)*conjg(E+k2/2.0)* (E+k2/2.0)
& - dz*(0,1)*L/Lnl*Ramanx*
& ( -(Eup2+k2/2.0)*conjg(Eup2+k2/2.0)
& + 8x(Eup+k2/2.0)*conjg(Eup+k2/2.0)
& - 8%(Edown+k2/2.0)*conjg(Edown+k2/2.0)
& + (Edown2+k2/2.0)*conjg(Edown2+k2/2.0))/12.0%(E+k2/2.0)
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C & - dz*(0,1)*L/Lnl*Steep/ (E+k2/2)*
c & ( (Eupt+k2/2)**2%conjg(Eup+k2/2)
C & - (Edown+k2/2)**2xconjg(Edown+k2/2) )/2*(E+k2/2)
k4=dz*(0,1)*L/Lnl*(E+k3) *conjg(E+k3) * (E+k3)
& - dzx(0,1)*L/Lnl*Ramanx*
& ( -(Eup2+k3)*conjg(Eup2+k3)
& + 8% (Eup+k3)*conjg(Eup+k3)
& - 8x(Edown+k3)*conjg(Edown+k3)
& + (Edown2+k3)*conjg(Edown2+k3))/12.0% (E+k3)
C & - dz*(0,1)*L/Lnl*Steep/(E+k3/2)*
C & ( (Eup+k3/2)**2%conjg(Eup+k3/2)
C & - (Edown+k3/2)**2*conjg(Edown+k3/2) )/2%(E+k3/2)
E= E + k1/6. + k2/3. + k3/3. + k4/6.
return
end
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SUBROUTINE EdgeFilter(factor,t)

parameter (tres = 4096)

double precision factor, mask

integer t

mask=100.

IF (t.GT.mask.AND.t.LT.(tres-mask+1)) THEN
factor=1

ELSEIF (t.LE.(mask+1)) THEN

factor=exp(-(t-mask)**2/(mask**2/100.))

ELSE
factor=exp(-(tres-t-mask+1)**2/(mask**2/100.))
END IF
C t=1:(mask) and (tres-mask):(tres) attenuated very strongly w/ ga-mask.
return
end
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SUBROUTINE dfouril(data,nn,isign)
INTEGER isign,nn
DOUBLE PRECISION data(2*nn)
INTEGER i,istep,j,m,mmax,n
DOUBLE PRECISION tempi,tempr
DOUBLE PRECISION theta,wi,wpi,wpr,wr,wtemp
n=2*nn
j=1
do 11 i=1,n,2

if(j.gt.i)then
tempr=data(j)
tempi=data(j+1)
data(j)=data(i)
data(j+1)=data(i+1)
data(i)=tempr
data(i+1)=tempi

endif

m=n/2

1 if ((m.ge.2).and.(j.gt.m)) then

j=j-m
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m=m/2
goto 1
endif
j=j+m
11 continue
mmax=2
2 if (n.gt.mmax) then
istep=2*mmax
theta=6.28318530717959d0/ (isign*mmax)
wpr=-2.d0*sin(0.5d0*theta) **2
wpi=sin(theta)
wr=1.d0
wi=0.d0
do 13 m=1,mmax,2
do 12 i=m,n,istep
j=i+mmax
tempr=wr*data(j)-wixdata(j+1)
tempi=wrxdata(j+1)+wi*data(j)
data(j)=data(i)-tempr
data(j+1)=data(i+1)-tempi
data(i)=data(i)+tempr
data(i+1)=data(i+1)+tempi
12 continue
wtemp=wr
Wr=wriwpr-wixwpi+wr
wi=wikwpr+wtemp*wpi+wi
13 continue
mmax=istep
goto 2
endif
return
END

A.2 MATLAB Routines for Data Visualization and Anal-
ysis

The sample codes presented below are representative of the MATLAB routines
used for graphical analysis of the output of the main simulator code. The file
“ld.m” is a routine for the simple but time-consuming task of loading the raw data
into memory. The routine “plt.m” is used for analyzing the data and for producing
plots of the temporal intensity profile, the temporal phase profile and the spectrum

of the optical field at a previously-recorded position along the optical medium.
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The “page” parameter specifies the position. Since it is generally desirable to run
“plt.m” for different values for “page”, the time is saved by loading the data using

“Id.m” only once.

