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This thesis presents experimental and theoretical investigations of processes

involving the propagation of short optical pulses in second order nonlinear materi-

als. Since pulse propagation in these materials involves the nonlinear coupling of

fields at different frequencies, the dynamics are rich, supporting a wide variety of

nonlinear processes.

In the limit that an effective Kerr nonlinearity is produced, we demonstrate

compensation for cubic nonlinearities in space and time with negative Kerr-like

quadratic phase shifts. Self-focusing and self-phase modulation from Kerr nonlin-

earities typically limit the energy and beam quality from high power lasers, and

their compensation allows for significant improvements in both parameters.

We next present theoretical results on the formation of optical solitons in

quadratic media — fields of light that propagate stably (or “breath” periodically)

due to a robust balance between linear broadening and nonlinear confinement.

We are interested in multidimensional solitons in space and time, with the even-

tual goal of producing “light-bullets:” fields confined in all transverse dimensions.

Spatiotemporal solitons provide a natural system in which to observe new effects

related to soliton propagation and interactions, with direct applications to opti-



cal signal transfer and processing. Recent experiments by our group demonstrate

quadratic solitons in time and one spatial dimension, but are not extendible to

three-dimensions due to the material systems used. We theoretically demonstrate

a quadratic system in which light-bullets are possible and point a way to their

observation. This is the only currently recognized optical system where stable

light-bullets are predicted.

Finally, we present a new type of cascaded interactions: nonlinear frequency

shifting in the limit in which temporal walkoff between the nonlinearly coupled

fields significantly affects their propagation dynamics. Previous applications of

cascaded nonlinearities saw temporal walkoff as detrimental and found ways to

mitigate its effects. We develop a theoretical model for cascaded interactions

with significant walkoff and show that non-instantaneous nonlinear responses are

possible, producing controllable nonlinear frequency shifts with strong analogs to

Raman-scattering in cubic materials. These frequency shifts are analyzed theoreti-

cally and experimentally and their applications from low energy frequency shifting

for optical communications to compression of high energy pulses are discussed and

demonstrated.
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Chapter 1

Introduction
In recent years, the advent of modelocked lasers producing energetic pulses of light

of order ∼100 fs in duration has enabled a host of experiments into the nonlinear

behavior of optical materials. These experiments are useful not only as probes of

material properties, but as a means of studying nonlinear pulse evolution in these

systems, and for the applications these highly nonlinear processes enable.

For light fields of sufficiently high intensity, the induced polarization in any

optical medium will have a linear and a nonlinear response to the incident field.

This response can be expressed as a series

P = ε0

(

χ(1) · E + χ(2) · E · E + χ(3) · E · E · E + · · ·
)

, (1.1)

where the susceptibility χ(n) describes the n-th order response of the material to the

applied field. Looking at the first terms of Eq. (1.1), the linear susceptibility (χ(1))

gives rise to classical optical effects like reflection and absorption, the second-order

susceptibility (χ(2)) is responsible for second-harmonic generation and parametric

mixing processes, and the third-order susceptibility (χ(3)) gives rise to the optical

Kerr effect and Raman-scattering processes, among others.

1.1 The Nonlinear Schrödinger Equation

Starting from Maxwell’s equations, the wave equation for a field propagating in a

lossless, isotropic nonlinear material with polarization response P̃ = P̃L + P̃NL is

1



2

∂2Ẽ(z, t)

∂z2
− 1

c2

∂2Ẽ(z, t)

∂t2
= µ0

1

c2

∂2

∂t2

(

P̃L(z, t) + P̃NL(z, t)
)

. (1.2)

When considering the propagation of short pulses in optical media, it is nat-

ural (within the slowly varying envelope approximation) to break the field into a

complex envelope and a rapidly varying phase (Fig. 1.1) according to

E(z, t) = ca(z, t) exp (iβ0z − iω0t), (1.3)

where c is a constant, a(z, t) is the slowly varying complex amplitude of the field,

and β0 and ω0 are its propagation constant and carrier frequency, respectively.

For a material with cubic nonlinear response [such that P NL(z, t) = ε0χ
(3) ·

E(z, t) ·E(z, t) ·E(z, t)] we can derive the Nonlinear Schrödinger Equation (NLSE)

[1]

∂a(z, t)

∂z
+ i

β(2)

2

∂2a(z, t)

∂t2
︸ ︷︷ ︸

Dispersion

= in2 |a(z, t)|2 a(z, t)
︸ ︷︷ ︸

Nonlinearity

, (1.4)

which describes the evolution of the complex field envelope in a material with

dispersion [due to the frequency dependence of the material’s refractive index

n = n(ω)] and nonlinearity. Here β(2) = ∂2k/∂ω2 (for k = ωn/c) and n2 ∼ R(χ(3))

describe the group-velocity dispersion and cubic nonlinearity of the material, re-

spectively.
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Figure 1.1: Representation of a short optical pulse consisting of a slowly varying

complex amplitude a(z, t) and a rapidly varying carrier field exp (iβ0z − iω0t).
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1.2 Solitonlike pulse shaping and soliton formation

In the NLSE [Eq. (1.4)], group-velocity dispersion and nonlinearity both act to

alter the phase of the field envelope a(z, t). As such, phase modulations dominate

the generation and propagation of intense ultrashort (picosecond and femtosecond)

optical pulses in Kerr media: the physical processes that shape a pulse or govern

its propagation act on the phase of the electric field, without altering its amplitude

directly. As an example, consider a simple picture of pulse-formation in a mod-

elocked laser. The shaping of pulses in current modelocked lasers is soliton-like:

the positive (or self-focusing) nonlinear phase shift induced on a pulse by the non-

linear index (n2, part of the cubic nonlinearity χ(3)) of the gain medium through

the process of self-phase modulation (SPM) implies that the instantaneous fre-

quency varies across the pulse. Stable pulse formation requires that this frequency

sweep or chirp is balanced by anomalous group-velocity dispersion (GVD). This is

illustrated in Fig. 1.2(a). Intuitively, the nonlinearity shifts low frequencies to the

front of the pulse and high frequencies to the rear. Anomalous GVD causes high

frequencies to go faster than low frequencies, so the back of the pulse “catches

up” with the front. All materials have cubic nonlinearities, and in the absence

of (linear or nonlinear) absorption these are almost always positive. Anomalous

GVD generally cannot be obtained in materials without absorption.

However, if both processes illustrated in Fig. 1.2 occur in a homogeneous

medium, temporal solitons can form — the balance of nonlinearity and disper-

sion allows the pulse to propagate indefinitely without changing shape. If the

signs of the nonlinearity and dispersion are interchanged in the NLSE [Eq. (1.4)],

an identical soliton will still form [as in Figure Fig. 1.2(b)]. Therefore, in media

with fast negative (self-defocusing) nonlinear refraction, soliton-like pulse shaping
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Figure 1.2: Schematic illustration of solitonlike pulse shaping. The nonlinear phase

shift impressed on the pulse in a cubic nonlinear medium is balanced by dispersion

of the appropriate sign: (a) self-focusing nonlinearity balances anomalous disper-

sion and (b) self-defocusing nonlinearity balances normal dispersion.

could be implemented with normal GVD.

The transverse spatial variation of a laser beam is governed by processes that

are analogous (and mathematically equivalent) to those of Fig. 1.2. The nonlin-

ear index of refraction produces self-focusing of the beam, while diffraction causes

the beam to expand. If these processes are precisely balanced, the result is a

spatial soliton — a beam that propagates indefinitely without spreading laterally

(Fig. 1.3). In contrast to the temporal pulse-shaping described above, it is not

sensible to talk about changing the signs of nonlinearity and diffraction; the latter

always causes a beam to spread in homogeneous media, so a self-focusing nonlin-

earity is required to form the soliton. Another issue that arises in the spatial case

is the importance of dimensionality. Spatial solitons are stable in one transverse

dimension, but unstable in two or more dimensions [2]. In principle the power
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0 2n(I) = n + n I

Figure 1.3: Formation of a spatial soliton through the balance of self-focusing

nonlinearity and diffraction.

can be chosen so that self-focusing perfectly balances diffraction, but an infinites-

imal decrease of the power will cause the beam to expand. On the other hand,

an infinitesimal increase from the nominal soliton power causes the beam to fo-

cus more, which increases its intensity, which causes more focusing, ad infinitum.

This process theoretically ends in “collapse” of the beam to a point (with infinite

intensity). In practice other nonlinear processes (and possibly damage to the non-

linear material) occur once the intensity of the collapsing field reaches high enough

values.

Ultrafast phase modulations such as those illustrated above are exploited in the

following processes, among many others: modelocking of lasers, pulse compression,

continuum generation, soliton formation, pulse shaping and cleaning, and optical

switching. Furthermore, saturable absorbers are commonly used in pulse shaping

and stabilization of modelocked lasers and these are often “effective” or “artificial”

saturable absorbers — an intensity-dependent transmittance is produced not by

real material absorption, but through nonlinear phase shifts that are converted to

transmittance changes in some kind of interferometer or by propagation through

an aperture.

Perhaps ironically, the same nonlinearity that is essential to the functions listed

above also limits many short-pulse devices and applications. Excessive nonlinear
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phase shifts are an ubiquitous problem in the generation of high-energy short

pulses. These become significant at the picojoule level in fiber lasers and amplifiers,

and at the microjoule or millijoule level in typical bulk devices. In the spatial

domain these phase shifts are manifested as self-focusing and instabilities, which

adversely affect the beam profile. In the temporal domain uncontrolled nonlinear

phase shifts lead to excessive spectral bandwidth and phase distortions, both of

which reduce pulse quality or even destroy the pulse.

1.3 Cascaded processes in quadratic nonlinear optical me-

dia

Recently, there has been a resurgence of interest in the effective cubic (Kerr) nonlin-

earity produced by the cascading of phase-mismatched second-harmonic generation

processes in quadratic nonlinear media [3]. Since these nonlinearities originate in

the coupled interaction of two fields at different frequencies, the underlying multi-

color dynamics can be leveraged to control their properties in a way not possible

with true third order optical nonlinearities.

Starting from Maxwell’s equations and using the slowly varying envelope ap-

proximation, the equations that govern the z-propagation of the fundamental-

frequency (FF) and second-harmonic (SH) field amplitudes (A1 and A2, respec-

tively) in a medium with quadratic nonlinearity (and ignoring transverse effects

and processes pertinent to short pulse propagation) are [4]

∂A1

∂z
= iA∗

1A2e
i∆k(ZIz), (1.5)
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∂A2

∂z
= iA1A1e

−i∆k(ZIz), (1.6)

where A1 and A2 are normalized in units of the peak value of the initial fundamental

field, which is related to the initial peak intensity by I0 = nc/ (8π) |A1(0)|2. In Eqs.

(1.5) and (1.6) time is normalized by the initial pulse duration τ0 and is measured

in a frame moving at the group velocity of the fundamental field. The propagation

length z is normalized to the quadratic interaction length ZI = nλ1/
(

πχ(2)A0

)

and ∆k = k2ω − 2kω is the phase-mismatch between the FF and SH frequencies.

The full coupled wave equations for ultra short pulses appear in Appendix A.

Historically, quadratic optical nonlinearities are usually associated with fre-

quency conversion applications. However, the production of nonlinear phase shifts

through the interactions of light beams in quadratic nonlinear media was identi-

fied, if not appreciated, in the infancy of nonlinear optics [5]. Isolated studies of

the nonlinear phase shifts produced in quadratic processes appeared between 1970

and 1990 [6, 7], and in the last decade there has been a resurgence of interest in

this area [8, 9, 3]. Nonlinear phase shifts can be produced in any 3-wave mixing

process [for reviews see Refs. [3] and [10]]. The simplest and most pertinent case is

phase-mismatched second-harmonic generation (SHG): the fundamental field ac-

quires a nonlinear phase shift in the process of conversion to the SH field and

back-conversion to the fundamental [this process is illustrated in Fig. 1.4(a)].

The generation of a nonlinear phase from phase-mismatched SHG can be un-

derstood intuitively: due to the frequency dependence of the refractive index

[n = n(ω)] in optical media, the SH experiences a different phase-velocity from

that of the FF. Consequently light that converts to the SH accumulates a differ-

ent phase than light that propagates at the FF through the medium. On back
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Figure 1.4: Schematic of cascaded quadratic processes under phase-mismatched

conditions. (a) depicts the conversion and back-conversion cycle between the FF

and SH fields with |∆k| 6= 0 and (b) shows the details of the phase-velocity mis-

match between the fields which causes a nonlinear phase to be imparted on the

FF field.
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conversion from the SH to the FF, this difference in phase is imparted to the FF

field [illustrated in Fig. 1.4(b)]. Since second-harmonic conversion depends on the

intensity of the input field, the resulting phase-shift is also nonlinear in nature.

Under conditions of small pump depletion (corresponding to either large phase-

mismatch, low input intensity, or both) DeSalvo et al. [9] solved Eqs. (1.5) and

(1.6) and showed that the nonlinear phase imparted on the FF pulse under these

so called “stationary” conditions is Kerr-like with the form

∆ΦNL = −(L/ZI)
2

∆kL
= neff

2 I, (1.7)

where neff
2 ∼ (χ(2))2/∆k is the effective Kerr coefficient of the cascaded process

and the interaction length ZI and phase-mismatch ∆k are defined as for Eqs. (1.5)

and (1.6). The dependence of the nonlinear phase-shift on phase-mismatch is

illustrated in Fig. 1.5, with the asymptotic regions of ∆ΦNL to which Eq. (1.7)

applies indicated by solid curves.

Generally, cascaded phase-shifts have the following properties: (1) they can

be large (i.e., >∼100 times larger than the n2’s of common χ(3) materials). This

is easily understood: cascaded phase-shifts come about from a lower order term

in the expansion for P NL [Eq. (1.1)] with correspondingly larger susceptibilities

than for cubic nonlinearities; (2) the magnitude and sign of these phase-shifts

are controllable through the phase-mismatch, as depicted in Fig. 1.5; and (3)

since cascaded phase-shifts come about through second-harmonic conversion, their

magnitude saturates with increasing intensity as the FF to SH conversion process

saturates with depletion of the FF.

The sequential or cascaded nature of these quadratic processes gives rise to
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∆ΦNL

∆k

Figure 1.5: Illustration of the nonlinear phase-shift imposed on the FF field as a

function of phase-mismatch. Solid curves indication the “stationary” region with

dashes showing the rough dependence near phase matching.
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Figure 1.6: Schematic energy level diagram of cubic (χ(3)) (a) versus cascaded

quadratic (χ(2)) (b) processes.

their name. A schematic energy level diagram of this processes appears in Fig. 1.6.

As we can see, cubic (χ(3)) nonlinearities involve the interactions of four waves,

allowing the processes to yield photons at the initial frequency (ω1) and hence to

impart a phase on it. Quadratic (χ(2)) processes involve three waves, requiring two

such processes to occur sequentially (i.e., to be cascaded) for an equivalent return

to ω1 [Fig. 1.6(b)].

For pulse-shaping applications, the ability to control the sign of the nonlinear

phase shift, and specifically the ability to generate negative phase shifts without

excessive loss, is of huge significance. Furthermore, cascaded phase shifts can be

controlled conveniently, by simply adjusting the orientation or temperature of a

nonlinear crystal. In the past decade cascaded nonlinear phase shifts in quadratic

media have been used to demonstrate a myriad of applications, including: compen-

sation of Kerr phase shifts in space and time [11]; Kerr-lens modelocking of short

pulse lasers [12]; observation of spatial, temporal, and spatiotemporal solitons and

their instabilities (for review see Refs. [13] and [14]); observation of spatial [15]

and spatiotemporal soliton interactions [16]; ordinary [17] and solitonlike [18] pulse
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compression; and many others [19].

Saturation of the nonlinear phase shift is undesirable in most pulse-shaping

applications because it distorts the temporal variation of the phase shift (and

frequency chirp) from the shape produced in cubic nonlinear media (where the

phase shift is proportional to intensity for all intensities). However, saturation is

crucial to stabilize multi-dimensional solitons against the collapse that occurs in

true cubic nonlinear media.

Nonlinear phase shifts are associated with nonlinear indices of refraction, and

below saturation it can be useful to define an effective nonlinear index for the

cascade process [i.e., neff
2 in Eq. (1.7)]. Continuing the analogy to cubic nonlin-

ear processes, the residual second-harmonic light that is generated in the phase-

mismatched process can be likened to 2-photon absorption. The figure of merit for

applications based on nonlinear phase shifts is proportional to the nonlinear phase

shift per unit nonlinear absorption (nonlinear conversion in this case). Thus, the

figure of merit for the cascade process tends to increase with increasing phase mis-

match, simply because the residual conversion decreases faster than the magnitude

of the nonlinear phase shift.

1.4 Group-velocity mismatch and stationary cascaded

quadratic processes

Although the phase-shift from cascaded quadratic processes offers phase-shift mag-

nitude and control not possible with Kerr nonlinearities, prospects for exploiting

cascaded phase shifts for short-pulse generation initially were considered poor:

Due to frequency dependence of the refractive index in nonlinear media, the fun-
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damental and second-harmonic pulses inevitably have different group velocities

and consequently they move away from each other in time with propagation. This

reduces and distorts the nonlinear phase shift.

Historically, the deleterious effects of group-velocity mismatch were recognized,

and unique and complicated material structures were constructed to combat them

[20, 21, 22]. However, there is another way [19]: in phase-mismatched SHG, the

phase-mismatch between the FF and SH fields has two effects. First, increasing

|∆k| causes a reduction in the maximum energy conversion from the fundamental

to the SH. However, increasing |∆k| also acts to increase the frequency of the

FF-SH conversion and back-conversion cycle. These dependencies are illustrated

in Fig. 1.7.

This increase in conversion cycle frequency with increasing phase-mismatch

presents a way to mitigate the effects of phase-distortion from GVM. If the mag-

nitude of the phase-mismatch is increased to the point that the FF-SH conversion

cycle occurs before GVM causes the field to separate temporally, the phase dis-

tortion will be lessened or eliminated. This can be though of as follows: each

conversion and back-conversion cycle of the FF and SH fields defines an effective

interaction length over which GVM acts to separate them. Increasing the magni-

tude of the phase-mismatch between the fields reduces the cycle length and hence

the effective interaction length for GVM.

More explicitly we require that the cycle length (Lc = 2π/∆k) be at most half

the characteristic length over which GVM separates the fields (LGVM = τ0/GVM)

to effectively mitigate its effects, or

|∆k| >∼
4π

LGVM

= 4π
GVM

τ0

. (1.8)
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Figure 1.7: Second-harmonic conversion efficiency as a function of propagation

distance for various values of ∆kL.
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In this way, an effective Kerr phase is regained from the cascaded quadratic pro-

cesses, even in the presence of strong GVM. Of course, this reduction in phase dis-

tortion comes at a price: as is apparent in Fig. 1.7, increasing the phase-mismatch

reduces the maximum conversion efficiency to the SH; hence, increased phase-shift

quality is obtained at the expense of magnitude. Thus, the utility of the cas-

cade phase shift for a given application ultimately depends on the nonlinearity

of available and appropriate SHG crystals. An elegant theoretical way to under-

stand the improvement in phase-shift quality is the following: In the limit of large

phase mismatch, the equation for the fundamental field approaches the ordinary

nonlinear Schrödinger equation that governs pulse propagation in cubic nonlin-

ear media [Eq. (1.4)] [23]. Thus, in that limit the effective nonlinearity is just

a Kerr nonlinearity. A similar argument can be made in the frequency domain.

The phase-matching bandwidth (which is directly proportional to LGVM) is a cru-

cial parameter in SHG, and one may wonder about the acceptance bandwidth for

the cascade process. In the phase-mismatched case the acceptance bandwidth is

proportional to the product (∆k × LGVM). If the criterion for high-quality phase

shifts is satisfied, the entire spectrum of the input pulse will be acceptably phase-

mismatched.

Fig. 1.8 shows simulations of the the distortion of the nonlinear phase shift ow-

ing to saturation or to the group-velocity mismatch (GVM) between the harmonics

and the recovery of a Kerr-like nonlinear phase with increased phase-mismatch am-

plitude [19]. In Fig. 1.8, the dashed curves show the frequency chirp resulting from

a negative Kerr nonlinearity for comparison.

