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Trapped atomic ion qubits or effective spins are a powerful quantum platform for quantum computation
and simulation, featuring densely connected and efficiently programmable interactions between the spins.
While native interactions between trapped-ion spins are typically pairwise, many quantum algorithms and
quantum spin models naturally feature couplings between triplets, quartets, or higher orders of spins. Here,
we formulate and analyze a mechanism that extends the standard Mølmer-Sørensen pairwise entangling
gate and generates a controllable and programmable coupling between N spins of trapped ions. We show
that spin-dependent optical parametric drives applied at twice the motional frequency generate a coordi-
nate transformation of the collective ion motion in phase space, rendering displacement forces that are
nonlinear in the spin operators. We formulate a simple framework that enables a systematic and faithful
construction of high-order spin Hamiltonians and gates, including the effect of multiple modes of motion,
and characterize the performance of such operations under realistic conditions.
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I. INTRODUCTION

Ions in a linear Paul trap are a salient platform for sim-
ulation of quantum spin dynamics [1] and for computation
of problems that are classically hard [2]. Internal electronic
energy levels of individual ions can be used as qubits or
effective spins that can be efficiently prepared, controlled,
and measured with high isolation from the environment.
When trapped ions are laser cooled and ordered into long
chains, their Coulomb interaction gives rise to collective
modes of motion between the ions. With the addition of
optical [3] or near-field microwave [4] driving fields, the
resultant force can depend upon the quantum spin state
of the ions, thus generating spin-spin entanglement and
allowing for control over their many-body quantum state.

The most prominent configuration for such entangling
operations uses bichromatic optical fields, which exert
spin-dependent forces that displace the ions and result
in the accumulation of a geometric spin-dependent phase
[5–7]. This mechanism forms the basis for two-qubit
Mølmer Sørensen (MS) gates widely used in trapped-ion
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quantum computers, as well as effective Ising couplings
in trapped-ion-based quantum simulators [1,8–14]. This
engineered Ising coupling features dense or even full
connectivity between pairs of ions, owing to their collec-
tive vibrations in a chain, but it is limited to two-body
interactions.

Most quantum circuits and many spin models call for
higher-order interactions. Examples including the simula-
tion of molecular orbitals in quantum chemistry [15–19],
quantum simulations of lattice gauge theories [20–23], sta-
bilizer operators in quantum error-correction codes [24,
25], spin models [26–30] and generic quantum algorithms
[31–37]. While sequential or parallel application of uni-
versal one- and two-body gate sets can generate arbitrary
entangled many-body states, such constructions can carry
overhead in the number of entangling operations or Trot-
terization steps [38] and thereby be limited in the face of
decoherence.

Recently, we have proposed a mechanism to realize
a native N -body interaction between trapped-ion spins
by squeezing a single vibrational mode of motion in a
state-dependent manner [39]. We have considered optical
spin-dependent parametric drives that are applied syn-
chronously at twice the motional frequency of a partic-
ular vibrational mode of motion, generating a family of
N -body entangling interactions and gates that can be real-
ized in a single step. In this paper, we extend that study
by fully considering the coupling to multiple motional

2691-3399/23/4(3)/030311(18) 030311-1 Published by the American Physical Society

https://orcid.org/0000-0001-7634-1993
https://crossmark.crossref.org/dialog/?doi=10.1103/PRXQuantum.4.030311&domain=pdf&date_stamp=2023-07-26
http://dx.doi.org/10.1103/PRXQuantum.4.030311
https://creativecommons.org/licenses/by/4.0/


KATZ, CETINA, and MONROE PRX QUANTUM 4, 030311 (2023)

modes in the trapped-ion crystal. While the conventional
MS-type interaction can be straightforwardly extended
to off-resonant drives and multimode operation [40–46],
the nonlinear nature of squeezing parametric drives ren-
ders the vibratory and spin evolution nontrivial owing to
the quadratic dependence of the phonon operators in the
interaction Hamiltonian. The treatment of multimode and
off-resonant squeezing operations is also important in prac-
tice, as the parametric drives at twice the motional mode
frequencies are generally accompanied by driving nearby
off-resonant transitions that can play an important role in
the dynamics [39].

Here, we analyze the application of time-dependent
squeezing acting simultaneously on multiple motional
modes of a trapped-ion chain. We formulate and character-
ize the evolution of the spin and motional states of the ions,
revealing a large toolbox of effective spin Hamiltonians
and quantum gates. We identify a particular protocol for
combining multimode squeezing and displacement opera-
tions to demonstrate particular applications, including the
construction of the N -body stabilizer operator composed
of a product of N spin operators, as well as extensions of
the N -bit Toffoli gate using multiple modes. Finally, we
outline and demonstrate new avenues to program and sim-
ulate Hamiltonians composed of multiple high-order terms
in a single step.

This paper is organized as follows. In Sec. II, we
describe the time-dependent interaction Hamiltonian cou-
pling the spins and motion of the ions. The resulting
time evolution is composed of spin-dependent motional
squeezing and displacements that are controlled by the
optical fields. In Sec. III, we find that this evolution, in the
Heisenberg picture, is described by a spin-dependent lin-
ear coordinate transformation in phase space. In Sec. IV,
we use this linear transformation to construct a family of
gates that act on the spins to generate N -body interac-
tions that are robust to thermal motion of ions. In Sec. V,
we present two numerical examples of gates that entan-
gle four spins in a chain of 11 ions and show that nearby
off-resonant motional modes can be controlled via pulse
shaping. Finally, in Sec. VI we discuss the practical appli-
cation of these gates to current trapped-ion systems and
their prospects in other quantum hardware.

