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Spatiotemporal Dynamics…

Introduction to nonlinear pulse propagation

Recent progress in multimode nonlinear propagation

 Solitons in multimode GRIN fiber: formation and fission

 Multimode continuum generation

 Spatiotemporal dispersive waves

 Spatiotemporal modulation instability

 Beam self-cleaning

Future directions / toward applications



Spatiotemporal Dynamics…

 Pulse propagation in multimode fiber is spatiotemporally complex
 4D vector field

 Our job is to figure out basic processes, building blocks, and “rules”



Introduction to Nonlinear Wave Propagation



Short pulses: dispersion

n = n(w)
v(w) = c/n(w)



Dispersive phase accumulation
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Nonlinear propagation (c(3))
• n = n0 + n2I 
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Nonlinear propagation (c(3))
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Soliton formation

(anomalous) dispersion cancels nonlinearity for 
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Soliton formation
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Soliton formation

• Soliton is a nonlinear attractor 



Linear wave propagation
• pulse spreads owing to group-velocity dispersion

• beam spreads owing to diffraction
t



n = n0 + n2I 

Nonlinear propagation (c(3))

nonlinear phase shift produces self-focusing

r
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n = n0 + n2I 

Nonlinear propagation (c(3))

nonlinear phase shift produces self-focusing



Critical power

 diffraction balances self-focusing for 
P = Pcr ~ 5 MW in glass 

n(I)=n0 + n2 In(I)= n0+n2I diffraction  



Critical power

 diffraction balances self-focusing for 
P = Pcr ~ 5 MW in glass

 2D: unstable against collapse



Why are solitons so important? 

 A continuous wave breaks into temporal components



Why are solitons so important? 
 In general, waves in nonlinear media are unstable

Modulation Instability

 A beam breaks into its component solitons

 Stable products of instability are “eigenmodes” of nonlinear systems



If they exist, solitons are important 
 as stable wave packets (sometimes nonlinear attractors)
 as components of arbitrary fields

In 1D solitons underlie
 modelocked lasers
 continuum generation
 breathers, Peregrine soliton
 rogue waves
 …

2D and 3D: solitons are unstable

Why are solitons so important? 



Multimode waveguides: between 1- and 3-D

https://commons.wikimedia.org/wiki/File:Optical_fiber_types.svg



Why study propagation in multimode fiber now?

 Little work on multimode nonlinear pulse propagation before 2013 

 Recent theoretical, computational advances
e.g., transfer matrix, principal modes,…

 Relevance to multicore fibers                                     Huang et al., Opt Exp 2014



Why study propagation in multimode fiber now?

 Laser/ amplifier / transmission applications

 Spatial division multiplexing in telecom

Agrell et al., J Opt 2016

 Imaging through multimode fiber/
complex media

Ploschner et al., Nature Photon 2015



Graded-index (GRIN) multimode fiber



LP01 LP02 LP03 LP04 LP05

LP11a

LP11b

LP21a

LP21b

LP12a

LP12b

Modes of GRIN fiber



Modes of GRIN fiber

 Propagation constants equally-spaced

 Velocities of modes vary much less than in step-index fiber



Experiments

?

fs or ns pulses
energy up to 1 mJ

peak power kW to MW
1550 nm
1050 nm
532 nm

multimode fiber
parabolic index profile

1 – 100 m



What should we measure?

 Broadband space-time diagnostic does not exist

 Record overall average spectrum to compare to calculated
 Image near-field on autocorrelator
 Compute spatiotemporal autocorrelation for comparison



Multimode Solitons



Linear propagation



Multimode soliton formation



First steps: 3 modes

62.5/125 mm GRIN fiber
supports ~100 modes

SMF28
50 cm

 Excite 3 lowest modes

10 mm MFD



Experiment

300 fs
1550 nm
0.1 - 5 nJ

62.5/125 mm GRIN fiber
100 m

SMF28
50 cm

Ldisp ~ 1 m



Experimental results
 For E < 0.1 nJ pulse disperses

 0.5 nJ pulse energy

input
output

input                              output



3 modes: theory

• Launch 0.5 nJ / 300 fs

• Coupled-mode theory and beam-propagation give similar results



Intuitive picture

Renninger et al., Nature Commun 2013

 Solitons with more modes require greater nonlinear phase / energy
 Solitons with up to 10 modes generated