Fig. 1.8(a) shows the distortion that arises from saturation, while Fig. 1.8(c)
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and 1.8(e) show the deleterious effects of increasing GVM. In Fig. 1.8(e), for exam-

ple, the pulses separate by ∼4 times the input pulse duration, and the distortion

of the cascade frequency chirp is extreme. In all three cases the distortion of the

phase shift would preclude the production of high-quality pulses, perhaps even the

production of any stable pulses. The conditions of Fig. 1.8(e) correspond to 120-fs

pulses at 800 nm wavelength, propagating through a barium metaborate (BBO)

crystal only 2.4 mm long. This situation is representative of the problems that

arise in quadratic nonlinear optics with femtosecond pulses.

According to the criterion of Eq. (1.8), for L = LGVM we require ∆kL > 4π for

recovery of a clean nonlinear phase. The high-quality frequency chirp produced

with ∆kL = 11π (which satisfies the criterion with ample margin) is shown in

Fig. 1.8(d). For L = 4LGVM we require ∆kL > 16π. In this case ∆kL = 11π is

not adequate, and the frequency chirp is still distorted [Fig. 1.8(f)]. However, it

is much better than that produced with ∆kL = 2π [Fig. 1.8(c)]. Figs. 1.8(a) and

1.8(b) show that increased phase mismatch naturally also reduces the distortion

that arises from saturation.

1.5 Group-velocity mismatch and non-stationary cascaded

quadratic processes

To date all demonstrated applications of cascaded processes occur in the so-called

“stationary-limit” where an effective (but controllable) Kerr-like nonlinearity is

produced. As discussed, this is typically accomplished by increasing the phase-

mismatch between the fundamental and second-harmonic fields to the point that

the cycle of conversion from fundamental to second-harmonic and back-conversion
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Figure 1.8: Calculated frequency chirp resulting from nonlinear phase shifts of the

fundamental pulse. Left (right) column correspond to ∆kL = 2π (11π). Group-

velocity mismatch increases from top to bottom, starting from zero. Dashed curves

show the frequency chirp from a negative Kerr nonlinearity.
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(2)χ medium FF

SH

FF propagation

Figure 1.9: Illustration of the phase-mismatched cascaded quadratic process with

group-velocity mismatch. Solid (dashed) lines are for the case of nonzero (zero)

group-velocity mismatch, which causes the back-converted SH field to lag or lead

the FF.

from second-harmonic to fundamental occurs before the fields separate temporally

due to group-velocity mismatch between them [19]. This method produces a Kerr-

like phase-shift despite the presence of material group-velocity mismatch, but at

the cost of reduced nonlinear coupling and phase [19, 23].

However, it is useful to consider what happens in the case that the effects of

GVM are not lessened by increasing the phase-mismatch beyond the stationary

region defined by Eq. (1.8). Then GVM causes the SH field to walk away from the

FF with propagation, which creates a temporal displacement between the fields as

depicted in Fig. 1.9.

As is known, GVM causes the resulting nonlinear phase-shift to be distorted

from a Kerr-like shape [as demonstrated in Fig. 1.8]. However, it also causes

the nonlinear phase to be temporally displaced from the FF pulse: i.e., cascaded

processes can yield a non-instantaneous nonlinear phase, ∆ΦNL(t) ∼ I(t ± τ),

where the phase is either temporally delayed or advanced with respect to the FF
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by an amount τ which depends on the details of the cascaded process. However,

a non-instantaneous nonlinear phase in the temporal domain generates a shift

in the center frequency of the pulse spectrally. This is well know from cubic

Raman-scattering processes, where Stokes-shifts correspond to delayed nonlinear

processes and redshifts of the pulse spectrum; in analogy, non-stationary cascaded

processes are capable of generating nonlinear frequency shifts, but with the usual

advantages of cascaded quadratic processes: increased magnitude with respect to

their cubic counterparts, and tunability of the sign and magnitude of the resulting

nonlinearity. This thesis develops the theory of these nonlinear frequency shifts

from non-stationary cascaded quadratic processes and a number of techniques and

applications based on their unique advantages are discussed and demonstrated

experimentally.

1.6 Organization of the thesis

The remaining sections of this thesis are organized as follows: Chapter 2 demon-

strates direct compensation of nonlinear phase shifts from Kerr nonlinearities with

negative Kerr-like shifts from cascaded quadratic processes [11]. Phase compensa-

tion has been demonstrated previously, but with real negative Kerr media, which

are susceptible to material damage with high energy pulses and typically involve

significant loss in the form of one- and two-photon absorption. We show numeri-

cally and experimentally that cascaded phase shifts provide a near ideal method to

compensate for the effects of self-focusing (both whole-beam and small-scale) from

Kerr nonlinearities in the spatial domain, and undo spectral broadening from self-

phase modulation (B integral) temporally. The applications of this compensation

process to increased energy and improved beam quality from high power lasers are
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discussed.

Spatiotemporal solitons are of great interest both as a novel manifestation of

highly nonlinear dynamics for questions of fundamental science and for the poten-

tial technological applications they present: optical transmission and switching at

rates of many terahertz [24]. The Kerr-like but saturable nonlinearity provided

by cascaded quadratic interactions provides one of the most promising systems

for the observation and study of spatiotemporal solitons. However, formation of

spatiotemporal solitons in these media requires anomalous group-velocity disper-

sion which does not occur at wavelengths corresponding to common infrared laser

sources. Consequently, observations of temporal and spatiotemporal solitons in

quadratic media to date have been achieved using the method of pulse-tilting [25]

to externally modify the group-velocity dispersion experienced by the pulse in the

nonlinear medium. Pulse-tilting allows for anomalous group-velocity dispersion at

common wavelengths in the infrared and following Valiulis et al.’s demonstration

[26] of quadratic temporal solitons using this technique, our group applied it to

demonstrate quadratic soliton formation in time and one transverse spatial dimen-

sion [27, 28] (i.e., two-dimensional spatiotemporal solitons), their interactions [16],

and transverse instability in three-dimensions [29]. However, pulse-tilting involves

angular dispersion from a diffraction grating — spatial spreading of the frequency

components of the pulse — which consumes a transverse degree of spatial freedom

and prevents soliton confinement along that direction [29].

In Chapter 3 we present theoretical work [30] that identifies a quadratic sys-

tem where temporal and spatiotemporal solitons may form. By working at wave-

lengths in the infrared (3-5 µm typically) where available quadratic materials ex-

hibit anomalous group-velocity dispersion at the fundamental wavelength, we show
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that these systems can stably support solitons despite the presence of near-zero or

even normal group-velocity dispersion at the second-harmonic wavelength. These

systems provide a near ideal test bed for the study of temporal and spatiotempo-

ral solitons. Experimentally, these solitons are realizable in quasi-phase-matched

quadratic materials like periodically poled lithium niobate [31] and may provide

the best current route to the experimental observation of “light-bullets” — multi-

dimensional solitons confined in time and all transverse spatial dimensions. Indeed,

light-bullets appear to be observable in these systems [32] and potential experi-

ments are discussed.

Observation of solitons without pulse tilt (Chapter 3) requires generation of

∼100 fs and near-Fourier transform limited pulses with energy >∼1 µJ in the infrared

near 4 µm. Experimentally, this is not an easy wavelength region to generate

pulses with these exacting parameters. Appendix C presents an overview of how

these pulses are generating using optical parametric amplification, and outlines

our current progress with these sources.

Since the index of refraction in optical materials depends of frequency, different

colors experience different group-velocities. In quadratic materials this means that

some finite group-velocity mismatch exists between the fundamental and second-

harmonic fields. Previous applications utilizing effective cubic nonlinear phase

shifts avoided the effects of this temporal walkoff — but at the cost of reduced

magnitude of the effective nonlinearities from cascaded processes [19, 28], or via

complicated material structures [20, 21, 22].

In Chapter 4 we develop a new theoretical model for cascaded interactions in

the limit where the effects of group-velocity mismatch are strongly felt, and show

that this opens the door to a new type of cascaded quadratic interaction: non-
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instantaneous nonlinear phase-shifts [33]. We analytically show that for small delay

or advancement in the temporal response, these shifts are qualitative similar to

Raman-scattering processes in cubic materials. In particular, like Raman processes

this non-instantaneous nonlinear response gives rise to a shift in the pulse spectrum.

Since these spectral shifts come about from cascaded quadratic interactions, they

are controllable and nonlinear frequency shifts of controllable magnitude and sign

are possible. We experimentally demonstrate these shifts with millijoule pulses

from an amplified laser system.

Chapters 5 and 6 discuss two exciting prospects for cascaded frequency shifts:

In Chapter 5 we show that these processes can be enhanced and greatly customized

by physical engineering of the material nonlinearity in certain classes of quadratic

nonlinear materials [34]. In Chapter 6 we demonstrate generation of cascaded

frequency shifts with low (picojoule) pulse energies in waveguided structures [35].

In waveguides strong confinement of the light field allows these highly nonlinear

interactions with pulse energies directly applicable to fiber lasers and optical com-

munications applications.

Chapter 7 goes in the other direction and demonstrates Raman-soliton like

pulse compression based on cascaded frequency shifting processes, but with in-

tense (>∼1.3 TW/cm2) and ultra-short (∼30 fs) pulses [36]. The ability to generate

Raman-like nonlinearities with negative (self-defocusing) phase-shifts prevents ma-

terial damage and enables applications with these extreme field parameters.

In Chapter 8 several potential applications of frequency shifts from cascaded

processes techniques are discussed.

In all cases, physical understanding of the nonlinear optical processes studied

and efficient experimental design relies on fast and accurate simulations of these
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problems. To this end a set of numerical simulations have been developed with

enable numerical solutions of these pulse propagation problems. The coupled non-

linear equations governing the system studied appear in Appendix A, and the

physical and computational design of these simulations appear in Appendix B.

Single and parallel processor versions of the pulse propagation code exist, along

with associated Matlab visualization routines.
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Chapter 2

Compensation of self-focusing using the

cascade quadratic nonlinearity1

We demonstrate theoretically and experimentally compensation for positive Kerr

phase shifts with negative phases generated by cascade quadratic processes. Ex-

periments show correction of small-scale self-focusing and whole-beam self-focusing

in the spatial domain and self-phase modulation in the temporal domain.

2.1 Introduction

When an intense beam propagates through a third-order nonlinear medium, its

intensity profile generates a corresponding phase profile through the intensity-

dependent refractive index: n(I) = n0 + n2I. The phase shift resulting from the

electronic Kerr nonlinearity underlies a number of physical processes, including

whole-beam self-focusing (WBSF) and small-scale self-focusing (SSSF) in space

[2], and self-phase modulation (SPM) in time [3]. Since self-focusing limits the

peak power attainable by high energy lasers and amplifiers, and SPM underlies

the need to use pulse stretching in regenerative amplifiers (RAs) [4], a means of

compensating for these effects is desirable.

Self-focusing and SPM in materials with n2 > 0 arise from nonlinear phase

shifts, ΦNL
Kerr(x, y) = (2π/λ)

∫

n2(z)I(x, y, z)dz, referred to as the B integral. One

can utilize nonlinear phase shifts, ΦNL
comp < 0, from a material with real or effective

n2 < 0 for compensation; i.e., ΦNL
Kerr +ΦNL

comp = 0. One way to generate such a com-

1The results presented in this chapter have been published in Ref. [1].
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pensating phase is through the negative nonlinear refractive index that is present

in semiconductors. GaAs wafers [with n2 ∼ −1000 n2(fused silica) for wavelengths

just longer than the absorption edge] were used by Roth et al. [5] to suppress the

effects of self-focusing in Nd:glass rods and by Konoplev and Meyerhofer [6] to

cancel the B integral in a chirped-pulse amplifier (CPA) system. However, this ap-

proach has the disadvantages that are inherent in semiconductors: high loss owing

to two-photon absorption and a relatively low damage threshold. Additionally, the

nonlinear index (n2) of these materials is fixed, making phase cancellation difficult:

To tune the value of the compensating phase at a given intensity, one must change

the semiconductor wafer thickness itself.

Recently, the phase shifts generated by cascading χ(2) processes in quadratic

nonlinear media garnered attention because they can be large in magnitude, can

have a controllable sign, and are proportional to intensity in the limit of large

phase mismatch between the fundamental-harmonic (FH) and second-harmonic

(SH) waves [7]:

ΦNL ≈ −Γ2L2

∆kL
, (2.1)

where Γ = ωdeff |E0|/c
√

n2ωnω, ∆k = k2ω − 2kω is the phase mismatch, and L is

the crystal length. Equ. (2.1) holds when |∆kL| is large enough that the effects

of group-velocity mismatch (GVM) between the FH and the SH can be neglected

[8]. Negative cascade phase shifts were recently used for pulse compression [9] and

to compensate for the B integral in a fiber amplifier [10].

In this Letter we show by numerical simulation and experiment that negative

phase shifts from cascade quadratic processes can effectively compensate the ef-
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fects of self-focusing. We demonstrate compensation of both SSSF and WBSF in

the propagation of femtosecond pulses in bulk fused silica. In addition, we show

cancellation of the B integral from a picosecond Ti:sapphire amplifier with pulse

energies of ∼6 orders of magnitude greater than in the work of Alam et al. [10].

2.2 Numerical results

As in Ref. [8] we model the system with the coupled wave equations for the FH

and the SH fields in a medium with χ(2) and χ(3) nonlinearity. We solve the

propagation equations numerically, using a symmetric split-step beam propagation

method [8]. We considered both precompensation and postcompensation schemes

and for experimental convenience chose precompensation (both worked compara-

bly in simulation). Figure 2.1 shows the results of numerical simulations performed

under conditions typical of a millijoule-pulse energy RA. In the absence of com-

pensation, a beam with transverse intensity modulation [Fig. 2.1(a)] traverses a

piece of χ(3) material that produces ΦNL ∼ π and increases the spatial intensity

modulation [Fig. 2.1(b)]. With compensation, the intensity profile is smoothed

compared to the uncompensated case [Fig. 2.1(c)]. We find optimal compensa-

tion with ∆kL ∼ 400π using material parameters for barium metaborate (BBO),

which agrees with a calculation based on Equ. (2.1). In contrast, Fig. 2.1(d)]

shows the intensity profile resulting from overcompensation for the Kerr phase

with ∆kL ∼ 175π.
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Figure 2.1: Simulated transverse intensity profile (a) at input with seeded periodic

intensity modulation, (b) after propagation through 6 cm of fused silica, (c) with

optimal compensation (ΦNL
net ≈ 0), and (d) overcompensating Kerr phase (ΦNL

net <

0).



31

2.3 Experimental results

Experimentally, we observe self-focusing after propagating the output of a Ti:sapphire

RA (λ0 = 800 nm, τFWHM = 150 fs, E ≈ 600 µJ/pulse) through 6 cm of fused silica.

Using a 2:1 telescope we down-collimate the RA output prior to the fused silica

to produce a beam with full-width at half-maximum (FWHM) dimensions 2.7 mm

by 1.6 mm, which allows intensities up to 70 GW/cm2.

Fig. 2.2 shows the experimental beam profiles. At low intensity, we observe

linear propagation through the fused silica [Fig. 2.2(a)]. At high intensity (I0 =

23 GW/cm2, ΦNL ≈ 1.1π) we observe both WBSF (narrowing of the beam profile)

and SSSF (increased modulation depth between the noise peaks and background,

shown in Fig. 2.2(b); and cuts though data appear as insets in Figs. 2.3 and 2.4).

To compensate self-focusing, a 2.5 cm long BBO crystal cut for type-I second-

harmonic generation (SHG) at 800 nm is inserted into the beam path immediately

before the fused silica. As a control experiment, we orient the BBO so that we

have access to only the Kerr nonlinearity. We measured n2[BBO] ≈ n2[fused

silica], so we expect ∼50% more nonlinear phase than for fused silica only. Fig.

2.2(c) shows the expected additional self-focusing. Next, the BBO is oriented to

produce negative phase shifts via the cascade nonlinearity. Optimal compensation

(ΦNL
net ≈ 0) is found near ∆kL ≈ 550π [Fig. 2.2(e)] which is close to the predicted

value (400π) considering the uncertainty in |∆kL| (∼ 75π). Tuning to ∆kL ≈ 900π

we observe undercompensation of the Kerr phase (ΦNL
net > 0) and residual WBSF

[Fig. 2.2(f)]. At ∆kL ≈ 300π, the Kerr phase overcompensates the quadratic

phase (ΦNL
net < 0), and we see whole-beam self-defocusing [Fig. 2.2(d)]. In both

cases as we tune away from optimal compensation, SSSF is apparent. The SSSF

filaments observed in Fig. 2.2(d) have dimension ∼0.3 mm, close to that predicted
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Figure 2.2: Beam profiles after the fused-silica sample (a) in the linear propagation

regime, (b) at high intensity without compensation, (c) with BBO Kerr phase shift

only, (d) with cascade overcompensating Kerr phase, (e) with cascade optimally

compensating Kerr phase, and (f) with cascade undercompensating Kerr phase.

by the standard Bespalov-Talanov perturbation analysis [3].

To quantify the effects of compensation on WBSF we take vertical line scans

through the profiles in Fig. 2.2. WBSF is isolated from SSSF by looking at scans

displaced horizontally from the beam center by 25% of the beam diameter, where

the peak intensity and hence the effects of SSSF are lessened. The inset of Fig.

2.3 shows these scans in the linear, uncompensated, and optimally compensated

cases. Fig. 2.3 shows the measured beam waist for a range of phase-mismatch

values. ∆kL = −75π corresponds to ΦNL
cascade > 0, which adds to the self-focusing

in the fused silica, as expected.

We can characterize SSSF by taking vertical line scans through the data (Fig.

2.2), but at the beam center. The inset of Fig. 2.4 shows the beam profiles
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Figure 2.3: Beam waist versus ∆kL in units of the low-intensity beam waist

(dashed line). The dotted line shows the beam waist without compensation. In-

set shows vertical line scans of the transverse intensity profile at the horizontal

beam wing for (i) linear propagation, (ii) uncompensated WBSF, and (iii) optimal

compensation at ∆kL ≈ 520π.
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for the linear, uncompensated, and optimally compensated cases. Compensation

eliminates nearly all modulation from SSSF. The phase-mismatch for optimal SSSF

compensation is slightly larger than for WBSF (580π versus 520π, respectively).

This is understood: The phase accumulated in the compensation stage alters the

intensity profile (through self-defocusing), so the phase accumulated in the fused

silica will have slightly different spatial shape than the compensating phase. This

leads to different optimal compensation values for the peak phase (related strongly

to SSSF) versus the average phase (related more to WBSF) [5].

SSSF increases the contrast across the beam profile, so it can be quantified

by looking at the deviation of a given line scan from an ideal Gaussian profile.

Fig. 2.4 shows this deviation versus phase-mismatch. The apparent smoothing for

∆kL → 0+ is not useful, since the FH is depleted by SHG and then an observed

optical parametric generation process which happens to be phase-matched on this

region. This presents itself as a slight rolloff in beam waist in the WBSF data as

expected, since the gain for WBSF is less than for SSSF.

Cascade quadratic phase shifts can also be used to compensate for SPM. The

narrow bandwidth of picosecond pulses makes stretching difficult, so the B integral

tends to be a significant concern in picosecond amplifiers. We investigated com-

pensation of the B integral in a single-pass amplifier. Transform-limited pulses

of duration 5 ps and energy 0.5 mJ propagate through a 2-cm long Ti:sapphire

crystal where they acquire ΦNL
Kerr ≈ π and the spectrum broadens to ∼3.2 times

the transform limit. Equ. (2.1) predicts optimal compensation at ∆kL ≈ 7π with

L = 1.7 cm. With a 1.7-cm long piece of BBO, we observe that the spectrum is

compressed to ∼1.5 times transform limit with ∆kL ≈ 5π (Fig. 2.5). We believe

that full compensation is possible, but the results of Fig. 2.5 are within a factor of
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Figure 2.4: Deviation of the beam from Gaussian versus ∆kL where 0 represents

a perfectly Gaussian beam and the dashed line represents the deviation in the

low-intensity propagation regime. The dotted line represents deviation without

compensation. The inset shows vertical line scans of the transverse intensity profile

at the horizontal beam center for (i) linear propagation, (ii) uncompensated SSSF,

and (iii) optimal compensation at ∆kL ≈ 580π.
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Figure 2.5: Spectrum of the uncompensated Ti:sapphire amplifier output (dotted

line), after compensation (solid line), and the spectrum corresponding to transform

limit (dashed line).

2 of the limits that arise from GVM and crystal damage [11]. The wings present

in the compensated spectra are most likely due to spatial intensity modulation

present in the output of the amplifier.

2.4 Conclusion

In conclusion, we have demonstrated the compensation of nonlinear phase shifts

on the order of π by use of cascade quadratic processes. This compensation scheme

is easily scalable to high peak intensity (∼100 GW/cm2 for femtosecond pulses),

has low inherent loss (<∼ 1% was observed), and is easily tunable at fixed intensity

and crystal length. We demonstrate compensation with femtosecond and picosec-
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ond pulses, but the process should be easier to implement with longer pulses.