II. INTERACTION HAMILTONIAN

We consider a linear chain of M trapped atomic ions,
each storing a spin-1/2 system, addressed by laser beams,
as shown in Fig. 1. We assume that M motional modes
of the ions are aligned with the spatial direction of the
effective optical axis. These modes are described by their
frequencies ωk and displacement eigenvectors bik, which
describe the motional amplitude of the ith ion in the kth
motional mode normalized such that

∑
i bikbim = δkm and∑

k bikbjk = δij . The phonon modes are characterized by

⋯

mode 1 ⋯ ⋯

mode M ⋯ ⋯
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FIG. 1. The trapped-ion system. (a) A crystal of M ion spins
trapped by external forces and addressed with an array of bichro-
matic optical fields. The beams apply state-dependent operations
that couple the spin state of the ions with their motion. (b) Motion
along the beam axis is composed of M collective vibrational
modes of the crystal. The matrix element bik denotes the par-
ticipation of the ith ion in the kth vibrational mode. (c) The
vibrations of the crystal can be pictorially represented by M
phase-space diagrams with coordinates x̂k and p̂k for 1 ≤ k ≤ M .
The coordinates are unitless (scaled to twice the zero-point posi-
tion and momentum spreads) and described in the interaction
frame, which rotates at the vibrational frequency ωk of the kth
mode, such that the motional state in phase space is stationary
unless optical fields are applied. The shaded area represents an
arbitrary motional state of the crystal in each phonon mode.

the bosonic annihilation and creation operators âk and â†
k

of mode k, with [âk, â†
k] = 1.

The applied optical fields couple the ion spins to their
motion via the interaction Hamiltonian [47]

HI = �

2

M∑

i=1

�̃i(t)σ
(i)
+

M∏

k=1

eiηik

(
âke−iωk t+â†

k eiωkt
)

+ h.c., (1)

where the exponential term describes modulation of the
optical phase in the reference frame of the oscillating ions.
Here, �̃i(t) is the driving Rabi frequency for spin i in a
frame rotating at the frequency of the ith spin and σ (i)±
are the raising (+) and lowering (−) spin operators. The
Lamb-Dicke parameters ηik = δKx0

k bik describe the cou-
pling between spin i and mode k, where δK is the effective
wave number of the radiation field driving the sidebands
and x0

k = √
�/2Mωk is the zero-point spread in position
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of the kth phonon mode, taking M as the mass of a sin-
gle ion [47]. We assume that the radial motion along the
optical beam is confined within the Lamb-Dicke regime,
where |ηik〈â†

k + âk〉| � 1 for all ions and modes. While
we assume that the above spin-motion coupling originates
from either a direct optical transition or a twin-beam opti-
cal Raman process between spin states [47], the framework
here can also be applied to a microwave drive with field
gradients [4,48–50].

In phase space, HI acts on the motional state of the
ions as shown in Fig. 1(c). The phase-space coordinates of
mode k are defined by the unitless quadrature position and
momentum operators x̂k = (âk + â†

k)/2 and p̂k = i(â†
k −

âk)/2, which are scaled by 2x0
k and 2p0

k = √
2�Mωk,

respectively. These operators satisfy [x̂k, p̂m] = iδkm/2.
In this work, we focus on the symmetric driving of the

blue and red motional sidebands in Eq. (1). These bichro-
matic electromagnetic fields �̃i = �i(t)

[
e−i(νt+φi+) +

ei(νt−φi−)
]

are applied with frequencies ±ν from the spin-
resonance carrier, with phases φi± and common amplitude
�i(t).

Tuning near the first motional sidebands with detunings
δk ≡ ν − ωk from the frequencies of the motional modes,
where |δk| � min({ωm|1 ≤ m ≤ M }), generates the inter-
action Hamiltonian under the rotating-wave approxima-
tion, where �i � min({ωm|1 ≤ m ≤ M }) [1]:

HD = �

2

∑

k,i

ηik�i(t)ei(δkt+δϕi)σ
(i)
ϕ̄i

âk + h.c. (2)

Here, δϕi = (φi+ − φi−)/2 is the relative phase between
the two tones and ϕ̄i = (φi+ + φi− − π)/2 is the common
phase that determines the orientation of the spin opera-
tor on the Bloch sphere, σ (i)ϕ̄i

= cos ϕ̄iσ
(i)
x + sin ϕ̄iσ

(i)
y . The

Hamiltonian HD acts to displace the position and momen-
tum of the phonon mode k in a spin-dependent manner by
Re(αk) and Im(αk), respectively, where

αk(t) = 1
2i

∑

i

σ
(i)
ϕ̄i
ηik

∫ t

0
�i(t′)e−i(δkt+δϕi)dt′, (3)

as illustrated in Fig. 2. The field amplitude �i(t′) and rela-
tive phase δϕi(t′) controls the instantaneous amplitude and
direction of displacement at time t′ in the phase space of
each mode.

Tuning near the second motional sidebands and denot-
ing the detuning of the laser from the kth mode by
�k ≡ ν − 2ωk generates the interaction Hamiltonian under
the rotating-wave approximation,

HS = �

4

∑

k,m,i

ηikηim�i(t)e
i
2 (�k+�m)t+iδφiσ

(i)
φ̄i

âkâm + h.c.

(4)

(a)
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⋯ ⋯
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FIG. 2. The state-dependent displacement of motion (displace-
ment Hamiltonian HD). (a) Tuning the frequency ν of the drive
on the ith ion near the resonance frequency of the kth vibrational
mode (upper and lower sidebands) couples the spin predom-
inantly with the collective motion of that mode through the
displacement Hamiltonian HD in Eq. (2). (b) In phase space, the
evolution is represented by displacement of the collective ion
motion by amount αk. The direction of displacement depends
on the spin state and is inverted if the ith spin is flipped. The
trajectory αk(t) can be temporally engineered via modulation of
the field amplitude �i(t) and the relative phase δϕi between the
upper and lower sideband tones (cf. Eq. (3)). The instantaneous
amplitude of motion is controlled by the former, whereas the
instantaneous orientation of motion in phase space is controlled
by the latter.

