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ABSTRACT
In this work, we consider the popular tree-based search strategy
within the framework of reinforcement learning, the Monte Carlo
Tree Search (MCTS), in the context of infinite-horizon discounted
cost Markov Decision Process (MDP) with deterministic transitions.
While MCTS is believed to provide an approximate value function
for a given state with enough simulations, cf. [20, 21], the claimed
proof of this property is incomplete. This is due to the fact that the
variant of MCTS, the Upper Confidence Bound for Trees (UCT), an-
alyzed in prior works utilizes “logarithmic” bonus term for balancing
exploration and exploitation within the tree-based search, following
the insights from stochastic multi-arm bandit (MAB) literature, cf.
[1, 3]. In effect, such an approach assumes that the regret of the un-
derlying recursively dependent non-stationary MABs concentrates
around their mean exponentially in the number of steps, which is
unlikely to hold as pointed out in [2], even for stationary MABs.

As the key contribution of this work, we establish polynomial con-
centration property of regret for a class of non-stationary multi-arm
bandits. This in turn establishes that the MCTS with appropriate poly-
nomial rather than logarithmic bonus term in UCB has the claimed
property of [20, 21]. Interestingly enough, empirically successful
approaches (cf. [33]) utilize a similar polynomial form of MCTS as
suggested by our result. Using this as a building block, we argue
that MCTS, combined with nearest neighbor supervised learning,
acts as a “policy improvement" operator, i.e., it iteratively improves
value function approximation for all states, due to combining with
supervised learning, despite evaluating at only finitely many states.
In effect, we establish that to learn an ε-approximation of the value
function for deterministic MDPs with respect to ℓ∞ norm, MCTS
combined with nearest neighbor requires a sample size scaling as
Õ
(
ε−(d+4)) , where d is the dimension of the state space. This is

nearly optimal due to a minimax lower bound of Ω̃
(
ε−(d+2)) [30]

suggesting the strength of the variant of MCTS we propose here and
our resulting analysis.1

KEYWORDS
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1 INTRODUCTION
Monte Carlo Tree Search (MCTS) is a search framework for finding
optimal decisions, based on the search tree built by random sampling
of the decision space [8, 25]. MCTS has been extensively used in
sequential decision makings that have a tree representation, exempli-
fied by games and planning problems with deterministic transitions.
In sequential decision making, the value of a state would typically
depend on future actions. Therefore, to determine the best action

1Technical report. This version: January 2020. The authors would like to thank the
review team at ACM SIGMETRICS for their detailed, constructive feedback.

for the given state, one has to take future actions into account and
MCTS does this by simulating future via effectively expanding all
possible future actions recursively in the form of (decision-like) tree.
Viewing each state as a node and each action as an edge, simulating
the future H ≥ 1 steps would correspond to a search tree of depth
H . In essence, the optimal action at the root of such a tree is then
determined by finding the optimal path in the tree.

Since MCTS was first introduced, many variations and enhance-
ments have been proposed. Recently, MCTS has been combined
with deep neural networks for reinforcement learning, achieving re-
markable success for games of Go [31, 33], chess and shogi [32]. In
particular, AlphaGo Zero (AGZ) [33] employs supervised learning
to iteratively learn a policy/value function (represented by a neural
network) based on samples generated via MCTS —MCTS uses the
neural network to estimate the value of leaf nodes (states) for sim-
ulation guidance; the neural network parameters are then updated
with sample data generated by MCTS and further re-incorporated
into tree search (i.e., as a leaf value estimator) in the next iteration
of querying MCTS.

Despite the wide application and empirical success of MCTS,
there is only limited work on theoretical guarantees of MCTS and its
variants. A notable exception is the work of [20] and [21], which pro-
pose running tree search by applying the Upper Confidence Bound
algorithm — originally designed for stochastic multi-arm bandit
(MAB) problems [1, 3] — to each node of the tree. This leads to
the so-called UCT (Upper Confidence Bounds for Trees) algorithm,
which is one of the popular forms of MCTS. In [20], certain as-
ymptotic optimality property of UCT is claimed. The proof therein
is, however, incomplete, as we discuss in greater details in Sec-
tion 1.2. More importantly, UCT as suggested in [20] requires ex-
ponential concentration of regret for the underlying non-stationary
MAB. Here, non-stationary means that the reward distribution of
each arm is time-varying rather than independent and identical as
in the case of stationary MAB. Such exponential concentration of
regret, however, is unlikely to hold in general even for stationary
MAB as pointed out in [2].

Indeed, rigorous analysis of MCTS is subtle, even though its as-
ymptotic convergence may seem natural. A key challenge is that
the tree policy (e.g., UCT) for selecting actions typically needs to
balance exploration and exploitation, so the action selection pro-
cess at each node is non-stationary (non-uniform) across multiple
simulations. A more severe difficulty arises due to the hierarchi-
cal/iterative structure of tree search, which induces complicated
probabilistic dependency between a node and the nodes within its
sub-tree. Specifically, as part of simulation within MCTS, at each
intermediate node (or state), the action is chosen based on the out-
comes of the past simulation steps within the sub-tree of the node
in consideration. Such strong dependencies across time (i.e., de-
pending on the history) and space (i.e., depending on the sub-trees
downstream) among nodes makes the analysis non-trivial. The goal
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of this paper is to address this challenge and provide a rigorous
theoretical foundation for MCTS. In particular, we are interested in
the following:

• What is the appropriate form of MCTS for which the as-
ymptotic convergence property claimed in the literature (cf.
[20, 21]) holds?

• Can we rigorously establish the “strong policy improvement”
property of MCTS when combined with supervised learning
as observed in the literature (e.g., in [33])? If yes, what is the
quantitative form of it?

• Does supervised learning combined with MCTS lead to the
optimal policy, asymptotically? If so, what is its finite-sample
(non-asymptotic) performance?

1.1 Preview of Main Results
As the main contribution of this work, we provide affirmative an-
swers to all of the above questions. In what follows, we provide a
brief overview of our contributions and results.

Non-stationary MAB and recursive polynomial concentration.
In stochastic Multi Arm Bandit (MAB), the goal is to discover the
action (arm) with the best average reward while choosing as few non-
optimal actions as possible in the process. The rewards for any given
action is assumed to be i.i.d., leading to the UCB algorithm: at any
time t ≥ 1, an action with maximal index is chosen where the index
of an action is the empirical average reward observed for the action
plus a logarithmic bonus term Bt ,s that scales as

√
log t/s, for an

action that has been picked s ≤ t times. As mentioned, Monte Carlo
Tree Search (MCTS) has a similar goal where reward depends on
the future actions. To take future actions into consideration, MCTS
effectively expands all possible future actions recursively in the
form of (decision-like) tree. As such, determining the optimal future
path corresponding to maximal reward starting at the root node
of the MCTS tree requires solving multiple MABs, one per each
intermediate node within the tree. Apart from the MABs associated
with the leaf layer of the tree, all the MABs associated with the
intermediate nodes turn out to have rewards that are generated by
MAB algorithms for nodes downstream. This creates complicated,
hierarchically inter-dependent MABs.

To determine the appropriate, UCB-like algorithm for MAB corre-
sponding to each node of the MCTS tree, it is essential to understand
the concentration property of rewards, i.e., concentration of regret
for MABs associated with the nodes downstream. While the rewards
at leaf level may enjoy exponential concentration due to indepen-
dence, the regret of any algorithm even for such an MAB is unlikely
to have exponential concentration in general, cf. [2, 26]. Further, the
MAB of our interest has non-stationary rewards due to strong depen-
dence across hierarchy. Indeed, an oversight of this complication led
[20, 21] to suggest UCT inspired by the standard UCB algorithm for
MABs with stationary, independent rewards.

As an important contribution of this work, we formulate an ap-
propriate form of non-stationary MAB which correctly models the
MAB at each node within the tree. In particular, assuming that the
rewards, though non-stationary, satisfy certain polynomial concentra-
tion property. Then, we establish that under the UCB algorithm that
chooses the arm with highest index, where index is defined as the
empirical observed reward plus an appropriate polynomial (and not

exponential) bonus term, a similar form of polynomial concentration
holds for the induced regret. In particular, let X̄t denote the empirical
average of the rewards collected at a given node over t visits of the
node. Then, under the UCB algorithm with a bonus term that scale as
tη(1−η)/s1−η , where 1/2 ≤ η < 1, we establish that (a) X̄t converges
to the optimal mean reward obtained by choosing the right action,
and (b) X̄t satisfy a polynomial concentration inequality around the
optimal mean reward, i.e., the convergence rate is polynomial. The
precise statement can be found as Theorem 3 in Section 5.

Corrected UCT for MCTS and non-asymptotic analysis. As de-
sired, the non-stationary MAB enjoys a recursive polynomial con-
centration: starting from polynomially concentrated arm rewards, the
proper UCB algorithm leads to a polynomially concentrated empiri-
cal reward. Hence, we immediately obtain that we can recursively
define the UCB algorithm at each level in MCTS, starting from the
leaf level, with appropriately chosen polynomial bonus terms Bt ,s .
In effect, setting η = 1/2, we obtain modified UCT where Bt ,s scales
as t1/4/s1/2. This is in contrast to the

√
log t/s scaling in the standard

UCB as well as UCT suggested in the literature, cf. [20, 21].
By recursively applying the convergence and concentration prop-

erty of the non-stationary MAB for the resulting algorithm for
MCTS, we establish that for any query state s of a MDP with deter-
ministic transitions, using a total of n simulations of the MCTS, we
can obtain a value function estimation within error δε0 +O

(
n−1/2)

for some δ < 1 (independent of n but dependent on the depth of
MCTS tree), if we start with a value function estimation for all the
leaf nodes within error ε0 . That is, MCTS is indeed asymptotically
correct as was conjectured in the prior literature. For details, see
Theorem 1 in Section 3.

MCTS with supervised learning, strong policy improvement,
and near optimality. The result stated above for MCTS implies
its “bootstrapping” property – if we start with a value function
estimation for all state within error ε, then MCTS can produce es-
timation of value function for a given query state within error less
than ε with enough simulations. By coupling such improved estima-
tions for a number of query states, combined with expressive enough
supervised learning, one can hope to generalize such improved esti-
mations of value function for all states. That is, MCTS coupled with
supervised learning can be “strong policy improvement operator”.

Indeed, this is precisely what we establish by utilizing nearest
neighbor supervised learning. Specifically, we establish that with
total of Õ

( 1
ε4+d

)
number of samples, MCTS with nearest neighbor

finds an ε-approximation of the optimal value function for determin-
istic MDPs with respect to ℓ∞-norm; here d is the dimension of the
state space. This is nearly optimal in view of a minimax lower bound
of Ω̃

( 1
ε2+d

)
[30]. For details, see Theorem 2 in Section 4.

An Implication. As mentioned earlier, the modified UCT policy per
our result suggests using bonus term Bt ,s that scales as t1/4/s1/2

at each node within the MCTS. Interestingly enough, the empirical
results of AGZ are obtained by utilizing Bt ,s that scales as t1/2/s.
This is qualitatively similar to what our results suggests and in
contrast to the classical UCT.

Summary. In summary, our contributions are:
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◦ We introduce a class of non-stationary MAB problems and estab-
lish the polynomial concentration property of the regret under an
appropriate UCB algorithm which should be of independent interest.

◦ As a consequence, we suggest correction for UCT and establish
the asymptotic correctness of thus modified MCTS, where the bonus
term scale polynomially in contrast to logarithmically as was be-
lieved in the literature.

◦ Building on the above results, we establish that MCTS combined
with supervised learning learns value function within ε error, under
a near optimal sample complexity of Õ

(
ε−d−4) .

◦ Interesting enough, our result suggests qualitatively similar poly-
nomial bonus term as the ones used in AlphaGo Zero.

1.2 Related work
Reinforcement learning [38] aims to approximate the optimal value
function and policy directly from the observed data. A variety of
algorithms have been developed for the so called tabular cases [43],
as well as using functional approximation such as linear architec-
tures [37]. More recent work approximates the value function/policy
by deep neural networks [24, 28, 29, 33, 44], which can be trained
using temporal-difference learning or Q-learning [22, 23, 42].

MCTS is an alternative approach, which as discussed, estimates
the (optimal) value of states by building a search tree from Monte-
Carlo simulations [8, 9, 11, 20]. [20] and [21] argue for the asymp-
totic convergence of MCTS with standard UCT. However, the proof
is incomplete [39]. A key step towards proving the claimed result is
to show the convergence and concentration properties of the regret
for UCB under non-stationary reward distributions. In particular, to
establish an exponential concentration of regret (Theorem 5, [21]),
Lemma 14 is applied. However, it requires conditional independence
of {Zi } sequence, which does not hold, hence making the conclusion
of exponential concentration questionable. Therefore, the proof of
the main result (Theorem 7, [21]), which applies Theorem 5 with an
inductive argument, is incorrect as stated.

