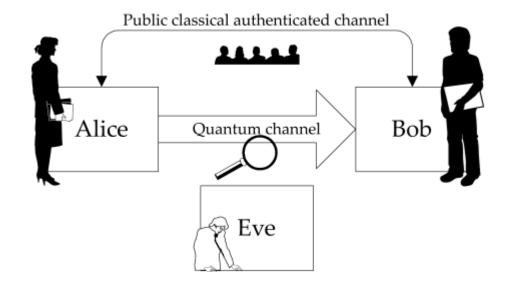
QUANTUM PUFFERFISH PRIVACY: A FLEXIBLE PRIVACY FRAMEWORK FOR QUANTUM SYSTEMS

THESHANI NURADHA CORNELL INFORMATION THEORY DAY 2023

Joint work with Ziv Goldfeld and Mark M.Wilde

arXiv:2306.13054

PROTECTION FOR QUANTUM DATA



- Quantum cryptography is well studied
- What happens if we want Bob to know only certain aspects of Alice's data?
- This is captured by "statistical privacy frameworks"

STATISTICAL PRIVACY FRAMEWORKS (CLASSICAL)

- Differential privacy:
 - Answering aggregate queries about a database while keeping individual records private
- Its limitations:
 - Accounts for one type of private information only—records of individual users
 - Does not allow encoding domain knowledge into the framework
- Pufferfish Privacy:
 - Customizing which information is regarded as private
 - Explicitly integrates distributional assumptions

MATHEMATICAL OBJECTS

- Quantum state: PSD operator with unit trace
- Quantum channel: Completely positive trace preserving map
- Quantum measurement:
 - Measurement operator: $0 \leq M \leq I$
 - Positive operator valued measure (POVM): collection of PSD operators $\{M_y\}_{y \in \mathcal{Y}}$ such that $\sum_{y \in \mathcal{Y}} M_y = I$
- Born rule: Probability of observing outcome $y = \text{Tr}[M_y \rho]$

QUANTUM DIFFERENTIAL PRIVACY (QDP)

 $\rho\sim\sigma$ ~ Neighboring relation: e.g., closeness in trace distance

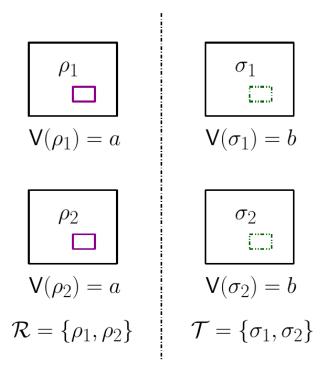
QDP –[ZY'17], [HRF'22]

 \mathcal{A} is (ε, δ) -QDP if $\operatorname{Tr} [M\mathcal{A}(\rho)] \leq e^{\varepsilon} \operatorname{Tr} [M\mathcal{A}(\sigma)] + \delta$

for every measurement operator M and all $\rho \sim \sigma$.

QDP guarantees that all pairs of states that are classified as neighbors are approximately indistinguishable, i.e., cannot be identified under all possible measurements.

Beyond QDP: Need for More



Flexible Secrets: Secrets containing collection of states

Domain Knowledge: Likelihood of observing different states

Relaxing Worst-case Measurements: Physical limitations of LOCC vs joint measurements

Goal: A Flexible Privacy Framework for Quantum Systems

QUANTUM PUFFERFISH PRIVACY FRAMEWORK

 \mathcal{S} Set of potential secrets

$$\mathcal{S} = \bigcup_{i=1}^{n} \mathcal{T}_{i} \qquad \mathcal{T}_{i} = \left\{ \rho \in \mathcal{D}(\mathcal{H}) : \mathsf{V}(\rho) = a_{i} \right\}$$
Values the secret function
can take

 $\mathcal{Q} \quad \text{Set of discriminative pairs} \qquad \text{Which pairs of secrets to be indistinguishable} \\ \text{Symmetric:} \quad (\mathcal{R},\mathcal{T}) \in \mathcal{Q} \quad \text{iff} \quad (\mathcal{T},\mathcal{R}) \in \mathcal{Q} \\ \mathcal{Q} = \bigcup_{i \neq j} \{(\mathcal{T}_i,\mathcal{T}_j)\} \\ \end{array}$

 Θ Set of data distributions $X \sim P_X \in \Theta$ ρ^X models a density operator that is randomly chosen according to P_X