This Hamiltonian acts to instantaneously squeeze phase-
space coordinates as shown in Fig. 3(a). Here, the rela-
tive motional phase between the two tones δφi = (φi+ −
φi−)/2 determines the axis in which phase-space coordi-
nates are instantaneously squeezed, whereas the common
phase φ̄i = π + (φi+ + φi−)/2 specifies the projection of
the spin operator over the Bloch sphere σ (i)

φ̄i
.

For both displacement and squeezing, we assume that
the common phases are fixed during the evolution and set
ϕ̄i = φ̄i = 0 such that σ (i)ϕ̄i

= σ
(i)
φ̄i

= σ (i)x , similar to oper-
ation of the MS gate. However, we allow the motional
phases δϕi(t) and δφi(t) to vary in time, allowing modula-
tion of the directions of squeezing and displacement during
the operation.

Our derivations rely on the Lamb-Dicke approximation,
yielding the approximate spin-dependent displacement
and spin-dependent squeezing Hamiltonians in Eqs. (2)
and (4), respectively. This approximation corresponds to
the assumption that the number of phonons in the mth
mode, nm, is small (i.e., ηimηjmnm � 1 for all driven spins
i, j and modes m). Breakdown of this approximation can
lead to phonon-dependent corrections of the Rabi fre-
quency via the Debye-Waller operator, to breakdown of
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FIG. 3. The state-dependent squeezing of motion (squeezing
Hamiltonian HS). Tuning the frequency ν of the drive on the
ith ion near twice the resonance frequencies of the vibrational
modes generates a spin-dependent coordinate transformation of
phase space. (a) The spin-dependent scaling of the phase space
of the kth mode. For ν = 2ωk and δφ = 0, the squeezing axis
is aligned with the x̂k coordinate, resulting in dilation of x̂k and
contraction of p̂k if the spin points upward and vice versa if it
points downward. (b) The spin-dependent rotation of the phase
space of the kth mode. Simultaneous modulation of the phase
δφ by an even number of spins results in modulation of the
squeezing axis that can effectively rotate phase-space axes. Set-
ting ν = 2ωk and symmetrically driving spins i, j can generate
a pure spin-dependent rotation, where the axes rotate clockwise
if the two spins are aligned and counterclockwise if the spins
are antialigned. (c) The spin-dependent mixing of modes. Driv-
ing spins synchronously at ν = ωk + ωm, the sum of resonance
frequencies of two different modes k and m correlate their phase-
space coordinates. This correlation is manifested as two-mode
squeezing or correlated rotations. Off-resonance driving exerts
the interactions in (a)–(c) simultaneously. The spin-dependent
scaling matrix r and rotation matrix θ are uniquely determined
by the complex transformation parameters ψ and χ in the main
text [see Eqs. (A8) and (A9)].

the rotating-wave approximation, and to other phonon-
dependent errors that could limit the realized fidelity [5,51,
52]. In practice, this approximation first breaks for phonon
modes whose mode participation factors are slowly vary-
ing, which efficiently couple to noisy electric fields, result-
ing in high phonon numbers [53].

III. EVOLUTION BY THE SQUEEZING
HAMILTONIAN

The squeezing Hamiltonian in Eq. (4) contains quadratic
motional operators with time-dependent coefficients, gen-
erating an infinite series of commutators in the evolution
operator. Thus we solve for time evolution of the motional
operators in the Heisenberg picture. Since the squeezing
Hamiltonian is quadratic in the motional operators, the
Heisenberg equations of motion are linear in the same
operators and the time evolution can be described by
the time-dependent Bogoliubov transformation of the kth
phonon mode:

â′
k(t) = S†

ψ ,χ (t)âkSψ ,χ (t) =
M∑

m=1

ψkm(t)âm + χkm(t)â†
m,

(5)

where Sψ ,χ (t) is the unitary evolution operator generated
by the squeezing Hamiltonian HS and âk is the time-
independent annihilation operator in the interaction pic-
ture. The transformation in Eq. (5) is complex symplectic
[54] and preserves the commutation relations of âk and â†

k .
It therefore acts to scale, rotate, and mix the phase-space
coordinates of the different modes, as we illustrate in Fig. 3
and show in Appendix A.

The transformation at time t is determined by the
complex-valued spin-dependent matrices ψkm(t) and
χkm(t). Differentiation of Eqs. 5 as a function of time yields
the dynamics of these matrices via the relations

∂tψkm = [∂tâ′
k, â†

m] and ∂tχ
∗
km = [âm, ∂tâ′

k]∗. (6)

We can construct the explicit equations of motion for ψkm
and χkm by considering the dynamics of the transformed
operators â′

k(t) in the Heisenberg picture,

∂tâ′
k = S†

ψ ,χ
i
�

[
HS, âk

]
Sψ ,χ , (7)

where
[
HS, âk

] = −�

∑

m

hkme− i
2 (�k+�m)tâ†

m (8)

and

hkm = 1
2

N∑

i=1

ηikηim�ie−iδφiσ (i)x . (9)
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Substitution of Eqs. (7)–(9) into Eq. (6) and expression of
the transformed operators â′

k(t) by the transformation in
Eq. (5) yields

∂tψkm = −i
∑

l

e− i
2 (�k+�l)thklχ

∗
lm, (10)

∂tχ
∗
km = i

∑

l

e
i
2 (�k+�l)th∗

klψlm. (11)

Importantly, because of the spin operators in Eq. (9), the
transformation parametersψkm(t) and χkm(t) depend on the
many-body spin-state of the N ≤ M ions that are illumi-
nated by the driving fields, rendering an effective N -body
interaction.

For each of the 2N configurations of these spin states,
Eqs. (10) and (11) represent a set of N linear differential
equations with initial conditions ψkm = δkm and χkm = 0.
While the total number of equations scales exponentially in
the order of interaction N , it scales only linearly with the
length of the chain M . The mixing-transformation matri-
ces ψ(t) and χ(t) determine the unitary evolution operator
Sψ ,χ uniquely, as we show in Appendix A. Control over
the transformation parameters is thus sufficient to describe
the quantum evolution during the squeezing operation.