In fact, it may be infeasible to prove Theorem 5 in [21] as stated.
For example, the work of [2] shows that for bandit problems, the
regret under UCB concentrates around its expectation polynomially
and not exponentially as desired in [21]. Further, [26] prove that
for any strategy that does not use the knowledge of time horizon,
it is infeasible to improve this polynomial concentration and estab-
lish exponential concentration. Our result is consistent with these
fundamental bound of stationary MAB — we establish polynomial
concentration of regret for non-stationary MAB, which plays a cru-
cial role in our analysis of MCTS. Also see the work [25] for a
discussion of the issues with logarithmic bonus terms for tree search.

While we focus on UCT in this paper, we note that there are other
variants of MCTS developed for a diverse range of applications
[10, 27, 36]. We refer to the survey on MCTS [8] for other variations
and applications. Additionally, it is important to mention the work
of [9] that explores the idea of using UCB for adaptive sampling in
MDPs. However, their algorithm proceeds in a depth-first, recursive
manner, and hence involves using UCB for a stationary MAB at
each node. In contrast, the UCT algorithm we study involves non-
stationary MABs, hence our analysis is significantly different from
theirs. We refer the readers to the work by [20] and [11] for further
discussion of this difference. Two other closely related papers are

[40] and [19], which study a simplified MCTS for two-player zero-
sum games. Compared to classical MCTS (e.g., UCT), both the
setting and the algorithms are simpler: the game tree is given in
advance, rather than being built gradually through samples; the
algorithm in [40] operates on the tree in a bottom-up fashion with
uniform sampling at the leaf nodes. As a result, the analysis is
significantly simpler and it is unclear whether the techniques can be
extended to analyze other variants of MCTS.

More recently, it has become popular to combine MCTS with
neural network in deep reinforcement learning [4, 31–33]. In terms
of theoretical results of MCTS-based reinforcement learning, the
closest work to ours is [18]. The key algorithmic difference from
ours lies in the leaf-node evaluator of the search tree: they use a
combination of an estimated value function and an estimated policy.
The latest observations at the root node are then used to update the
value and policy functions (leaf-node evaluator) for the next iteration.
They also give a finite sample analysis. However, their result and ours
are quite different: in their analysis, the sample complexity of MCTS,
as well as the approximation power of value/policy architectures,
are imposed as an assumption; here, we prove an explicit finite-
sample bound for MCTS and characterize the non-asymptotic error
prorogation under MCTS with non-parametric regression for leaf-
node evaluation. Therefore, they do not establish “strong policy
improvement” property of the MCTS.

Finally, we remark that the iterative reinforcement learning al-
gorithm of combining MCTS with supervised learning analyzed in
this paper is motivated by AlphaGo Zero (AGZ) [33]. The theoreti-
cal results partly provide an affirmative support for the validity of
this empirically successful approach. Nonetheless, we note that the
considered algorithm does not capture all the ingredients of AGZ
— there are important aspects of AGZ that require future investi-
gations. In particular, AGZ contains both a value network and a
policy network, implemented via deep neural networks. While the
bonus terms Bt ,s in MCTS of AGZ scales polynomially as well,
Bt ,s also incorporates current predictions from the policy network
to guide the selection of actions during the simulation. In addition,
the AGZ algorithm updates the networks incrementally, performing
stochastic gradient descent after every few steps. In contrast, the
value estimation in this work is updated only after each full iteration:
we update the value function via nearest neighbor regression, after
obtaining enough samples that properly cover the state space. A
comprehensive analysis on AGZ that includes these ingredients and
innovations is an important future direction towards fully explaining
its empirical success.

1.3 Organization
Section 2 describes the setting of Markov Decision Process consid-
ered in this work. Section 3 describes the Monte Carlo Tree Search
algorithm and the main result about its non-asymptotic analysis.
Section 4 describes a reinforcement learning method that combines
the Monte Carlo Tree Search with nearest neighbor supervised learn-
ing. It describes the finite-sample analysis of the method for finding
ε approximate value function with respect to ℓ∞ norm. Section 5
introduces a form of non-stationary multi-arm bandit and an up-
per confidence bound policy for it. For this setting, we present the
concentration of induced regret which serves as a key result for
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establishing the property of MCTS. The proofs of all the technical
results are delegated to Sections 6, 7 and Appendices.

2 SETUP AND PROBLEM STATEMENT
Formal Setup. We consider the setup of discrete-time discounted
Markov decision process (MDP). An MDP is described by a five-
tuple (S,A,P,R,γ ), where S is the set of states, A is the set of
actions, P ≡ P(s ′ |s,a) is the Markovian transition kernel, R ≡

R(s,a) is a random reward function, and γ ∈ (0, 1) is a discount
factor. At each time step, the system is in some state s ∈ S. When
an action a ∈ A is taken, the state transits to a next state s ′ ∈ S

according to the transition kernel P and an immediate reward is
generated according to R(s,a).

A stationary policy π (a |s) gives the probability of performing
action a ∈ A given the current state s ∈ S. The value function for
each state s ∈ S under policy π , denoted by V π (s), is defined as the
expected discounted sum of rewards received following the policy π
from initial state s, i.e.,

V π (s) = Eπ
[ ∞∑
t=0

γ tR(st ,at )|s0 = s
]
.

The goal is to find an optimal policy π∗ that maximizes the value
from each initial state. The optimal value function V ∗ is defined
as V ∗(s) = V π ∗

(s) = supπ V π (s), ∀s ∈ S. It is well understood
that such an optimal policy exists in reasonable generality. In this
paper, we restrict our attention to the MDPs with the following
assumptions:

ASSUMPTION 1 (MDP REGULARITY). (A1.) The action space
A is a finite set and the state space S is a compact subset of d
dimensional set; without loss of generality, let S = [0, 1]d ; (A2.) The
immediate rewards are random variables, uniformly bounded such
that R(s,a) ∈ [−Rmax,Rmax], ∀s ∈ S,a ∈ A for some Rmax > 0;
(A3.) The state transitions are deterministic, i.e. P ≡ P(s ′ |s,a) ∈
{0, 1} for all s, s ′ ∈ S, a ∈ A.

Define β ≜ 1/(1−γ ) andVmax ≜ βRmax. Since all the rewards are
bounded by Rmax, it is easy to see that the absolute value of the value
function for any state under any policy is bounded by Vmax [14, 35].
On Deterministic Transition. We note that the deterministic tran-
sition in MDP should not be viewed as restriction or assumption.
Traditional AI game research has been focused on deterministic
games with a tree representation. It is this context within which
historically MCTS was introduced, has been extensively studied
and utilized in practice [8]. This includes the recent successes of
MCTS in Go [33], Chess [32] and Atari games [15]. There is a long
theoretical literature on the analysis of MCTS and related methods
[5, 8, 17, 25] that considers deterministic transition. The principled
extension of MCTS algorithm itself as well as theoretical results
similar to ours for the stochastic setting are important future work. In
particular, such extension would require non-trivial work. As to be
described in the next section, for the Monte Carlo tree search variant,
each edge is treated as an action, leading to a node (next state) at
the next level. With stochastic transitions, each action could lead to
several potential next states. That is, at a particular level, each action
would necessarily be associated with several edges, connecting a
single node at the current level to multiple nodes at the next level.

Principally constructing such a fixed-depth tree, and subsequently
aggregating the statistics for each action and designing/analyzing
the resulting UCB-style algorithm on the tree are highly non-trivial.
It is not immediate that the current results would easily extend to
such scenarios.
Value Function Iteration. A classical approach to find optimal
value function, V ∗, is an iterative approach called value function
iteration. The Bellman equation characterizes the optimal value
function as

V ∗(s) = max
a∈A

(
E[R(s,a)] + γV ∗(s ◦ a)

)
, (1)

where s ◦ a ∈ S is the notation to denote the state reached by
applying action a on state s. Under Assumption 1, the transitions are
deterministic and hence s ◦ a represents a single, deterministic state
rather than a random state.

The value function iteration effectively views (1) as a fixed point
equation and tries to find a solution to it through a natural iteration.
Precisely, let V (t )(·) be the value function estimation in iteration t

with V (0) being arbitrarily initialized. Then, for t ≥ 0, for all s ∈ S,

V (t+1)(s) = max
a∈A

(
E[R(s,a)] + γV (t )(s ◦ a)

)
. (2)

It is well known (cf. [7]) that value iteration is contractive with
respect to ∥ · ∥∞ norm for all γ < 1. Specifically, for t ≥ 0, we have

∥V (t+1) −V ∗∥∞ ≤ γ ∥V (t ) −V ∗∥∞. (3)

3 MONTE CARLO TREE SEARCH
Monte Carlo Tree Search (MCTS) has been quite popular recently
in many reinforcement learning tasks. In effect, given a state s ∈ S

and a value function estimate V̂ , it attempts to run the value function
iteration for a fixed number of steps, say H , to evaluate V (H )(s)

starting with V (0) = V̂ per (2). This, according to (3), would provide
an estimate within error γH ∥V̂ − V ∗∥∞ — an excellent estimate
of V ∗(s) if H is large enough. The goal is to perform computation
for value function iteration necessary to evaluate V (H ) for state s
only and not necessarily for all states as required by traditional
value function iteration. MCTS achieves this by simply ‘unrolling’
the associated ‘computation tree’. Another challenge that MCTS
overcomes is the fact that value function iteration as in (2) assumes
knowledge of model so that it can compute E[R(·, ·)] for any state-
action pair. But in reality, rewards are observed through samples,
not a direct access to E[R(·, ·)]. MCTS tries to utilize the samples
in a careful manner to obtain accurate estimation for V (H )(s) over
the computation tree suggested by the value function iteration as
discussed above. The concern of careful use of samples naturally
connects it to multi-arm bandit like setting.

Next, we present a detailed description of the MCTS algorithm
in Section 3.1. This can be viewed as a correction of the algorithm
presented in [20, 21]. We state its theoretical property in Section 3.2.

3.1 Algorithm
We provide details of a specific form of MCTS, which replaces the
logarithmic bonus term of UCT with a polynomial one. Overall, we
fix the search tree to be of depth H . Similar to most literature on
this topic, it uses a variant of the Upper Confidence Bound (UCB)
algorithm to select an action at each stage. At a leaf node (i.e., a state
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at depth H ), we use the current value oracle V̂ to evaluate its value.
Note that since we consider deterministic transitions, consequently,
the tree is fixed once the root node (state) is chosen, and we use the
notation s ◦ a to denote the next state after taking action a at state s.
Each edge represents a state-action pair, while each node represents a
state. For clarity, we use superscript to distinguish quantities related
to different depth. The pseudocode for the MCTS procedure is given
in Algorithm 1, and Figure 1 shows the structure of the search tree
and related notation.

Algorithm 1 Fixed-Depth Monte Carlo Tree Search

1: Input: (1) current value oracle V̂ , root node s(0) and search
depth H ; (2) number of MCTS simulations n; (3) algorithmic
constants, {α (i)}Hi=1, {β

(i)}Hi=1, {ξ
(i)}Hi=1 and {η(i)}Hi=1.

2: Initialization: for each depth h, initialize the cumulative node
value ṽ(h)(s) = 0 and visit count N (h)(s) = 0 for every node s

and initialize the cumulative edge value q(h)(s,a) = 0.
3: for each MCTS simulation t = 1, 2, . . . ,n do
4: /* Simulation: select actions until

reaching depth H */
5: for depth h = 0, 1, 2, . . . ,H − 1 do
6: at state s(h) of depth h, select an action (edge) according to

a(h+1) = arg max
a∈A

{
q(h+1)(s(h),a) + γṽ(h+1)(s(h) ◦ a)

N (h+1)(s(h) ◦ a)

+

(
β (h+1))1/ξ (h+1)

·
(
N (h)(s(h))

)α (h+1)/ξ (h+1)(
N (h+1)(s(h) ◦ a)

)1−η(h+1)

}
, (4)

where dividing by zero is assumed to be +∞.
7: upon taking the action a(h+1), receive a random reward

r (h+1) ≜ R(s(h),a(h+1)) and transit to a new state s(h+1) at
depth h + 1.

8: end for
9: /* Evaluation: call value oracle for

leaf nodes */
10: reach s(H ) at depth H , call the current value oracle and let

ṽ(H )(s(H )) = V̂ (s(H )).
11: /* Update Statistics: quantities on the

search path */
12: for depth h = 0, 1, 2, . . . ,H − 1 do
13: update statistics of nodes and edges that are on the search

path of current simulation:
14: visit count:

N (h+1)(s(h+1)) = N (h+1)(s(h+1)) + 1
15: edge value:

q(h+1)(s(h),a(h+1)) = q(h+1)(s(h),a(h+1)) + r (h+1)

16: node value:

ṽ(h)(s(h)) =ṽ(h)(s(h)) + r (h+1) + γr (h+2)

+ · · · + γH−1−hr (H ) + γH−hṽ(H )(s(H ))

17: end for
18: end for
19: Output: average of the value for the root node ṽ(0)(s(0))/n.