Wright et al., Opt Exp 2015



Multimode soliton formation



Multimode soliton formation



Multimode soliton fission



Multimode soliton fission: experiment

 Smaller peaks in AC from 
less-localized modes

 Intermodal energy transfer 
during, after fission

Simulation

Experiment



Multimode soliton fission: experiment 

Simulation

Experiment



Multimode soliton fission

 Fission produces multiple MM solitons and MM dispersive waves

 Fission is spatiotemporal

 Raman “focuses” energy into the low-order mode
Wright et al., Opt Express 2015



Continuum Generation



Experiments

?

500 fs
energy up to 1 mJ

peak power up to MW
1550 nm

multimode fiber
supports ~100 modes

1 m



Experiments

?
Adjust position to excite 
different mode combinations 



Spatial conditions determine the continuum

Typical 
IR

Typical
visible



Spatial conditions determine the continuum



Spatial conditions determine the continuum



Spatial conditions determine the continuum



Spatial conditions determine the continuum



Spatial conditions determine the continuum



What is the origin of bright visible peaks?

simulation

experiment



Perturbation of solitons (1D tutorial)
 Perturbed soliton adjusts to reach                            

and radiates dispersive wave

 Periodic perturbation (period = Zc)
Resonant energy transfer when wave vectors match

Gordon, J Opt Soc Am B 1992



Spatiotemporal oscillations



Theory and experiment

 Simulation, experiment and analytic theory agree well 

Wright et al., Phys Rev Lett 2015
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Oscillations about equilibrium as an instability: 
why more degrees of freedom matters



 Continuum is controllable through launched spatial modes

 Spatiotemporal oscillation leads to the generation of 
multimode dispersive waves

 Phenomenon understood in terms of multimode soliton dynamics

Wright et al., Nature Photon 2015
Wright et al., Phys Rev Lett 2015



Spatiotemporal Modulation Instability



Spatiotemporal modulation instability

Time (ps)

x (m
m)

 Launch continuous wave or long pulse at normal dispersion



Spatiotemporal modulation instability

Intensity (dB)

Longhi, Opt Lett 2003
Matera et al., Opt Lett 1993

Nazemosadat et al., JOSA B 2016

 Periodic self-imaging plays a role
 Instability occurs for either sign of dispersion



Spatiotemporal MI in GRIN fiber

Krupa et al., Phys Rev Lett 2016

?

~1 ns
125 nJ

1064 nm

multimode fiber
supports ~100 modes

6 m



Spatiotemporal MI in GRIN fiber

 Geometric parametric instability: periodic self-imaging of field allows 
quasi-phase-matching of 4WM sidebands

Krupa et al., Phys Rev Lett 2016



Beam Self-Cleaning in Multimode Fiber



Beam self-cleaning in GRIN fiber

Krupa et al., arXiv 2016

?

~1 ns
5 mJ

1064 nm

multimode fiber
supports ~100 modes

12 m



Beam self-cleaning in GRIN fiber

Krupa et al., arXiv 2016

~1 ns
5 mJ

1064 nm

multimode fiber
supports ~100 modes

12 m



Beam self-cleaning in GRIN fiber

 P << Pcr

 Negligible dissipation

 Spatial coherence enhancement

Krupa et al., arXiv 2016



Beam self-cleaning in GRIN fiber

 Simulations show that Kerr nonlinearity underlies self-cleaning
Krupa et al., arXiv 2016



400 ps
100 mJ

1064 nm

GRIN fiber
50 mm core

28 m

High-power continuum

Lopez-Galmiche et al., Opt Lett 2016



High-power continuum

 Continuum from spatiotemporal MI, geometric parametric instability, 
Raman, and other 4-wave mixing processes