It is intriguing that the state-dependent transformation
that is realized by the squeezing Hamiltonian produces
operations, such as state-dependent rotations of phase
space, that do not directly appear in the Hamiltonian HS
in Eq. (4). In fact, the set of effective operations that can be
realized belong to the Lie algebra that is generated by this
Hamiltonian, which we derive in Appendix B. We find that
the group of effective Hamiltonians that can be realized
corresponds to the simple symplectic Lie group Sp(2M , R)
[55] for the motional operators, multiplied by products of
spin operators up to order N . This result is a nontrivial
extension of the single-mode case in Refs. [33,39].

IV. N -BODY GATE PROTOCOL

We aim to realize a unitary evolution operator that, after
some time T, corresponds to the action of an effective
spin Hamiltonian manifesting high-order interactions. As
the motional state is prone to heating, dephasing, and ini-
tialization errors, high-fidelity manipulation of the spins
usually requires the evolution to be insensitive to the ini-
tial motional state, as well as the erasure of correlations
that are developed between spins and motion during the
evolution. This goal underlines a twofold challenge: to
engineer useful spin-dependent interactions on one hand
and to disentangle the states of motion and spins on the
other.

We focus our analysis on a simple protocol that ensures
disentanglement of spins and motion at the end of the gate
and generates high-order spin interactions independent of

the motional state. The protocol relies on sequential and
interleaved applications of squeezing and displacement
operations. Independent of the number of ions in the chain
M or the number of target interacting spin bodies N , we
decompose the spin-motion evolution into the following
eight stages:

U(T) = S†
ψ ,χD†

βSψ ,χD†
αS†
ψ ,χDβSψ ,χDα . (12)

Here, Dα and Dβ correspond to the displacement evolu-
tion operator generated solely by HD [Eq. (2)]. We use a
vector form of displacement arguments α and β to com-
pactly denote the target spin-dependent displacements of
all modes, with mode k displaced by the expression in
Eq. (3). The term Sψ ,χ in Eq. (12) corresponds to the
squeezing evolution operator generated solely by HS [cf.
Eq. (4))], with ψ and χ representing the target transforma-
tion matrices.

The evolution in Eq. (12) has a simple physical inter-
pretation, which is illustrated graphically in Fig. 4. Absent
squeezing operations (i.e., HS = 0 and Sψ ,χ = 1), the
motion of the ions is described by closed contours in
phase space of the motional modes, leading to accumu-
lation of a geometric phase �k = 2Im(α∗

kβk) by the kth
phonon mode and thus to a total accumulation of geo-
metric phase � = ∑

k �k during the evolution. The spin
dependence of this phase gives rise to a quadratic spin
Hamiltonian known from the usual MS operation. How-
ever, when the squeezing operation Sψ ,χ is interspersed,
it rotates and scales phase-space coordinates, while S†

ψ ,χ
inverts the same. Using Eq. (5), we find that these two
squeezing operations generate

S†
ψ ,χDβSψ ,χ = Dβ′ , with β ′

k =
∑

m

(ψ∗
mkβm − χmkβ

∗
m).

(13)

Notably, the resulting evolution has no quadratic terms
but, rather, is linear in the motional operators. The emer-
gent displacement vector β ′ corresponds to displacement
by amount β but in a phase space the coordinates of which
are scaled or rotated by the transformation matrices ψ and
χ . Crucially, the spin dependence of ψ and χ renders β ′
nonlinear in the spin operators. Therefore, the overall evo-
lution operator U in Eq. (12) is equivalent to the series
of displacements α → β ′ → −α → −β ′ forming closed
contours in phase space and results in an evolution

U(T) = e−i� with � = 2Im
(∑

k

α∗
kβ

′
k

)
. (14)

Here, the net spin-dependent geometric phase� is equiva-
lent to the effective spin Hamiltonian

Heff = ��/T, (15)
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FIG. 4. The protocol for generating high-order spin-dependent Hamiltonians. An illustration of the stages composing the unitary
evolution in Eq. (12), constructed by alternate application of the displacement and squeezing operations. (a) The spin state of the
ions and the motional state of the crystal is initially decoupled. (b) The displacement of the motion of the kth vibrational mode by an
amount αk. (c) The coordinate transformation of phase space with transformation matrices ψ and χ via scaling and rotations generated
by the squeezing operation. The motional state remains stationary with respect to the transformed coordinates. (d) The displacement
of the ions along the original coordinate frame by an amount βk. (e) Reversal of the coordinate transformation to the original frame
in stage (c). The overall evolution in stages (c)–(e) is equivalent to net displacement by an amount β ′

k along the transformed reference
frame. Importantly, as the coordinate transformation is spin dependent, the transformed displacement β ′

k can be comprised of products
of multiple spin operators. (f) Reversal of the displacement in (b). (g) Displacement by an amount −β ′

k via repetition of the sequence
in (c)–(e) but reversal of the evolution in (d). Any entanglement between the spins and motion is erased but the spins accumulate a
geometric phase �k that is proportional to the area enclosed in phase space. As αk and β ′

k are spin dependent, so also is �k, which
corresponds to the effective spin Hamiltonian that is realized by this evolution [cf. Eq. (15)].

where T is the total duration of the evolution in Eq. (12).
The inherent N -body nature of the evolution operator and
Hamiltonian appears in the spin dependencies of αk, βk
and, in particular, the mode-mixing-transformation param-
eters ψkm and χkm.