In Algorithm 1, there are certain sequences of algorithmic param-
eters required, namely, α , β , ξ and η. The choices for these constants
will become clear in our non-asymptotic analysis. At a higher level,
the constants for the last layer (i.e., depth H ), α (H ), β (H ), ξ (H ) and
η(H ) depend on the properties of the leaf nodes, while the rest are re-
cursively determined by the constants one layer below. We note that
in selecting action a(h+1) at each depth h (i.e., Line 6 of Algorithm
1), the upper confidence term is polynomial in n while a typical UCB
algorithm would be logarithmic in n, where n is the number of visits
to the corresponding state thus far. The logarithmic factor in the
original UCB algorithm was motivated by the exponential tail proba-
bility bounds. In our case, it turns out that exponential tail bounds for
each layer seems to be infeasible without further structural assump-
tions. As mentioned in Section 1.2, prior work [2, 26] has justified
the polynomial concentration of the regret for the classical UCB
in stochastic (independent rewards) multi-arm bandit setting. This
implies that the concentration at intermediate depth (i.e., depth less
than H ) is at most polynomial. Indeed, we will prove these poly-
nomial concentration bounds even for non-stationary (dependent,
non-stationary rewards) multi-arm bandit that show up in MCTS and
discuss separately in Section 5.

3.2 Analysis
Now, we state the following result on the non-asymptotic perfor-
mance of the MCTS as described above.

THEOREM 1. Consider an MDP satisfying Assumption 1. Let
H ≥ 1, and for 1/2 ≤ η < 1, let

η(h) = η(H ) ≡ η, ∀ h ∈ [H ], (5)

α (h) = η(1 − η)
(
α (h+1) − 1

)
, ∀ h ∈ [H − 1], (6)

ξ (h) = α (h+1) − 1, ∀h ∈ [H − 1]. (7)

Suppose that a large enough ξ (H ) is chosen such that α (1) > 2. Then,
there exist corresponding constants {β (i)}Hi=1 such that for each
query state s ∈ S, the following claim holds for the output V̂n (s) of
MCTS with n simulations:���E[V̂n (s)] −V ∗(s)

��� ≤ γH ε0 +O
(
nη−1

)
,

where ε0 = ∥V̂ −V ∗∥∞ with V̂ being the estimate of V ∗ utilized by
the MCTS algorithm for leaf nodes.

Since η ∈ [1/2, 1), Theorem 1 implies a best case convergence
rate of O(n−1/2) by setting η = 1/2. With these parameter choices,
the bias term in the upper confidence bound (line 6 of Algorithm 1)
scales as

(
N (h)(s(h))

)1/4
/
√
N (h+1)(s(h) ◦ a), that is, in the form of

t1/4/
√
S as mentioned in the introduction, where t ≡ N (h)(s(h)) is

the number of times that state s(h) at depth h has been visited, and
S ≡ N (h+1)(s(h)◦a) is the number of times action a has been selected
at state s(h).

4 REINFORCEMENT LEARNING THROUGH
MCTS WITH SUPERVISED LEARNING

Recently, MCTS has been utilized prominently in various empir-
ical successes of reinforcement learning including AlphaGo Zero
(AGZ). Here, MCTS is combined with expressive supervised learn-
ing method to iteratively improve the policy as well as the value
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Depth H-1

Depth H

Root

|A |

s(0)node
ṽ(0)(s(0))value

s(1) = s(0) ∘ a(1)node
ṽ(1)(s(1))value

(s(0), a(1))edge
q (1)(s(0), a(1))value

r(1)reward

(s(1), a(2))edge
q (2)(s(1), a(2))value

r(2)reward

s(2) = s(1) ∘ a(2)node
ṽ(2)(s(2))value

s(H−1) = s(H−2) ∘ a(H−1)node
ṽ(H−1)(s(H−1))value

(s(H−1), a(H ))edge
q (H )(s(H−1), a(H ))value

r(H )reward

s(H ) = s(H−1) ∘ a(H )node
V (l)(s(H ))value

Figure 1: Notation and a sample simulation path of MCTS (thick lines).

function estimation. In effect, MCTS combined with supervised
learning acts as a “policy improvement” operator.

Intuitively, MCTS produces an improved estimation of value func-
tion for a given state of interest, starting with a given estimation
of value function by “unrolling” the “computation tree” associated
with value function iteration. And MCTS achieves this using obser-
vations obtained through simulations. Establishing this improvement
property rigorously was the primary goal of Section 3. Now, given
such improved estimation of value function for finitely many states,
a good supervised learning method can learn to generalize such an
improvement to all states. If so, this is like performing value func-
tion iteration, but using simulations. Presenting such a policy and
establishing such guarantees is the crux of this section.

To that end, we present a reinforcement learning method that
combines MCTS with nearest neighbor supervised learning. For
this method, we establish that indeed, with sufficient number of
samples, the resulting policy improves the value function estimation
just like value function iteration. Using this, we provide a finite-
sample analysis for learning the optimal value function within a
given tolerance. We find it nearly matching a minimax lower bound
in [30] which we recall in Section 4.4, and thus establishes near
minimax optimality of such a reinforcement learning method.

4.1 Reinforcement Learning Policy
Here we describe the policy to produce estimation of optimal value
function V ∗. Similar approach can be applied to obtain estimation
of policy as well. Let V (0) be the initial estimation of V ∗, and for
simplicity, let V (0)(·) = 0. We describe a policy that iterates between

use of MCTS and supervised learning to iteratively obtain estimation
V (ℓ) for ℓ ≥ 1, so that iteratively better estimation of V ∗ is produced
as ℓ increases. To that end, for ℓ ≥ 1,

◦ For appropriately sampled states Sℓ = {si }
mℓ
i=1, apply MCTS

to obtain improved estimations of value function {V̂ (ℓ)(si )}
mℓ
i=1

using V (ℓ−1) to evaluate leaf nodes during simulations.
◦ Using {(si , V̂

(ℓ)(si )}
mℓ
i=1 with a variant of nearest neighbor

supervised learning with parameter δℓ ∈ (0, 1), produce esti-
mation V (ℓ) of the optimal value function.

For completeness, the pseudo-code is provided in Algorithm 2.

4.2 Supervised Learning
For simplicity, we shall utilize the following variant of the nearest
neighbor supervised learning parametrized by δ ∈ (0, 1). Given state
space S = [0, 1]d , we wish to cover it with minimal (up to scaling)
number of balls of radius δ (with respect to ℓ2-norm). To that end,
since S = [0, 1]d , one such construction is where we have balls of
radius δ with centers being {(θ1, θ2, . . . , θd ) : θ1, . . . , θd ∈ Q(δ )}
where

Q(δ ) =
{ 1

2
δi : i ∈ Z, 0 ≤ i ≤

⌊ 2
δ

⌋}
∪

{
1−

1
2
δi : i ∈ Z, 0 ≤ i ≤

⌊ 2
δ

⌋}
.

Let the collection of these balls be denoted by c1, . . . , cK (δ ,d ) with
K(δ ,d) = |Q(δ )|. It is easy to verify that S ⊂ ∪i ∈[K (δ ,d )]ci ,K(δ ,d) =
Θ(δ−d ) and Cdδ

d ≤ volume(ci ∩ S) ≤ C ′
dδ

d for strictly positive
constants Cd ,C ′

d that depends on d but not δ . For any s ∈ S, let
j(s) = min{j : s ∈ c j }. Given observations {(si , V̂

(ℓ)(si )}
mℓ
i=1, we
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Algorithm 2 Reinforcement Learning Policy

1: Input: initial value function oracle V (0)(s) = 0, ∀ s ∈ S

2: for l = 1, 2, . . . , L do
3: /* improvement via MCTS */
4: uniformly and independently sample states Sℓ = {si }

mℓ
i=1.

5: for each sampled state si do
6: apply the MCTS algorithm, which takes as inputs the cur-

rent value oracle V (l−1), the depth H (l ), the number of sim-
ulation nl , and the root node si , and outputs an improved
estimate for V ∗(si ):

V̂ (l )(si ) = MCTS
(
V (l−1),H (l ),nl , si

)
(8)

7: end for
8: /* supervised learning */
9: with the collected data D(l ) = {(si , V̂

(l )(si ))}
ml
i=1, build a

new value oracle V (l ) via a nearest neighbor regression with
parameter δl :

V (l )(s) = Nearest Neigbhor
(
D(l ), δl , s

)
, ∀ s ∈ S. (9)

10: end for
11: Output: final value oracle V (L).

produce an estimate V (ℓ)(s) for all s ∈ S as follows:

V (ℓ)(s) =


∑
i :si ∈cj (s ) V̂

(ℓ)(si )

| {i :si ∈c j (s ) } |
, if |{i : si ∈ c j(s)}| , 0,

0 otherwise.
(10)

4.3 Finite-Sample Analysis
For finite-sample analysis of the proposed reinforcement learning
policy, we make the following structural assumption about the MDP.
Specifically, we assume that the optimal value function (i.e., true re-
gression function) is smooth in some sense. We note that some form
of smoothness assumption for MDPs with continuous state/action
space is typical for ℓ∞ guarantee. The Lipschitz continuous assump-
tion stated below is natural and representative in the literature on
MDPs with continuous state spaces, cf. [6, 12, 13, 25, 45].

ASSUMPTION 2 (SMOOTHNESS). The optimal value function
V ∗ : S → R satisfies Lipschitz continuity with parameter C, i.e.,
∀s, s ′ ∈ S = [0, 1]d , |V ∗(s) −V ∗(s ′)| ≤ C ∥s − s ′∥2.

Now we state the result characterizing the performance of the re-
inforcement learning policy described above. The proof is provided
in Appendix D.

THEOREM 2. Let Assumptions 1 and 2 hold. Let ε > 0 be a
given error tolerance. Then, for L = Θ

(
log ε

Vmax

)
, with appropri-

ately chosen mℓ, δℓ for ℓ ∈ [L] as well as parameters in MCTS,
the reinforcement learning algorithm produces estimation of value
function V (L) such that

E
[

sup
s ∈S

|V (L)(s) −V ∗(s)|
]
≤ ε,

by selectingmℓ states uniformly at random in S within iteration ℓ.
This, in total, requires T number of state transitions (or samples),

where

T = O
(
ε−

(
4+d

)
·
(
log

1
ε

)5)
.

4.4 Minimax Lower Bound
Leveraging the the minimax lower bound for the problem of non-
parametric regression [34, 41], recent work [30] establishes a lower
bound on the sample complexity for reinforcement learning algo-
rithms for general MDPs. Indeed the lower bound also holds for
MDPs with deterministic transitions (the proof is provided in Ap-
pendix A), which is stated in the following proposition. We remark
that the proof reduces a non-parametric regression problem to the
problem of estimating the optimal value function of an MDP. There-
fore, without further structural assumptions on the MDPs beyond
the Lipshitz continuity, the resulting error rateT−1/(2+d ) is known to
be statistically minimax optimal. In this work, we focus on general
deterministic MDPs. For subsets of MDPs with additional structures,
the rate might be improved.

PROPOSITION 1. Given an algorithm, letVT be the estimation of
V ∗ after T samples of state transitions for the given MDP. Then, for
each ε ∈ (0, 1), there exists an instance of deterministic MDP such
that in order to achieve P

[

V̂T −V ∗



∞
< ε

]
≥ 1

2 , it must be that

T ≥ C ′d · ε−(d+2) · log(ε−1),

where C ′ > 0 is a constant independent of the algorithm.

Proposition 1 states that for any policy to learn the optimal value
function within ε approximation error, the number of samples re-
quired must scale as Ω̃

(
ε−(2+d )

)
. Theorem 2 implies that the sample

complexity of the proposed algorithm scales as Õ
(
ε−(4+d )

)
(omitting

the logarithmic factor). Hence, in terms of the dependence on the
dimension, the proposed algorithm is nearly optimal. Optimizing
the dependence of the sample complexity on other parameters is an
important direction for future work.

5 NON-STATIONARY MULTI-ARM BANDIT
We introduce a class of non-stationary multi-arm bandit (MAB)
problems, which will play a crucial role in analyzing the MCTS
algorithm. To that end, let there be K ≥ 1 arms or actions of interest.
Let Xi ,t denote the random reward obtained by playing the arm
i ∈ [K] for the t th time with t ≥ 1. Let X̄i ,n = 1

n
∑n
t=1 Xi ,t denote

the empirical average of playing arm i for n times, and let µi ,n =
E[X̄i ,n ] be its expectation. For each arm i ∈ [K], the reward Xi ,t is
bounded in [−R,R] for some R > 0, and we assume that the reward
sequence, {Xi ,t : t ≥ 1}, is a non-stationary process satisfying the
following convergence and concentration properties:

A. (Convergence) the expectation µi ,n converges to a value µi ,
i.e.,

µi = lim
n→∞

E[X̄i ,n ]. (11)

B. (Concentration) there exist three constants, β > 1, ξ > 0,
and 1/2 ≤ η < 1 such that for every z ≥ 1 and every integer
n ≥ 1,

P
(
nX̄i ,n − nµi ≥ nηz

)
≤

β

zξ
, P

(
nX̄i ,n − nµi ≤ −nηz

)
≤

β

zξ
.