In particular, cascade self-focusing compensation could prove important in the

construction of high-power nanosecond- and picosecond-pulse lasers, where beam

distortion from SSSF limits the maximum attainable power. Also, the B integral

compensation reported here raises the possiblity of pass-by-pass compensation of

SPM inside the RA cavity. Thus, it should be possible to design a RA without

pulse stretching and compression.

This work was supported by the National Institutes of Health under grant

RR10075, and the National Science Foundation. L. Q. acknowledges support from

the Natural Science Foundation in China.
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Chapter 3

Temporal solitons in quadratic nonlinear

media with opposite group-velocity

dispersions at the fundamental and

second harmonics1

Temporal solitons in quadratic nonlinear media with normal second-harmonic

dispersion are studied theoretically. The variational approximation and direct

simulations reveal the existence of soliton solutions, and their stability region is

identified. Stable solutions are found for large and normal values of the second-

harmonic dispersion, and in the presence of large group-velocity mismatch between

the fundamental- and second-harmonic fields. The solitons (or solitonlike pulses)

are found to have tiny non-localized tails in the second-harmonic field, for which

an analytic exponential estimate is obtained. The estimate and numerical calcu-

lations show that, in the parameter region of experimental relevance, the tails are

completely negligible. The results open a way to the experimental observation

of quadratic solitons with normal second-harmonic dispersion, and have strong

implication to the experimental search for multidimensional “light bullets.”

3.1 Introduction

Optical solitons are localized electromagnetic waves that propagate steadily in

nonlinear media resulting from a robust balance between nonlinearity and linear

1The results presented in this chapter have been published in Ref. [1].
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broadening due to dispersion and/or diffraction. It is well known that cubic non-

linear materials support temporal solitons [2], but that the resulting balance is

unstable to collapse in higher than one dimension [3]. This collapse is arrested in

materials with saturable nonlinearity [4, 5], allowing for the formation of solitons

in two and three dimensions (2D and 3D).

Of great interest, theoretically and experimentally, are spatiotemporal solitons

(STS) confined in time and both transverse spatial dimensions (“light bullets”) [6].

Unlike temporal solitons, spatial solitons, and quasi-STS (STS confined only in one

transverse dimension), light bullets are the only truly stable solitons in a three-

dimensional geometry [7]. In addition to their fundamental significance, STS are

of interest for their technological applications, as they provide for the possibility

of terahertz switching rates when utilized in optical digital logic [8].

In recent years, spatial solitons have been extensively studied in systems with

saturable nonlinearity resulting from the photorefractive effect in electro-optic ma-

terials [9], and in quadratic nonlinear media, with an effectively saturable nonlin-

earity resulting from cascaded quadratic processes [10, 9]. Theoretically, many

kinds of solitons in quadratic nonlinear media have received significant attention

(for review see Refs. [11] and [12]). However, quadratic temporal solitons [13] and

(2+1)D STS [14, 15] have been observed only recently. The main impediment to

the formation of temporal solitons (and STS) in quadratic materials is the histori-

cally perceived need for large anomalous group-velocity dispersion (GVD) at both

the fundamental frequency (FF) and the second harmonic (SH). In particular, the

above mentioned experiments utilized anomalous GVD that was induced by angu-

lar dispersion from a grating (pulse-tilting) to overcome the normal material GVD

present at the wavelengths studied. However, pulse-tilting consumes a transverse
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degree of freedom, preventing soliton confinement along that dimension. This lack

of confinement was seen by Liu et al. who observed (3+1)D filaments resulting

from the transverse instability of (2+1)D STS [16]. These filaments were similar in

nature to light bullets, but did not propagate stably due to residual angular disper-

sion from the pulse-tilting technique. To date, all experiments observing temporal

solitons and STS in quadratic media have utilized pulse tilting, so there is signifi-

cant motivation to generate quadratic temporal solitons in systems without pulse

tilt, where the extension to light bullets is possible.

Surveying available quadratic materials leads to the conclusion that large anoma-

lous GVD at the FF is accessible, without significant linear absorption, if this

frequency is chosen in the infrared; however, the GVD is accompanied by signifi-

cant group-velocity mismatch (GVM) between the FF and SH. In addition, in this

case the GVD at the SH ranges from near zero to large normal values. So, one

is motivated to consider solitons with normal GVD at the SH. Recently, STS in

the (2+1)D and (3+1)D cases were considered under these conditions [17]. It was

found that, for a limited range of parameters, solitons (or solitonlike pulses with

tiny nonlocalized tails which would not be experimentally accessible) do exist for

normal GVD at the SH and in the presence of some GVM. However, the existence

and stability of the more fundamental temporal solitons (i.e., 1D rather than mul-

tidimensional pulses) under conditions of normal GVD at the SH has never been

considered. This is the subject of the present work.

Temporal solitons in this system are particularly interesting from an experi-

mental standpoint. If observed without the pulse-tilting technique, these would

be the crucial step to the formation of true light bullets (either directly through

modulation instability in the spatial domain or by launching STS under conditions
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similar to those for temporal solitons). On the other hand, one would naturally

expect the stability requirements for solitons in 1D to be less stringent than for

STS, allowing formation and observation of the solitons over a broader and more

experimentally accessible range of values of the GVM and normal GVD at the SH.

Below, we present results of both analytical [based on the variational approxi-

mation, (VA)] and direct numerical investigations of temporal solitons in quadratic

media with normal GVD at the SH. We show that while the resulting solitary

pulses feature the aforementioned nonlocalized tails and thus are not localized in

the rigorous sense, with proper choice of the parameters they may be completely

localized in any practical sense, so that the resulting waves are indistinguishable

from genuine solitons over experimentally accessible propagation lengths. In addi-

tion, the pulses are shown to persist in the presence of significant GVM between

the FF and SH fields, which is crucial to their experimental observation since all

quadratic materials give rise to GVM. Solitonlike solutions are demonstrated un-

der accessible experimental parameters, and the implications of the results to the

formation of (2+1)D and (3+1)D STS in these systems are discussed.

3.2 Analytical and numerical results

Within the commonly adopted slowly varying envelope approximation, the coupled

equations governing the interaction of the FF and SH field envelopes (u and v, re-

spectively) propagating in the z direction in a medium with quadratic nonlinearity

are [7, 18]

iuz + uττ + u∗v − u = 0, (3.1)
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2i(vz + σvτ ) + δvττ +
u2

2
− αv = 0. (3.2)

Here u and v are related to the fields E1 and E2 (in units of the initial peak

FF field E0) by E1 = (u/2)eiz, E2 = vei(α/2)z, and α = 4 − 2∆kZI ; ∆k =

k2ω − 2kω is the wave-vector mismatch between the FF and SH fields, and ZI =

nλ/πχ(2)E0 characterizes the strength of the nonlinear coupling. The GVM pa-

rameter σ =
√

2LDS,1ZI/L2
GV M is expressed in terms of the dispersion and GVM

lengths LDS,j = τ0
2/|β(2)

j | and LGV M = cτ0/(n1,g − n2,g), respectively, for material

dispersion β
(2)
j and group-velocity index nj,g at frequency ωj with j = 1, 2. Time τ

and propagation coordinate z are normalized by
√

ZI/2LDS,1 and ZI , respectively.

δ ≡ 2β
(2)
2 /β

(2)
1 is the ratio between the GVD at the SH and FF. In Eqs. 3.1 and

3.2 the GVD at the FF is assumed to be anomalous, so that δ > 0 and δ < 0

correspond, respectively, to anomalous and normal GVDs at the SH. While it is

true that soliton solutions are expected with normal GVD at both the FF and the

SH (and negative nonlinearity), this case is not really different from the usual one.

However, the results reported here are equally applicable to the case of normal

GVD at the FF and slightly anomalous GVD at the SH, which is also physically

realizable in available quadratic media. It is important to note, however, that in

the multidimensional case diffraction only has one sign, and the existence of lo-

calized solutions demands that the sign of the GVD term in the FF equation [Eq.

(3.1)] be the same as that of diffraction. Hence only the case of anomalous GVD

at the FF can give rise to multidimensional solitons.

Our consideration is broken into three parts: analysis of solutions to Eqs.

(3.1) and (3.2) using the VA in the zero-GVM limit, numerical simulation of the
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propagation equations without GVM, and finally a study of the effects of GVM on

the resulting solutions.

In the zero-GVM case (σ = 0), the VA is applied to Eqs. (3.1) and (3.2)

with δ < 0. Starting with the real Gaussian ansatz, u = A exp(−ρτ 2), v =

B exp(−γτ 2), we arrive at an equation for the temporal-width parameter ρ (cf.

Ref. [19]):

20δρ3 + (4δ − 3α)ρ2 + 4αρ − α = 0. (3.3)

Equating the discriminant of Eq. (3.3) to zero yields the boundary

α0 = const · δ, const ≈ −13.6075 . . . , (3.4)

above which (i.e., for α > α0) real solutions exist. Using ρ obtained from Eq. (3.3)

and the underlying Gaussian ansatz, we construct an initial guess and employ the

shooting method to obtain numerically exact stationary solutions to Eqs. (3.1)

and (3.2) (see Fig. 3.3 for a typical example, to be discussed).

The stability of the stationary solutions, which is a critical issue, was tested

by direct simulations of Eqs. (3.1) and (3.2) using a symmetric split-step beam-

propagation method as described in Ref. [15]. Points symbolizing stable and

unstable propagation are collected in Fig. 3.1, along with the soliton-existence

boundary, as predicted by the VA in the form of Eq. (3.4). Gaussian profiles are

launched in the numerical simulations (as is further discussed later), and absorp-
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Figure 3.1: Stability region for solutions near δ = 0. Filled (empty) diamonds

show numerically stable (unstable) solutions. Stability is determined by examining

evolution of the solutions over ∼ 64 dispersion lengths. The line is the soliton-

existence boundary [Eq. (3.4)], predicted by the VA (stable solutions are predicted

to the right of the boundary). Results are for the case of zero GVM (σ = 0).

tive boundary conditions are employed to suppress energy radiated beyond the

calculation window.

The agreement between Eq. (3.4) and the actual border of the stable solutions,

as found from the simulations, is quite reasonable, and is better for small α. With

increasing α (which implies approaching the known cascading limit [11, 12]), stable

solutions are found for somewhat larger |δ| (i.e., larger normal GVD at the SH)

than predicted by the VA. Somewhat surprisingly, stable solutions are found for
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quite large values of |δ|, up to δ ∼ −2, with the appropriate choice of α. For

instance, Fig. 3.2 displays stable propagation of the solution with δ = −2 [i.e.,

GVD(2ω) = -GVD(ω)] and α = 13.6. This is in contrast to the results for the

(2+1)D and (3+1)D cases [17], where STS are found to be stable only for much

smaller values (|δ| <∼ 0.15). In Fig. 3.1, stability is defined by the requirement that

less than ∼5% of the energy in the formed field is lost after propagation through

∼64 dispersion lengths; some solutions near the boundary which are characterized

as unstable only decay by ∼5-20% (with the decay increasing further into the

normal SH GVD regime).

Despite the robustness of the pulses in numerical simulations, their strict lo-

calization must be addressed. This issue is particularly important due to the

counter-intuitive nature of stable or even quasi-stable pulses with normal GVD

at the SH. If a small delocalized [continuous wave, (CW)] component is present

in the SH, linearization of Eqs. (3.1) and (3.2) shows that it has the form v =

b cos(
√

(α/|δ|)|τ |+φ0) where φ0 is an unknown constant, and b is the tail’s ampli-

tude. b can be estimated by solving the linearized version of Eq. (3.1) for u, and

using the result to solve Eq. (3.2) with the source (driving term) u2/2. The source

is Fourier transformed, and then its product with the Green’s function for the SH

field is inverse transformed. Following these lines (cf. Ref. [17], where similar

analysis was performed for the multidimensional case), it is possible to isolate a

term in the solution representing the CW “tail,” and arrive at an estimate for the

tail’s amplitude,

b ∼ exp(−C
√

α/|δ|), (3.5)
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Figure 3.2: Evolution of the FF (a) and SH (b) fields for α = 13.6 and δ = −2.

A Gaussian pulse was launched solely in the FF field. Propagation is over ∼ 64

dispersion lengths. Inset (c) shows the time-integrated total energy (line), as well

as the energy in the FF (upper), and SH (lower) components.
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where C is an unknown constant.

To test Eq. (3.5) we use the shooting method as described above with δ = −0.15

and various values of α (numerical error of the shooting method is estimated to be

∼ O(10−5)). Fig. 3.3 shows the dependence of the resulting tail’s amplitude on α,

along with a fit to Eq. (3.5). Up to α ≈ 20, the decay of the tail amplitude follows

Eq. (3.5) closely. For still larger α, the tail amplitude b decays slower.

The presence of the tail means that the solutions found are not strictly localized;

however, for appropriate α and δ the SH peak-to-tail ratio can be easily made

>∼ 104. This explains why no decay is observed in Fig. 3.2 (and in simulations

of other stable solutions with δ < 0 in Fig. 3.1). Pulses with an exponentially

small CW component will appear as true solitons in any feasible experiment. The

conditions under which the tails are minimized (large α) correspond precisely to

the transition to an effective Kerr-like medium in the cascading limit, when the

sign of the SH dispersion is not significant. Notice also the close proximity of the

numerical solutions to the Gaussian ansatz. Based on this, Gaussian profiles are

launched in numerical simulations.

It is also necessary to address the effect of GVM (σ) on the stability of the

solutions. Numerically, we study the effects of GVM by direct simulations, starting

from a point in the (α, δ) plane with known stable solution for σ = 0, and increasing

σ. Fig. 3.4 shows the stable solution at α = 13.6, δ = −0.5, with increasing GVM.

It is apparent from the figure that small GVM (σ <∼ 2) has little effect on the

stability of the solution. Remarkably, some of the soliton keeps a part of its energy

for GVM up to σ ∼ 30. This is unlike in higher dimensions [17], where GVM

very quickly destabilizes the solitons. At conditions that correspond to realistic

experimental parameters in quadratic nonlinear media, this corresponds to GVM
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Figure 3.3: (a) The amplitude of the CW component (tail) of the SH field (dia-

monds), as found from the shooting solution of Eq. (3.3) with δ = −0.15, vs. α.

The line indicates the predicted dependence in the form of Eq. (3.5). (b) The

shooting results (solid line) and the corresponding VA prediction (dashed line) for

u and v (upper and lower traces, respectively) with α = 7.5. The zoomed region

in (c) shows the residual oscillatory SH tail present in (b).
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Figure 3.4: Peak FF profiles showing effects of increased GVM on soliton formation

at α = 13.6 and δ = −0.5. Up to σ ≈ 1.2 profile shows no decay. As in Figs. 3.1-

3.2, a Gaussian FF profile is launched.

of several picosecond/millimeter.

This result greatly increases the chance of observing the solitons experimentally.

Values of the normalized parameters for the commonly used quadratic material

periodically poled lithium niobate in the infrared (at λ ∼ 3 µm) are α ≈ 12,

δ ≈ −0.5, and σ ≈ 1.3, which are well within the effective stability range found

above for the solitons. The initial point in (α, δ) used in Fig. 3.4 was picked from

the stability region of Fig. 3.1. Starting closer to the boundary yields somewhat



51

less resilience to GVM, as expected.

While realistic material parameters most likely necessitate working with σ > 0,

solitonlike solutions with normal GVD at the SH present a new degree of freedom

in the space of experimental parameters. In particular, most available quadratic

media have a zero GVM point in the infrared, but at wavelengths corresponding to

large normal GVD at the SH. Thus, the ability to work with normal SH dispersion

could allow experimental study of solitons with zero GVM (in addition to large

values of σ). Given present materials this is unlikely to apply to STS, where the

requirements on δ are much more restrictive.

3.3 Conclusion

In summary we have demonstrated that quadratic nonlinear media support tempo-

ral solitons with normal GVD at the SH. Formally, these solutions are not strictly

localized; however, with appropriate choice of the parameters, the residual CW

tail in the SH field can be reduced to <∼ 10−4 of the soliton’s amplitude. Exper-

imentally there should be no detectable difference between these and true soliton

solutions over measurable propagation lengths. Numerically, the soliton solutions

survive even in the presence of significant GVM. This should provide an impor-

tant medium for the study of quadratic solitons in the temporal and, eventually,

spatiotemporal domains.
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Chapter 4

Controllable Raman-like nonlinearities

from nonstationary, cascaded quadratic

processes1

We show that useful non-instantaneous, nonlinear phase shifts can be obtained

from cascaded quadratic processes in the presence of group-velocity mismatch. The

two-field nature of the process permits responses that can be effectively advanced

or retarded in time with respect to one of the fields. There is an analogy to a

generalized Raman-scattering effect, permitting both redshifts and blueshifts of

short pulses. We expect this capability to have many applications in short-pulse

generation and propagation, such as the compensation of Raman-induced effects

and high-quality pulse compression, which we discuss.

4.1 Introduction

In the past decade, there has been much interest in the nonlinear phase shifts pro-

duced by the cascaded interactions of two or three waves in quadratic (χ(2)) nonlin-

ear media. Large nonlinear phase shifts of controllable sign can be generated, and

numerous applications of such a capability can be envisioned [2]. The prototypical

quadratic process is second-harmonic generation (SHG). During the propagation

of a fundamental-frequency (FF) field along with its second-harmonic (SH), the

FF accumulates a nonlinear phase shift (ΦNL) if the process is not phase-matched.

With long pulses (nanosecond duration in practice) the FF and SH fields over-

1The results presented in this chapter have been published in Ref. [1].
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lap temporally despite their different group velocities. In this so-called stationary

limit, an effective Kerr nonlinearity is obtained (except at high intensity, when the

fundamental field is depleted), and this can be a surrogate for the bound electronic

cubic (χ(3)) nonlinearity [3]. The cascade nonlinear phase shift can be thought of as

arising from an effective nonlinear refractive index, i.e., the real part of an effective

susceptibility. The residual SHG that occurs in the phase-mismatch process can

similarly be considered the analog of two-photon absorption (the corresponding

imaginary part of the effective susceptibility).

The use of cascaded quadratic processes with ultrashort pulses is complicated

substantially by the group-velocity mismatch (GVM) between the FF and SH

fields [5, 4]. GVM causes the fields to move apart in time, which reduces their

coupling, and thus the magnitude of the cascade effects. In addition, the temporal

profile of the nonlinear phase shift becomes distorted. Deviations of ΦNL(t) from

the pulse intensity profile hamper or preclude applications that involve solitonlike

pulse shaping. The solution to this problem amounts to recovery of the stationary

regime: For a given value of the GVM, the phase mismatch is increased so that

the cycles of conversion and backconversion that generate the nonlinear phase shift

occur before the pulses move apart from each other in time. Liu et al. and Wise

et al. showed that acceptable phase-shift quality can be obtained if at least two

conversion cycles occur per characteristic GVM length LGVM = 0.6cτ0/(ng,1−ng,2),

which implies ∆k > 4π/LGVM [6, 7]. Here, c is the speed of light in vacuum, τ0 is

the full-width at half-maximum (FWHM) of the pulse, and ng,1 and ng,2 are the

group refractive indices for the FF and SH, respectively. In the limit of large phase

mismatch an exact replica of a cubic nonlinearity is asymptotically obtained [3].

The disadvantage of working with large phase mismatch is reduced magnitude of
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the nonlinear phase shift. GVM thus places a strong constraint on applications

of cascade phase shifts. As one example, increasing GVM reduces the fraction of

launched pulse energy that evolves into a soliton eventually to zero [8]. To date,

applications of cascade phase shifts with femtosecond pulses [9, 6, 10, 11] have

all been demonstrated under stationary conditions. Approaching the stationary

boundary, GVM coupled with self-phase modulation has been observed to broaden

asymmetrically the pulse spectrum [6, 12]

The nonlinear refraction experienced by an ultrashort pulse in a cubic nonlin-

ear medium arises predominantly from bound-electronic and nuclear (i.e., Raman)

contributions to the nonlinear response. Here, we show that cascade phase shifts

produced under nonstationary conditions mimic the Raman response with some

remarkable properties. Frequency shifts of controllable sign and magnitude can be

impressed on short pulses. These effective Stokes and anti-Stokes Raman processes

complete the analogy between cascade nonlinearities and true cubic nonlinearities

while maintaining the new degree of freedom provided by the quadratic interaction

— control of the process through the phase mismatch. An interesting feature of

the nonstationary cascade process is that it provides a controllable, noninstanta-

neous (and therefore nonlocal) nonlinearity. That the GVM alters the quadratic

processes and produces deviations from a Kerr nonlinearity is well-known [5]. How-

ever, to date these effects have been perceived as distortions to be avoided. Just

as the ability to control the sign and magnitude of an effective nonlinear index has

enabled a new class of applications [2, 7], controllable Raman-like processes can be

expected to create substantial new opportunities. We can think of cascade non-

linear processes with short pulses as dividing naturally into two classes separated

by the criterion for obtaining nonlinear phase shifts that mimic those of purely
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electronic origin. In this view, half of the possibilities of cascaded quadratic phase

shifts have yet to be explored. Some examples of these processes will be discussed.