 Self-cleaning confirmed

 Speckle-free output with moderate M2

 80 mJ pulse energy

 Route to compact, bright, multi-octave continuum
Lopez-Galmiche et al., Opt Lett 2016



Self-cleaning of femtosecond pulsed beams

Z. Liu et al., 2016

60 fs
50 nJ

1035 nm

multimode fiber
supports ~200 modes

1 m



Self-cleaning of femtosecond pulsed beams

Z. Liu et al., 2016

 P < Pcr

 Negligible dissipation

 Temporal coherence maintained



Self-cleaning of femtosecond pulsed beams

 Kerr nonlinearity underlies self-cleaning
 Process independent of pulse duration

Z. Liu et al., 2016



Implications / Future Directions



Multimode solitons

 Solitons in few-mode fibers

 Mode-resolved studies

Nicholson et al., JSTQE 2009

LP01 LP11a LP11b



Classical wave condensation

Wave turbulence theory
 random optical waves can “thermalize” 

 initial incoherent field self-organizes to form large coherent structure 
 equipartition of energy in higher-order modes

 2D + parabolic waveguide: 
condensation predicted theoretically

Aschieri et al., Phys Rev A 2011



Optical turbulence

 Optical wave turbulence studied in 1D systems
 True turbulence requires 3D



Effects of disorder and dissipation

 Introduce 
random mode coupling
gain, loss

 Complex system 
 Controllable and measurable
 Testbed for 

cooperative phenomena
self-organized critical behavior

Wright et al., arXiv 2016



Relevance to telecommunications

 N modes  N channels

 Multimode solitons versus independent channels

 Strongly-coupled mode groups: Manakov solitons

Mecozzi et al., Opt Exp 2012
 Instabilities may limit transmission



Relevance to telecommunications

Multimode fibers are small-world networks
 Coupling is primarily between nearest neighbors
 “Shortcut” links can lead to a strong-coupling transition, many-

mode self-organization

 Need to understand many-mode nonlinear interactions 
Mode-dependent gain and loss
Mode-dependent, longitudinally-varying disorder

A small-world network
Strogatz, Nature 2001



Multimode soliton lasers

A multimode fiber laser is a new environment for nonlinear waves. It adds
 spatially-dependent gain, saturable absorption
 spatial and spectral filtering



Multimode soliton lasers

Multimode fiber lasers can have much higher energy than single-mode 
fiber lasers

 Larger mode area



Multimode soliton lasers

Multimode fiber lasers can have much higher energy than single-mode 
fiber lasers

 Larger mode area

single mode fiber Aeff = 50-100 µm2
large-mode-area microstructure fiber Aeff ~ 5,000 µm2
single higher-order mode Aeff ~ 3,000 µm2
multimode fiber Aeff > 30,000 µm2

(1550 nm)



Multimode soliton lasers

Multimode fiber lasers can have much higher energy than single-mode 
fiber lasers

 Larger mode area
 Modal dispersion

 



Multimode soliton lasers

Multimode fiber lasers can have much higher energy than single-mode 
fiber lasers

 Larger mode area
 Modal dispersion
 New (spatiotemporal) pulse evolutions

Role of spatiotemporal instabilities?
Ultimate limit from self-focusing



Overall Summary

 Multimode fiber supports a variety of new spatiotemporal phenomena

 Initial results indicate that multimode solitons will 
help understand complex dynamics

 Relevance of nonlinear dynamics to applications 
• High-power, multi-octave continuua
• Connection to optics of complex media
• Space-division multiplexing in telecommunications
• Laser / amplifier / transmission applications
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Multimode fibers

 In GRIN fiber, modes have similar group velocities

Step-Index GRIN



Single-field model for GRIN fiber

diffraction                    dispersion        index profile             Kerr



Single-field model for GRIN fiber

 Gross-Pitaevskii equation



Coupled mode analysis

“GMMNLSE”
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