(12)
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5.1 Algorithm
Consider applying the following variant of Upper Confidence Bound
(UCB) algorithm to the above non-stationary MAB. Define upper
confidence bound for arm or action i when it is played s times in
total of t ≥ s time steps as

Ui ,s ,t = X̄i ,s + Bt ,s , (13)

where Bt ,s is the “bonus term". Denote by It the arm played at time
t ≥ 1. Then,

It ∈ arg max
i ∈[K ]

{
X̄i ,Ti (t−1) + Bt−1,Ti (t−1)

}
, (14)

where Ti (t) =
∑t
l=1 I{Il = i} is the number of times arm i has been

played, up to (including) time t . We shall make specific selection of
the bonus or bias term Bt ,s as

Bt ,s =
β1/ξ · tα/ξ

s1−η . (15)

A tie is broken arbitrarily when selecting an arm. In the above, α > 0
is a tuning parameter that controls the exploration and exploitation
trade-off. Let µ∗ = maxi ∈[K ] µi be the optimal value with respect
to the converged expectation, and i∗ ∈ arg maxi ∈[K ] µi be the corre-
sponding optimal arm. We assume that the optimal arm is unique.
Let δi∗,n = µi∗,n − µi∗ , which measures how fast the mean of the
optimal non-stationary arm converges. For simplicity, quantities
related to the optimal arm i∗ will be simply denoted with subscript
∗, e.g., δ∗,n = δi∗,n . Finally, denote by ∆min = mini ∈[K ],i,i∗ ∆i
the gap between the optimal arm and the second optimal arm with
notation ∆i = µ∗ − µi .

5.2 Analysis
Let X̄n ≜ 1

n
∑K
i=1Ti (n)X̄i ,Ti (n) denote the empirical average of

rewards collected under the UCB algorithm (14). Then, X̄n satisfies
the following convergence and concentration properties.

THEOREM 3. Consider a non-stationary MAB satisfying (11)
and (12). Suppose that algorithm (14) is applied with parameter α
such that ξη(1 − η) ≤ α < ξ (1 − η) and α > 2. Then, the following
holds:

A. Convergence:

��E[X̄n ] − µ∗
�� ≤ |δ∗,n | +

2R(K − 1) ·
( ( 2

∆min
· β

1
ξ
) 1

1−η · n
α

ξ (1−η) + 2
α−2 + 1

)
n

.

B. Concentration: there exist constants, β ′ > 1 and ξ ′ > 0 and
1/2 ≤ η′ < 1 such that for every n ≥ 1 and every z ≥ 1,

P
(
nX̄n − nµ∗ ≥ nη

′

z
)
≤

β ′

zξ
′
,

P
(
nX̄n − nµ∗ ≤ −nη

′

z
)
≤

β ′

zξ
′
,

where η′ = α
ξ (1−η) , ξ

′ = α − 1, β ′ depends on R,K,∆min, β,

ξ ,α,η.

6 PROOF OF THEOREM 3
We establish the convergence and concentration properties of the
variant of the Upper Confidence Bound algorithm described in Sec-
tion 5 and specified through (13), (14) and (15).

Establishing the Convergence Property. We define a useful nota-
tion

Φ(n, δ ) = nη
(
β

δ

)1/ξ
. (16)

We begin with a useful lemma, which shows that the probability
that a non-optimal arm or action has a large upper confidence is
polynomially small. Proof is provided in Appendix B.1.

LEMMA 1. Let i ∈ [K], i , i∗ be a sub-optimal arm and define

Ai (t) ≜ min
u ∈N

{Φ(u, t−α )
u

≤
∆i
2

}
=

⌈( 2
∆i

· β1/ξ · tα/ξ
) 1

1−η
⌉
. (17)

For each s and t such that, Ai (t) ≤ s ≤ t , we have

P(Ui ,s ,t > µ∗) ≤ t−α .

Lemma 1 implies that as long as each arm is played enough, the
sub-optimal ones become less likely to be selected. This allows us to
upper bound the expected number of sub-optimal plays as follows.

LEMMA 2. Let i ∈ [K], i , i∗, then

E[Ti (n)] ≤
( 2
∆i

· β
1
ξ
) 1

1−η
· n

α
ξ (1−η) +

2
α − 2

+ 1.

Proof of Lemma 2 is deferred to Appendix B.2.

Completing Proof of Convergence. By the triangle inequality,��µ∗ − E[X̄n ]�� = ��µ∗ − µ∗,n
��+��µ∗,n − E[X̄n ]

�� = ��δ∗,n ��+��µ∗,n − E[X̄n ]
�� .

The second term can be bounded as follows:

n
��µ∗,n − E[X̄n ]

��
=

����E[ n∑
t=1

Xi∗,t
]
− E

[ K∑
i=1

Ti (n)X̄i ,Ti (n)

] ����
≤

����E[ n∑
t=1

Xi∗,t
]
− E

[
T∗(n)X̄i∗,T∗(n)

] ���� + ����E[ K∑
i=1,i,i∗

Ti (n)X̄i ,Ti (n)

] ����
=

����E[ n∑
t=T∗(n)+1

Xi∗,t
] ���� + ����E[ K∑

i=1,i,i∗
Ti (n)X̄i ,Ti (n)

] ����. (18)

Recall that the reward sequences are assumed to be bounded in
[−R,R]. Therefore, the first term of (18) can be bounded as follows:����E[ n∑

t=T∗(n)+1
Xi∗,t

] ���� ≤ E[ n∑
t=T∗(n)+1

|Xi∗,t |
]
≤ R · E

[ K∑
i=1,i,i∗

Ti (n)
]
.

The second term can also be bounded as:����E[ K∑
i=1,i,i∗

Ti (n)X̄i ,Ti (n)

] ���� ≤ R · E
[ K∑
i=1,i,i∗

Ti (n)
]
.

Hence, we obtain that��µ∗ − E[X̄n ]�� = ��δ∗,n ��+��µ∗,n − E[X̄n ]
�� ≤ ��δ∗,n ��+2R · E

[ ∑K
i=1,i,i∗ Ti (n)

]
n

.

Combining the above bounds and Lemma 2 yields the desired con-
vergence result in Theorem 3.

Establishing the Concentration Property. Having proved the con-
vergence property, the next step is to show that a similar concen-
tration property (cf. (12)) also holds for X̄n . We aim to precisely
capture the relationship between the original constants assumed in
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the assumption and the new constants obtained for X̄n . To begin
with, recall the definition of Ai (t) in Lemma 1 and define

A(t) = max
i ∈[K ]

Ai (t) =

⌈( 2
∆min

· β1/ξ
) 1

1−η
· t

α
ξ (1−η)

⌉
. (19)

It can be checked that replacing β with any larger number still makes
the concentration inequalities (12) hold. Without loss of generality,
we hence let β be large enough so that 2

∆min
· β1/ξ > 1. We further

denote by Np the first time such that t ≥ A(t), i.e.,

Np = min{t ≥ 1 : t ≥ A(t)} = Θ
( ( 2ξ β

∆
ξ
min

) 1
ξ (1−η)−α

)
. (20)

We first state the following concentration property, which will be
further refined to match the desired form in Theorem 3. We defer
the proof to Appendix B.3.

LEMMA 3. For any n ≥ Np and x ≥ 1, let r0 = nη + 2R(K −

1)
(
3 +A(n)

)
. Then,

P
(
nX̄n − nµ∗ ≥ r0x

)
≤

β

xξ
+

2(K − 1)
(α − 1)

(
(1 +A(n))x

)α−1 ,

P
(
nX̄n − nµ∗ ≤ −r0x

)
≤

β

xξ
+

2(K − 1)
(α − 1)

(
(1 +A(n))x

)α−1 .

Lemma 3 confirms that indeed, as n becomes large, the average
X̄n also satisfies certain concentration inequalities. However, the
particular form of concentration in Theorem 3 does not quite match
the form of concentration in Theorem 3 which we conclude next.

Completing Proof of Concentration Property. Let N ′
p be a constant

defined as follows:

N ′
p = min

{
t ≥ 1 : t ≥ A(t) and 2RA(t) ≥ tη + 2R(4K − 3)

}
.

Recall the definition of A(t) and that α ≥ ξη(1−η) and α < ξ (1−η).
Hence, N ′

p is guaranteed to exist. In addition, note that by definition,
N ′
p ≥ Np . For each n ≥ N ′

p ,

2RK
( 2
∆min

· β1/ξ
) 1

1−η
· n

α
ξ (1−η)

= 2RK
[( 2
∆min

· β1/ξ
) 1

1−η
· n

α
ξ (1−η) + 1 − 1

]
≥ 2RKA(n) − 2RK
= 2R(K − 1)A(n) + 2RA(n) − 2RK
≥ 2R(K − 1)A(n) + nη + 2R(4K − 3) − 2RK
= 2R(K − 1)(A(n) + 3) + nη = r0

Now, let us apply Lemma 3: for every n ≥ N ′
p and x ≥ 1, we have

P
(
nX̄n − nµ∗ ≥ n

α
ξ (1−η)

[
2RK

( 2
∆min

· β1/ξ
) 1

1−η
]
x
)

≤ P
(
nX̄n − nµ∗ ≥ r0x

)
≤

β

xξ
+

2(K − 1)
(α − 1)

(
(1 +A(n))x

)α−1

≤

2 max(β, 2(K−1)
(α−1)(1+A(N ′

p ))
α−1 )

xα−1 , (21)

where the last inequality follows because n ≥ N ′
p and A(n) is a

non-decreasing function. In addition, since α < ξ (1 − η) < ξ , we
have α − 1 < ξ . For convenience, we define a constant

c1 ≜ 2RK
( 2
∆min

· β1/ξ
) 1

1−η
. (22)

Equivalently, by a change of variable, i.e., letting z = c1x , then for
every n ≥ N ′

p and z ≥ 1, we obtain that

P
(
nX̄n − nµ∗ ≥ n

α
ξ (1−η) z

)
≤

2cα−1
1 · max

(
β, 2(K−1)

(α−1)(1+A(N ′
p ))

α−1
)

zα−1 .

(23)

The above inequality holds because: (1) if z ≥ c1, then (23) directly
follows from (21); (2) if 1 ≤ z ≤ c1, then the R.H.S. of (23) is at
least 1 (by assumption, β > 1) and the inequality trivially holds. The
concentration inequality, i.e., Eq. (23), is now almost the same as the
desired form in Theorem 3. The only difference is that it only holds
for n ≥ N ′

p . This is not hard to resolve. The easiest approach, which
we show in the following, is to refine the constants to ensure that
when 1 ≤ n < N ′

p , Eq. (23) is trivially true. To this end, we note that
|nX̄n − nµ∗ | ≤ 2Rn. For each 1 ≤ n < N ′

p , there is a corresponding

z̄(n) such that n
α

ξ (1−η) z̄(n) = 2Rn. That is,

z̄(n) ≜ 2Rn1− α
ξ (1−η) , 1 ≤ n < N ′

p .

This implies that for each 1 ≤ n < N ′
p , the following inequality

trivially holds:

P
(
nX̄n − nµ∗ ≥ n

α
ξ (1−η) z

)
≤

z̄(n)α−1

zα−1 , ∀ z ≥ 1.

To see why, note that for each 1 ≤ n < N ′
p : (1) if z ≥ z̄(n), then

n
α

ξ (1−η) z ≥ 2Rn and the above probability should be 0. Hence, any
positive number on the R.H.S. makes the inequality trivially true;
(2) if 1 ≤ z < z̄(n), the R.H.S. is at least 1, which again makes the
inequality hold. For convenience, define

c2 ≜ max
1≤n<N ′

p

z̄(n) = 2R(N ′
p − 1)1−

α
ξ (1−η) . (24)

Then, it is easy to see that for every n ≥ 1 and every z ≥ 1, we have

P
(
nX̄n − nµ∗ ≥ nη

′

z
)
≤

β ′

zξ
′
,

where the constants are given by

η′ =
α

ξ (1 − η)
, (25)

ξ ′ = α − 1, (26)

β ′ = max
{
c2, 2cα−1

1 · max
(
β,

2(K − 1)
(α − 1)(1 +A(N ′

p ))
α−1

)}
. (27)

Finally, notice that since α ≥ ξη(1 − η) and α < ξ (1 − η), we have
1/2 ≤ η ≤ η′ < 1. Note that per (22), c1 depends on R,K,∆min, β, ξ
and η. In addition, c2 depends on R,K,∆min, β, ξ ,α,η and N ′

p de-
pends on R,K,∆min, β, ξ ,α,η. Therefore, β ′ depends on R,K,∆min, β,
ξ ,α,η. The other direction follows exactly the same reasoning, and
this completes the proof of Theorem 3.
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7 ANALYSIS OF MCTS AND PROOF OF
THEOREM 1

In this section, we give a complete analysis for the fixed-depth Monte
Carlo Tree Search (MCTS) algorithm illustrated in Algorithm 1 and
prove Theorem 1. In effect, as discussed in Section 3, one can view
a depth-H MCTS as a simulated version of H steps value function
iterations. Given the current value function proxy V̂ , let V (H )(·) be
the value function estimation after H steps of value function iteration
starting with the proxy V̂ . Then, we prove the result in two parts.
First, we argue that due to the MCTS sampling process, the mean
of the empirical estimation of value function at the query node s, or
the root node of MCTS tree, is within O(nη−1) of V (H )(s) after n
simulations, with the given proxy V̂ being the input to the MCTS
algorithm. Second, we argue thatV (H )(s) is within γH ∥V̂ −V ∗∥∞ ≤

γH ε0 of the optimal value function. Putting this together leads to
Theorem 1.