4.2 Analytical approach

The Kerr-like nonlinearity that arises from the χ(2) : χ(2) process in the stationary

limit can be understood qualitatively as follows. A small fraction of the FF is

converted to the SH, which accumulates a phase difference before it is backcon-

verted. The nonlinear phase shift impressed on the FF is delayed by one full cycle

of conversion and backconversion. However, as long as the SH is not displaced

temporally from the FF, the phase shift on the FF will be proportional to its in-

tensity profile (Fig. 4.1). With short pulses, the GVM becomes important if the

fields separate by approximately the pulse duration before a cycle of conversion

and backconversion is complete. (We assume that the effect of the difference be-

tween the group-velocity dispersions (GVD) of the FF and the SH is negligible;

in practice, it typically is much weaker than the interpulse GVM. This will be

discussed quantitatively below.) Thus, after one cycle of conversion and backcon-

version, the intensity profile of the SH field is retarded or advanced with respect

to that of the FF, depending on the sign of the GVM. The corresponding delay

of the nonlinear phase is slightly smaller or larger than one full conversion cycle.

As a result, an effectively advanced or retarded phase shift is accumulated by the

FF. The corresponding effect in the spectral domain is a frequency shift toward

the blue or the red. Such frequency shifts have been predicted through numerical

calculations [5, 8].

The propagation of the FF and the SH are governed by coupled equations

within the slowly varying envelope approximation (SVEA) [13]. We neglect self-
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(2)χ medium FF

SH

Figure 4.1: Illustration of the cascaded quadratic processes under phase-mismatch

conditions. The FF is partially converted to the SH and then backconverted.

Dashed (solid) curves are for the case of zero (nonzero) GVM.

and cross-phase modulation due to χ(3), consider only the temporal dimension,

and assume conditions for type I second harmonic generation, but the results can

easily be generalized:

i
∂a1

∂ξ
− δ1

2

∂2a1

∂τ 2
+ a∗

1a2 exp(iβξ) = 0, (4.1)

i
∂a2

∂ξ
− δ2

2

∂2a2

∂τ 2
− i

∂a2

∂τ
+ a2

1 exp(−iβξ) = 0. (4.2)

Here a1 and a2 are the normalized FF and SH field amplitudes. Time is nor-

malized to the initial pulse duration τ = t/τ0 and the scaled propagation coordi-

nate is ξ = z/LGVM. Here, δj = LGVM/LDS,j , where LDS,j = 0.322τ0
2/GVD(ωj)

are the dispersion lengths with j = 1, 2. The parameter β = ∆kLGVM where

∆k = k2ω − 2kω is the normalized FF-SH wave-vector mismatch.

Consider the simple but common case when only FF light is incident on the
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quadratic medium. In the limit of large phase-mismatch, conversion and backcon-

version occur rapidly and most of the energy resides in the FF at all times. A

relation between the FF and the SH amplitudes can be derived as an expansion

in powers of 1/β [3, 14]. By eliminating a2 in Eq. (4.2) and keeping terms up to

order (1/β3), an equation of motion for the FF field can be derived:

i
∂a1

∂ξ
− δ1

2

∂2a1

∂τ 2
− 1

β
|a1|2a1 − 2i

1

β2
|a1|2

∂a1

∂τ

+
1

β2
(δ1 − δ2)|a1|2

∂2a1

∂τ 2
− δ2

β2
a∗

1(
∂a1

∂τ
)2 + O(

1

|β|3 ) = 0. (4.3)

The first three terms constitute a nonlinear Schrödinger equation (NLSE),

which is generalized by the fourth and the fifth terms that describe the effects

of the GVM, and the mismatch of the GVD of the FF and SH, respectively. The

final term is negligible (at order 1/β2) since it is proportional to the square of the

first derivative of the field envelope (a small quantity in the SVEA). In addition,

it is even in time for well-behaved fields (a1(t)) and hence cannot contribute to

the frequency-shifting process. We neglect the GVD mismatch since its effect is

much smaller than interpulse GVM for typical nonlinear media under the assumed

conditions of small conversion to the SH. In that case, Eq. (4.3) reduces to:

i
∂a1

∂ξ
− δ1

2

∂2a1

∂τ 2
− 1

β
|a1|2a1 − 2i

1

β2
|a1|2

∂a1

∂τ
= 0. (4.4)

We note that Eq. (4.4) resembles the Chen-Liu-Lee equation (CLLE), which is
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integrable [15]. The difference is the presence of a cubic nonlinear term. It can be

shown that Eq. (4.4) reduces to the CLLE:

i
∂q(Z, T )

∂Z
− ∂2q(Z, T )

∂T 2
+ i|q(Z, T )|2∂q(Z, T )

∂T
= 0, (4.5)

with the substitution

a1(ξ, τ) = c0 exp[i(c1ξ + c2t)]q(ξ, τ), (4.6)

where |c0|2 = β2
√

δ1/8, c1 = δ1β
2/8, and c2 = β/2, followed by the coordinate

transformation

T = −
√

2/δ1 τ − β
√

δ1/2 ξ, (4.7)

Z = ξ. (4.8)

Hence, Eq. (4.4) is integrable as well. We note that the CLLE is further related

to the well-known, integrable derivative nonlinear Schrödinger equation through a

gauge-invariant transformation [16].

To further understand the effects of the lowest-order correction from GVM in

Eq. (4.4), we can compare it to the equation governing the propagation of a single

field envelope a1 under similar approximations to Eqs. (4.1) and (4.2), but for a

Kerr-nonlinear material with finite Raman-response time TR [17]:
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i
∂a1

∂ξ
− δ1

2

∂2a1

∂τ 2
+ γ[|a1|2a1

︸ ︷︷ ︸

NLSE

−TRa1
∂|a1|2
∂τ

︸ ︷︷ ︸

Raman

] = 0. (4.9)

Here γ = n2ω0/(cπw2) for a Gaussian beam with of frequency ω0 and waist

w. Comparing Eq. (4.9) with Eq. (4.4), we see that they are similar but with

the Raman term of Eq. (4.9) replaced by T eff
R |a1|2∂a1/∂τ where T eff

R ≡ −2i/β.

While the correspondence is not exact since the functional dependence is different

(∼ a1∂|a1|2/∂τ for Raman-scattering versus ∼ |a1|2∂a1/∂τ for the cascaded pro-

cess), some qualitative understanding can be gained from considering the effective

cascaded response with T eff
R ∼ i/β: First, the cascaded correction is imaginary

and hence does not contribute directly to the phase (unlike the Raman response).

Rather, it alters the field envelope. The envelope change subsequently couples to

the phase profile through the remaining terms of Eq. (4.4), so the frequency shift

occurs through a higher-order process. Second, T eff
R saturates with 1/β ∼ 1/∆k(λ),

unlike the Raman response which does not depend strongly on wavelength. This

saturation will be explored in greater detail in Section 4.3. Note that the effective

response for the cascaded process can be approximately two orders of magnitude

or more greater than that of Raman-scattering, so that significant frequency shift-

ing is possible in centimeters of quadratic material (versus meters of fiber with

Raman).

For a qualitative understanding of the effect of the GVM term, we decompose

the field a1(ξ, τ) in Eq. (4.4) into its amplitude and phase with the substitution

a1(ξ, τ) = u(ξ, τ) exp(iφ(ξ, τ)), where u(ξ, τ) and φ(ξ, τ) are real functions. The

evolution of the amplitude and the phase is then given by
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∂u

∂ξ
= δ1

∂u

∂τ

∂φ

∂τ
+

δ1

2
u
∂2φ

∂τ 2
+

2

β2
u2 ∂u

∂τ
, (4.10)

u
∂φ

∂ξ
= −δ1

2

∂2u

∂τ 2
+

δ1

2
(
∂φ

∂τ
)2u − 1

β
u3 +

2

β2
u3∂φ

∂τ
. (4.11)

For the sake of simplicity, we concentrate on the nonlinear terms and ignore the

dispersion, which amounts to neglecting the terms with higher-order time deriva-

tives. With this simplification, we obtain

∂u

∂ξ
=

2

β2
u2 ∂u

∂τ
, (4.12)

u
∂φ

∂ξ
= − 1

β
u3 +

2

β2
u3 ∂φ

∂τ
. (4.13)

If we assume β is large, u(ξ, τ) and φ(ξ, τ) can be calculated by expanding in

powers of 1/β, similar to the procedure used to obtain Eq. (4.4). Keeping terms

up to order 1/β2, Eq. (4.12) shows that u(ξ, τ) = u(τ) + O(1/β2), i.e., that the

field amplitude is approximately unchanged. Thus, integration of Eq. (4.13) yields

φ(ξ, τ) = − 1

β
u2(τ)ξ + O(

1

β2
). (4.14)

Substitution of this relation back into Eq. (4.13) gives
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∂φ

∂ξ
≈ − 1

β
u2 − 4

β3
u3 ∂u

∂τ
. (4.15)

The first term on the right represents the Kerr-like nonlinear phase shift and

the second term corresponds to the noninstantaneous nonlinear response due to

large GVM.

The relation in Eq. (4.15) provides a valid description of the phase evolution

only in its early stages before the field amplitude is modified significantly, and in the

absence of dispersion. Within these approximations, the effect of the GVM on the

nonlinear phase shift can be illustrated for a given pulse shape: a1(0, τ) = sech(τ).

Integration of Eq. (4.15) yields

φ(ξ, τ) ≈ − 1

β
sech2(τ)(1 + ξ

2

β2
sech(τ) tanh(τ))ξ + φ0, (4.16)

where φ0 is an integration constant. The temporal asymmetry of the GVM con-

tribution shifts the peak of the nonlinear phase shift.

Likewise, by Fourier transforming to the frequency domain, the contributions

of the Kerr-like and the GVM terms in Eq. (4.4) can be calculated for the pulse

shape to be

1

β
|a1|2a1 + 2i

1

β2
|a1|2

∂a1

∂τ
=

√

π/2

β
(1 + ω2)(3 + 2ω/β)sech(πω/2), (4.17)
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which has a bipolar shape. Positive frequency components are attenuated and

negative frequencies are amplified, or vice versa, depending on the sign of the

phase-mismatch-to-GVM ratio. This result is expected to hold in general for any

smooth, single-peaked pulse shape for which a1(0, τ) → 0 for |τ | → ∞. Such

a frequency shift is expected from the GVM term, which has an odd-order time

derivative.

4.3 Numerical analysis

Although the approximate one-field equation [Eq. (4.4)] is useful for a qualitative

understanding, it is necessary to consider the coupled equations [Eqs. (4.1) and

(4.2)] for a quantitative description. To this end, we numerically solve a version of

Eqs. (4.1) and (4.2) that has been generalized to include the self- and cross-phase

modulation terms that are due to the cubic nonlinearity. We use a different field

normalization here to facilitate comparison with experimental parameters.

i
∂A1

∂z
− ZI

2LDS,1

∂2A1

∂τ 2

+ A∗

1A2 exp(i∆k(ZIz))

+
ZI

LNL,1

(|A1|2 + 2|A2|2)A1 = 0, (4.18)

i
∂A2

∂z
− ZI

2LDS,2

∂2A2

∂τ 2
− i

ZI

LGVM

∂A2

∂τ
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+
n(ω1)

n(ω2)
A2

1 exp(−i∆k(ZIz))

+
n(ω1)

n(ω2)

ZI

LNL,2

(2|A1|2 + |A2|2)A2 = 0. (4.19)

Here the FF and SH envelopes (A1 and A2, respectively) are in units of the ini-

tial peak FF field A0 (related to the initial peak FF intensity by I0 =
√

ε/µ|A0|2/2),

and n2 is the Kerr nonlinear index. The cubic nonlinear length characterizing the

pulse propagation is LNL,j = c/ωjn2I0 (the length over which the accumulated

nonlinear phase shift is 1) for frequency ωj with j = 1, 2. The propagation coor-

dinate z is normalized to the quadratic nonlinear length ZI = nλ1/2πdeffA0 which

characterizes the strength of the nonlinear coupling. Variable deff is the effective

quadratic nonlinear coefficient. Time τ , LDS,j , and LGVM are defined as for Eqs.

(4.1) and (4.2).

Eqs. (4.18) and (4.19) are solved using a symmetric split-step beam propagation

method [18]. The simulations assume typical conditions for femtosecond pulses in

quadratic nonlinear crystals. As an example, we calculate the propagation of 120-

fs pulses with a peak intensity of 50 GW/cm2 in a 10 cm-long quadratic medium.

The launched pulse shape is chosen to be Gaussian with center wavelength 790 nm.

The quadratic medium used is barium metaborate (Ba2BO4 or BBO), for which

the material parameters are n = 1.63, deff = 1.82 pm/V, n2 = 3.2× 10−16 cm2/W,

GVM = -186 fs/mm, the FF (SH) GVD = 70 (190) fs2/mm, and the FF (SH)

third-order dispersion 50 (81) fs3/mm. Note that the true cubic nonlinearity (n2)

is included in the calculations. Two-photon absorption is neglected since it is small

for BBO at 790 nm. The phase mismatch is set to be ∆k = 5π/mm, corresponding
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to a self-defocusing nonlinearity and a magnitude that is about half the minimum

value to obtain a Kerr-like phase shift. This particular set of conditions, except

for the crystal length, is chosen to correspond to experiments that are described

below. As expected, the spectrum of the pulse shifts to higher frequencies as it

propagates through the quadratic medium. The evolution of the spectrum is shown

in Fig. 4.2(a). Initially, the frequency-shift increases linearly with propagation

distance, but eventually the process saturates [Fig. 4.2(b)]. The spectrum of the

SH field shifts opposite from that of the FF (i.e., to lower frequencies), prior to

saturation. This saturation is expected, since the effective response of the cascaded

process decreases (or is distorted) with increasing frequency shift. For this choice of

pulse parameters and phase-mismatch, the saturation begins beyond 3 cm, which

is close to the maximum length of available BBO crystals. The cubic electronic

nonlinearity of the quadratic material is included here for complete correspondence

with experimental parameters, however the close agreement in Fig. 4.2(b) between

the saturation trend with and without n2 indicates the dominance of the quadratic

process in the frequency shifting dynamics. In Fig. 4.2(b), the presence of cubic

nonlinearity slightly reduces the resulting frequency shift, as expected as a result

of its self-focusing phase. One might expect the material’s Raman response to

be relevant to the frequency-shifting dynamics studied here, however the Raman

response of BBO with ∼100-fs pulses is small compared with the cascaded response.

In comparison to Raman, the cubic electronic nonlinearity included in Fig. 4.2(b)

is a larger effect, even though it alters the frequency shifting process indirectly

through the nonlinear phase.

The pulse propagation is dominated by an interplay of GVD and the effective

nonlinearity from the cascaded process in the form of solitonlike dynamics. In
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Figure 4.2: (a) Evolution of the spectrum along the propagation direction. Shift

is in units of the initial spectral FWHM, ∼ 3.7 THz. The scale bar shows spectral

intensity in arbitrary units. (b) Weighted average frequency shift as a function of

propagation distance. The dashed curve indicates a fit to the region of linear shift.

The dashed-dotted curve shows similar results in the absence of χ(3) (n2 = 0).
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the time domain, the pulse undergoes compression since the energy is more than

the amount needed to balance the dispersive effects. The intensity profiles before

the onset of saturation and at the exit face of the crystal are plotted in Fig. 4.3

along with those of the launched pulse. The FF undergoes a steady compression

accompanied by energy loss to the SH: At z = 12 mm, its FWHM is 110 fs

with 64% of the pulse energy remaining in the FF. With propagation, the pulse

shape becomes slightly asymmetrical. The asymmetrical structure develops into a

secondary pulse in the final stages of propagation that corresponds to the secondary

structure of the spectrum [Fig. 4.2(a)]. At z = 100 mm, the FWHM of the main

peak is reduced to 40 fs while ∼ 36% of the launched energy is retained in the

FF. The temporal profiles are displaced since the pulse experiences different group

velocities as its central frequency changes.

A similar picture emerges for the total frequency shift for fixed propagation

distance and varying phase mismatch. The magnitude of the nonlinear phase, and

hence the frequency shift, is proportional to 1/∆k before it saturates. Loss to SH

conversion increases with decreasing |∆k|, so there exists a trade-off between the

magnitude of the frequency shift and loss. We define a figure-of-merit (FOM) for

the shifting process as the ratio of frequency-shift to energy content in the SH field,

which attains a maximum for phase mismatch values slightly below those of the

minimum for obtaining Kerr-like nonlinear phase shifts (Fig. 4.4). This is demon-

strated in Fig. 4.4, which shows simulations of 100-fs, 200-pJ pulses with center

wavelength 1550 nm (and peak intensity ∼ 5 GW/cm2). The material parame-

ters used correspond to those of the quadratic material periodically poled lithium

niobate (PPLN): n = 2.14, deff = 16.5 pm/V, n2 = 3.2 × 10−15 cm2/W, GVM =

-370 fs/mm, and the FF (SH) GVD = 100 (400) fs2/mm. Under these conditions,
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Figure 4.3: Intensity profiles of the FF at z = 0 mm (dashed-dotted curve),

z = 12 mm (solid curve), z = 100 mm (dashed-curve). For the launched pulse

LDS,1 = 74 mm.
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Figure 4.4: Frequency shift (crosses) and figure-of-merit (circles) as a function of

phase mismatch. Similarly to Fig. 4.2, frequency shift is measured in units of

the initial FWHM (here ∼ 4.4 THz). Note that GVD is chosen to be normal

(anomalous) for ∆k > 0 (∆k < 0) to support solitonlike pulses.

the stationary boundary for Kerr-like phase shifts corresponds to |∆k| >∼ 25π/mm.

Notice that much larger frequency shifts can be generated closer to phase matching,

but with larger SH conversion.

The noninstantaneous nature of the cascaded quadratic process with significant

walk-off between the FF and the SH is demonstrated by the nonlinear phase shift

imposed on the FF. Simulations confirm the aforementioned expectations: Effec-

tively retarded or advanced phase shifts are imposed on the FF depending on the

sign of the GVM (Fig. 4.5).
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Figure 4.5: Phase impressed on the FF for zero (solid curve), positive (dashed

curve), and negative (dashed-dotted curve) GVM.
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4.4 Experimental observation of the frequency shift

Experiments were performed with 120-fs, 0.6-mJ pulses centered at 790 nm and

generated by a Ti:sapphire regenerative amplifier. The launched pulse shape was

approximately Gaussian with a clean spatial profile and the peak intensity was

estimated to be 50 GW/cm2. A 17 mm-long piece of BBO served as the quadratic

medium. The GVM length was LGVM = 0.38 mm, for which the criterion for a

Kerr-like phase shift implies ∆k > 10.4π/mm. Both blue and redshifts are exper-

imentally available through positive and negative phase mismatch, respectively.

However, redshifts occur with self-focusing nonlinearity, which limits the peak in-

tensity available without continuum generation and crystal damage. Consequently,

we focus here on blue-shifts.

Increasing frequency shift of the FF was observed with decreasing phase mis-

match (Fig. 4.6). The inset of Fig. 4.6 shows the spectral shift versus phase mis-

match for self-defocusing phase shifts, and the main figure shows example spectra.