V. APPLICATIONS

In this section, we present two specific sequences for the
engineering of particular spin-entangling gates, relying on
control over the evolution of all relevant motional modes
in the chain. In Sec. V A, we characterize the application
of the N -body stabilizer operator, which is comprised of
a product of N spin operators and is realized via spin-
dependent rotation of phase space. In Sec. V B, we inves-
tigate a set of Hamiltonians that contain polynomials of
spin operators. In Sec. V C, we compare the speed of these
implementations with alternative quantum circuits based
on concatenation of one- and two-qubit gates. Finally, in
Sec. V D we outline a systematic approach for construction
of arbitrary high-order spin Hamiltonians. We numerically
demonstrate the control fields and characterize the perfor-
mance of two examples considering a representative chain
of 11 171Yb+ ions in a linear Paul trap, the parameters of
which are detailed in Appendix C.

A. Stabilizer operator

We consider the stabilizer operator

� = −�̄σ (i1)x ⊗ . . .⊗ σ (iN )x (16)

as the target effective Hamiltonian in Eq. (15), for an
even integer N ≤ M , amplitude �̄, and a choice of the
interacting spins labeled by the vector i = (i1, . . . , iN ).
Notably, the operators in Eq. (16) can be transformed into
other operators in the Pauli group via the application of
single-qubit gates preceding and following the evolution.

To construct this interaction, we use an alternating
sequence of displacements and squeezing from Eq. (12).
We consider target displacements of duration τd, each gen-
erated by sequentially illuminating single spins iN−1 and
iN to produce

αk(τd) = δkpAσ (iN−1)
x and βk(τd) = iδkpBσ (iN )x , (17)

where δkp is the Kronecker delta function. Here, the net
phase-space displacement of all modes is ideally zero,
except for a particular mode p . This mode is displaced
by magnitude A along the xp coordinate, followed by
displacement with magnitude B along the pp coordinate.
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Importantly, as the displacements are generated by spin-
dependent forces, the sign of αp (βp ) and hence the direc-
tion of the displacements depends on the spin state of the
iN−1 (iN ) ion via the spin operator in Eq. (17).

The other N − 2 spins participate in the desired N -body
stabilizer Hamiltonian via the squeezing operations. We
aim for a diagonal mode-mixing transformation matrix at
time τs [33,56], for which

ψpp(τs) =
N−2∏

n=1

σ (in)x = ei π2
∑N−2

n=1 σ
(in)
x (18)

and ψkk(τs) = 1 for all k �= p , with χkm(τs) = 0 for all
modes k, m. From Eqs. (A8) and (A9), this transformation
generates a pure spin-dependent rotation of the phase space

of mode number p by angle θpp(τs) = π
2

∑N−2
n=1 σ

(in)
x , with

no effect on any other mode. The phase space of mode p is
rotated by 180◦ if 1

2

∑N−2
n=1 σ

(in)
x is odd and is unaffected if

it is even. Substitution of Eqs. (17) and (18) into Eqs. (13)
and (14) yields the target stabilizer operator of Eq. (16),
with �̄ = 2AB.

We numerically simulate the operation of this gate,
including the effects of all off-resonant modes of motion,
with the main results shown in Fig. 5. We generate the
wave forms using the optimal-control algorithm GRAPE
[57,58] to search for optimal solutions of Eqs. (C4)
and (C5) under the target transformation parameters in
Eq. (18) (details are given in Appendix C). Here, we gen-
erate the desired stabilizer interaction between N = 4 ions
in a M = 11 long ion chain. We exemplify a gate acting
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FIG. 5. The numerical implementation of the four-body stabilizer Hamiltonian. (a) Realization of the four-body stabilizer Hamil-
tonian Heff = σ (3)x σ (9)x σ (5)x σ (7)x in a chain of 11 ions based on the protocol in Sec. V A and Eq. (12). We use motional mode p = 8 to
generate the interaction, employing ion 5 (7) to displace the position (momentum) of this mode by α8 (β8) and employing ions 3 and
9 to generate pure spin-dependent rotation of phase space via squeezing. (b) The frequency tuning of the displacement and squeezing
beams with respect to the first and second sideband transitions, respectively. We use ν = ω8 to generate displacements and ν = 2ω8
to generate squeezing, maximizing the coupling with the desired p = 8 mode. Note that the ions interact with bichromatic fields that
symmetrically drive both red and blue sideband transitions but for brevity only the blue sidebands are shown. (c) The calculated phase
(�(i)x (t)) and quadrature (�(i)y (t)) components of the control fields, which generate a single displacement over τd = 50 µs by acting on
ions i = 5, 7. (d) The calculated pulse shape (phase and quadrature) of the control fields simultaneously applied to ions n = 3, 9, which
generate rotations over τs = 1.3 ms. We consider simultaneous modulation of �(i)x and �(i)y for i = 3, 9. (e),(f) Target displacements
and scaling parameters for the spin state |↑(3)x ↑(5)x ↑(7)x ↑(9)x 〉. (e) The target displacements of re(α8) = 1 along the x8 coordinate and
im(β8) = 1 along the p8 coordinate are realized, while the displacements of all other modes are erased by the end of the pulse. (f)
At the end of the sequence, target rotation of θ88 = π inverts the phase-space axes of mode number 8, while the other modes remain
invariant. The optimization parameters and the fidelity metrics for this optimization are presented in Appendix C.
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on ions i = (3, 5, 7, 9) that is mediated predominantly by
mode number p = 8. The frequencies of the beams point-
ing at ions 5 and 7 are tuned on resonance with the first
sidebands of mode 8 (ν = ω8; δ8 = 0) to generate displace-
ment operations, setting A = B = 1 through the control
field amplitudes. The beams pointing at the other ions,
3 and 9, are tuned on resonance with the second side-
bands of mode 8 (ν = 2ω8;�8 = 0) to generate squeezing
operations as shown in Fig. 5(b). As expected, the mode
spectrum of the second sideband transitions is consid-
erably more crowded owing to nearby intermodulational
sidebands between all pairs of modes.