A.2.1 “LD.M”: Routine for Loading the Data to Memory

global loadeddata

% This MATLAB routine loads the data to memory.

format compact

number = input(’Enter data file number: ’,’s’)
isstr(number)

name = strcat(’data’,number);

loadeddata = load(name);

A.2.2 “PLT.M”: Analysis and Visualization Routine

function[]= plt(page)

% This MATLAB routine calculates the basic pulse parameters and

% plots the temporal intensity and phase profiles and the spectrum.
global loadeddata

global tres

% Set the global paraters

tres = 4096; % Number of time bins to store data

maxpage = 72; % Number of pages that store data

To = 4.0; % Number time bins corresponding to Tr

Tr = 100; % Basic temporal unit, in units of femtoseconds

conv = 1.665; % Conversion factor for Gaussian/Sech(t) pulse shapes
power = 10000.0; % Power scaling, in units of watts.

lambda_c= 1032.0; % Center wavelength of the spectrum.
% Convert data to E-field info:
E = zeros(tres,1);
for t = 1l:tres;
E(t,1) = loadeddata((t-1)*maxpage+page,2) + i*loadeddata((t-1)*maxpage+page,3);
end
E = shiftbyn(E’,tres/2)’;
t=1:tres;
% Set the axes:
% Set the time axis:
treal = (t-tres/2)*Tr/To/conv;
% scaling info: t-factor is
% delta_t = 8bfs(real pulse width)/To(pulse width in sim)/1.665(Gauss)
% Set the frequency axis:
fr = 300000/1lambda_c+(t-tres/2)*1000*(Toxconv/Tr)/(tres*1.0);
% scaling info: delta_f is 1000/(delta_t)/tres
% Set the wavelength axis:
for x = 1l:tres;
lambda(x) = 1000%300.0./fr(x);



end
Inten
Phase

abs (E) . *abs (E) *power;
angle(E);

Spect=spectrum(E’) ;

Inten

Imax =

for x

shiftbyn(Inten’,tres/2)’;
% Pulse parameters are calculated below:

0.0;

1:tres;

if Inten(x) > Imax

Imax =
end
end
Ppeak

for x

if (Inten(x) < Imax/2.0) & (Inten(x+1) >=

Inten(x);

Imax*power

1:tres-1;

leftside = x;

end

if (Inten(x) > Imax/2.0) & (Inten(x+1) <=

rightside = x;

end

end

deltaT = (rightside - leftside)*Tr/To/conv/1000.0
0.0;

Imax =

for x

1:tres;

if Spect(x) > Imax

Imax =
end
end

for x

if (Spect(x) < Imax/2.0) & (Spect(x+l) >=

pect(x);

1:tres-1;

leftside = fr(x);

end

if (Spect(x) > Imax/2.0) & (Spect(x+1) <=

rightside = fr(x);

end

end

deltaFrequency = (rightside - leftside);

deltalambda = deltaFrequency*lambda_c*lambda_c/300/1000
Energy = sum(Inten)*power*Tr/To/conv/1000.0

% Set below to if 1 to export the data to text files:

if 0

fid = fopen(’inten.txt’,’w’);

for x=1:tres;

fprintf(fid, ’%5.4f %2.12f\n’,treal(x),Inten(x));

end

fclose(fid);
fid = fopen(’spec.txt’,’w’);

for x=1:tres;

fprintf(fid, ’%5.4f %2.12f\n’,fr(x),Spect(x));

end

fclose(fid);

fid = fopen(’phase.txt’,’w’);
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for x=1:tres;

fprintf(fid, ’%5.4f %2.12f\n’,treal(x),Phase(x));
end

fclose(fid);

end

% Calculate intensity autocorrelation

%

%signal_auto = convn(Inten.*Inten,Inten.*Inten);
%automax = max(signal_auto);

%signal_auto = signal_auto./automax;

%

%Inten = shiftbyn(Inten’,3031);

h

%signal_iAC = iAC(Inten’,1);
subplot(1,3,1)

plot(treal,Inten(:)), axis tight, grid on
title(’Intensity Profile’)
ylabel(’Intensity (A. U.)’)

xlabel(’Time Delay (fs)’)

subplot(1,3,2)

plot(treal,Phase(:)), grid on, axis tight
title(’Phase Profile’)

ylabel(’Phase (rad)’)

xlabel(’Time Delay (fs)’)

subplot(1,3,3)

plot(lambda,Spect(:)), grid on, axis tight
title(’Spectrum’)

ylabel(’Intensity (A. U.)’)
xlabel(’Wavelength (nm)’)

A.2.3 “AUTOCORR.M”: Auto-correlation Routine

function [] = autocorrelation()

% This MATLAB routine calculates the time domain intensity profile,
% and the interferometric autocorrelation traces from a
% given spectrum.