The data presented for ∆k = 36π/mm serve as a control experiment: At such a

large phase mismatch, the cascade nonlinear phase and the Kerr nonlinearity are

negligible and the spectrum is indistinguishable from the spectrum of the launched

pulses (not shown). The temporal profile of the pulse did not change significantly

in these experiments. The experimental results are compared with the results of

numerical simulations which contained no free parameters and were based on ex-

perimental conditions. In Fig. 4.6, the calculated spectrum of the unshifted pulse

(36π/mm) is normalized so that it contains the same power as the measured un-

shifted spectrum and all other traces have the same relative scaling, so that the

units of all the given spectra are the same. With this in mind, there is excellent

agreement between the measured spectra and the simulations. In particular, the
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Figure 4.6: Experimental (solid curves) and simulated (dashed curves) spectra for

phase mismatches of 5π/mm and 36π/mm. The latter serves as control. Inset:

experimental (symbols) and calculated (solid curve) frequency shift for different

values of phase mismatch. As in Fig. 4.2, frequency shift is measured in units of

the initial FWHM, ∼ 3.7 THz.

shift increases greatly from ∆k = 19π/mm to ∆k = 5π/mm. The latter is the

phase mismatch for which the ratio of the spectral shift to SH conversion should

peak. The dependence of the frequency shift on the phase mismatch, as sum-

marized by the inset of Fig. 4.6, agrees qualitatively with the results of Fig. 4.4;

however, the phase mismatch corresponding to maximum ratio of spectral-shift

to SH conversion is different from that in Fig. 4.4 as a consequence of different

physical parameters in the experiment.
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4.5 Applications

We have shown that cascaded quadratic processes under phase mismatch condi-

tions and in the presence of significant GVM (typical conditions with femtosecond-

duration pulses) result in an effectively noninstantaneous cubic nonlinearity. The

response time is controllable by appropriate choice of the phase mismatch. In ad-

dition to providing an intuitive picture for the effect of phase mismatch on the

propagation of femtosecond pulses, this nonlinear process offers some unique fea-

tures. The nonlocal nature of the Raman-like cascade nonlinearity is interesting

in its own right. Nonlocality of the cubic nonlinearity has been shown to arrest

self-focusing collapse and to stabilize solitons, for example [19, 20]. The nonlocal

nature of the cascade process under nonstationary conditions can be controlled or

tailored to specific situations through the phase mismatch.

Many applications of a controllablem effective Raman process can be envi-

sioned. Perhaps the most obvious one is the cancellation of the Raman shift that a

short pulse accumulates as it propagates in optical fiber. For example, in telecom-

munication systems with bit rates above ∼ 20 Gbit/s, the pulse duration is short

enough that timing jitter is dominated by jitter arising from Raman-induced fre-

quency shifts [21].

In high-energy short-pulse fiber amplifiers, the nonlinear phase shift can be

controlled reasonably well by the technique of chirped-pulse amplification, and

as a result an equally important limitation to pulse energy is stimulated Raman

scattering [22]. The redshifts produced by Raman scattering can be compensated

for by blueshifting the pulses prior to, or following, propagation in fiber. As an

example, we calculate the precompensation of the Raman-induced redshift of a

100-fs, transform-limited pulse centered at 1550 nm in standard single-mode fiber
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(modal area of 80 µm2 and GVD of −23 ps2/km). The pulse energy is 1 nJ. The

quadratic medium is a 4-cm-long waveguide written in PPLN. The modal area of

the waveguide is 40 µm2 and the GVD for the FF is 100 ps2/km [23]. The phase

mismatch is set to ∆k = 20π/mm. The pulse is first blueshifted in the PPLN

waveguide and then propagates in the fiber. These calculations indicate that the

central wavelength can be kept at 1550 nm, following propagation in up to 50

cm of fiber. If no precompensation is utilized, the pulse is redshifted to 1800 nm

(Fig. 4.7). This result nicely complements the previously established conclusion

that the cascade nonlinearity can be used to compensate the nonlinear phase shift

produced by the electronic Kerr nonlinearity under similar conditions [24].

Other potential applications include devices that convert peak power to frequency-

shift, which can be used to switch wavelength channels or intensity discrimination

with the addition of a frequency filter [25].

We consider the application to pulse compression in some detail. For pulse en-

ergies in excess of 1 mJ, methods based on cubic nonlinearity for the generation of

extra bandwidth cannot be used because of the limitations of excessive nonlinearity

in single-mode waveguides and material damage through self-focusing for unguided

geometries. Self-defocusing nonlinearities in quadratic media address these diffi-

culties [6, 26]. The generalization of this approach to include frequency shifts as

described here enables us to implement an analog of Raman-soliton compression

[27]: High-order solitons are formed, producing a compressed primary pulse that

undergoes a continuous self-frequency shift. An advantage of this approach is that

the pedestal commonly produced by Raman-soliton compression consists mainly

of unshifted frequency components. These components can be eliminated with a

frequency filter to yield a pedestal-free pulse.
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Figure 4.7: Pulse spectrum after propagation in fiber without pre-compensation

(dash-dotted curve) and after cascade precompensation stage (dashed curve) and

subsequent propagation through fiber (solid curve). Dots indicate the launched

pulse spectrum.
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Numerical simulations for realistic parameters demonstrate the utility of this

approach: 100-fs, 0.6-nJ pulses with ∆k = 50π/mm compress to 20-fs upon propa-

gation through a 6 cm-long waveguide in PPLN (Fig. 4.8). The pulse quality (Qc),

defined as the ratio of energy contained within the FWHM of the pulse to that of

the initial pulse, is calculated to be 0.65. The unshifted components can be filtered

out to produce a longer (38 fs) but much cleaner Qc = 0.91 pulse. Compression

in a second 2.5-cm-long PPLN crystal generates a 15 fs pulse with virtually no

additional degradation in pulse quality (Qc = 0.90). The resulting pulse after two

stages of compression contains ∼50% of the launched pulse energy. Similarly, cal-

culations indicate that compression factors of up to 3 should be attainable with

1-mJ pulses in a bulk BBO crystal at 800 nm, and experiments are underway to

verify this compression. In addition to the high pulse quality, a practical advan-

tage of this approach is that larger nonlinear phase shifts can be produced at the

smaller phase mismatches needed in comparison with compression in quadratic

media under nearly stationary conditions.

4.6 Conclusion

In summary, we have demonstrated a new capability of cascaded quadratic pro-

cesses under phase mismatched conditions: Effectively retarded or advanced non-

linear phase shifts can be impressed on a pulse in the presence of significant GVM

between the FF and SH frequencies. The frequency-domain manifestation of this

noninstantaneous nonlinear response is redshifts or blueshifts of the pulse spec-

trum. The direction and the magnitude of the frequency shift is controllable by

the choice of the phase mismatch. Just as effectively instantaneous phase shifts

from cascaded processes are analogous to bounded-electronic (χ(3)) nonlinearities
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Figure 4.8: Temporal profile of compressed pulses before (dashed curve) and after

spectral filtering (solid curve) of the unshifted frequencies. Inset: compressed

pulse spectrum before (dashed curve) and after filtering (solid curve). Dash-dotted

curves indicate the launched temporal profile and spectrum.
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for negligible GVM, these noninstantaneous phase shifts in the presence of strong

GVM are analogous to nuclear (Raman-induced) nonlinearities.

We expect the unique features of these processes to find many applications.

Here, we numerically demonstrated compensation of Raman-induced frequency

shifts and high-quality pulse compression assuming typical conditions for fem-

tosecond pulses in common quadratic nonlinear media. More generally, however,

spectral shifts from cascaded quadratic processes should be applicable to all pro-

cesses involving Raman-induced frequency shifts, but with the added freedom of

sign and magnitude control.
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Chapter 5

Frequency shifting with local

nonlinearity management in

nonuniformly poled quadratic nonlinear

materials1

We show theoretically that the frequency shifts which result from phase-mismatched

cascaded processes under conditions of strong group-velocity mismatch can be sig-

nificantly enhanced by local control of the nonlinearity with propagation. This

control is possible with continuous variation of the poling period of quasi-phase

matched structures, and can allow one to avoid saturation of the frequency shift.

We theoretically demonstrate its applicability to high-quality, efficient frequency

shifting of infrared pulses.

5.1 Introduction

In recent years, the nonlinear phase shifts which result from cascaded interactions

in quadratic (χ(2)) nonlinear media have received much attention as a route to

large nonlinear phase-shifts of controllable magnitude and sign [2]. In particular,

they have been shown to support the generation of solitons [3], compensate for

Kerr phase shifts [4], and prove useful for applications such as modelocking of

short-pulse lasers, pulse compression [5], and nonlinearity management for high

pulse energies from fiber lasers [6].

1The results presented in this chapter have been published in Ref. [1].
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However, to date, applications of cascaded quadratic phase shifts to femtosec-

ond pulses have been in the stationary limit, where the fundamental (FF) and

second-harmonic (SH) fields overlap temporally despite group-velocity mismatch

(GVM) between them, producing an effective Kerr nonlinearity in the limit of large

phase-mismatch [7]: i.e., providing a surrogate for the bound-electronic cubic (χ(3))

nonlinearity.

Recently non-stationary cascaded phase shifts were demonstrated [8]. GVM

retards or advances (depending on its sign) the SH propagation with respect to

the FF. Consequently, the resulting nonlinear phase shift imparted on the FF is

advanced or delayed with respect to the stationary phase by an amount depending

on the ratio of GVM to phase-mismatch. This non-instantaneous nonlinear re-

sponse manifests spectrally as redshifts or blueshifts of the pulse spectrum, which

produces an analog of nuclear (Raman) nonlinearities from the quadratic process

[8].

In this Letter we propose a significant new degree of freedom for non-stationary

cascaded frequency shifts: enhancement and control through local nonlinearity

management in quasi phase-matched (QPM) quadratic structures. Local nonlin-

earity control is achieved by aperiodically varying the QPM domain reversal period

(to be discussed further). This added level of control greatly increases the appli-

cations of cascaded frequency shifts to frequency shifting processes in the infrared.

5.2 Analytical results

We begin by reviewing the origin of cascaded frequency shifts [8]. Within the slowly

varying envelope approximation, the coupled equations governing the interaction

of the FF (a1) and SH (a2) field envelopes propagating in the z direction in a
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medium with quadratic nonlinearity under conditions of type I second-harmonic

generation (SHG) are [9]

i
∂a1

∂ξ
− δ1

2

∂2a1

∂τ 2
+ a∗

1a2 exp(iβξ) = 0, (5.1)

i
∂a2

∂ξ
− δ2

2

∂2a2

∂τ 2
− i

∂a2

∂τ
+ a2

1 exp(−iβξ) = 0. (5.2)

Here, time is normalized to the initial pulse duration, τ = t/τ0, the propagation

coordinate is ξ = z/LGVM, and δj = LGVM/LDS,j with dispersion lengths LDS,j =

τ0
2/GVD(ωj) (where GVD is the grou-velocity dispersion). β = ∆kLGVM for

∆k = k2ω − 2kω (the FF-SH wave-vector mismatch) and LGVM = τ0/(n1,g − n2,g)

for material group velocity index nj,g with j = 1, 2.

In Refs. [8] and [10] it was shown that reducing Eqs. (5.1) and (5.2) to a

single field equation for the FF through expansion in powers of 1/β and keeping

the lowest order correction from GVM yields

i
∂a1

∂ξ
− δ1

2

∂2a1

∂τ 2
− 1

β
[|a1|2a1

︸ ︷︷ ︸

NLSE

+ 2i
1

β
|a1|2

∂a1

∂τ
︸ ︷︷ ︸

Correction

] = 0, (5.3)

which consists of two parts: a standard nonlinear Schrödinger equation (NLSE),

and the next higher order correction which is responsible for the non-instantaneous

phase shift which results from GVM in the non-stationary limit. In Ref. [8] it is

shown that the correction qualitatively acts similarly to a Raman-scattering term

(of the form [11] [TR a1 ∂|a1|2/∂τ ]). In analogy to the Raman-scattering response

time TR, we define an effective response T eff
R ∼ i/β for the cascaded process.
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This effective cascaded response has two effects: first, it is imaginary (unlike the

Raman response) so it alters the field envelope instead of contributing directly to

the phase. The envelope change couples to the phase profile through the remaining

terms of Eq. (5.3), generating a Raman like frequency shift through a higher

order process. Second, the frequency shifting saturates with 1/β ∼ 1/∆k(λ): as

the pulse’s frequency shifts, ∆k changes, eventually saturating the shift. In bulk

materials with birefringent phase matching, where the dependence of ∆k on λ is

fixed, this saturation is unavoidable, and limits the maximum achievable frequency

shift.

Consider instead QPM materials in which phase matching is achieved through

periodic reversal of the nonlinear tensor element along the direction of propagation.

This allows precise control of ∆k, through control of the local nonlinear domain

reversal period Λ. To date researchers have used QPM structures with constant

Λ to achieve highly efficient SHG in the visible and infrared frequencies [12] and

structures with varying Λ(z) (so-called chirped structures) to control the effects

of dispersion in quadratic materials [13], resulting in compressed SHG output.

In these works the effects of grating chirp have been utilized for linear effects in

propagation and in the context of phase-matched SHG.

We propose the use of continuously chirped QPM structures for phase-mismatched

SHG as a way to alter the effective nonlinearity experienced by the pulse as it prop-

agates. This can be achieved with z-dependent Λ, designed to control the effective

∆k between the FF and SH, and hence the local nonlinearity. Nonlinearity control

is a new degree of freedom in the design and optimization of nonlinear processes

in quadratic materials and has been considered for switching applications [14] and

soliton formation [15, 16]. Here we show that continuous nonlinearity control with
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chirped QPM gratings, combined with the effective Raman-like response described

above, allows highly accurate optimization and control of cascaded frequency shifts.

In QPM, the net phase-mismatch is given by ∆knet(λ, z) = ∆kmat(λ) − 2π/Λ(z),

where ∆kmat is the wavelength-dependent material phase-mismatch. Hence, a

pulse propagating in a structure with Λ(z) designed to keep ∆knet constant with

shifting FF wavelength will experience continued frequency shift (analogous to real

Raman-frequency shift), avoiding saturation from the cascaded process.

5.3 Numerical results

Simulations of 100-fs, 0.6-µJ (15 GW/cm2) pulses at 1550 nm propagating in

chirped periodically poled lithium niobate (C-PPLN, deff ' 30 pm/V; see Ref.

[17]), with and without chirp to optimize the nonlinear frequency shift appear in

Fig. 5.1. Eqs. (5.1) and (5.2) are solved numerically with a symmetric split-step

beam propagation method [4]. Λ is assumed to vary linearly: i.e., linearly chirped

QPM is assumed.

Fig. 5.1 shows enhanced effective Raman shifts with period chirping. The re-

sulting fields, which undergo continued shift with chirped poling, are the qualitative

analog of Raman solitons. These cascaded Raman-like solitons provide a means

of self-frequency shifting fixed frequency sources by many times their bandwidth.

Additionally, the process provides a way to shift to lower wavelengths (i.e., the

analog of anti-Stokes Raman shifts). High spectral and temporal quality can be

achieved by removing the unwanted frequencies with an edge filter. Fig. 5.2 shows

a 100-fs, 0.12-µJ (15 GW/cm2) pulse at 1550 nm shifted by >200 nm in a C-PPLN

structure (from Λ = 38 µm to 22 µm) with output quality factor 0.96 (Q, the ratio

of energy within the full-width at half-maximum of the pulse to that of the ini-
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Figure 5.1: Average spectral shift (in units of the initial FWHM, ∼4.4 THz) with

propagation. The dashed curve shows the linear shift followed by saturation with

constant Λ. The solid (dash-dotted) curve shows shift with chirped structure to

optimize (hinder) the spectral shift. Inset, input spectrum (rescaled, dash-dotted

curve) and shifted spectra with (black) and without (grey) period chirp.
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Figure 5.2: Spectra and (inset) temporal profile of input pulse (dash-dotted) and

shifted pulse before (grey curve) and after (black curve) filtering. Filtering reduces

the output pulse energy from 48% to 33% of that launched, but yields a pulse with

Q = 0.96. C-PPLN sample length is 4.6 cm.

tial pulse). As with ordinary Raman solitons, the cascaded soliton is temporally

compressed, so its peak power is similar to that of the launched pulse.

This processes should be applicable to other wavelengths in the infrared, in

particular, the technologically important 1030-1060 nm band where high energy

sources exist. The only practical limits are that the wavelength must be suitable

for material poling, and the material parameters must support the shifting pro-

cess (i.e. with short pulses, the sign of GVD determines the direction of shift,

and the GVM cannot be too large). The ability to generate large and efficient

frequency shifts with clean pulse output is of great interest, since it presents an al-
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Figure 5.3: Frequency shift of 5 ps, 50 pJ pulses in waveguided C-PPLN. Dash-dots

show the input spectrum. The solid (dashed) line shows down- (up-) shift with

grating chirp 18.425 µm to 18.405 µm (18.36 µm to 18.38 µm), after filtering out

the unshifted frequency components. Waveguide dimensions are 3 µm by 7 µm.

ternative to common optical frequency conversion schemes like optical parametric

amplification, but in a more compact and simple implementation.

For C-PPLN in the infrared, the sign of GVD is normal, preventing shifts

to longer wavelengths with short pulses (< ∼picoseconds). However, with longer

pulses (so dispersion is negligible) this restriction is lifted. This applies to high bit

rate telecommunications applications, where the small modal area (and resulting

high effective nonlinearity) available in waveguided PPLN can be used to generate

frequency shifts useful for wavelength-devision multiplexing (WDM) applications.

Fig. 5.3 shows shifting of 5 ps, 50 pJ pulses at 1550 nm in C-PPLN optimized

for ∼1.5 nm up- and down-shift (one WDM channel). The resulting up- (down-)

shifted pulse contains 29% (19%) of the launched energy with Q of 0.94 (0.92).

Although the applications discussed above all all pertain to tailoring Λ(z) for
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optimized frequency shift, it should also be possible to modify the grating structure

to affect the temporal profile of the output pulse. This could for example be used

to maximize compression of the frequency shifted FF, yielding output with higher

peak power. While it has not been investigated, one could consider algorithms for

local pulse optimization, so that at any point in propagation, the local structure is

that needed to compress the field at that point (i.e., with more advanced functional

forms of Λ(z) than the linear case considered here). Although it is beyond the scope

of this Letter, this prospect warrants further study.

5.4 Conclusion

In conclusion, we have theoretically demonstrated the use of local nonlinearity

control via poling period variation in QPM quadratic interactions to optimize fre-

quency shifting. This new degree of freedom increases the efficiency and quality

of frequency shifts from cascaded processes, and completes the analogy of cas-

caded frequency shifts to Raman induced shifts by allowing an effectively constant

response time for the cascaded process. As an example, we theoretically show

clean and efficient frequency shifting of submicrojoule, ∼100 fs pulses by hundreds

of nanometers, and we show its applicability to wavelength-division multiplexing

channel switching with pulse parameters representative of telecommunications sys-

tems in waveguided C-PPLN structures. We expect quadratic frequency shifting,

enhanced with nonlinearity management, to have broad applications. Furthermore,

this new capability is easily customizable and can be implemented with existing

fabrication techniques.

This work was supported by the National Science Foundation (awards PHY-

0099564 and ECS-0217958), and the National Institutes of Health (grant EB002019).
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Chapter 6

Frequency shifting of 50 pJ pulses with

cascaded quadratic processes in

periodically poled lithium niobate

waveguides1

We experimentally show nonlinear frequency shifting of infrared pulses in peri-

odically poled lithium niobate waveguides using phase-mismatched quadratic pro-

cesses with strong group-velocity mismatch. These experiments demonstrate cas-

caded frequency shifts with picojoule pulse energies, corroborating recent predic-

tions of these effects. Low energy frequency shifts enable applications including

tunable infrared sources for medical and frequency metrology applications and

nonlinear frequency conversion devices for optical communications.

6.1 Introduction

In recent years, cascaded interactions in quadratic (χ(2)) nonlinear media have

received significant attention as a route to large nonlinear phase-shifts of control-

lable magnitude and sign [2]. Cascaded phase-shifts have been shown to support

solitons [3], compensate for Kerr phase-shifts [4], and prove useful for applications

including modelocking of short-pulse lasers, pulse compression [5], and nonlinearity

management for high energy fiber lasers [6].

1The results presented in this chapter have been submitted for publication
(Ref. [1]).
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To date, applications of cascaded quadratic phase shifts to femtosecond pulses

have been in the stationary limit, where the fundamental (FF) and second-harmonic

(SH) fields overlap temporally despite group-velocity mismatch (GVM) between

them, producing an effective Kerr nonlinearity in the limit of large phase-mismatch

[7]: i.e., providing a surrogate for the bound-electronic cubic (χ(3)) nonlinearity.

