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PROTECTION FOR QUANTUM DATA
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®  Quantum cryptography is well studied
®  What happens if we want Bob to know only certain aspects of Alice’s data?

®  This is captured by “statistical privacy frameworks”



STATISTICAL PRIVACY FRAMEWORKS (CLASSICAL)

Differential privacy:

" Answering aggregate queries about a database while keeping individual records private
Its limitations:

" Accounts for one type of private information only—records of individual users

®  Does not allow encoding domain knowledge into the framework

Pufferfish Privacy:

®  Customizing which information is regarded as private

m  Explicitly integrates distributional assumptions



MATHEMATICAL OBJECTS

®  Quantum state: PSD operator with unit trace

= Quantum channel: Completely positive trace preserving map
= Quantum measurement:

®  Measurement operator: O S M S I

= Positive operator valued measure (POVM): collection of PSD operators {My }ycy such that Zyey M, =1

= Born rule: Probability of observing outcome y = Tr| M, p]



QUANTUM DIFFERENTIAL PRIVACY (QDP)

P ~ 0 Neighboring relation: e.g.,, closeness in trace distance

QDP —[ZY’17], [HRF22]

A'is (2,0)-QDP if
Tr[MA(p)] < e Tr[MA(c)]+§

for every measurement operator M and all p ~ o.

QDP guarantees that all pairs of states that are classified as neighbors are approximately indistinguishable, i.e.,
cannot be identified under all possible measurements.



Beyond QDP: Need for More

P1 o Flexible Secrets: Secrets containing collection of
O Lo states
V(p1) =a V(oy) =0

Domain Knowledge: Likelihood of observing
different states

P2 09
] Lo Relaxing Worst-case Measurements: Physical
V(p2) = a V(og) = b limitations of LOCC vs joint measurements

R={prp} | T={o1.02)

Goal: A Flexible Privacy Framework for Quantum Systems



QUANTUM PUFFERFISH PRIVACY FRAMEWORK

Ingredients:

S Set of potential secrets S=U_,Ti T.= { p € D(H
‘ Values the secret function
can take

Q Set of discriminative pairs Which pairs of secrets to be indistinguishable

. Hiding different values

Symmetric: (R, 7)eQ iff (T,R)cQ I °
Q — Uz;é] (7;7

© Set of data distributions X ~Px €0 p~modelsa density operator that is randomly chosen according to Py

M Set of possible measurements Subset of measurements possible under physical, legal, or ethical
constraints 7



QPP DEFINITION

A is (g,0)- QPP in the framework (S, Q,0, M) if for all Px € ©, (R,T) € QO
with Px(R), Px(T) > 0, and all M € M,

Tr[MA(p™)] < efTr[MA(pT)] +6

Conditional average states Pl = Z qr(z)p”
{z:p*€R}
_ Px(x)
") = BR)
Px(R):= »_  Px(x)
{z:p*"€R}

Semantic meaning:

For a state pX chosen according to X ~ Px € © and input to the quantum
channel A, an adversary applying measurement M € M on the channel output 8
A(p*) draws the same conclusions regardless of whether p* belongs to R or T



OTHER PRIVACY FRAMEWORKS WHICH ARE SPECIAL CASES

By choosing specific ingredients to QPP

= Quantum differential privacy
m  Classical pufferfish privacy

m  Utility optimized privacy models



DATTA-LEDITZKY (DL) DIVERGENCE

—0 . Positive eigenspace
D (pllo) =Ininf A >0:Tr[(p—Ao) ] <6 seopace
{ i j (A), = > ali)i]
i:aiZO

Equivalent formulation of QPP (for all possible measurements)

sup D (A(pR)||A(pT)) < e
0,(R,T)eQ

Tr[MA(pR)] < e Te[MA(pT)] + 6

Operational Interpretation:

minimal € that can be achieved for fixed § via the indistinguishability condition of the QPP framework 10



DL DIVERGENCE

As a Semi-Definite Program:
—
= ' , < > p—
D (pllo) =1n )\}ggo {N:Tx[Z] <06, Z>p— Ao}
=1In sup {Tr[Wp] —ud: Ter[Wo| <1, W < ul}

. W >0
Properties: :

Data processing: For every positive trace preserving map D’ (pllo) > D’ (N(p) ||N(a))
k

me) < max D' (pi| ;)

k
Joint-quasi convexity: D° (Z Dipi
1=1

1=1

Quasi subadditivity:

—51+5g(

s s,
D p1 ® pallor ® 02) < D " (pi1ljor) + D (pzlloz) —In ((1 —61)(1 — d2))

I



PROPERTIES OF QPP

Post-processing:

Passing the output of a QPP mechanism through a channel still preserves QPP ———— A4

Convexity:

Applying a QPP mechanism that is randomly chosen from a given set of such mechanisms still satisfies QPP

Composability:

Parallel- QPP holds after applying composed mechanism to the input pX!' ® p*2 @ - -- @ pX*

m  Adaptive- Each subsequently composed mechanism is chosen based on the outputs of the preceding ones

Correlated input states

Ay

{gy}yey

MeM =

<

* For all possible measurements: proof follows fro

A

0
m properties of DL divergence




_________________________________________________§
Parallel Composability: (K=2)

With product measurements (semi-classical) (€1 + €2,01 + 02)- QPP

- o )i
With all measurements including joint measurements (6/, 5/)- QPP b0 —
' o !

1 Ok—-— A —'
(1—51)(1—52)) '
5/ = \/51(2—51>—|—\/52<2—(52)

g 1= eq +52+ln<

* Distinction between classical and quantum cases: joint measurements can infer more
information and thus privacy degrades



MECHANISMS

Depolarization mechanism ADep(p) == (L =p)p + EI
: D .
—— £ ADep
ADep (E(+)) is e-QPP if JK

>
p_dK—|—65—1

Ko sup Ml oo 1865 —EGT],
- mem Tr[M] o (rT)eo 2




AUDITING PRIVACY

= Aims to detect violations in privacy guarantees and reject incorrect algorithms

® |n classical settings: translate the privacy requirement to a weaker privacy notion that is efficiently computable

" Not satisfying relaxed notion implies that original requirement is violated

®  The pitfall of this approach is the impossibility of quantifying the gap between the original and relaxed privacy
notions

Goal: Auditing without translating to a relaxed privacy notion



AUDITING QPP

m  Using SDPs for DL divergence and equivalent form: Runtime polynomial in dimension, but exponential in number
of qubits

®  Trace distance estimation techniques and equivalent formulation via hockey-stick divergence:

= Equivalent form for QDP: sup E.:(A(p)||A(o)) <6 E,(pllo) :=Tr[(p — vo)4]
p~o
1 1-—
®  Hockey stick divergence E,(pllo) = 2 o —~olly + ( 5 )

®  Use of quantum algorithms to estimate trace distance

®  Hypothesis testing based auditing pipeline: Formal Guarantees on Type-l error



SUMMARY

Contributions:

Proposed notion of QPP provides a flexible privacy framework for quantum systems

An operational interpretation of DL divergence
m  Study properties of QPP mechanisms

®  Characterize privacy-utility tradeoffs
Mechanisms via depolarization channel
Methodology to audit quantum privacy

Variants of QPP

Connections to information-theoretic tools and quantum fairness

Thank you!