% Number of time bins.

tres = 4096;

% Load the data

load fielddata.dat

field(:,1) = fielddata(:,2);

time(:,1) = fielddata(:,1);

field=field’;

% Calculate interferometric autocorrelation

signal_iAC = iAC(field,1);

subplot(2,1,1)

plot(time,field."2), grid omn, axis tight

subplot(2,1,2)

plot(time,signal_iAC), grid om, axis tight

% Export the data to a file in ASCII format.

fid = fopen(’iAC.txt’,’w’);
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for x=1:tres;

fprintf(fid, ’%5.4f %2.6f %2.6f\n’,time(x),signal_iAC(1,x),signal_iAC(2,x));
end

fclose(fid);

A.2.4 “TAC.M”: Routine for Correlation Calculation

function signal=iAC(field,k)

% This MATLAB routine calculates the interferometric autocorrelation of

% the input field

[d,n]=size(field);

halfn=floor(n/2);

acup=field*0;

aclo=field*0;

for j=1:(halfn)
shifted=k*shiftbyn(field,j);
fielddiff=field-shifted;
fieldsum=field+shifted;
acup(halfn+j)=sum(fieldsum."4);
aclo(halfn+j)=sum(fielddiff."4);
shifted=k*shiftbyn(field,-j);
fielddiff=field-shifted;
fieldsum=field+shifted;
acup(halfn-j+1)=sum(fieldsum."4);
aclo(halfn-j+1)=sum(fielddiff."4);

end

%acup(halfn)=sum((1+k) “4*field."4);

%aclo(halfn)=sum((1-k) “4*field."4);;

aclo=aclo/abs(acup(halfn))*8;

acup=acup/abs(acup(halfn))*8;

base = aclo(1);

%acup = acup - base;

%aclo = aclo - base;

signal=[acup-base; aclo-base];



Appendix B
A Practical Guide to Femtosecond Fiber

Oscillators

In this section, the leading design criteria are summarized and the construction
of a fiber oscillator is discussed. We estimate that around 20 oscillators and 10
amplifiers have been built during this thesis work, which have had several hundred
versions in total. It is neither possible, nor necessary to recall the different designs
and issues related to this body of experimental background. Many of the crucial
aspects are common to all of these systems as will be discussed here. A Yb-doped

fiber oscillator similar to the one described in Ref. [1] will serve as the model.

B.1 Building the Cavity

The construction of the cavity consists of two steps, formation of the fiber section
and the bulk optics section. The schematics of the oscillator that is adopted as a
model for the section is presented in Fig. B.1.

We begin with the fiber section. The important parameters are the total length
of the fiber section and the length of the Yb fiber. Light is taken out of and coupled
back into the fiber with the use of fiber collimators (collimator info goes here).
Following the direction of pulse propagation, the fiber collimator at the end of the
free-space propagation section is followed by a segment of SMF which connects to
the 980/1030 nm WDM coupler (Lightel, put further info here). The pump lead of
the WDM coupler is connected to the pump laser diode. The incoming pulse and

the 980 nm pump light is combined at the WDM coupler which connects to the Yb
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NPE port
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o 7 & =
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Yb-doped fiber

single-mode fiber

Figure B.1: Experimental setup. HWP: half-wave plate, QWP: quarter-wave plate,

PBS: polarizing beam splitter.

fiber. The individual lengths of the collimator, WDM coupler fibers are relatively
unimportant, as long as the total length is well-known and matches the desired
value. Since all of the fiber-to-fiber connections are between standard SMF, very
low splice losses are to be expected (0.01-0.03 dB). The length of the Yb fiber is
more important due to its high doping level and should be within 20-24 cm for
maximum efficiency. Following amplification in the Yb fiber, the pulses attain
their maximum energy. Therefore, length of the lead fiber of the exit collimator
should be absolutely minimized. Splicing of this particular Yb fiber to SMF is not
easy and splice losses up to 0.12 dB should be expected.