Recently non-stationary cascaded phase shifts were demonstrated: GVM re-

tards or advances (depending on its sign) the SH propagation with respect to the

FF and the resulting nonlinear phase shift imparted on the FF is advanced or

delayed with respect to the stationary phase by an amount depending on the ratio

of GVM to phase-mismatch. This non-instantaneous nonlinear response manifests

spectrally as redshifts or blueshifts of the pulse spectrum, which produces an ana-

log of Raman nonlinearities from the quadratic process [8]. Cascaded frequency

shifts were recently demonstrated, but in birefringently phase-matched materials

with high energy (100 µJ - 1 mJ) pulses [8, 9]. In addition, it was theoretically

predicted that cascaded frequency shifts are possible with significantly lower ener-

gies (picojoules to nanojoules) in waveguides in quasi-phase-matched [(QPM), i.e.,

periodically poled] structures [8], and that the resulting shifts can be significantly

enhanced and tailored in aperiodically poled (chirped) materials [10].

In this Letter we report observation of cascaded frequency shifts with picojoule

energy pulses. These shifts are observed in periodically poled lithium niobate

(PPLN) waveguides, where the small modal confinement gives strong nonlinear

interactions with low pulse energies. Controllable nonlinear frequency shifts with

picojoule energies enables a host of nonlinear frequency shifting processes in the

infrared with pulse parameters applicable to existing fiber sources and optical

communications applications.
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6.2 Analytical and numerical results

We begin by reviewing the origin of non-stationary nonlinear frequency shifts from

cascaded processes. The full coupled wave equations for the FF (a1) and SH

field envelopes within the slowly-varying envelope approximation are reduced to

a single field equation for the FF through expansion in powers of the normalized

phase-mismatch, 1/β. Keeping only the lowest order correction from GVM yields

[8, 10, 11]

i
∂a1

∂ξ
− δ1

2

∂2a1

∂τ 2
− 1

β
[|a1|2a1

︸ ︷︷ ︸

NLSE

+ 2i
1

β
|a1|2

∂a1

∂τ
︸ ︷︷ ︸

Correction

] = 0. (6.1)

Here, time is normalized to the initial pulse duration, τ = t/τ0, the propagation

coordinate is ξ = z/LGVM, and δj = LGVM/LDS,j with dispersion lengths LDS,j =

τ0
2/β(2)(ωj). β = ∆kLGVM for ∆k = k2ω −2kω (the FF-SH wave-vector mismatch)

and LGVM = τ0/(n1,g − n2,g) for material group index nj,g with j = 1, 2.

The first part of Eq. (6.1) describes the standard nonlinear Schrödinger equa-

tion (NLSE) limit of the cascaded process [7]. The correction term results from

GVM in the non-stationary limit and is responsible for the initial non-instantaneous

phase shift. It can be shown [8] that this correction is qualitatively similar to a

Raman-scattering term (of the form [12] [TR a1 ∂|a1|2/∂τ ]). In analogy to the

Raman-scattering response time TR, we define an effective response T eff
R ∼ i/β

for the cascaded process with two key differences: first, this effective response is

imaginary (unlike the Raman response) so it alters the field envelope instead of

contributing directly to the phase. The envelope change couples to the phase pro-

file through the remaining terms of Eq. (6.1) to generate a Raman like frequency
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shift. Second, the frequency shifting saturates with 1/β ∼ 1/∆k(λ): as the pulse’s

frequency evolves during the shifting process, ∆k changes, eventually saturating

the shift.

In birefringently phase-matched and periodically poled QPM materials, satura-

tion is unavoidable and practically limits the maximum achievable frequency shift

to a few times the spectral bandwidth of the input pulse (however, saturation is

avoidable in chirped QPM structures [10]). In QPM, the net phase-mismatch is

given by

∆knet(λ) = ∆kmat(λ) − 2π

Λ
, (6.2)

where ∆kmat is the wavelength-dependent material phase-mismatch and Λ is the

poling period of the nonlinear tensor element (d33 in PPLN).

As in refs. [8] and [10] we solve the coupled wave equations for the FF and

SH numerically with a standard split-step beam propagation method. The sim-

ulated pulse evolution appears in Fig. 6.1, under conditions corresponding to the

experiments described below. Fig. 6.1(a) and (c) show the output spectrum for

input wavelengths below and above phase-matching [(PM), as determined by Eq.

(6.2) with the proper material parameters]. Here wavelengths below (above) PM

correspond to self-defocusing (self-focusing) nonlinearity and blueshifts (redshifts)

of the pulse spectrum. With propagation, the spectrum evolves in analogy to

Raman soliton dynamics, but only with the proper signs of effective nonlinearity

and group-velocity dispersion for soliton formation (which in turn restricts the fre-

quency shifting to either higher or lower frequencies). The corresponding temporal

intensity profile of the fields appear in Fig. 6.1(b) and (d). For 1550 nm [Fig. 6.1(b),
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below PM], the frequency shift is to the blue which supports soliton formation and

a clean temporal field evolves. In contrast, redshifts [Fig. 6.1(d), above PM] distort

the pulse shape, limiting the maximum achievable shift with short pulses. For this

combination of GVM and ∆k, blueshifting yields a temporal delay [(Fig. 6.1(b)].

As expected from the effective-Raman analogy, initially the frequency shift is linear

followed by saturation from the cascaded process [Fig. 6.1(e)].

6.3 Experimental results

Experiments (schematic in Fig. 6.2) were performed with infrared pulses from an

optical-parametric oscillator (OPO) (synchronously pumped by a Ti:sapphire os-

cillator) producing >1-nJ, near-Gaussian transform limited <200-fs pulses tunable

from 1200-1700 nm. The measurements were carried out in a 4.7 cm long PPLN

waveguide fabricated by in-diffusion of a 7 µm × 98 nm Ti-stripe for 8 hours at

1060 ◦C in an argon inert gas atmosphere and 1 hour post-diffusion at the same

temperature in oxygen [13]. The resulting channel guide is single mode with di-

mensions 3.4 µm × 4.7 µm. The PPLN is poled with Λ ∼ 17 µm and the waveguide

was heated in an oven to 160 ◦C, both to prevent photorefractive damage and to

control the PM conditions: for the operating temperature chosen, PM occurs at

λPM = 1590 nm.

Measured coupling loss into the waveguide was high. Typical energy through-

put was ∼15% from the input to output objectives, and only ∼30% of this was

guided in the waveguide core: i.e., ∼50 pJ guided energy (900 MW/cm2) required

∼1 nJ at the input objective. We attribute the high loss and unguided background

energy to poor spatial coupling due to a non-Gaussian OPO mode. In the data,

the presence of unguided light gives higher spectral background (wings) than is



96

Figure 6.1: Simulated pulse evolution with parameters corresponding the exper-

iment. (a) and (c) show the output spectra for propagation through 4.7 cm of

material with input profiles centered at 1555 nm and 1600 nm, corresponding to

phase-matching conditions for blueshifts and redshifts, respectively. Insets (b) and

(d) show the corresponding temporal intensity profiles. (e) shows the average spec-

tral shift with 5× longer propagation length. Dots indicate the linear region of

shift that is followed by saturation. In all cases dashes indicate the input profiles.
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Figure 6.2: Schematic of the experiment. 20X indicate polarization-maintaining

(20X) microscope objectives.

otherwise expected.

Fig. 6.3 shows spectral output from the PPLN waveguide with input spectra

centered at 1410 nm [Fig. 6.3(a)] and 1575 nm [Fig. 6.3(b)]. These wavelengths

correspond to net ∆k [from Eq. (6.2)] of 37 π/mm and 3 π/mm, respectively. The

stationary conditions at 1410 nm yield no spectral shift (the slight modulation is

most likely due to spatial coupling). At 1575 nm, GVM = -315 fs/mm, which

corresponds to a boundary for stationary phase-shifts of ∆k > 6 π/mm (defined

as |∆k| ≥ 2πGVM/τ) [8]. Hence these conditions are well into the non-stationary

regime and a significant blueshift in the spectral peak is observed [Fig. 6.3(b)].

The background in Fig. 6.3(b) is likely due to a combination of higher order soliton

structure and spectral modulation from waveguide coupling.

Fig. 6.3(c) shows the expected saturation of the frequency shift with increas-

ing energy in the waveguide. We observe the shift to saturate at ∼2 times the

input pulse bandwidth, in good agreement with the ∼2.5 times predicted from

simulations [Fig. 6.1(c)].

The saturated shift as a function of input wavelength [and ∆knet through Eq.

(6.2)] appears in Fig. 6.4. Apparent are both the expected reversal in sign of the

frequency shift at PM and reduced magnitude of the shift away from PM (mov-
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Figure 6.3: Output spectra from the waveguide with input spectra centered at (a)

1410 nm and (b) 1575 nm. Dots in (b) show low power data, with no spectral

shift. Dashes show the input spectra. Saturation of the average spectral shift with

guided energy at 1575 nm appears in (c).
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Figure 6.4: Saturated spectral shift versus input wavelength (bottom) and phase-

mismatch (top). Dashes show simulations with parameters corresponding to the

experiment. Phase-matching corresponds to 1590 nm.
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ing into the stationary limit). These data are in good agreement with numerical

simulations.

6.4 Conclusion

In summary, we demonstrate nonlinear frequency shifting of ∼50 pJ pulses with

non-stationary cascaded quadratic processes in waveguided PPLN. The small modal

area of the waveguide allows shifts with low pulse energies. Combined with an in-

frared fiber laser one can envision compact, robust, and tunable short-pulse sources

based on the low energy cascaded frequency shifts demonstrated here. Further-

more, these shifts should be extendible to 100’s of nm in chirped PPLN waveguides.

Such sources have immediate implications for medical and frequency metrology

applications. In addition, cascaded frequency shifts with picojoule energies in

chirped waveguides allow numerous devices for communications applications in-

cluding wavelength devision multiplexing, channel switching, and high extinction

discrimination.

This work was supported by the National Science Foundation (awards PHY-

0099564 and ECS-0217958), and the National Institutes of Health (grant EB002019).
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Chapter 7

“Cascade-Raman” soliton compression

with 30-fs, terawatt pulses1

Theoretically, Raman-like soliton compression of mJ, 30-fs pulses is predicted.

Initial experiments demonstrate 2 times compression of 1.3 TW/cm2 pulses under

non-optimal conditions. The results agree closely with numerical simulations.

7.1 Introduction

In recent years, there has been much interest in the large nonlinear phase shifts

of controllable sign and magnitude resulting from cascaded processes in quadratic

materials [2]. In the limit of large phase-mismatch between the fundamental (FF)

and second-harmonic (SH) fields (the so-called stationary limit in which the FF

and SH continue to overlap temporally despite the presence of group-velocity mis-

match (GVM) between them), this process asymptotically produces a Kerr-like

nonlinear phase [3]. This phase has successfully been used to generate solitons [4],

compensate for temporal and transverse nonlinear effects in propagation [5], and

provide a means of high energy pulse compression [6], among other applications

[7].

Cascaded quadratic phase shifts are particularly advantageous for compression

of high energy pulses (fractions of a millijoule and higher), since pulse-compression

methods based on cubic nonlinearity cannot be used, owing to the limitations of

excessive nonlinearity in single-mode waveguides and material damage through self-

1The results presented in this chapter have been published in Ref. [1].
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focusing in unguided geometries. Self-defocusing nonlinearities in quadratic media

bypass these difficulties, and have been used for 3-4X compression of ∼120fs pulses

[6]. In addition, single-stage (soliton-like) compression under similar conditions has

recently been demonstrated [8].

However, both of these applications rely on stationary or near-stationary phase

shifts from the quadratic process, and are consequently limited to compression of

longer (∼100-fs) pulses. This can be understood as follows: all quadratic mate-

rials exhibit GVM. In order to overcome this effect and regain a near-stationary

quadratic phase, a phase-mismatch |∆k| >∼4π/LGVM = 4πGVM/τ0 is necessary

[7], where τ0 is the FF pulse-width. Hence shorter pulses require working at larger

|∆k|. However, for net negative phase, the quadratic phase must be large enough

to overcome the cubic phase present in quadratic materials. Since the quadratic

phase ∼1/∆k, it is not possible to produce a large enough net nonlinear phase for

significant compression in the stationary regime with input pulse-widths signifi-

cantly below 100-fs.

Recently it was demonstrated that under such non-stationary conditions, the

cascade process yields a non-instantaneous phase shift. This non-instantaneous

phase produces an effective frequency shift on the FF, in analogy to a controllable

Raman-scattering process [9]. Under these conditions, it is possible to implement

an analog of Raman-soliton compression using the non-instantaneous quadratic

response: high-order solitons are formed, producing a compressed primary pulse

that undergoes a continuous self-frequency shift. An advantage of this approach

over soliton-like compression in the stationary limit is that the pedestal commonly

produced by Raman-soliton compression consists mainly of unshifted frequency

components. These components may be eliminated with a frequency filter to yield
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Figure 7.1: Simulated evolution of the pulse spectrum (a) and temporal profile (b)

under conditions similar to experiments in Fig. 7.2.

a cleaner pulse.

7.2 Numerical results

Numerically we solve the coupled wave equations for the FF and SH using a sym-

metric split-step beam propagation method [5] for conditions corresponding to the

experimental parameters listed below. The numerical evolution is shown in Fig. 7.1.

The launched pulse compresses and undergoes frequency shifting to shorter wave-

lengths with propagation. The separation between the uncompressed and com-

pressed parts of the pulse increases with increasing spectral shift (as with ordinary

Raman-soliton evolution), which should aid recovery of a clean, compressed pulse

after spectral filtering.
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7.3 Experimental results

Experiments (Fig. 7.2) were performed with ∼30-fs, 0.62-mJ pulses, centered at

810-nm, generated by a Ti:sapphire amplifier. The launched beam shape was

approximately Gaussian (but elliptical) with waists 0.8 mm and 0.55 mm, cor-

responding to a peak intensity of ∼1.3 TW/cm2. Pulse evolution was studied in

2.5-mm of the quadratic material β-barium metaborate (BBO). Conditions of opti-

mal compression are found between (10-20)π/mm, corresponding to self-defocusing

phase below the stationary boundary (∼40π/mm).

Compared to the simulated evolution, the measured spectrum and autocor-

relation (Fig. 7.2(a)-(b)) are quite similar, except that the measured temporal

wings are larger than expected; however the width of the compressed center spike

(∼15-fs) is in very good agreement with calculation. The experimental results in

Fig. 7.2 closely match the numerical results shown in Fig. 7.1 for the corresponding

propagation length. In simulation (Fig. 7.1), the pulse undergoes further compres-

sion at propagation lengths beyond the 2.5-mm used in these initial experiments,

indicating that this crystal length was less than optimal.

To further study the frequency shifting dynamics, we examine the pulse spec-

trum over a range of ∆k (Fig. 7.3). As expected, shifts to lower (higher) wave-

lengths are observed for net negative (positive) nonlinear phase. The exact agree-

ment in ∆k values differ somewhat but the trends match closely.

In Fig. 7.3, both the stationary boundary and the point where the cascade and

Kerr phases are equal in magnitude occur near |∆k| = 40π/mm. The trend in

Fig. 7.3 can be understood as follows: for large positive ∆k, the cascade phase

shift is nearly stationary, and nearly equal and opposite in magnitude to the Kerr

phase, so the spectrum is unchanged. Closer to phase matching, the net phase is
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Figure 7.2: Measured spectrum (a) and auto-correlation (b) under conditions of

optimal compression. Dash-dots show input profiles. The launched pulse in (b)

corresponds to a deconvolved width of ∼35-fs, and the compressed center spike is

∼15-fs. Simulations ((c)-(d)) correspond to propagation under similar conditions.
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negative and a shift to shorter wavelengths and spectral broadening are observed.

On the self-focusing side (∆k > 0), the Kerr and cascade phases add (yielding

spectral broadening), and shifts to longer wavelengths are observed. Finally, for

large negative ∆k the cascade phase is nearly stationary so no net spectral shift is

observed, but self-phase modulation from n2 broadens the spectrum. The asym-

metry in ∆k between experiment and simulation could be due to the exact value

of n2 used for BBO, which provides the nonlinear phase offset and is somewhat

experimentally uncertain. Unfortunately we were limited to ∼ ±50π/mm experi-

mentally (due to beam clipping at large angles), so we could not study far beyond

the stationary cascade limit.

7.4 Conclusion

In conclusion, we demonstrate 2 times compression of 30-fs, 0.6-mJ (∼1.3 TW/cm2)

pulses with non-instantaneous, self-defocusing cascade phase shifts under non-

stationary conditions. This is the first evidence of quadratic pulse compression of

∼30-fs pulses, and provides further experimental verification of the recent report of

non-instantaneous phase shifts from non-stationary cascaded processes. This ex-

periment demonstrates Raman soliton-like pulse compression with frequency shifts

from cascaded quadratic processes below the stationary boundary. Experimentally,

the compression produces a short (15-fs) central spike, and there is good indica-

tion that the residual pulse pedestal will be further separated from the compressed

pulse (and can potentially be filtered out), with propagation through slightly longer

crystal lengths.
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Chapter 8

Future directions

8.1 Quadratic solitons without pulse tilt: a realistic route

to “light-bullets”

To this day, observation of stable, fully confined spatiotemporal solitons or “light-

bullets” [1] remains one of the great challenges in soliton physics. Researchers

are intrigued by light-bullets both for the opportunities they present for research

into highly nonlinear pulse propagation and for their potential applications to

terahertz-rate optical logic. Experimentally light-bullets remain unobserved for

many reasons: the conditions required for their formation and stable propaga-

tion place severe constraints on the properties on the nonlinear media employed

experimentally; as dynamical solutions of highly nonlinear systems, they are sus-

ceptible to a number of instabilities — the dynamics of which are closely related to

soliton formation and consequently occur at similar conditions (namely transverse

and longitudinal modulational instabilities); and even in the most highly nonlinear

materials available, solitons require short, energetic pulses to form.

Building on recent observations within our group of two-dimensional spatiotem-

poral solitons, their instabilities, and the realization that the physical system used

for their observation precludes light-bullet formation, this thesis presents a new

route to temporal soliton formation in quadratic media. In addition to identi-

fying a new class of quadratic temporal solitons (i.e., solitons with near-zero or

even normal group-velocity dispersion at the second-harmonic frequency), these

soliton solutions appear to be extendible to two- and three-dimensions. This is
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arguably the only currently known and experimentally realizable optical system to

theoretically support light-bullets.

Realization of these optical systems rely on two key points: recent advances

in materials fabrication which has made precise quasi-phase-matching of nonlinear

optical materials possible. In this way, a host material (in this case lithium niobate)

is identified with the correct (large and anomalous) group-velocity dispersion. Pe-

riodic poling then enables phase mismatched propagation through modification of

the nonlinear properties of the material with propagation. Also, it was recognized

that stable (or quasi-stable as detailed in Chapter 3) soliton formation occurs in

quadratic systems for a range of second-harmonic group-velocity dispersion values.

While these solutions have not been observed, the existence of a route to three-

dimension soliton formation is of huge importance. The first step along this path

is the demonstration of stable temporal solitons in these systems, followed by

extension to one and two transverse dimensions. Eventually, these systems should

prove an excellent test bed for experiments into soliton formation and interactions

across a range of experimental conditions.

8.2 Nonlinear frequency shifts from cascaded processes

The theory and experiments presented here demonstrating generation of useful

nonlinear frequency shifts from cascaded quadratic processes are new. Chapters 4,

5, 6, and 7 discuss the underlying properties of these shifts and demonstrate their

applicability to a range of physical systems from high energy, extremely short pulse

amplified lasers to low energy fiber and solid state oscillators.

Building on these results, Sections 8.3, 8.4 and 8.5 develop several applications

of cascaded frequency shifts. However, as controllable analogs of Raman-scattering
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processes, we hope that frequency shifts from cascaded interactions will provide

applications as far-reaching and varied as those Raman shifts themselves. The

majority of these applications remain to be explored.

8.3 Tunable, short-pulse infrared sources with cascaded

frequency shifts

Many applications would benefit from a compact and stable means of tunably shift-

ing the wavelength of light output from fixed frequency laser sources, in particular

at infrared wavelengths. Common infrared lasers are available near 800 nm (tita-

nium:sapphire based solid-state lasers), near 1 micron (both ytterbium fiber based

sources and various neodymium doped glass solid-state lasers), and near 1550nm

(erbium doped fiber lasers). A means of shifting the wavelength of these sources

is highly desirable, with applications ranging from multi-photon microscopy and

optical coherence tomography for medical science to ultrafast spectroscopy and fre-

quency metrology to tunable sources for high bit-rate telecommunications systems.

In addition, numerous areas of basic scientific research require tunable output at

frequencies outside the range of available sources.

Historically two main techniques dominate wavelength shifting and conversion:

frequency shifts from Raman-scattering processes in optical fiber, and optical para-

metric oscillators and amplifiers. Both of these techniques have disadvantages: Ra-

man shifting is limited to shifting toward longer wavelengths, and requires many

meters to kilometers of optical fiber to generate appreciable wavelength shifts.