We start by a preliminary probabilistic lemma in Section 7.1 that
will be useful throughout. Sections 7.2 and 7.3 argue the first part
of the proof as explained above. Section 7.4 provides proof of the
second part. And Section 7.5 concludes the proof of Theorem 1.

7.1 Preliminary
We state the following probabilistic lemma that is useful throughout.
Proof can be found in Appendix C.1.

LEMMA 4. Consider real-valued random variables Xi ,Yi for
i ≥ 1 such that X s are independent and identically distributed taking
values in [−B,B] for some B > 0, X s are independent of Y s, and Y s
satisfy

A. Convergence: for n ≥ 1, with notation Ȳn =
1
n
( ∑n

i=1 Yi
)
,

lim
n→∞

E[Ȳn ] = µY .

B. Concentration: there exist constants, β > 1, ξ > 0, 1/2 ≤ η <
1 such that for n ≥ 1 and z ≥ 1,

P
(
nȲn − nµY ≥ nηz

)
≤

β

zξ
, P

(
nȲn − nµY ≤ −nηz

)
≤

β

zξ
.

Let Zi = Xi + ρYi for some ρ > 0. Then, Zs satisfy

A. Convergence: for n ≥ 1, with notation Z̄n =
1
n
( ∑n

i=1 Zi
)
,

and µX = E[X1],

lim
n→∞

E[Z̄n ] = µX + ρµY .

B. Concentration: there exists a constant β ′ > 1 depending upon
ρ, ξ , β and B, such that for n ≥ 1 and z ≥ 1,

P
(
nZ̄n − n(µX + ρµY ) ≥ nηz

)
≤

β ′

zξ
,

P
(
nZ̄n − n(µX + ρµY ) ≤ −nηz

)
≤

β ′

zξ
.

7.2 Analyzing Leaf Level H
The goal is to understand the empirical reward observed at the query
node for MCTS or the root node of the MCTS tree. In particular,
we argue that the mean of the empirical reward at the root node is
within O(nη−1) of the mean reward obtained at it assuming access to
infinitely many samples. We start by analyzing the reward collected
at the nodes that are at leaf level H and level H − 1.

The nodes at leaf level, i.e., level H , are children of nodes at level
H −1 in the MCTS tree. Suppose there are nH−1 nodes at level H −1
corresponding to states s1,H−1, . . . , snH−1,H−1 ∈ S. Consider node
i ∈ [nH−1] at levelH−1, corresponding to state si ,H−1. As part of the
algorithm, whenever this node is visited, one of theK feasible actions
is taken. When an action a ∈ [K] is taken, the node s ′H = si ,H−1 ◦ a,
at the leaf levelH is reached. This results in reward at node si ,H−1 (at
level H − 1) being equal to R(si ,H−1,a) +γṽ

(H )(s ′H ). Here, for each
s ∈ S and a ∈ [K], the reward R(s,a) is an independent, bounded
random variable taking value in [−Rmax,Rmax] with distribution
dependent on s,a; ṽ(H )(·) is the input of value function proxy to
the MCTS algorithm denoted as V̂ (·), and γ ∈ [0, 1) is the discount
factor. Recall that ε0 = ∥V̂ −V ∗∥∞ and ∥V ∗∥∞ ≤ Vmax. Therefore,
∥ṽ(H )∥∞ = ∥V̂ ∥∞ ≤ Vmax + ε0, and the reward collected at node
si ,H−1 by following any action is bounded, in absolute value, by
R̃
(H−1)
max = Rmax + γ (Vmax + ε0).

As part of the MCTS algorithm as described in (4), when node
si ,H−1 is visited for the t + 1 time with t ≥ 0, the action taken is

arg max
a∈A

{
1
ua

ua∑
j=1

(
r (si ,H−1,a)(j) + γṽ

(H )(si ,H−1 ◦ a)(j)
)

+

(
β (H )

)1/ξ (H )

·
(
t
)α (H )/ξ (H )(

ua
)1−η(H )

}
,

whereua ≤ t is the number of times action a has been chosen thus far
at state si ,H−1 in the t visits so far, r (si ,H−1,a)(j) is the jth sample of
random variable per distribution R(si ,H−1,a), and ṽ(H )(si ,H−1◦a)(j)
is the reward evaluated at leaf node si ,H−1 ◦ a for the jth time. Note
that for all j, the reward evaluated at leaf node si ,H−1 ◦ a is the
same and equals to ṽ(H )(·), the input value function proxy for the
algorithm. When ua = 0, we use notation ∞ to represent quantity
inside the arg max. The net discounted reward collected by node
si ,H−1 during its total of t ≥ 1 visits is simply the sum of rewards
obtained by selecting the actions per the policy – which includes the
reward associated with taking an action and the evaluation of ṽ(H )(·)

for appropriate leaf node, discounted by γ . In effect, at each node
si ,H−1, we are using the UCB policy described in Section 5 with
parameters α (H ), β (H ), ξ (H ),η(H ) with K possible actions, where the
rewards collected by playing any of these K actions each time is
simply the summation of bounded independent and identical (for
a given action) random variable and a deterministic evaluation. By
applying Lemma 4, where X s correspond to independent rewards,
ρ = γ , and Y s correspond to deterministic evaluations of ṽ(H )(·), we
obtain that for given ξ (H ) > 0 and η(H ) ∈ [ 1

2 , 1), there exists β (H )

such that the collected rewards at si ,H−1 (i.e., sum of i.i.d. reward and
deterministic evaluations) satisfy the convergence property cf. (11)
and concentration property cf. (12) stated in Section 5. Therefore,
by an application of Theorem 3, we conclude Lemma 5 stated below.
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We define some notations first:

µ
(H−1)
a (si ,H−1) = E[R(si ,H−1,a)] + γṽ

(H )(si ,H−1 ◦ a),

µ
(H−1)
∗ (si ,H−1) = max

a∈[K ]
µ
(H−1)
a (si ,H−1)

a
(H−1)
∗ (si ,H−1) ∈ arg max

a∈[K ]
µ
(H−1)
a (si ,H−1) (28)

∆
(H−1)
min (si ,H−1) = µ

(H−1)
∗ (si ,H−1) − max

a,a(H−1)
∗ (si ,H−1)

µ
(H−1)
a (si ,H−1).

We shall assume that the maximizer in the set arg maxa∈[K ] µ
(H−1)
a (si ,H−1)

is unique, i.e. ∆(H−1)
min (si ,H−1) > 0. And further note that all rewards

belong to [−R̃
(H−1)
max , R̃

(H−1)
max ].

LEMMA 5. Consider a node corresponding to state si ,H−1 at
level H − 1 within the MCTS for i ∈ [nH−1]. Let ṽ(H−1)(si ,H−1)n be
the total discounted reward collected at si ,H−1 during n ≥ 1 visits
of it, to one of its K leaf nodes under the UCB policy. Then, for
the choice of appropriately large β (H ) > 0, for a given ξ (H ) > 0,
η(H ) ∈ [ 1

2 , 1) and α (H ) > 2, we have

A. Convergence:����E[ 1
n
ṽ(H−1)(si ,H−1)n

]
− µ

(H−1)
∗ (si ,H−1)

����
≤

2R̃(H−1)
max (K − 1) ·

( ( 2(β (H ))

1
ξ (H )

∆(H−1)
min (si ,H−1)

) 1
1−η(H )

· n
α (H )

ξ (H )(1−η(H )) + 2
α (H )−2 + 1

)
n

.

B. Concentration: there exist constants, β ′ > 1 and ξ ′ > 0 and
1/2 ≤ η′ < 1 such that for every n ≥ 1 and every z ≥ 1,

P
(
ṽ(H−1)(si ,H−1)n − nµ

(H−1)
∗ (si ,H−1) ≥ nη

′

z
)
≤

β ′

zξ
′
,

P
(
ṽ(H−1)(si ,H−1)n − nµ

(H−1)
∗ (si ,H−1) ≤ −nη

′

z
)
≤

β ′

zξ
′
,

where η′ = α (H )

ξ (H )(1−η(H ))
, ξ ′ = α (H ) − 1, and β ′ is a large

enough constant that is function of parameters α (H ), β (H ), ξ (H ),

η(H ), R̃
(H−1)
max ,K,∆

(H−1)
min (si ,H−1).

Let ∆(H−1)
min = mini ∈[nH−1] ∆

(H−1)
min (si ,H−1). Then, the rate of con-

vergence for each node si ,H−1, i ∈ [nH−1] can be uniformly simpli-
fied as

δ
(H−1)
n =

2R̃(H−1)
max (K − 1) ·

( ( 2(β (H ))

1
ξ (H )

∆(H−1)
min

) 1
1−η(H )

· n
α (H )

ξ (H )(1−η(H )) + 2
α (H )−2 + 1

)
n

= Θ
(
n

α (H )

ξ (H )(1−η(H ))
−1)

(a)
= O

(
nη−1),

where (a) holds since α (H ) = ξ (H )(1 − η(H ))η(H ), η(H ) = η. It is
worth remarking that µ(H−1)

∗ (si ,H−1), as defined in (28), is precisely
the value function estimation for si ,H−1 at the end of one step of
value iteration starting with V̂ .

7.3 Recursion: Going From Level h to h − 1.
Lemma 5 suggests that the necessary assumption of Theorem 3, i.e.
(11) and (12), are satisfied by ṽ(H−1)

n for each node or state at level
H − 1, with α (H−1), ξ (H−1),η(H−1) as defined per relationship (5) -
(7) and with appropriately defined large enough constant β (H−1). We
shall argue that result similar to Lemma 5, but for node at level H −2,
continues to hold with parameters α (H−2), ξ (H−2),η(H−2) as defined
per relationship (5) - (7) and with appropriately defined large enough
constant β (H−2). And similar argument will continue to apply going
from level h to h − 1 for all h ≤ H − 1. That is, we shall assume that
the necessary assumption of Theorem 3, i.e. (11) and (12), holds
for ṽ(h)(·), for all nodes at level h with α (h), ξ (h),η(h) as defined per
relationship (5) - (7) and with appropriately defined large enough
constant β (h), and then argue that such holds for nodes at level h − 1
as well. This will, using mathematical induction, allow us to prove
the results for all h ≥ 1.

To that end, consider any node at level h − 1. Let there be nh−1
nodes at level h−1 corresponding to states s1,h−1, . . . , snh−1,h−1 ∈ S.
Consider a node corresponding to state si ,h−1 at level h − 1 within
the MCTS for i ∈ [nh−1]. As part of the algorithm, whenever this
node is visited, one of the K feasible action is taken. When an action
a ∈ [K] is taken, the node s ′h = si ,h−1 ◦ a, at the level h is reached.
This results in reward at node si ,h−1 at level h − 1 being equal to
R(si ,h−1,a) + γṽ

(h)(s ′h ). As noted before, R(s,a) is an independent,
bounded valued random variable while ṽ(h)(·) is effectively col-
lected by following a path all the way to the leaf level. Inductively,
we assume that ṽ(h)(·) satisfies the convergence and concentration
property for each node or state at level h, with α (h), ξ (h),η(h) as de-
fined per relationship (5) - (7) and with appropriately defined large
enough constant β (h). Therefore, by an application of Lemma 4, it
follows that this combined reward continues to satisfy (11) and (12),
with α (h), ξ (h),η(h) as defined per relationship (5) - (7) and with a
large enough constant which we shall denote as β (h). These con-
stants are used by the MCTS policy. By an application of Theorem 3,
we can obtain the following Lemma 6 regarding the convergence
and concentration properties for the reward sequence collected at
node si ,h−1 at level h − 1. Similar to the notation in Eq. (28), let

µ
(h−1)
a (si ,h−1) = E[R(si ,h−1,a)] + γ µ

(h)
∗ (si ,h−1 ◦ a)

µ
(h−1)
∗ (si ,h−1) = max

a∈[K ]
µ
(h−1)
a (si ,h−1)

a
(h−1)
∗ (si ,h−1) ∈ arg max

a∈[K ]
µ
(h−1)
a (si ,h−1) (29)

∆
(h−1)
min (si ,h−1) = µ

(h−1)
∗ (si ,h−1) − max

a,a(h−1)
∗ (si ,h−1)

µ
(h−1)
a (si ,h−1).

Again, we shall assume that the maximizer in the set arg maxa∈[K ]

µ
(h−1)
a (si ,h−1) is unique, i.e. ∆(h−1)

min (si ,h−1) > 0. Define R̃
(h−1)
max =

Rmax + γ R̃
(h)
max, where R̃(H ) = Vmax + ε0. Note that all rewards col-

lected at level h − 1 belong to [−R̃
(h−1)
max , R̃

(h−1)
max ].