In Figs. 5(c) and 5(d), we present the temporal shape
of the control fields using simultaneous amplitude and
phase modulation for the displacement pulses τd = 50 µs
[Fig. 5(c)] and for the squeezing pulses [Fig. 5(d)] for
τs = 1.3 ms. We express the control field �i(t) on each
illuminated ion in terms of its quadratures

�(i)x (t) = �i(t) sinμ(t), (19)

�(i)y (t) = −�i(t) cosμ(t),

with μ(t) = δϕ(t) and μ(t) = δφ(t) for the displace-
ment and squeezing operations, respectively. We shape
the quadrature wave forms �(i)x (t) and �(i)y (t) during the
displacement and squeezing stages using two different
optimal-control tools (details are given in Appendix C).
We limit the Rabi frequencies �(i)x (t),�

(i)
y (t) to below

300 KHz to maintain the validity of the rotating-wave
approximation.

In Figs. 5(e) and 5(f), we present the outcome phase-
space displacements and scaling parameters as a function
of time for the particular case in which all spins point
upward, resulting in the target evolution. Interestingly for
the squeezing evolution, both the target mode and the spec-
trally nearest modes are squeezed during the pulse, yet
disentangle nearly perfectly at the end of the pulse; the
numerical optimization over the squeezing-operation wave

forms is terminated when two complementary metrics of
infidelity (detailed in Appendix C 3) are lower than 0.1%.

In Fig. 6, we illustrate the spin-dependent evolution in
phase space. The spin states of ions 5 and 7 determine the
direction of displacement along the position and momen-
tum coordinates of mode p = 8 in phase space, respec-
tively, by setting α8 = Aσ (5)x and β8 = Bσ (7)x . Application
of the target squeezing evolution rotates the phase space of
the p = 8 mode in a spin dependent manner, resulting in
the modified displacement β ′

8 = β8σ
(3)
x σ (9)x . Consequently,

when spins 3 and 9 point along the same direction in their
x basis, the displacement along the momentum coordi-
nate is inverted (β ′

8 = −β8), whereas for spins pointing
at the opposite directions, the displacement is unchanged
(β ′

8 = β8), therefore resulting in the geometric phase in
Eq. (16).

Interestingly, while the number operator â†
8â8 that

generates phase-space rotations does not appear in the
Hamiltonian in Eq. (4), this operator is generated by
sequential application of squeezing operators as dis-
cussed in Ref. [59]. The spin-dependent rotation is gen-
erated by spin-dependent squeezing operators, such as
Ŝ0 = σ (3)x (â2

8 − â†2
8 )/2 (applied when �(3)x �= 0) and Ŝ45 =

σ (9)x (â2
8 + â†2

8 )/2 (applied when �(9)y �= 0), the commuta-
tion of which yields [Ŝ0, Ŝ45] = σ (3)x σ (9)x (â†

8â8 + 1
2 ) (for

further details on the set of operators that can be generated
by the evolution, see Appendix B).

B. N -bit spin polynomials

In Ref. [39], we have proposed the uniaxial squeezing
of a single motional mode to generate the target set of
effective Hamiltonians

H = ��̄

T

N∏

n=1

(
1 cosh ξn + σ (in)x sinh ξn

)
, (20)

for N ≤ M and positive and real ξn, where 1 denotes the
identity (spin) operator. In the limit ξn � 1, the coefficients

FIG. 6. The phase-space evolution of the stabilizer Hamiltonian. The phase-space trajectories that are used to simulate the evolution
of U = exp(−i�̄σ (3)x σ (9)x σ (5)x σ (7)x ) are shown for the 16 different spin states corresponding to the example in Fig. 5, which uses mode
number 8. The motion is displaced rightward by +|α8| for |↑5〉 or leftward by −|α8| for |↓5〉. Similarly, the motion is displaced upward
by +β ′

8 for |↑7〉 or downward by −β ′
8 for |↓7〉. Here, β ′

8 = |β8|σ (3)x σ (9)x is the displacement generated in the rotated coordinate frame
conditioned on the state of ions 3 and 9. If ions 3 and 9 are aligned (|↑3↑9〉 or |↓3↓9〉), then phase space is rotated by 180◦, yielding
β ′

8 = −|β8|, whereas for the antialigned configuration (|↑3↓9〉 or |↓3↑9〉), phase space is not rotated and β ′
8 = +|β8|.

030311-8



PROGRAMMABLE N -BODY INTERACTIONS WITH TRAPPED IONS PRX QUANTUM 4, 030311 (2023)

satisfy cosh ξn ≈ sinh ξn ≈ eξn/2, and the operator in
Eq. (20) becomes a projection operator, which generates
the N -bit controlled-phase gate or the N -bit Toffoli gate
using two additional single-qubit gates.

Here, we extend this approach and analyze the mul-
timode case, which enables the squeezing of a single
motional mode in a spin-dependent manner, and we simul-
taneously erase the undesired evolution that is generated
by off-resonant coupling with other modes. Here, we con-
sider the target displacements

αk = δkpAσ (aux)
x and βk = iδkpBσ (aux)

x , (21)

which are similar to the displacements in Eq. (17), except
that here the two displacements are driven on the same aux-
iliary spin, which need not appear in the target Hamiltonian
and can be any spin in the chain coupled to the involved
modes of motion. The coupling between N spins is then
realized via preparing diagonal mode-mixing transforma-
tion matrices at time τs satisfying

ψpp(τs) = cosh

(
N∑

n=1

ξnσ
(in)
x

)

(22)

χpp(τs) = sinh

(
N∑

n=1

ξnσ
(in)
x

)

(23)

for a particular target mode p with all other mode diag-
onals ψkk(τs) = 1 and χkk = 0. Substitution of Eqs. (22)
and (23) into Eq. (13) reveals that the spin dependence
emerges via scaling the displacement along the momentum
coordinate of mode p by β ′

p = �neσ
(in)
x ξnβp , which assigns

a factor eσ
(in)
x ξn for each spin in that enlarges (compresses)

the motion if the in spin points upward (downward).
We demonstrate the operation of this gate in Fig. 7, gen-

erating the Hamiltonian in Eq. (20) between N = 4 ions
for an M = 11 ion chain and for the target parameters
ξn = 0.325. We demonstrate the interaction between ions
4, 5, 7, and 8 mediated predominantly by mode number
p = 10. The four ions are driven by beams that are tuned
at ν = 2ω10 for τs = 200 µs and the control fields are pre-
sented in Fig. 7(b). This pulse acts to squeeze mode p = 10
by a factor er10,10 and to disentangle the effect over all other
modes, as presented for the case in which all the spins
point upward in Fig. 7(c). For the displacements, we use
ion number 3 as the auxiliary ion.