In addition, the amount of shift is not easily tunable in an integrated fashion,

since it requires changing the length of the material providing the shift (i.e., the
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fiber length in the above example) for a given pulse width and energy. Optical

parametric oscillators and amplifiers provide highly tunable means of wavelength

conversion (over a broad range of output wavelengths using different nonlinear

materials), however, they are very complex optical systems. As such they are

physically large, and require precise alignment and frequent adjustment. Hence,

they are not practical for use in integrated environments and for application where

stable performance over long periods of time is required. Given the constraints

of these available frequency shifting methods, a more stable and simple method is

highly desirable.

As shown in Chapters 4, 5, and 6, cascaded frequency shifts are eminently

usable for this application. Coupled with the tendency for the frequency shifted

pulses to undergo Raman-like soliton pulse compression, the resulting frequency

shifted output can be spectrally and temporally clean with comparable input and

output peak powers. Also, depending on the details of the cascaded material used,

the magnitude of the frequency shift can be easily tuned in real time: in bulk

materials the phase-matching conditions are easily adjusted, and poled structures

with varying poling parameters transverse to the direction of propagation [for

example“fan-out” PPLN with continuously variable poling period, Fig. 8.1(b)] can

provide tunability in quasi-phase-matched systems.

A schematic of such a laser source appears in Fig. 8.1(a) with a diagram of

a typical continuously variable PPLN structure in Fig. 8.1(b). Such a simple

configuration, with the possible addition of an amplifier stage as necessary, could

provide a very compact and robust tunable short pulse source. In principle this

type of source, with additional integrated amplification as necessary, provides many

of the advantages currently available with solid-state laser sources and optical
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erbium fiber laser and a quadratic material (here variable period PPLN) providing

the frequency shift. (b) shows a diagram of a typical “fan-out” PPLN structure

[2].

parametric oscillators and amplifiers but in a much simpler, cheaper, and more

stable package.

8.4 Compact and robust femtosecond frequency comb sources

using nonlinear frequency shifting with cascaded quadratic

processes1

Recently a new generation of ultra-precise optical clocks have been demonstrated,

using femtosecond-duration laser pulses with ultra-broad spectra as frequency

comb synthesizers. In analogy to a mechanical clock, these laser synthesizers are

the gears connecting the clock’s pendulum to its hands, but the pendulum is the

frequency of the laser’s optical field, and the hands are the pulses it emits. The

1Section 8.4 was part of a National Institute of Standards research proposal
written by K. Beckwitt with editorial comments from S. A. Diddams and L. Holl-
berg.
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pulses from both solid-state and fiber lasers have been used to generate broad-

band femtosecond frequency combs, but each has limitations due to the stability

and complexity of the physical processes involved. Here a new type of source for

optical frequency combs is proposed, utilizing a recently demonstrated frequency

shifting process in quadratic nonlinear optical materials. Combined with existing

infrared fiber lasers, this process enables compact and stable optical frequency

comb sources with clear advantages over existing sources: they are significantly

more compact and robust than titanium:sapphire solid-state lasers, and poten-

tially have lower noise levels than a recently demonstrated fiber source based on

spectral broadening in highly nonlinear optical fiber. As such, these sources have

the potential to further increase the measurement limits of optical clocks, and

prove invaluable for frequency metrology and related fields.

8.4.1 Introduction

The last few years have seen a revolution in optical clocks and optical frequency

metrology, enabled by the development of phase-stabilized modelocked femtosec-

ond laser sources capable of producing ultra-broadband coherent optical frequency

combs. Temporally, these sources are remarkable because their pulse duration is

only several times the optical cycle length: each pulse contains just a few cycles

of the underlying carrier field. To be useful for frequency metrology, the relative

phase of the carrier field and the pulse envelope must be known from one pulse to

the next. This means the underlying optical field must not change (or must only

change by a fixed amount) with each roundtrip of the laser cavity. With current

feedback technology, this is possible for hours at a time, and longer durations are

expected [3]. For a 1-GHz pulsed laser, this means the relative carrier-envelope
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phase is locked for ∼1012 round trips of the laser cavity!

Spectrally, these frequency combs consist of a series of “teeth” at frequencies

fn = n × fr + fo where fr is the laser repetition rate, and fo is the offset of

the lowest comb element from zero (which is related to the carrier-envelope-offset

(CEO) phase described above). Remarkably, once these two parameters are fixed,

the frequency comb provides a coherent relation between the optical frequency of

the laser source, and the repetition rate at which it emits pulses. Physically, this

means the cavity round trip time is just an integer multiple of the carrier field’s

cycle duration (of course the integer is quite large).

This relation enables frequency combs from femtosecond modelocked lasers to

function as optical synthesizers, relating optical frequencies (hundreds of THz) to

laser pulse repetition rates (0.1-1 GHz). This coherent spanning of six orders of

magnitude is hugely significant: since electronic detection is limited to tens of GHz,

femtosecond optical frequency combs enable clocks based on optical frequency tran-

sitions, versus the microwave transitions which have set timing precision standards

for the last half-century. Recently, a femtosecond frequency comb based optical

clock was demonstrated with an order of magnitude improvement in frequency

stability over the best microwave standards, and improvements of several orders of

magnitude beyond this are expected [4]. In addition, femtosecond optical combs

have significant applications to improving the state of the art in optical frequency

metrology, measurements of fundamental physical constants, and for technological

applications such as ultra-dense wavelength-division multiplexing and as ultra-high

resolution optical synthesizers for coherent-control and time-resolved spectroscopy.
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8.4.2 Existing sources (and their limitations)

Use of an optical frequency comb requires precise knowledge of its parameters.

The repetition rate of a pulsed laser fr is easily measured. However, the CEO

frequency fo is much more difficult to determine. One method is to beat one of the

comb elements against a known frequency source (such as a continuous-wave laser

frequency locked to a reference atomic transition). This has been demonstrated

[5], however a means of “self-referencing” fo which does not require an external

frequency standard is highly preferable. Luckily there is a way: if the frequency

comb spans an octave (i.e., from f to 2f), nonlinearly frequency doubling the

spectral components at f and beating the output against those at 2f produces beat

frequencies fr ± fo, which are easily seen in the radio-frequency power spectrum.

Unfortunately, even lasers with sub-two-cycle pulsewidths (the shortest recorded)

do not produce octave-spanning spectra.

To date two solutions have been presented: subsequent broadening of laser

pulse spectra to octave widths is possible with supercontinuum generation in mi-

crostructured and highly nonlinear optical fibers [6, 7]. These fibers have unique

dispersion properties due to their transverse structure which confines the guided

light to an extremely small central core, resulting in highly nonlinear propagation

and spectral broadening. Octave-width frequency combs based on supercontinuum

generation have been demonstrated with titanium:sapphire (Ti:s) solid-state lasers

around 800 nm [8, 7], and more recently with an erbium-fiber laser (ErF) at 1550

nm [9].

Unfortunately, spectral broadening in microstructured fiber has problems: these

fibers are hard to couple light into, and both the coupling and spectral output are

unstable over extended time periods. Furthermore, supercontinuum generation
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adds significant spectral noise [10], and theory suggests this noise is fundamental to

the supercontinuum process [11]. To avoid supercontinuum generation, researchers

have explored alternative methods to generate broader intracavity spectra directly

from Ti:s lasers [12] and recent experiments demonstrate such a source [13, 14].

However, this method cannot be applied to fiber lasers.

This presents a quandary: without relying on supercontinuum to broaden the

spectrum, a self-referenced frequency comb from a fiber source is highly desirable.

Fiber lasers are much more compact and stable than solid-state lasers. If optical

frequency combs from femtosecond lasers are to find widespread use, they must

be compact and robust. Ultimately, fiber based sources present the most promis-

ing (and in all likelihood the only viable) option for femtosecond frequency comb

sources to be used out of research laboratories. In addition, sources in the 1000-

1600 nm range are desirable for telecommunications applications, and to tie into

existing optical frequency standards. To these ends, development of such a source

is the subject of this proposal.

8.4.3 Controllable nonlinear frequency shifts with cascaded

quadratic processes

Recently, we suggested [15, 16], and demonstrated [15, 18, 17] that useful non-

linear frequency shifts are possible with phase-mismatched processes in quadratic

nonlinear optical materials. Due to the second-order nonlinearity in quadratic

materials, launching a fundamental frequency (FF) field at f seeds its second-

harmonic (SH) at 2f . The most common application of quadratic materials is

phase-matched second-harmonic generation (SHG), where the goal is to maximize

the energy transfer to the SH: i.e., for frequency conversion.
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Figure 8.2: Illustration of the phase-mismatched cascaded quadratic process.

Snap-shots of the pulse are shown with propagation. The FF is partially con-

verted to its SH and then back-converted. Solid (dashed) lines are for the case of

nonzero (zero) group-velocity mismatch, which causes the back-converted SH field

to lag/lead the FF.

However, if the process is phase-mismatched a part of the FF energy evolves

back and forth between the FF and SH fields periodically, but the majority of the

energy remains in the FF. This two-frequency interaction is very important: due to

the variation of a material’s refractive index with frequency, different frequencies

experience different phase- and group-velocities, and the energy which undergoes

conversion to the SH and subsequent back-conversion to the FF imparts some of

the SH properties to the FF. Under appropriate conditions this leads to a non-

instantaneous nonlinear phase imposed on the FF. Since the SH can either lag or

lead the FF, so can the phase. This process is illustrated in Fig. 8.2.

The non-instantaneous nature of the nonlinear phase manifests itself spectrally

as a shift in the FF. These cascaded frequency shifts are qualitatively similar to

frequency shifts from Raman-scattering processes, but contrary to Raman (which
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only produces red-shifts), the sign and magnitude of cascaded frequency shifts

are controllable. Since cascaded frequency shifts originate in a conversion-back-

conversion process, they depend on the phase-mismatch between the FF and SH

fields. This dependence can be leveraged in materials where phase-matching is

provided by modulating the local effective nonlinearity (quasi-phase matching [19,

20]) — an extrinsic property of the material which can be engineered to enhance

and control the resulting frequency shifts [16].

8.4.4 Frequency shifted fiber source

Our proposal is to combine cascaded frequency shifting with standard fiber lasers

to produce frequency comb sources with the size and stability advantages of fiber

lasers, and spectral noise characteristics potentially better than the best solid-state

comb sources. This could further increase the measurement limits of frequency

metrology and related fields. In addition, since the components for cascaded fre-

quency shifting are very compact and robust, the source could be significantly

more portable and stable than those currently available.

Note that cascaded frequency shifting is believed to have spectral noise levels

significantly below supercontinuum in microstructured fiber, but they have yet to

be verified experimentally — this would be a preliminary goal of this project. The

frequency-shifted fiber source (FSFS) will consist of a standard infrared fiber laser,

followed by engineered quadratic materials to shift its output spectrum and enable

self-referencing (Fig. 8.3).

In the example considered here, the output from a standard ErF at 1550 nm

is split into two beams. One beam traverses a piece of the quasi-phase matched

quadratic material lithium niobate, aperiodically-poled (aPPLN) to shift spectral
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Figure 8.3: Frequency shifted fiber source. Light from an ErF is split in two.

Half traverses an aperiodically-poled lithium niobate (aPPLN) crystal optimized

for 1200 nm output. A subsequent SHG crystal doubles this to 600 nm. A second

aPPLN crystal shifts the other half to 1800 nm, followed by a third-harmonic

generation (THG) stage also producing 600 nm light. The beams at 600 nm are

combined to determine the carrier envelope offset phase (fo).

components to 1200 nm [16]. For typical ErF pulse parameters, my simulations

indicate that this is possible in a 5-cm long crystal with a linearly ramped poling

period from 35 µm to 19 µm. The frequency components at 1200 nm are then

doubled in a PPLN chip with period 9.5 µm, producing a spectrum centered at

600 nm. The estimated efficiency of each stage is ∼10%, so several nJ from the

ErF should yield >10 pJ (50 µW with 50-MHz repetition rate) of 600 nm output,

which is more than that produced with supercontinuum generation [9].

The second beam traverses a 5-cm aPPLN crystal poled from 35 µm to 40 µm

to shift spectral components to 1800 nm. Since direct frequency tripling is not

possible, this 1800 nm light first traverses a PPLN crystal poled at 24.9 µm for

SHG (900 nm), and then a subsequent PPLN sample poled at 10.35 µm to generate

600 nm light through sum-frequency mixing of 1800 nm and 900 nm. Though less

efficient then the first leg, this should produce 0.1-1 µW of 600 nm light, which is

more than sufficient for self-referencing.
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These independent 600 nm beams are subsequently combined to determine fo.

Depending on the mode quality, single-mode fiber (SMF) may be used to improve

the spatial overlap. The electronics required for this measurement, and for the

subsequent feedback loop to stabilize the ErF, are similar to those demonstrated

in previous experiments [9, 13, 14]. Once the self-referencing is complete, several

options exist for the source: the ErF output can be used directly without shifting.

If bandwidths beyond the ErF’s 50-100 nm are necessary, some of the frequency

shifted components can be used. Alternatively, the output could be broadened

somewhat in a microstructured fiber (but to significantly less than an octave), to

provide a broader spectrum (frequency comb) without introducing the noise levels

associated with octave broadening.

Fig. 8.3 depicts seperate frequency shifting and doubling (or tripling) crystals.

However, lithium niobate is poled with lithographically produced masks [19, 20]

which are highly customizable. Hence, it should be possible to pole a single crystal

to perform all of the functions of both legs, making for a very simple experimental

setup. This process should also apply to wavelengths other than 1550 nm, in

particular the 1030-1060 nm ytterbium band, where high energy [21] and all-fiber

[22] oscillators have recently been demonstrated. In addition, the FSFS design

should work equally well with nJ energy pulses from an unamplified laser (discussed

here), and with higher energy amplified pulses: the amplified case can be carried

out in bulk PPLN, whereas nJ level energies require waveguided structures [23] for

their high nonlinearity.

Ideally, fiber sources would approach the 1-GHz repetition rates available with

Ti:s frequency comb sources. Fiber lasers with 50-100 MHz repetition rates have

been demonstrated. Reaching higher repetition rates requires shorter cavities, but
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fundamental limits placed on cavity length due to gain and pulse-shaping dynam-

ics makes repetitions rates beyond 400-500 MHz unfeasible. So, while cascaded

frequency shifted fiber sources in the several hundred MHz range will hopefully

be realized, it is not likely that they will reach (or surpass) solid-state laser rep-

etition rates. However, cascaded-frequency shifting presents another possibility:

microchip lasers producing picosecond pulses at up to 2.5 GHz exist [24], but with

pulse energies too low for cascaded frequency shifting. However, amplification of

low energy pulses in single-mode ytterbium fiber was recently demonstrated with

little pulse quality degradation [25]. While beyond the scope of this proposal,

such a system utilizing the results developed here might produce integrated fiber

frequency comb sources with very high repetition rates.

8.4.5 Summary

In summary, a frequency shifted fiber source is proposed utilizing the recently de-

veloped technique of cascaded frequency shifting to produce coherent femtosecond

frequency combs for applications ranging from frequency metrology and optical

clocks to ultra-dense wavelength division multiplexing and optical frequency syn-

thesis. This source avoids the problems associated with supercontinuum generation

in microstructured fiber (which all demonstrated fiber sources rely on for octave-

spanning spectra), and would be much more compact than solid-state sources.

Femtosecond frequency comb sources must be more compact and stable if they are

to find widespread use, particularly outside research laboratories, and the source

proposed here is a significant step towards this goal.
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Figure 8.4: Schematic diagram of an intensity dependent wavelength division mul-

tiplexing channel switching device.

8.5 Applications for cascaded frequency shifts to devices

for optical communications

Controllable nonlinear frequency shifts from non-stationary cascaded processes

have a number of direct applications for optical communications and switching

devices in materials with large enough nonlinearity that these processes can occur

with picojoule to nanojoule pulse energies as demonstrated in Chapters 5 and 6.

While the full range of potential applications is largely unexplored, several

simple devices can be envisioned which demonstrate the basic abilities of these

processes. For example, a simple intensity to wavelength switching device is de-

picted in Fig. 8.4. Such a device uses the generation of clean frequency shifts

of >∼1.5 nm (c.f., Chapter 5) to efficiently switch between wavelength-devision-

multiplexing channels. Since the details of these shifts are hugely customizable

through engineering of the material used, these shifts are applicable to all common

bands used currently for optical communications (i.e., erbium C- and L-bands,

etc.) in addition to other wavelengths not yet in use.
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Figure 8.5: Schematic diagram of cascadable (i.e., zero net shift), high extinction

ratio discrimination device.

A slightly more complicated scheme (Fig. 8.5) yields a device capable of high

extinction ratio discrimination. Here the spectrum of a signal of interest is shifted

by a larger amount then that of a lower intensity satellite pulse (or noise). A spec-

tral filter then selectively passes the desired component. Also, a subsequent stage

can shift the pulse spectrum back to the initial frequency, providing increased dis-

crimination contrast and the ability to daisy-chain (cascade) such devices. While

there is some loss inherent to this scheme, it could easily be integrate with am-

plification. There is a dearth of high quality, high extinction ratio and ultrafast

optical discriminators, so such a device could be of immediate use for various

communications systems.
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Chapter 9

Conclusion
This thesis presents original works on the propagation of ultrashort laser pulses

in quadratic nonlinear materials. Results are shown in several areas of research:

direct compensation of nonlinear phase shifts from Kerr media with negative Kerr-

like cascaded phase shifts; progress toward generation of quadratic solitons in sys-

tems supporting stable multidimensional soliton formation; and development and

demonstration of a new type of cascaded interaction — nonlinear frequency shifts

from non-stationary cascaded quadratic process.

Theoretically, we present and analyze a quadratic optical system (poled lithium

niobate at wavelengths between 3 and 5 µm) which numerically supports temporal

and spatiotemporal soliton formation with the possibility of extension to fully

confined solitons. This is currently the only experimentally realizable system to

theoretically support light-bullet formation, and opens the door to experiments into

the formation, propagation, and interactions of these highly nonlinear phenomena

with great potential applications to optical communications and logic.

To date, all applications of cascaded quadratic processes (including those pre-

sented above) occur in the limit where the effects of group-velocity mismatch be-

tween the coupled fields is small: the limit in which a controllable Kerr-like nonlin-

ear phase-shift is generated. The noninstantaneous, nonlinear frequency shifting

processes developed and demonstrated here in some sense opens the door to half of

the parameter space of quadratic interactions with significant group-velocity mis-

match. We present experiments demonstrating the applicability of these frequency

shifting processes to systems ranging from high power (millijoule and higher en-
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ergy amplified lasers) to picojoule and nanojoule fiber systems. Fundamentally,

these nonlinear frequency shifting processes have a wide variety of applications.

Since these processes are possible in materials with self-defocusing nonlinearity

and low loss, they enable use with high energy, ultrashort pulses which would oth-

erwise induce material damage with self-focusing nonlinearities. Technologically,

they also enable compact and robust short-pulse infrared sources, and low-energy

frequency shifting devices. Fundamentally, however, these are new processes and

their applications largely remain to be explored.



Appendix A

Coupled equations for phase-mismatched

second-harmonic generation with short

pulses1

The fundamental equations governing the physics described in this thesis are those

of phase-mismatched second harmonic generation (SHG) with ultra short pulses.

In particular, the effects of group-velocity dispersion (GVD) and group-velocity

mismatch (GVM) between the fundamental (FF) and second-harmonic (SH) fre-

quencies in time, diffraction and walk-off in space, and quadratic (χ(2)) and cubic

(χ(3)) nonlinearity must be accounted for and understood.