LEMMA 6. Consider a node corresponding to state si ,h−1 at
level h − 1 within the MCTS for i ∈ [nh−1]. Let ṽ(h−1)(si ,h−1)n be
the total discounted reward collected at si ,h−1 during n ≥ 1 visits.
Then, for the choice of appropriately large β (h) > 0, for a given
ξ (h) > 0, η(h) ∈ [ 1

2 , 1) and α (h) > 2, we have
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A. Convergence:����E[ 1
n
ṽ(h−1)(si ,h−1)n

]
− µ

(h−1)
∗ (si ,h−1)

����
≤

2R̃(h−1)
max (K − 1) ·

( ( 2(β (h))

1
ξ (h)

∆(h−1)
min (si ,h−1)

) 1
1−η(h) · n

α (h)

ξ (h)(1−η(h)) + 2
α (h)−2 + 1

)
n

.

B. Concentration: there exist constants, β ′ > 1 and ξ ′ > 0 and
1/2 ≤ η′ < 1 such that for n ≥ 1, z ≥ 1,

P
(
ṽ(h−1)(si ,h−1)n − nµ

(h−1)
∗ (si ,h−1) ≥ nη

′

z
)
≤

β ′

zξ
′
,

P
(
ṽ(h−1)(si ,h−1)n − nµ

(h−1)
∗ (si ,h−1) ≤ −nη

′

z
)
≤

β ′

zξ
′
,

where η′ = α (h)

ξ (h)(1−η(h)) , ξ
′ = α (h) − 1, and β ′ is a large

enough constant that is function of parameters α (h), β (h), ξ (h),
η(h), R̃

(h−1)
max ,K,∆

(h−1)
min (si ,h−1).

As before, let us define ∆(h−1)
min = mini ∈[nh−1] ∆

(h−1)
min (si ,h−1). Sim-

ilarly, we can show that for every node si ,h−1, i ∈ [nh−1], the rate of
convergence in Lemma 6 can be uniformly simplified as

δ
(h−1)
n =

2R̃(h−1)
max (K − 1) ·

( ( 2(β (h))

1
ξ (h)

∆(h−1)
min

) 1
1−η(h) · n

α (h)

ξ (h)(1−η(h)) + 2
α (h)−2 + 1

)
n

= Θ
(
n

α (h)

ξ (h)(1−η(h))
−1)
= O

(
nη−1),

where the last equality holds as α (h) = ξ (h)(1−η(h))η(h) and η(h) =

η. Again, it is worth remarking, inductively, that µ(h−1)
∗ (si ,h−1) is

precisely the value function estimation for si ,h−1 at the end of H −

h + 1 steps of value iteration starting with V̂ .
Remark (Recursive Relation among Parameters). With the above de-
velopment, we are ready to elaborate our choice of parameters in The-
orem 1, defined recursively via Eqs. (5)-(7). In essence, those param-
eter requirements originate from our analysis of the non-stationary
MAB, i.e., Theorem 3. Recall that from our previous analysis, the
key to establish the MCTS guarantee is to recursively argue the con-
vergence and the polynomial concentration properties at each level;
that is, we recursively solve the non-stationary MAB problem at each
level. In order to do so, we apply our result on the non-stationary
MAB (Theorem 3) recursively at each level. Importantly, recall that
Theorem 3 only holds when ξη(1 − η) ≤ α < ξ (1 − η) and α > 2,
under which it leads to the recursive conclusions η′ = α

ξ (1−η) and
ξ ′ = α − 1. Using our notation with superscript indicating the levels,
this means that apart from the parameters at the leaf level (level H )
which could be freely chosen, we must choose parameters of other
levels recursively so that the following conditions hold:

α (h) > 2, ξ (h)η(h)(1 − η(h)) ≤ α (h) < ξ (h)(1 − η(h)),

ξ (h) = α (h+1) − 1 and η(h) =
α (h+1)

ξ (h+1)(1 − η(h+1))
.

It is not hard to see that the conditions in Theorem 1 guarantee the
above. There might be other sequences of parameters satisfying the
requirements, but our particular choice gives cleaner analysis as
presented in this paper.

7.4 Error Analysis for Value Function Iteration
We now move to the second part of the proof. The value function
iteration improves the estimation of optimal value function by it-
erating Bellman equation. In effect, the MCTS tree is “unrolling"
H steps of such an iteration. Precisely, let V (h)(·) denote the value
function after h iterations starting with V (0) = V̂ . By definition, for
any h ≥ 0 and s ∈ S,

V (h+1)(s) = max
a∈[K ]

(
E[R(s,a)] + γV (h)(s ◦ a)

)
. (30)

Recall that value iteration is contractive with respect to ∥ · ∥∞ norm
(cf. [7]). That is, for any h ≥ 0,

∥V (h+1) −V ∗∥∞ ≤ γ ∥V (h) −V ∗∥∞. (31)

As remarked earlier, µ(h−1)
∗ (si ,h−1), the mean reward collected at

node si ,h−1 for i ∈ [nh−1] for anyh ≥ 1, is preciselyV (H−h+1)(si ,h−1)

starting with V (0) = V̂ , the input to MCTS policy. Therefore, the
mean reward collected at root node s(0) of the MCTS tree satisfies
µ
(0)
∗ (s(0)) = V (H )(s(0)). Using (31), we obtain the following Lemma.

LEMMA 7. The mean reward collected under the MCTS policy
at root note s(0), µ(0)∗ (s(0)), starting with input value function proxy
V̂ is such that

|µ
(0)
∗ (s(0)) −V ∗(s(0))| ≤ γH ∥V̂ −V ∗∥∞. (32)

7.5 Completing Proof of Theorem 1
In summary, using Lemma 6, we conclude that the recursive rela-
tionship going from level h to h − 1 holds for all h ≥ 1 with level 0
being the root. At root s(0), the query state that is input to the MCTS
policy, we have that after n total simulations of MCTS, the empirical
average of the rewards over these n trial, 1

n ṽ
(0)(s0)n is such that

(using the fact that α (0) = ξ (0)(1 − η(0))η(0))����E[ 1
n
ṽ(0)(s0)n

]
− µ

(0)
∗

���� = O (
n

α (0)

ξ (0)(1−η(0))
−1)
= O

(
nη−1

)
, (33)

where µ
(0)
∗ is the value function estimation for s(0) after H iterations

of value function iteration starting with V̂ . By Lemma 7, we have

|µ
(0)
∗ −V ∗(s(0))| ≤ γH ε0, (34)

since ε0 = ∥V̂ −V ∗∥∞. Combining (33) and (34),����E[ 1
n
ṽ(0)(s0)n

]
−V ∗(s(0))

���� ≤ γH ε0 +O
(
nη−1

)
. (35)

This concludes the proof of Theorem 1.

8 CONCLUSION
In this paper, we introduce a correction of the popular Monte Carlo
Tree Search (MCTS) policy for improved value function estimation
for a given state, using an existing value function estimation for
the entire state space. This correction was obtained through careful,
rigorous analysis of a non-stationary Multi-Arm Bandit where re-
wards are dependent and non-stationary. In particular, we analyzed a
variant of the classical Upper Confidence Bound policy for such an
MAB. Using this as a building block, we establish rigorous perfor-
mance guarantees for the corrected version of MCTS proposed in



Non-Asymptotic Analysis of Monte Carlo Tree Search

this work. This, to the best of our knowledge, is the first mathemati-
cally correct analysis of the UCT policy despite its popularity since
it has been proposed in literature [20, 21]. We further establish that
the proposed MCTS policy, when combined with nearest neighbor
supervised learning, leads to near optimal sample complexity for ob-
taining estimation of value function within a given tolerance, where
the optimality is in the minimax sense. This suggests the tightness
of our analysis as well as the utility of the MCTS policy.

We take a note that much of this work was inspired by the suc-
cess of AlphaGo Zero (AGZ) which utilizes MCTS combined with
supervised learning. Interestingly enough, the correction of MCTS
suggested by our analysis is qualitatively similar to the version of
MCTS utilized by AGZ as reported in practice. This seeming coinci-
dence may suggest further avenue for practical utility of versions of
the MCTS proposed in this work and is an interesting direction for
future work.
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A PROOF OF PROPOSITION 1
The recent work [30] establishes a lower bound on the sample com-
plexity for reinforcement learning algorithms on MDPs. We follow a
similar argument to establish a lower bound on the sample complex-
ity for MDPs with deterministic transitions. We provide the proof for
completeness. The key idea is to connect the problem of estimating
the value function to the problem of non-parametric regression, and
then leveraging known minimax lower bound for the latter. In par-
ticular, we show that a class of non-parametric regression problem
can be embedded in an MDP with deterministic transitions, so any
algorithm for the latter can be used to solve the former. Prior work on
non-parametric regression [34, 41] establishes that a certain number
of observations is necessary to achieve a given accuracy using any
algorithms, hence leading to a corresponding necessary condition for
the sample size of estimating the value function in an MDP problem.
We now provide the details.

Step 1. Non-parametric regression. Consider the following non-
parametric regression problem: Let S := [0, 1]d and assume that
we have T data pairs (x1,y1), . . . , (xT ,yT ) such that conditioned
on x1, . . . , xn, the random variables y1, . . . ,yn are independent and
satisfy

E [yt |xt ] = f (xt ), xt ∈ S (36)

where f : S → R is the unknown regression function. Suppose
that the conditional distribution of yt given xt = x is a Bernoulli
distribution with mean f (x). We also assume that f is 1-Lipschitz
continuous with respect to the Euclidean norm, i.e.,

| f (x) − f (x0)| ≤ |x − x0 |, ∀x, x0 ∈ S.

Let F be the collection of all 1-Lipschitz continuous function on X,
i.e.,

F = {h |h is a 1-Lipschitz function on S} ,

The goal is to estimate f given the observations (x1,y1), . . . , (xT ,yT )
and the prior knowledge that f ∈ F .

It is easy to verify that the above problem is a special case
of the non-parametric regression problem considered in the work
by [34] (in particular, Example 2 therein). Let f̂T denote an arbi-
trary (measurable) estimator of f based on the training samples
(x1,y1), . . . , (xT ,yT ). By Theorem 1 in [34], we have the following
result: there exists a c > 0 such that

lim
T→∞

inf
f̂T

sup
f ∈F
P

(

 f̂T − f



∞

≥ c
( logT

T

) 1
2+d

)
= 1, (37)

where infimum is over all possible estimators f̂T . Translating this re-
sult to the non-asymptotic regime, we obtain the following theorem.

THEOREM 4. Under the above stated assumptions, for any num-
ber δ ∈ (0, 1), there exits c > 0 and Tδ such that

inf
f̂T

sup
f ∈F
P

(

 f̂T − f



∞

≥ c
( logT

T

) 1
2+d

)
≥ δ , for all T ≥ Tδ .

Step 2. MDP with deterministic transitions. Consider a class of
discrete-time discounted MDPs (S,A,P, r ,γ ), where

S = [0, 1]d ,
A is finite,

∀ (x,a), there exists a unique x ′ ∈ S s.t. P(x ′ |x,a) = 1,
r (x,a) = r (x) for all a,

γ = 0.

In words, the transition is deterministic, the expected reward is inde-
pendent of the action taken and the current state, and only immediate
reward matters.

Let Rt be the observed reward at step t . We assume that given xt ,
the random variable Rt is independent of (x1, . . . , xt−1), and follows
a Bernoulli distribution Bernoulli

(
r (xt )

)
. The expected reward func-

tion r (·) is assumed to be 1-Lipschitz and bounded. It is easy to see
that for all x ∈ S, a ∈ A,

V ∗(x) = r (x). (38)

Step 3. Reduction from regression to MDP. Given a non-parametric
regression problem as described in Step 1, we may reduce it to the
problem of estimating the value function V ∗ of the MDP described
in Step 2. To do this, we set

r (x) = f (x), ∀x ∈ S

and

Rt = yt , t = 1, 2, . . . ,T .

In this case, it follows from equations (38) that the value function
is given by V ∗ = f . Moreover, the expected reward function r (·) is
1-Lipschitz, so the assumptions of the MDP in Step 2 are satisfied.
This reduction shows that the MDP problem is at least as hard as the
nonparametric regression problem, so a lower bound for the latter is
also a lower bound for the former.

Applying Theorem 4 yields the following result: for any number
δ ∈ (0, 1), there exist some numbers c > 0 and Tδ > 0, such that

inf
V̂T

sup
V ∗∈F

P

[

V̂T −V ∗



∞

≥ c

(
logT
T

) 1
2+d

]
≥ δ , for all T ≥ Tδ .