The layout of the bulk optical components section is quite simple. A bird’s
eye view of an oscillator in our laboratory is presented in Fig. B.2. A quarter-
waveplate converts the elliptical polarization out of the fiber to approximately

linear polarization. A half-waveplate controls the alignment of the polarization
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Figure B.2: Picture of the experimental setup.

axis with respect to the polarizing beamsplitter cube. The polarizing cube converts
the nonlinear polarization rotation to amplitude modulation. The portion of the
pulse diverted out of the cavity by the polarizing cube serves as the output port.
An isolator is placed after the cube to ensure unidirectional operation. The grating
section can be implemented using two pairs of gratings as in Fig. B.2 or using one
folded pair to minimize the number of components and the space required. Finally,
a quarter-waveplate placed before the fiber section converts the linear polarization
to elliptical polarization. The alignment of the bulk optical components are quite
easy, but some care is necessary in setting up the grating section to ensure that no

spatial chirp is imparted on the beam.
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B.2 Mode-locking the Oscillator

Once the construction of the cavity is completed and good cw operation is ob-
tained, one can proceed to mode-locking the laser. As a first step the maximum
cw power extracted from the polarizing cube should be determined by adjusting
the waveplates. To initiate mode-locking, it is most useful to monitor the spec-
trum as the wave-plates are adjusted. Unfortunately, there is not reliable method
to guide the search for the right combination of the wave-plate orientations. Typ-
ically, there are three wave-plates, hence they form a three dimensional phase
space which is too large to search exhaustively. Due to this fact, in practice this
search is almost completely random. A few indicators can be useful, though. If
the cw-component(s) are virtually fixed at certain wavelength(s) as the waveplates
are rotated in a particular area of the phase space, that is not a good indication.
This empirical observation can be rationalized by arguing that mode-locked oper-
ation corresponds to the instability of cw-operation. A jumpy cw-spectrum can be

argued to be an indication of of the onset of instability for cw operation.

B.3 A Summary of Design Considerations

The following guide may be helpful for the design of a fiber oscillator. A Yb fiber
oscillator similar to those described in this thesis is assumed, however, most of the

criteria should be generally applicable to fiber lasers.

e Unidirectional operation (ring cavity) is highly advisable due to ease of mode-

locking [2].

e For given pump power, length of the fiber section cannot be chosen arbitrar-

ily. If the fiber is too short, self-starting operation becomes unattainable.
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This is due to two reasons: A shorter fiber section means reduced length
of the nonlinear medium and a higher repetition rate which translates to
lower energy storage in the cavity. In practice, mode-locking operation at

repetition rates above 80 MHz is difficult to self-initiate.

Similarly, if the fiber is too long, other problems emerge. Most notably, since
the nonlinear medium is longer, and more energy is stored in the cavity,
multiple-pulsing is likely to plague mode-locked operation. However, the
simple scaling argument of maintaining the integral of pulse energy over the
fiber length breaks down for very long cavities. In other words, arbitrarily low
repetition rate operation of a fiber oscillator is not possible. Reliable, single-
pulsed mode-locking becomes progressively more difficult for repetition rates
below 20 MHz and it was not possible below 10 MHz in our studies. While
the exact reason for this limit is under investigation, our working hypothesis
is that residual birefringence of the fiber is interfering with the nonlinear

polarization evolution which acts as the saturable absorber.

As mentioned above, the residual birefringence of the fiber adversely effects
mode-locked operation. To minimize birefringence, twists and turns should

be avoided while laying down the fiber.

For shortest pulse generation, net dispersion should be set to a small, negative
value, Bper = 0 to —0.015 ps?. The exact value for minimum pulse duration
depends the details of the oscillator design. The shortest pulse duration

obtained during this thesis study was 37 fs [3].

Conditions for generation of the cleanest pulses also correspond to operation

at small, net anomalous GVD, but in addition, it is advisable to minimize
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the fiber length between the gain fiber and the extraction port.

If desired, output coupling with a standard fiber-coupler is possible as has
been demonstrated in the laser described in Chapter 3 and in Ref. [4]. This
way, high-quality pulses can be obtained in fiber with the main drawback
being reduced pulse energy. Output coupling ratios in excess of 10% run the
risk of destabilizing mode-locked operation, although we have had success
with up to 30% [5]. This method of output coupling is particularly suited

to seeding a fiber amplifier.

For the generation of highest pulse energies, it is advisable to operate with
small, normal $3,.;, with an optimum value of 3,.; ~ 0.005 ps®>. As argued
previously, ideally larger normal GVD should be better, however this is not
possible at the present time. We attribute this to the limitations of artificial
saturable absorber. If available, a slow semiconductor saturable absorber

should be able to greatly reduce this limitation [1].
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