C. Comparison with one- and two-qubit gate
implementations

The trapped-ion processor can be used as a universal
quantum computer to alternatively express the N -body
phase gates in Eqs. (16) and (20) as a concatenation of one-
and two-qubit gates. In this subsection, we consider this

Ω
(M
H
z)

(a)

(c)

1 2 3 4 5 6 7 8 9 10 11

10 ,10

(b)

Time ( )

Time ( )TT

FIG. 7. The numerical implementation of a four-body spin-
polynomial Hamiltonian. We exemplify the realization of a target
four-body Hamiltonian Heff = (a1 + bσ (4)x )(a1 + bσ (5)x )(a1 +
bσ (7)x )(a1 + bσ (8)x ) with a ≈ 1.053 and b ≈ 0.331 in a chain of
11 ions. (a) We drive ions 4, 5, 7, and 8 with the squeezing
interaction resonant with mode number p = 10 and use ion 3
as an auxiliary ion to generate displacement in that mode. (b)
The calculated pulse shape of the control fields for the squeez-
ing interaction with τs = 200 µs. Here, the four spins are driven
predominantly by �(i)x , which squeezes the axes along the x̂10
coordinate. By symmetry of that mode, the optimal-control fields
for ions i = 4, 8 as well as for ions i = 5, 7 are identical. (c)
The target scaling parameters for the spin state |↑(4)x ↑(5)x ↑(7)x ↑(8)x 〉.
Target exponential scaling of r10,10 = 2 squeezes x̂10 and anti-
squeezes p̂10 while erasing mixing, rotations, and squeezing of all
other modes by the end of the pulse. The realized displacements
and control fields for this case are qualitatively similar to those
presented in Fig. 5. The optimization parameters and the fidelity
metrics for this optimization are presented in Appendix C.

approach to the four-qubit gates in Secs. V A and V B and
highlight the conditions under which the proposed N -body
gates are expected to improve the run time.

We decompose the N -body gates into quantum cir-
cuits using protocols in Refs. [60–62], employing a native
gate set composed of one-qubit rotation operations R(θ ,φ)
with polar angle θ and azimuthal angle φ together with
controlled-NOT (CNOT) gates as two-qubit gates. We further
improve our construction by using QISKIT transpiler [63]
and present the equivalent four-qubit stabilizer and poly-
nomial phase gate circuits in Appendix D. The four-qubit
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stabilizer gate in Sec. V A requires six two-qubit gates
and the polynomial gate in Sec. V B requires 16 two-qubit
gates, in addition to several single-qubit gates (which, for
simplicity, we disregard in this analysis). Assuming a typ-
ical time of 100–200 µs per (serial) two-qubit gate for
chains of 171Yb+ hyperfine qubits [42,64–67], the stabi-
lizer gate is expected to require 1 ms and the polynomial
gate of approximately 2.5 ms. In comparison, the proto-
cols in Secs. V A and V B require about 5.5 ms and 1 ms
for these two gates, respectively. We therefore expect that,
in this example, the effective polynomial gate can outper-
form the quantum circuit in run time, while the stabilizer
gate is likely to fall behind.

The difference in the number of two-qubit operations
between the stabilizer and the polynomial gates is related
to the number of Pauli strings in the effective Hamil-
tonian. We consider Pauli string operators of the form
P(q1, . . . , qN ) = ∏N

i=1 s(i)q for qi ∈ {0, 1}, with s(i)0 = 1(i)σ as
the identity operator of the ith qubit and s(i)1 = σ (i)x . A
Hamiltonian composed of a single Pauli string, such as
the one corresponding to the stabilizer gate in Sec. V A,
can be constructed by applying multiple two-qubit opera-
tions, with the number of operations scaling linearly with
N [61,62]. General polynomial gates, expressed as diag-
onal unitary matrices using x as the quantization axis,
require a larger number of Pauli string operators that, in
the worst case, could scale exponentially with the number
of qubits [60,68]. The speed of squeezing operations on the
other hand, is limited by the typical frequency spacing of
the second-sideband spectrum and, for a fixed laser power,
scales as the square of the Lamb-Dicke parameters; it is
typically inversely proportional to the number M of total
qubits and is fixed for a given number of ions. Because
squeezing-based gates allow for implementation of a fam-
ily of many Pauli strings in a single sequence of squeezing
and displacement operations (which does not scale with the
number N of involved qubits), we expect that their speed
could outperform standard circuit techniques for large N
and for gates consisting of numerous Pauli strings.

The exact transition point in the efficiency of the two
methods depends on the target gate and also on the
experimental configuration. In this analysis, we consider
relatively small Lamb-Dicke parameters ηi,k ≈ 0.1bik asso-
ciated with driving the clock hyperfine states of 171Yb+

ions using the Raman interaction (for exact values, see
Appendix C). This renders the squeezing operations slow,
compared with the displacement operations that generate
two-qubit gates. Notably, lighter-mass ions can achieve
considerably higher Lamb-Dicke parameters [69] and can
potentially further speed up gates based on spin-dependent
squeezing. In summary, the direct comparison between
these two classes of quantum circuits and/or gates will
depend highly upon the higher-level structure of a larger
quantum circuit.