Consequently, for any reinforcement learning algorithm V̂T and
any sufficiently small ε > 0, there exists an MDP problem with
deterministic transitions such that in order to achieve

P
[

V̂T −V ∗




∞
< ε

]
≥ 1 − δ ,

one must have

T ≥ C ′d

(
1
ε

)2+d
log

(
1
ε

)
,

where C ′ > 0 is a constant. The statement of Proposition 1 follows
by selecting δ = 1

2 .
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B ADDITIONAL PROOFS FOR THEOREM 3
B.1 Proof of Lemma 1

PROOF. By the choice ofAi (t), s and t , we have Bt ,s =
Φ(s ,t−α )

s ≤
Φ(Ai (t ),t−α )

Ai (t )
≤

∆i
2 . Therefore,

P(Ui ,s ,t > µ∗) = P(X̄i ,s + Bt ,s > µ∗)

= P

(
X̄i ,s − µi > ∆i − Bt ,s

)
≤ P

(
X̄i ,s − µi > Bt ,s

)
∆i ≥ 2Bt ,s

≤ t−α . by concentration (12).

□

B.2 Proof of Lemma 2
PROOF. If a sub-optimal arm i is chosen at time t+1, i.e., It+1 = i,

then at least one of the following two equations must be true: with
notation T∗(·) = Ti∗ (·),

Ui∗,T∗(t ),t ≤ µ∗ , (39)

Ui ,Ti (t ),t > µ∗ . (40)

Indeed, if both inequalities are false, we have Ui∗,T∗(t ),t > µ∗ ≥

Ui ,Ti (t ),t , which is a contradiction to It+1 = i. We now use this fact
to prove Lemma 2.

Case 1: n > Ai (n). Note that such n exists because Ai (n) grows with
a polynomial order O

(
n

α
ξ (1−η)

)
and α < ξ (1 − η), i.e., Ai (n) = o(n).

Then,

Ti (n) =
n−1∑
t=0
I{It+1 = i} = 1 +

n−1∑
t=K
I{It+1 = i}

(a)
= 1 +

n−1∑
t=K

(
I{It+1 = i,Ti (t) < Ai (n)} + I{It+1 = i,Ti (t) ≥ Ai (n)}

)
≤ Ai (n) +

n−1∑
t=K
I{It+1 = i,Ti (t) ≥ Ai (n)},

where equality (a) follows from the fact that Bt ,s = ∞ if s = 0.
To analyze the above summation, we note that from (39) and (40),

I{It+1 = i,Ti (t) ≥ Ai (n)}

≤ I{Ui∗,T∗(t ),t ≤ µ∗ or Ui ,Ti (t ),t > µ∗,Ti (t) ≥ Ai (n)}

≤ I{Ui ,Ti (t ),t > µ∗,Ti (t) ≥ Ai (n)} + I{Ui∗,T∗(t ),t ≤ µ∗,Ti (t) ≥ Ai (n)}

≤ I{Ui ,Ti (t ),t > µ∗,Ti (t) ≥ Ai (n)} + I{Ui∗,T∗(t ),t ≤ µ∗}

= I{∃ s : Ai (n) ≤ s ≤ t, s.t. Ui ,s ,t > µ∗}

+ I{∃ s∗ : 1 ≤ s∗ ≤ t, s.t. Ui∗,s∗,t ≤ µ∗}.

To summarize, we have proved that

E[Ti (n)] ≤ Ai (n) +
n−1∑

t=Ai (n)

P
(
(39) or (40) is true, and Ti (t) ≥ Ai (n)

)
≤ Ai (n) +

n−1∑
t=Ai (n)

[
P
(
∃ s : Ai (n) ≤ s ≤ t, s.t. Ui ,s ,t > µ∗︸                                        ︷︷                                        ︸

E1

)
+ P

(
∃ s∗ : 1 ≤ s∗ ≤ t, s.t. Ui∗,s∗,t ≤ µ∗︸                                       ︷︷                                       ︸

E2

) ]
. (41)

To complete the proof of Lemma 2, it suffices to bound the prob-
abilities of the two events E1 and E2. To this end, we use a union
bound:

P
(
E1

)
≤

t∑
s=Ai (n)

P
(
Ui ,s ,t > µ∗

) (a)
≤

t∑
s=Ai (n)

t−α ≤ t · t−α = t1−α ,

where the step (a) follows from Ai (n) ≥ Ai (t) and Lemma 1. We
bound P(E2) in a similar way:

P(E2) ≤
t∑

s∗=1
P(Ui∗,s∗,t ≤ µ∗) =

t∑
s∗=1
P

(
X̄i∗,s∗ + Bt ,s∗ ≤ µ∗

)
(a)
≤

t∑
s∗=1

t−α ≤ t1−α ,

where step (a) follows from concentration (cf. (12)). By substituting
the bounds of P(E1) and P(E2) into (41), we have:

E[Ti (n)] ≤ Ai (n) +
n−1∑

t=Ai (n)

2t1−α

≤ Ai (n) +

∫ ∞

Ai (n)−1
2t1−αdt α > 2

= Ai (n) +
2
(
Ai (n) − 1

)2−α
α − 2

≤ Ai (n) +
2

α − 2

≤

( 2
∆i

· β1/ξ
) 1

1−η
· n

α
ξ (1−η) +

2
α − 2

+ 1.

Case 2: n ≤ Ai (n). Note that if n is such that n ≤ Ai (n), then

the above bound trivially holds because Ti (n) ≤ n ≤ Ai (n). This
completes the proof of Lemma 2. □

B.3 Proof of Lemma 3
PROOF. We first prove one direction, namely, P(nµ∗−nX̄n ≥ r0x).

The other direction follows the similar steps, and we will comment
on that at the end of this proof. The general idea underlying the proof
is to rewrite the quantity nµ∗ − nX̄n as sums of terms that can be
bounded using previous lemmas or assumptions. To begin with, note
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that

nµ∗ − nX̄n = nµ∗ −
K∑
i=1

Ti (n)X̄i ,Ti (n)

= nµ∗ −

T∗(n)∑
t=1

Xi∗,t −
∑
i,i∗

Ti (n)X̄i ,Ti (n)

= nµ∗ −
n∑
t=1

Xi∗,t +
n∑

t=T∗(n)+1
Xi∗,t −

∑
i,i∗

Ti (n)∑
t=1

Xi ,t

≤ nµ∗ −
n∑
t=1

Xi∗,t + 2R
∑
i,i∗

Ti (n),

because Xi ,t ∈ [−R,R] for all i, t . Therefore, we have

P
(
nµ∗ − nX̄n ≥ r0x

)
≤ P

(
nµ∗ −

n∑
t=1

Xi∗,t + 2R
∑
i,i∗

Ti (n) ≥ r0x
)

≤ P
(
nµ∗ −

n∑
t=1

Xi∗,t ≥ nηx
)

+
∑
i,i∗

P
(
Ti (n) ≥ (3 +A(n))x

)
, (42)

where the last inequality follows from the union bound.
To prove the theorem, we now bound the two terms in (42). By

our concentration assumption, we can upper bound the first term as
follows:

P
(
nµ∗ −

n∑
t=1

Xi∗,t ≥ nηx
)
≤

β

xξ
. (43)

Next, we bound each term in the summation of (42). Fix n and a
sub-optimal edge i. Let u be an integer satisfying u ≥ A(n). For any
τ ∈ R, consider the following two events:

E1 =
{
For each integer t ∈ [u,n], we have Ui ,u ,t ≤ τ

}
,

E2 =
{
For each integer s ∈ [1,n − u], we have Ui∗,s ,u+s > τ

}
.

As a first step, we want to show that

E1 ∩ E2 ⇒ Ti (n) ≤ u . (44)

To this end, let us condition on both events E1 and E2. Recall that
Bt ,s is non-decreasing with respect to t . Then, for each s such that
1 ≤ s ≤ n − u, and each t such that u + s ≤ t ≤ n, it holds that

Ui∗,s ,t = X̄i∗,s + Bt ,s ≥ X̄i∗,s + Bu+s ,s = Ui∗,s ,u+s > τ ≥ Ui ,u ,t .

This implies that Ti (n) ≤ u. To see why, suppose that Ti (n) > u
and denote by t ′ the first time that arm i has been played u times, i.e.,
t ′ = min{t : t ≤ n,Ti (t) = u}. Note that by definition t ′ ≥ u+T∗(t

′).
Hence, for any time t such that t ′ < t ≤ n, the above inequality
implies thatUi∗,T∗(t ),t > Ui ,u ,t . That is, i∗ always has a higher upper
confidence bound than i, and arm i will not be selected, i.e., arm i
will not be played the (u+1)-th time. This contradicts our assumption
that Ti (n) > u, and hence we have the inequality Ti (n) ≤ u.

To summarize, we have established the fact that E1 ∩ E2 ⇒

Ti (n) ≤ u . As a result, we have:

{Ti (n) > u} ⊂
(
Ec1 ∪ Ec2

)
=
({
∃ t : u ≤ t ≤ n s.t. Ui ,u ,t > τ

}
∪
{
∃ s : 1 ≤ s ≤ n − u, s.t. Ui∗,s ,u+s ≤ τ

})
.

Using union bound, we obtain that

P
(
Ti (n) > u

)
≤

n∑
t=u
P(Ui ,u ,t > τ ) +

n−u∑
s=1
P
(
Ui∗,s ,u+s ≤ τ

)
. (45)

Note that for the above bound, we are free to choose u and τ as long
as u ≥ A(n). To connect with our goal (cf. (42)), in the following,
we set u = ⌊(1 +A(n))x⌋ + 1 (recall that x ≥ 1) and τ = µ∗ to bound
P(Ti (n) > u). Since u ≥ A(n) ≥ Ai (n), by Lemma 1, we have

n∑
t=u
P(Ui ,u ,t > µ∗) ≤

n∑
t=u

t−α ≤

∫ ∞

u−1
t−αdt =

(u − 1)1−α

α − 1

=
(⌊(1 +A(n))x⌋)1−α

α − 1
≤

(
(1 +A(n))x

)1−α

α − 1
.

As for the second summation in the R.H.S. of (45), we have that
n−u∑
s=1
P
(
Ui∗,s ,u+s ≤ τ

)
=

n−u∑
s=1
P(Ui∗,s ,u+s ≤ µ∗)

=

n−u∑
s=1
P

(
X̄i∗,s + Bu+s ,s ≤ µ∗

)
≤

n−u∑
s=1

(s + u)−α

=

n∑
t=1+u

t−α

≤

∫ ∞

u−1
t−αdt =

(u − 1)1−α

α − 1
≤

(
(1 +A(n))x

)1−α

α − 1
,

where the first inequality follows from the concentration property, cf.
(12). Combining the above inequalities and note that (3 +A(n))x >
⌊(1 +A(n))x⌋ + 1:

P
(
Ti (n) ≥ (3 +A(n))x

)
≤ P

(
Ti (n) > u

)
≤

2
( (

1 +A(n)
)
x
)1−α

α − 1
.

(46)
Substituting (43) and (46) into (42), we obtain

P
(
nµ∗ − nX̄n ≥ r0x

)
≤

β

xξ
+
∑
i,i∗

2
( (

1 +A(n)
)
x
)1−α

α − 1
,

which is the desired inequality in Lemma 3.
To complete the proof, we need to consider the other direction,

i.e., P(nX̄n − nµ∗ ≥ r0x). The proof is almost identical. Note that

nX̄n − nµ∗ =
K∑
i=1

Ti (n)X̄i ,Ti (n) − nµ∗

=

n∑
t=1

Xi∗,t − nµ∗ −
n∑

t=T∗(n)+1
Xi∗,t +

∑
i,i∗

Ti (n)∑
t=1

Xi ,t

≤

n∑
t=1

Xi∗,t − nµ∗ + 2R
∑
i,i∗

Ti (n),
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because Xi ,t ∈ [−R,R] for all i, t . Therefore,

P
(
nX̄n − nµ∗ ≥ r0x

)
≤ P

( n∑
t=1

Xi∗,t − nµ∗ + 2R
∑
i,i∗

Ti (n) ≥ r0x
)

≤ P
( n∑
t=1

Xi∗,t − nµ∗ ≥ nηx
)
+
∑
i,i∗

P
(
Ti (n) ≥ (3 +Ai (n))x

)
.

The desired inequality then follows exactly from the same reasoning
of our previous proof. □

C ADDITIONAL PROOFS FOR THEOREM 1
C.1 Proof of Lemma 4

PROOF. The convergence property, limn→∞ E[Z̄n ] = µX + ρµY ,
follows simply by linearity of expectation. For concentration, con-
sider the following: since X s are i.i.d. bounded random variables
taking value in [−B,B], by Hoeffding’s inequality [16], we have that
for t ≥ 0,

P
(
nX̄n − nµX ≥ nt

)
≤ exp

(
−

t2n

2B2

)
, (47)

P
(
nX̄n − nµX ≤ −nt

)
≤ exp

(
−

t2n

2B2

)
.