Within the slowly varying envelope and paraxial approximations, the coupled

equations governing the evolution of the FF (A1) and SH (A2) field envelopes

propagating in the z direction and assumed constant in the x direction are [1, 2, 3]

(
∂

∂z
+

i

2

ZI

LDS,1

∂2

∂t2
− i

2

ZI

LDF,1

∂2

∂y2
)A1

= iA∗

1A2e
i∆k(ZIz) + i

ZI

LNL,1

(α|A1|2 + β|A2|2)A1, (A.1)
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i

2

ZI

LDS,2

∂2

∂t2
− 1

LGVM

∂

∂t
− i

2

ZI

LDF,2

∂2

∂y2
)A2

= i
n(ω1)

n(ω2)
A1A1e

−i∆k(ZIz) + i
n(ω1)

n(ω2)

ZI

LNL,2

(β|A1|2 + α|A2|2)A2, (A.2)

1These equations are generally known, but were derived in detail in standard
electrostatic units by K. Beckwitt and J. Harbold. This note exists in the Wise
Group literature and appears in K.B.’s notebooks.
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where

LDS,j =
τ 2
0

GVD(ωj)
, (A.3)

LDF,j =
2πy2

0

λj

, (A.4)

LNL,j =
c

ωjn2I0

, (A.5)

LGVM =
τ0

GVM
, (A.6)

I0 =
nc

8π
|A1(0)|2, (A.7)

ZI =
nλ1

2πdeffA1(0)
. (A.8)

Here time t is normalized to the initial 1/e pulse width τ0, related to the full-

width at half-maximum (FWHM) pulse width by τ0 = 0.6 τFWHM. A1 and A2 are

in units of the initial peak FF field A0 (related to the initial peak FF intensity

by A.7) and n2 is the Kerr nonlinear index. The cubic nonlinear length char-

acterizing the pulse propagation (A.5) is the length over which the accumulated

nonlinear phase shift is 1 for frequency ωj with j = 1, 2. The parameters α and

β describe the relative strengths of self- and cross-phase modulation from χ(3),

and depend on the relative field polarizations (for parallel polarizations α = 1

and β = 2 and for orthogonal polarizations α = 1 and β = 2/3). The propaga-
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tion coordinate z is normalized to the quadratic nonlinear length ZI (A.8) which

characterizes the strength of the nonlinear coupling in a materials with effective

quadratic nonlinear coefficient deff . ZI is related to the quadratic nonlinear phase-

shift through ∆Φχ(2)

NL = (L/ZI)
2/∆kL in the limit of large phase-mismatch [4],

where ∆k = k2ω − 2kω. In terms of the group refractive indices for the FF and SH

(ng,1 and ng,2, respectively), GVM = (ng,1 − ng,2)/c.

In Eqs. (A.1) and (A.2) the field is assumed to be constant along the x direction.

However, these equations could easily be generalized to their full three-dimensional

counterparts by addition of the appropriate diffraction term

− i

2

ZI

LDFx,j

∂2Aj

∂x2
, (A.9)

to each equation, with LDFx,j = 2πx2
0/λj.

In the case of quasi-phase matching, the sign of the second order nonlinear

length ZI switches depending on whether you are in the region of positive (+deff)

or negative (−deff) effective second order nonlinearity.
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Appendix B

Pulse propagation simulations

B.0.1 Numerical framework

To solve Eqs. (A.1) and (A.2) numerically we use a symmetric split-step beam

propagation method [1, 2, 3] in which the full coupled equations are divided into

a linear part

(
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∂z
+

i

2
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2
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)A1 = 0, (B.1)
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and a nonlinear part

∂A1

∂z
= iA∗

1A2e
i∆k(ZIz) + i

ZI

LNL,1

(α|A1|2 + β|A2|2)A1, (B.3)

∂A2

∂z
= i

n(ω1)

n(ω2)
A1A1e

−i∆k(ZIz) + i
n(ω1)

n(ω2)

ZI

LNL,2

(β|A1|2 + α|A2|2)A2. (B.4)

To obtain a general solution for Eqs. (A.1) and (A.2) each propagation step ∆z

is divided into three operations (schematic in Fig. B.1): solution of the linear part

[Eqs. (B.1) and (B.2)] on the first half of the step (from z0 → z0 +∆z/2), solution

of the nonlinear part [Eqs. (B.3) and (B.4)] on over the full step (z0 → z0 + ∆z)

using the linearly propagated fields at (z0 + ∆z/2), and solution of the linear part
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Figure B.1: Schematic of a simulated propagation step from z0 → z0 + ∆z.

over the second half of the step (z0 + ∆z/2 → z0 + ∆z). In this way the nonlinear

propagation is solved with the average linear propagation on each step (as opposed

to the fields at either step boundary), which effectively increases the accuracy of

the numerical solution on that step [3].

The solution to the linear equations is easily obtained analytically in the fre-

quency domain, where

Ã1(z0 + ∆z, f, fy)

= Ã1(z0, f, fy) exp
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(

f 2
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, (B.5)
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f
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− f 2
y

2LDF,1

)]

. (B.6)

Hence Eqs. (B.1) and (B.2) are solved analytically through a Fourier transform

(Ã(z, f) =
∫

Ã(z, τ) exp(2πifτ)dτ) to the frequency domain and application of the

solutions in Eqs. (B.5) and (B.6), followed by an inverse transform back to the

time domain.

The nonlinear equations, on the on the other hand, can be solved with a stan-
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dard fourth-order Runge-Kutta algorithm [3] with interim coefficients
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and subsequent fields at z0 + ∆z
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This process is then repeated over the entire propagation length of interest,

resulting in a numerical solution for Eqs. (A.1) and (A.2) that is both efficient and

computationally fast. In addition, since the Runge-Kutta algorithm for the nonlin-

ear solution is easily parallelized, and relatively efficient parallel implementations

of Fast-Fourier Transform codes exist [4], these methods are directly implementable

in parallel architectures both for increased speed and to make solutions of more
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complicated structures and longer propagation feasible.

It should be noted that Eqs. (A.1) and (A.2) are written in a frame moving

at the group velocity of the FF. This is easily altered by adding a GVM term to

Eq. (A.1) for the FF and adjusting the relative velocity mismatch terms between

the FF, SH, and the moving frame. In some situations (i.e., where the SH walks

away a significant amount during propagation) it is convenient numerically to use

a window which moves at the weighted average of the FF and SH group velocities,

so as to allow a smaller simulated time window to catch all the relevant dynamics.

B.0.2 Layout

A flowchart of the code organization appears in Fig. B.2. The output intensity,

phase, and spectral profiles are calculated and saved for each output page. The

full fields are only saved at a single specified propagation step, which can be used

to continue propagation in subsequent simulations.

B.0.3 Architecture and dependencies (i.e., running the code)

The code is written in C with two external dependencies: FFTW [4] and Matlab.

However, Matlab is only required for its C libraries allowing output to its propri-

etary data format for subsequent visualization (performed with several plot *.m

Matlab routines included with the code: i.e., plot trends.m, plot profiles.m, etc.).

As such, it is simple to write the datafile generation procedure write datafile.c to

implement text (or any other format) output, in which case Matlab is not neces-

sary (this is implemented for plain text output in write datafile text.c, which is

hugely inefficient for data storage and manipulation).

In its current structure, the code is suitable for use in i386 compatible architec-
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Main program
prop.c

Define Structures
prop.h

Initialize
parameters, fields

init_param.c
init_pulse.c

from initialization routines
(optional)

read_param.c
read_propstate.c

from previous simulations

Print settings
print_param.c

Loop over
propagation steps
prop_step.c

Non−linear propagation
prop_nl.c
qpm_deff.c

Dispersive propagation
prop_ds.c
ds_phase.c

Dispersive propagation
prop_ds.c
ds_phase.c

Absorb energy at boundaries
gafactor.c

At output pages find
int., phase, spect.
powerspect.c

Write output parameters,

write_parameters.c
write_propstate.c

phase, and spectral pages
Matlab format (.mat) file
write_datafile.c

Write output intensity,
fields (text)

Figure B.2: Simulation flowchart.
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tures running any of the standard Linux distributions (development was on Redhat

7.x - 9.x). A standard makefile appears in Section B.0.4. If Matlab and FFTW are

installed, and proper paths to their libraries appear in the linker path (stored in

/etc/ld.so.conf under Redhat, with ld reinitialized by /sbin/ldconfig) then the only

explicit dependence for building the code is that MATLIBDIR point to the default

Linux Matlab libraries (i.e., MATLIBDIR = /usr/local/matlab/extern/lib/glnx86/

for a default install under Redhat 7.x-9.x). It is also possible to compile the code

without a full installation of Matlab and FFTW: in this case the proper libraries

should be placed in a directory pointed to by MATLIBDIR, and the linker pa-

rameters should be set to LDFLAGS = -Wl,-rpath,$(MATLIBDIR). In the imple-

mentation appearing here, the code assumes FFTW version 2.1.x. Version 3.x of

FFTW has recently been released, but its implementation requires modification to

these simulations.

When running the code, some care should be taken to assure grid dimensions

appropriate to the problem being solved. Generally one wants a number of ∆z steps

per SH conversion-back-conversion cycle (∼ 2π/∆k). In addition, if the material

being simulated has longitudinal structure (i.e., for quasi-phase-matching), then at

least ∼5 ∆z steps are required in the shortest characteristic length of the structure.

In the transverse dimensions (time and any spatial dimensions included), it is

not trivial to find the proper combination of grid and pulse dimensions: one needs a

large enough window that all the dynamics are captured without boundary effects

obscuring the process and a large enough number of grid points across the pulse

that fine structure is properly simulated. At the same time, it is necessary to have

a small enough number of points in the pulse (compared to the window size) that

the spectrum of the pulse is not clipped and small enough window sizes that the
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simulation requirements are reasonable computationally.

On a ∼2 GHz Pentium 4 or Athlon XP class machine simulation of bulk 1D

problems takes minutes. Simulation of bulk 2D systems takes minutes to hours,

and full 3D bulk simulations take >∼1 day. Addition of longitudinal structure is

typically equivalent to adding another transverse dimension in processing time

(i.e., days for an accurate 2D QPM simulation). Finally, 2D simulations with

longitudinal structure and bulk 3D simulations typically require 1-2 GB of RAM.

Generally it must be recognized that split-step FFT schemes are very suscepti-

ble to false stabilization of the simulated fields (due to a number of factors including

FFT filtering and window boundary effects) — and care must be taken to ensure

that simulations are accurate: e.g., one must investigate the dependencies on win-

dow size in all dimensions and the stability of suspected solutions to perturbations

in intensity, among many other numerical and physical parameters.

Both single and multiple processor versions of the pulse propagation code exist.

The parallel architecture version of the simulation is not discussed here in detail,

but is written under MPI and assumes both a parallel version of FFTW 2.1.x and

visual C++ under Microsoft Windows as is implemented at the Cornell Theory

Center. Empirically, optimal efficiency occurs with 8-16 nodes for simulations

involving ∼O(108) grid points, as is reasonable for (2+1) dimensional simulations of

QPM structures, or full three-dimensional simulations of bulk materials. Without

unnecessary resolution, these types of simulations take ∼24-hours with a reasonable

number of nodes.

B.0.4 Linux makefile

# Makefile for 3D propagation simulation. KB.

MATLIBDIR = /usr/local/matlab/extern/lib/glnx86/
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TAREXCLUDEFILE = exclude_from_tar.tmp

CC = gcc

CFLAGS = -g -O2 # for debugging/profiling add -pg

# LIBS = -L$(MATLIBDIR) -I$(MATLIBDIR) -lrfftw -lfftw -lmat -lmx -lm

LIBS = -L$(MATLIBDIR) -lrfftw -lfftw -lmat -lmx -lm

INCLS =

OBJECTS = gafactor.o init_param.o init_pulse.o powerspect.o \

prop.o prop_ds.o prop_nl.o prop_step.o c_arith.o \

row_major.o write_datafile.o ds_phase.o write_propstate.o \

read_propstate.o read_parameters.o write_parameters.o \

print_param.o adv_field_page.o date_str.o qpm_deff.o

TARGET = sim.exe

# LDFLAGS = -Wl,-rpath,$(MATLIBDIR)

LDFLAGS =

$(TARGET): $(OBJECTS)

@echo "Linking executable..."

$(CC) $(CFLAGS) $(INCLS) -o $(TARGET) $(OBJECTS) $(LDFLAGS) $(LIBS)

@echo "Complete!"

clean:

@echo "Cleaning temporary files..."

@rm -f *.o *.*~ *~ \#* .\#* core *.txt $(TARGET) a.out data.mat \

gmon.out propstate.dat temp.tif parameters.dat # /tmp/file*

backup:

@echo "Backing up source code..."

@tar -c -v -z -f codebackup_current.tgz \

--exclude codebackup_current.tgz ./*

@rm -f $(TAREXCLUDEFILE)
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Appendix C

Optical parametric amplifiers for 3-5 µm

pulse generation

C.1 Soliton stability window

There is only a small window for the potential observation of solitons in quadratic

materials without external group-velocity dispersion modification through pulse

tilting. The region (schematically depicted in Fig. C.1) is bounded from above

by linear (one-photon) absorption present in all optical media in the infrared.

In lithium niobate this absorption edge is near 5 µm. From below, the group-

velocity dispersion decreases with increasing wavelength with the transition from

normal (positive) to anomalous (negative) dispersion typically occurring near 2

µm. So, anomalous dispersion of significant magnitude at the fundamental fre-

quency coupled with anomalous or small and normal group-velocity dispersion

at the second-harmonic frequency requires working at longer wavelengths. For

lithium niobate the zero-point in group-velocity dispersion occurs near 1.9 µm,

which practically requires experiments to be performed at wavelengths >∼3.5 µm.

Finally, group-velocity mismatch between the fundamental and second-harmonic

frequencies increases from negative to positive, with the zero point for lithium

niobate occurring near 2.5 µm. Near 4 µm, the magnitude of the group-velocity

mismatch becomes large enough that limited soliton acceptance due to excessive

group-velocity mismatch becomes an issue.

As shown in Chapter 3, a windows does exist where temporal soliton formation

appears possible in periodically poled lithium niobate near 4 µm, and this window

144
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Figure C.1: Schematic of the group-velocity dispersion (a), transmission (b), and

group-velocity mismatch (c) of lithium niobate and similar quadratic materials in

the infrared.



146

appears to shrink but remains open for spatiotemporal solitons with two- and

three-dimensions of confinement [1, 2].

Furthermore, the pulse parameter requirements are very stringent: currently

available periodically poled lithium niobate crystals are limited to ∼5 cm lengths,

which necessitates pulses <∼200 fs in duration to observe several characteristic

lengths of the soliton evolution; furthermore, both soliton formation, and con-

vincing demonstration of their formation are critically dependent on not having

excess spectral bandwidth in the input pulse. Experimentally, this means the

source pulses used must be near Fourier-transform limited (in practice <∼20% be-

yond transform limit is sufficient). Finally, solitons are manifestly dynamical in-

teractions of high peak power pulses and nonlinear media. Consequently, pulse

energies of several microjoules are required for temporal (one-dimensional) soliton

formation, with somewhat less for two- and three-dimensional solitons.

C.2 Optical parametric amplification

Unfortunately, no laser gain media suitable for short pulse operation exist on the

2-4 µm wavelength region. However, titanium:sapphire amplified lasers are now

an established technology that produce millijoule energy, 100 fs, and near trans-

form limited pulses at wavelengths around 800 nm. Building on these systems,

wavelengths near 4 µm are accessible through optical parametric amplification: a

process by which a high energy photon is converted through a second order non-

linear interaction into two lower energy photons. Since this process must conserve

both energy and momentum, the energy ratio of the product photons can be con-

trolled through the details of the phase matching process in the nonlinear crystal

used. In these processes the input photon is called the “pump,” and the higher
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Figure C.2: Schematic of the optical parametric amplification processes.

energy and lower energy product photons are called the “signal” and the “idler,”

respectively (Fig. C.2).

The relation of the photon energies are

ωpump = ωsignal + ωidler, (C.1)

ωpump > ωsignal > ωidler, (C.2)

and practically the phase matching conditions (and hence the energy splitting ratio

and signal and idler wavelengths) are controlled by angle tuning of the nonlinear

crystal.

For generation of idler frequencies in the 3-5 µm range, several potential nonlin-

ear crystals for optical parametric amplification exist. The approximate wavelength

range and energies of the idler from these materials is depicted in Fig. C.3, where in

the case of “BBO + DFG” the wavelength range available with beta-barium borate

(BBO) is extended with an additional second order nonlinear process (difference

frequency generation, DFG) which subtracts the idler photon from the signal pho-
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Figure C.3: Schematic wavelength ranges and energies accessible with different

optical parametric amplification materials, and associated subsequent nonlinear

processes. BBO (dashes, beta-barium borate: β-BaB2O4), MLN (dots, magnesium

oxide doped lithium niobate, MgO : LiNbO3), and KNB (dash-dots, potassium

niobate, KNbO3) indicate the idler wavelength ranges with these materials, and

BBO + DFG (solid curve) indicates the tuning range made available by adding a

subsequent difference frequency generation (DFG) crystal to the signal and idler

output from BBO.

ton, generating their difference which is tunable near 4 µm. The relative merits

and performance of these processes are discussed for many different wavelengths

and materials in a number of references including: KTA (KTiOPO4) and RTA

(RbTiOAsO4) [3, 4, 5], KNB (KNbO3) [6, 7, 8], MLN (MgO : LiNbO3) [9, 10], and

through other more complex schemes like difference frequency generation of opti-

cal parametric amplifier output [11, 12, 13, 14] based mostly on signal and idler

output from BBO [15, 16]. For a review of some of these materials, see Ref. [17].

It should be noted that there are many additional constraints [17] to the pro-

cesses and materials which will not be covered in detail here. These include: phase

matching constraints which limit the available wavelengths and energies from these
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materials; signal-pump and idler-pump group-velocity mismatch which limits the

bandwidth and pulse width of the generated pulses, and technical issues such as

collinear versus non-collinear geometries and type-I versus type-II phase match-

ing conditions (associate with the relative polarizations of the pump and product

photons).

C.3 Potassium niobate and its limitations

With all these issues accounted for, two main candidates for the production of

∼4 µm pulses emerge: direct idler generation in potassium niobate (KNB), and

signal (near 1.3 µm) and idler (near 2.0 µm) generation in BBO followed by dif-

ference frequency generation between these wavelengths to generate ∼4 µm pulses

in AgGaS2.

Due to the apparent simplicity of the processes, we first tried direct genera-

tion in KNB. Fig. C.4 shows a sample output idler spectrum and temporal cross-

correlation trace between the pump and generated idler for operation near 3 µm.

However, these results are not typical. Experimentally we found KNB to

be plagued with numerous problems which prevent experiments with the output

pulses. These problems include: poor shot-to-shot noise fluctuations and long-

time drift. In addition, while the results shown in Fig. C.4 correspond to a time-

bandwidth product of only ∼1.5 times transform-limit, typical results were 2-4

times beyond transform-limit. We attribute this mostly to pump pulse spectral

broadening due to self-phase modulation from larger than expected n2 of KNB. We

were able to ameliorate this spectral broadening somewhat by reducing the pump

intensity, but at the cost of reduced idler energy. In retrospect, it is clear that

KNB is still an experimental material, and that several of the published results for
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Figure C.4: Sample KNB idler spectrum (a) and temporal cross-correlation trace

(b) with the pump which deconvolves to an idler pulse width of ∼180 fs.
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pulse energy and quality are “best-case” output and do not reflect daily operating

performance (at least in our experience).

C.4 Difference frequency generation

With these issues in mind, we have recently switched to an alternate 4 µm gener-

ation scheme based on difference frequency generation in the quadratic nonlinear

material AgGaS2 of the signal and idler from a standard BBO optical parametric

amplifier. A schematic of this setup appears in Fig. C.5. While more technically

complex, this process is well established and has been demonstrated to provide

sufficient energy, pulse quality, and stability for highly sensitive nonlinear optics

experiments [13].

Fig. C.5 shows the layout of the parametric amplification in BBO and subse-

quent difference frequency in AgGaS2. Experiments to characterize and eventually

observe solitons with this source are currently underway, with initial results in-

dicating several microjoules of difference frequency output tunable between ∼3.5

and 4.5 µm.



152

BS 2

90% 90%

BBO 1BBO 2

Delay 1Delay 2

BS 1 10% 10%

RG1000

HWP

Delay 3

Signal

Idler

AgGaS Ge 4 µ

White light
generation

amplifier: E = 1 mJ,
λτ  = 140 fs,     = 775 nm

BS 3

Sapphire

Ti:sapphire regenerative

Bandpass m DFG2

Figure C.5: Layout of the BBO optical parametric amplifier with an additional

difference frequency generation stage in AgGaS2. Beamsplitters BS 1 and 2 split

off successive fractions of the input energy for preamplification and power amplifi-

cation stages in BBO. The half-wave plate (HWP), telescope, and sapphire window

serve as a white light source to seed the BBO amplification stages. Filter RG1000

passes the amplified signal and idler while blocking the residual unconverted pump

light. Delay stages 1 and 2 are used to achieve temporal overlap between the pump

paths and the white light seed. After amplification, the signal and idler are sep-

arated by BS 3, their temporal overlap is optimized with Delay 3, and they are

subsequently recombined and focused down into the DFG crystal. A combination

of a germanium (Ge) window and 3-5 µm bandpass filter block the residual signal

and idler while passing the converted DFG.
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