 \mathcal{M} Set of possible measurements Subscripts

Subset of measurements possible under physical, legal, or ethical constraints

QPP DEFINITION

 \mathcal{A} is (ε, δ) - QPP in the framework $(\mathcal{S}, \mathcal{Q}, \Theta, \mathcal{M})$ if for all $P_X \in \Theta$, $(\mathcal{R}, \mathcal{T}) \in \mathcal{Q}$ with $P_X(\mathcal{R}), P_X(\mathcal{T}) > 0$, and all $M \in \mathcal{M}$,

 $\operatorname{Tr}[M\mathcal{A}(\rho^{\mathcal{R}})] \leq e^{\varepsilon} \operatorname{Tr}[M\mathcal{A}(\rho^{\mathcal{T}})] + \delta$

Conditional average states
$$\rho^{\mathcal{R}} := \sum_{\{x:\rho^x \in \mathcal{R}\}} q_{\mathcal{R}}(x)\rho^x$$

 $q_{\mathcal{R}}(x) := \frac{P_X(x)}{P_X(\mathcal{R})}$
 $P_X(\mathcal{R}) := \sum_{\{x:\rho^x \in \mathcal{R}\}} P_X(x)$

Semantic meaning:

For a state ρ^X chosen according to $X \sim P_X \in \Theta$ and input to the quantum channel \mathcal{A} , an adversary applying measurement $M \in \mathcal{M}$ on the channel output $\mathcal{A}(\rho^X)$ draws the same conclusions regardless of whether ρ^X belongs to \mathcal{R} or \mathcal{T}

OTHER PRIVACY FRAMEWORKS WHICH ARE SPECIAL CASES

By choosing specific ingredients to QPP

- Quantum differential privacy
- Classical pufferfish privacy
- Utility optimized privacy models

DATTA-LEDITZKY (DL) DIVERGENCE

$$\overline{D}^{\delta}(\rho \| \sigma) = \ln \inf \left\{ \lambda \ge 0 : \operatorname{Tr}[(\rho - \lambda \sigma)_{+}] \le \delta \right\}$$

Positive eigenspace
$$(A)_+ := \sum_{i:a_i \ge 0} a_i |i\rangle\langle i|$$

Equivalent formulation of QPP (for all possible measurements)

$$\sup_{\Theta,(\mathcal{R},\mathcal{T})\in\mathcal{Q}}\overline{\mathsf{D}}^{\delta}\big(\mathcal{A}(\rho^{\mathcal{R}})\big\|\mathcal{A}(\rho^{\mathcal{T}})\big) \leq \varepsilon$$

Operational Interpretation:

$$\operatorname{Tr}[M\mathcal{A}(\rho^{\mathcal{R}})] \leq e^{\varepsilon} \operatorname{Tr}[M\mathcal{A}(\rho^{\mathcal{T}})] + \delta$$

minimal ε that can be achieved for fixed δ via the indistinguishability condition of the QPP framework

DL DIVERGENCE

As a Semi-Definite Program:

$$\overline{D}^{\delta}(\rho \| \sigma) = \ln \inf_{\lambda, Z \ge 0} \left\{ \lambda : \operatorname{Tr}[Z] \le \delta, \ Z \ge \rho - \lambda \sigma \right\}$$
$$= \ln \sup_{\mu, W \ge 0} \left\{ \operatorname{Tr}[W\rho] - \mu \delta : \operatorname{Tr}[W\sigma] \le 1, \ W \le \mu I \right\}$$

Properties:

Data processing: For every positive trace preserving map $\overline{D}^{\delta}(\rho \| \sigma) \geq \overline{D}^{\delta}(\mathcal{N}(\rho) \| \mathcal{N}(\sigma))$

Joint-quasi convexity:
$$\overline{D}^{\delta}\left(\sum_{i=1}^{k} p_i \rho_i \left\| \sum_{i=1}^{k} p_i \sigma_i \right\| \le \max_i \overline{D}^{\delta}(\rho_i \| \sigma_i)\right)$$

Quasi subadditivity:

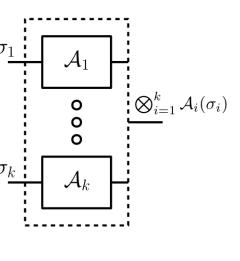
$$\overline{D}^{\delta_1'+\delta_2'}(\rho_1 \otimes \rho_2 \| \sigma_1 \otimes \sigma_2) \le \overline{D}^{\delta_1}(\rho_1 \| \sigma_1) + \overline{D}^{\delta_2}(\rho_2 \| \sigma_2) - \ln\left((1-\delta_1)(1-\delta_2)\right)$$

with $\delta_i' := \sqrt{\delta_i(2-\delta_i)} \in (0,1)$

П

PROPERTIES OF QPP

- Post-processing:
 - Passing the output of a QPP mechanism through a channel still preserves QPP
- Convexity:
 - Applying a QPP mechanism that is randomly chosen from a given set of such mechanisms still satisfies QPP
- Composability:
 - Parallel- QPP holds after applying composed mechanism to the input $ho^{X_1}\otimes
 ho^{X_2}\otimes\cdots\otimes
 ho^{X_k}$
 - Adaptive- Each subsequently composed mechanism is chosen based on the outputs of the preceding ones



12

 $(\mathcal{N} \circ \mathcal{A})(\sigma)$

 $\mathcal{A}(\sigma)$

 \mathcal{A}

 \mathcal{N}

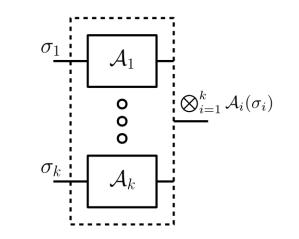
 σ

Parallel Composability: (K=2)

With product measurements (semi-classical) $(arepsilon_1+arepsilon_2,\delta_1+\delta_2)$ - QPP

 $(arepsilon',\delta')$ - QPP With all measurements including joint measurements

$$\varepsilon' := \varepsilon_1 + \varepsilon_2 + \ln\left(\frac{1}{(1-\delta_1)(1-\delta_2)}\right)$$
$$\delta' := \sqrt{\delta_1(2-\delta_1)} + \sqrt{\delta_2(2-\delta_2)}$$



Toistinction between classical and quantum cases: joint measurements can infer more information and thus privacy degrades

MECHANISMS $\mathcal{A}_{\mathrm{Dep}}^{p}(\rho) := (1-p)\rho + \frac{p}{d}I$ Depolarization mechanism $\mathcal{A}^p_{\mathrm{Dep}}$ ${\mathcal E}$ $\mathcal{A}^p_{\mathrm{Dep}}(\mathcal{E}(\cdot))$ is ε -QPP if $p \ge \frac{dK}{dK + e^{\varepsilon} - 1}$ $K := \sup_{M \in \mathcal{M}} \frac{\|M\|_{\infty}}{\operatorname{Tr}[M]} \times \sup_{\Theta, (\mathcal{R}, \mathcal{T}) \in \mathcal{Q}} \frac{\left\|\mathcal{E}(\rho^{\mathcal{R}}) - \mathcal{E}(\rho^{\mathcal{T}})\right\|_{1}}{2}$ 14

AUDITING PRIVACY

- Aims to detect violations in privacy guarantees and reject incorrect algorithms
- In classical settings: translate the privacy requirement to a weaker privacy notion that is efficiently computable
 - Not satisfying relaxed notion implies that original requirement is violated
- The pitfall of this approach is the impossibility of quantifying the gap between the original and relaxed privacy notions

Goal: Auditing without translating to a relaxed privacy notion

AUDITING QPP

- Using SDPs for DL divergence and equivalent form: Runtime polynomial in dimension, but exponential in number of qubits
- Trace distance estimation techniques and equivalent formulation via hockey-stick divergence:
 - Equivalent form for QDP: $\sup_{\rho \sim \sigma} \mathsf{E}_{e^{\varepsilon}}(\mathcal{A}(\rho) \| \mathcal{A}(\sigma)) \leq \delta \qquad \qquad \mathsf{E}_{\gamma}(\rho \| \sigma) := \mathrm{Tr}[(\rho \gamma \sigma)_{+}]$
 - Hockey stick divergence

$$\mathsf{E}_{\gamma}(\rho \| \sigma) = \frac{1}{2} \left\| \rho - \gamma \sigma \right\|_{1} + \frac{(1-\gamma)}{2}$$

- Use of quantum algorithms to estimate trace distance
- Hypothesis testing based auditing pipeline: Formal Guarantees on Type-I error

SUMMARY

Contributions:

- Proposed notion of QPP provides a flexible privacy framework for quantum systems
- An operational interpretation of DL divergence
 - Study properties of QPP mechanisms
 - Characterize privacy-utility tradeoffs
- Mechanisms via depolarization channel
- Methodology to audit quantum privacy
- Variants of QPP
- Connections to information-theoretic tools and quantum fairness