Therefore,

P
(
nZ̄n − n(µX + ρµY ) ≥ nηz

)
≤ P

(
nX̄n − nµX ≥

nηz

2

)
+ P

(
nȲn − nµY ≥

nηz

2ρ

)
≤ exp

(
−
z2n2η−1

8B2

)
+

β2ξ ρξ

zξ

≤
β ′

zξ
, (48)

where β ′ is a large enough constant depending upon ρ, ξ , β and B.
The other-side of the inequality follows similarly. This completes
the proof. □

D PROOF OF THEOREM 2
First, we establish a useful property of nearest neighbor supervised
learning presented in Section 4.2. This is stated in Section D.1.
We will use it, along with the guarantees obtained for MCTS in
Theorem 1 to establish Theorem 2 in Section D.2. Throughout, we
shall assume the setup of Theorem 2.

D.1 Guarantees for Supervised Learning
Let δ ∈ (0, 1) be given. As stated in Section 4.2, let K(δ ,d) =
Θ(δ−d ) be the collection of balls of radius δ , say ci , i ∈ [K(δ ,d)],
so that they cover S, i.e. S ⊂ ∪i ∈[K (ε ,d )]ci . Also, by construction,
each of these balls have intersection with S whose volume is at
least Cdδd . Let S = {si : i ∈ [N ]} denote N state samples from
S uniformly at random and independent of each other. For each
state s ∈ S, let V : S → [−Vmax,Vmax] be such that |E[V (s)] −
V ∗(s)| ≤ ∆. Let the nearest neighbor supervised learning described
in Section 4.2 produce estimate V̂ : S → R using labeled data points
(si ,V (si ))i ∈[N ]. Then, we claim the following guarantee. Proof can
be found in Section D.3.

LEMMA 8. Under the above described setup, as long as N ≥

32 max(1, δ−2V 2
max)C

−1
d δ−d log K (δ ,d )

δ , i.e., N = Ω(dδ−d−2 logδ−1),

E
[

sup
s ∈S

|V̂ (s) −V ∗(s)|
]
≤ ∆ + (C + 1)δ +

4Vmaxδ2

K(δ ,d)
. (49)

D.2 Establishing Theorem 2
Using Theorem 1 and Lemma 8, we complete the proof of Theorem
2 under appropriate choice of algorithmic parameters. We start by
setting some notation.

To that end, the algorithm as described in Section 4.1 iterates
between MCTS and supervised learning. In particular, let ℓ ≥ 1
denote the iteration index. Let mℓ be the number of states that
are sampled uniformly at random, independently, over S in this
iteration, denoted as S(ℓ) = {s

(ℓ)
i : i ∈ [mℓ]}. Let V (ℓ−1) be the

input of value function from prior iteration, using which the MCTS
algorithm with nℓ simulations obtains improved estimates of value
function for states in S(ℓ) denoted as V̂ (ℓ)(s

(ℓ)
i ), i ∈ [mℓ]. Using

(s
(ℓ)
i , V̂

(ℓ)(s
(ℓ)
i ))i ∈[mℓ ]

, the nearest neighbor supervised learning as
described above with balls of appropriate radius δℓ ∈ (0, 1) produces
estimate V (ℓ) for all states in S. Let F (ℓ) denote the smallest σ -
algebra containing all information pertaining to the algorithm (both
MCTS and supervised learning). Define the error under MCTS in
iteration ℓ as

ε
(ℓ)
mcts = E

[
sup
s ∈S

��E[V̂ (ℓ)(s)
��F (ℓ−1)] −V ∗(s)

��] . (50)

And, the error for supervised learning in iteration ℓ as

θ
(ℓ)
sl = sup

s ∈S

��V (ℓ)(s) −V ∗(s)
��, and ε

(ℓ)
sl = E

[
θ
(ℓ)
sl

]
. (51)

Recall that in the beginning, we set V (0)(s) = 0 for all s ∈ S. Since
V ∗(·) ∈ [−Vmax,Vmax], we have that ε(0)sl ≤ Vmax. Further, it is easy
to see that if the leaf estimates (i.e., the output of the supervised learn-
ing from the previous iteration) is bounded in [−Vmax,Vmax], then the
output of the MCTS algorithm is always bounded in [−Vmax,Vmax].
That is, since V (0)(s) = 0 and the nearest neighbor supervised learn-
ing produces estimate V (l ) via simple averaging, inductively, the
output of the MCTS algorithm is always bounded in [−Vmax,Vmax]
throughout every iteration.

With the notation as set up above, it follows that for a given
δℓ ∈ (0, 1) with mℓ satisfying condition of Lemma 8, i.e. mℓ =

Ω(dδ−d−2
ℓ

logδ−1
ℓ
), and with the nearest neighbor supervised learn-

ing using δℓ radius balls for estimation, we have the following
recursion:

ε
(ℓ)
sl ≤ ε

(ℓ)
mcts + (C + 1)δℓ +

4Vmaxδ2
ℓ

K(δℓ,d)
≤ ε

(ℓ)
mcts +C

′δℓ, (52)

where C ′ is a large enough constant, since
δ 2
ℓ

K (δℓ ,d )
= Θ(dδd+2

ℓ
)

which is O(δℓ) for all δℓ ∈ (0, 1). By Theorem 1, for iteration ℓ + 1
that uses the output of supervised learning estimate, V (ℓ), as the
input to the MCTS algorithm, we obtain��E[V̂ (ℓ+1)(s)

��F (ℓ)] −V ∗(s)
�� ≤ γH

(ℓ+1)
E
[
θ
(ℓ)
sl

��F (ℓ)] +O (
n
η−1
ℓ+1

)
,∀s ∈ S,

(53)
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where η ∈ [1/2, 1) is the constant utilized by MCTS with fixed height
of tree being H (ℓ+1). This then implies that

ε
(ℓ+1)
mcts = E

[
sup
s ∈S

��E[V̂ (ℓ+1)(s)
��F (ℓ)] −V ∗(s)

��]
≤ γH

(ℓ+1)
E
[
E
[
θ
(ℓ)
sl

��F (ℓ)] ] +O (
n
η−1
ℓ+1

)
≤ γH

(ℓ+1) (
ε
(ℓ)
mcts +C

′δℓ

)
+O

(
n
η−1
ℓ+1

)
. (54)

Denote by λ ≜ ( ε
Vmax

)1/L . Note that since the final desired error
ε should be less than Vmax (otherwise, the problem is trivial by just
outputing 0 as the final estimates for all the states), we have λ < 1.
Let us set the algorithmic parameters for MCTS and nearest neighbor
supervised learning as follows: for each ℓ ≥ 1,

H (ℓ) =
⌈

logγ
λ

8
⌉
, δℓ =

3Vmax
4C ′

λℓ,nℓ = κl

( 8
Vmaxλℓ

) 1
1−η
, (55)

where κl > 0 is a sufficiently large constant such that O
(
n
η−1
ℓ

)
=

Vmax
8 λℓ . Substituting these values into Eq. (54) yields

ε
(ℓ+1)
mcts = E

[
sup
s ∈S

��E[V̂ (ℓ+1)(s)|F (ℓ)]−V ∗(s)
��] ≤ λ

8
ε
(ℓ)
mcts+

7Vmax
32

λℓ+1.

Note that by (53) and (55), and the fact that ε(0)sl ≤ Vmax, we have

ε
(1)
mcts ≤

λ

8
ε
(0)
sl +

λ

8
Vmax ≤

λ

4
Vmax.

It then follows inductively that

ε
(ℓ)
mcts ≤ λℓ−1ε(1)mcts =

Vmax
4

λℓ .

As for the supervised learning oracle, ∀s ∈ S, Eq. (52) implies

E
[

sup
s ∈S

��V (ℓ)(s) −V ∗(s)
��] ≤ ε

(ℓ)
mcts +

3Vmax
4

λℓ ≤ Vmaxλ
ℓ .

This implies that

E
[

sup
s ∈S

��V (L)(s) −V ∗(s)
��] ≤ Vmaxλ

L = ε .

We now calculate the sample complexity, i.e., the total number of
state transitions required for the algorithm. During the ℓ-th iteration,
each query of MCTS oracle requires nℓ simulations. Recall that
the number of querying MCTS oracle, i.e., the size of training set
S(ℓ) for the nearest neighbor supervised step, should satisfy mℓ =

Ω(dδ−d−2
ℓ

logδ−1
ℓ
) (cf. Lemma 8). From Eq. (55), we have

H (ℓ) = c ′0 log λ−1, δ (ℓ) = c1λ
ℓ, and nℓ = c

′
2λ

−ℓ/(1−η),

where c ′0, c1, c ′2, are constants independent of λ and ℓ. Note that
each simulation of MCTS samples H (ℓ) state transitions. Hence, the
number of state transitions at the ℓ-th iteration is given by

M(ℓ) =mℓnℓH
(ℓ).

Therefore, the total number of state transitions after L iterations is
L∑
l=1

M(ℓ) =

L∑
ℓ=1

mℓ · nℓ · H
(ℓ) = O

(
ε−

(
2+1/(1−η)+d

)
·
(
log

1
ε

)5)
.

That is, for optimal choice of η = 1/2, the total number of state
transitions is O

(
ε−(4+d ) ·

(
log 1

ε
)5)
.

D.3 Proof of Lemma 8
PROOF. Given N samples si , i ∈ [N ] that are sampled indepen-

dently and uniformly at random over S, and given the fact that each
ball ci , i ∈ [K(δ ,d)] has at least Cdδd volume shared with S, each
of the sample falls within a given ball with probability at least Cdδd .
Let Ni , i ∈ [K(δ ,d)] denote the number of samples amongst N
samples in ball ci .

Now the number of samples falling in any given ball is lower
bounded by a Binomial random variable with parameter N ,Cdδd .
By Chernoff bound for Binomial variable with parameter n,p, we
have that

P(B(n,p) ≤ np/2) ≤ exp
(
−
np

8
)
.

Therefore, with an application of union bound, each ball has at
least 0.5CdδdN samples with probability at least 1 −K(δ ,d) exp

(
−

Cdδ
dN /8

)
. That is, for N = 32 max(1, δ−2V 2

max)C
−1
d δ−d [log(K(δ ,d)+

logδ−1], each ball has at least Γ = 16 max(1, δ−2V 2
max)(logK(δ ,d)+

logδ−1) samples with probability at least 1 − δ 2

K (δ ,d ) . Define event

E1 = {Ni ≥ 16 max(1, δ−2V 2
max)(logK(δ ,d) + logδ−1), ∀ i ∈ [K(δ ,d)]}.

(56)

Then

P(Ec1 ) ≤
δ2

K(δ ,d)
.

Now, for any s ∈ S, the nearest neighbor supervised learning de-
scribed in Section 4.2 produces estimate V̂ (s) equal to the average
value of observations for samples falling in ball c j(s). Let Nj(s)
denote the number of samples in ball c j(s). To that end,��V̂ (s) −V ∗(s)

�� = ������ 1
Nj(s)

( ∑
i :si ∈c j (s )

V (si ) −V ∗(s)
)������

=

������ 1
Nj(s)

( ∑
i :si ∈c j (s )

V (si ) − E[V (si )]
)������

+

������ 1
Nj(s)

( ∑
i :si ∈c j (s )

E[V (si )] −V ∗(si )
)������

+

������ 1
Nj(s)

( ∑
i :si ∈c j (s )

V ∗(si ) −V ∗(s)
)������ .

For the first term, since for each si ∈ c j(s), V (si ) is produced using
independent randomness via MCTS, and since the output V (si ) is a
bounded random variable, using Hoeffding’s inequality, it follows
that

P
(��� 1
Nj(s)

( ∑
i :si ∈c j (s )

V (si ) − E[V (si )]
)��� ≥ ∆1

)
≤ 2 exp

(
−
Nj(s)∆

2
1

8V 2
max

)
.

The second term is no more than ∆ due to the guarantee given by
MCTS as assumed in the setup. And finally, the third term is no more
than Cδ due to Lipschitzness of V ∗. To summarize, with probability

at least 1 − 2 exp
(
−

Nj (s )∆
2
1

8V 2
max

)
, we have that��V̂ (s) −V ∗(s)
�� ≤ ∆1 + ∆ +Cδ .
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As can be noticed, the algorithm produces the same estimate for all
s ∈ S such that they map to the same ball. And there are K(δ ,d) such
balls. Therefore, using union bound, it follows that with probability

at least 1 − 2K(δ ,d) exp
(
−

(mini∈[K (δ ,d )] Ni )∆
2
1

8V 2
max

)
,

sup
s ∈S

��V̂ (s) −V ∗(s)
�� ≤ ∆1 + ∆ +Cδ .

Under event E1, mini ∈[K (δ ,d )] Ni ≥ 16 max(1, δ−2V 2
max)(logK(δ ,d)+

logδ−1). Therefore, under event E1, by choosing ∆1 = δ , we have

sup
s ∈S

��V̂ (s) −V ∗(s)
�� ≤ ∆ + (C + 1)δ ,

with probability at least 1 − 2δ 2

K (δ ,d ) . When event E1 does not hold or
the above does not hold, we have trivial error bound of 2Vmax on the
error. Therefore, we conclude that

E
[

sup
s ∈S

��V̂ (s) −V ∗(s)
�� ] ≤ ∆ + (C + 1)δ +

4Vmaxδ2

K(δ ,d)
.

□
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