D. High-order spin Hamiltonians

The applications in Secs. V A and V B are based on spin-
dependent coordinate transformations of a single motional
mode and the successful disentanglement of all other
modes from the transformation. One strategy for gener-
ating other high-order Hamiltonians in a single step is to
decompose a target spin Hamiltonian into m ≤ M spin-
polynomials, the structure of which is similar to that of
Eqs. (16) and (20). Then, each term can be assigned to
a different motional mode and the control fields for the
target displacements and scaling parameters can be cal-
culated in parallel, similar to the way in which parallel
Mølmer-Sørensen gates are constructed [70,71].

VI. DISCUSSION AND CONCLUSIONS

The use of spin-dependent squeezing operations
between trapped atomic ion spins is a powerful tech-
nique for generating a variety of many-body interactions.
By driving transitions near the first and second sideband
spectrum, the resulting spin-dependent displacement and
squeezing operations conspire to form families of spin-
entangling gates that implement interaction between N
bodies, while being robust to thermal motion of the ions.
We derive the Heisenberg equations of motion that enable
to shape the optical fields to achieve the desired evolu-
tion over all motional modes, including those off reso-
nance from the targeted sidebands. Finally, we numerically
demonstrate and analyze the operation of two different gate
families in an 11-ion chain.

Interestingly, the spin-dependent squeezing Hamilto-
nian, the terms of which are quadratic in the motional
creation and annihilation operators, allows displacement
operations with a linear spin dependence to produce non-
linear spin interactions. Our representation of the squeez-
ing action as a spin-dependent coordinate transformation
reveals the origin of this nonlinearity: while the rotation
angle and the squeezing parameter depend linearly on
the spins, the squeezing and rotation change the motional
coordinates and the underlying geometrical phase in a
nonlinear manner.

Remarkably, controllable interactions can be realized
despite the complex structure of the Hamiltonian. While
the Magnus expansion [1,70,72,73] or the Wei-Norman
factorization [5,39,74] provide a description of unitary
evolution under time-dependent displacement Hamiltoni-
ans, these techniques are not suitable for describing the
action of the time-dependent squeezing Hamiltonian with
more than one motional mode, owing to the nontermi-
nating commutation relation of quadratic bosonic Hamil-
tonians. In contrast, using the time-dependent coordinate
transformation in the Heisenberg picture uniquely deter-
mines the unitary evolution and, importantly, renders the
control problem tractable, where the number of equations,

030311-10



PROGRAMMABLE N -BODY INTERACTIONS WITH TRAPPED IONS PRX QUANTUM 4, 030311 (2023)

for a given order of interaction, scales linearly with the
number of ions in the chain. This allows the design of
pulses that disentangle the spins from the motional state
at the end of the gate, thus erasing any squeezing, rota-
tions, and intermode mixing of the motional modes that are
generated during the gate. Owing to the frequency selectiv-
ity of the modes, this can be done despite the dense mode
spectrum of the second sidebands and the presence of the
intermode coupling terms in the Hamiltonians.

The analysis in this work focuses on a simple proto-
col, which demonstrates the construction of high-order
spin-spin interactions and the disentanglement of spin
and motion degrees of freedom. Noisy control fields are
expected to generate errors in the unitary evolution of both
the displacement and squeezing operations, affecting the
overall gate fidelity. We expect that the present protocol
can be extended and optimized for robust performance in
the presence of noisy control fields, reminiscent of proto-
cols that optimize for the robustness of MS pairwise gates
under noisy control fields [9–11,75].

For practical applications, it is possible to further speed
up the gates by increasing the Rabi frequencies during the
squeezing operation (�i � ωk). This requires the consider-
ation of fast-rotating terms that can no longer be neglected
in the rotating-wave approximation. At these Rabi frequen-
cies, the displacement and squeezing Hamiltonians are
accompanied by additional terms, including off-resonant
coupling to the carrier transition and the first-sideband
spectrum. Off-resonant driving of the carrier transition
results in a one-body spin Hamiltonian that commutes
with HS and can be compensated at the end of the cir-
cuit via additional single-qubit gates. Off-resonant driving
of the first sideband transitions results in a spin-dependent
displacement Hamiltonian. Owing to the large detuning,
its action is akin to the regime used by quantum simu-
lators [1]; it leads to pairwise Ising interactions between
the driven spins and to very small spin-flip error that
scales as

∑
k(ηik�i/δk)

2 for the ith ion. The Ising inter-
actions can be suppressed by simultaneous application of
the displacement Hamiltonian with additional tones or by
Hamiltonian-engineering techniques [76,77].

N -body interactions between trapped neutral atoms or
ions have also been proposed in other architectures, using,
e.g., trap-mediated Rydberg interactions [78,79]. These
proposals operate in the dispersive regime, maintain a
nonzero spin-phonon entanglement [8], and are natively
limited to coupling between neighboring atoms unless the
trapping potential is shaped to soften the motional modes.
The proposal in this work, akin to MS gates, is not limited
to operation in the dispersive regime, nor to a particular
trapping potential. It might therefore be beneficial for dig-
ital quantum computation applications that harness control
over the radiation fields to disentangle spins and phonons
and benefit from dense and nonlocal connectivity between
the spins.

This work paves the way toward efficient realization
of complex building blocks for quantum computations
and simulations in trapped-ion systems. The tools and
concepts developed in this work might also find use in
other contexts. For example, they might have applications
in continuous-variable quantum information applications
[80–87] or in other physical systems manifesting coupling
between spins and bosonic modes that act as a quan-
tum bus, such as in superconducting circuits embedded in
microwave cavities or arrays of neutral atoms in optical
cavities.
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APPENDIX A: SQUEEZING OPERATION AS
COORDINATE TRANSFORMATION IN PHASE

SPACE

We can interpret the Bogoliubov transformation in
Eq. (5) via the simple transformation â′

k = x̂′
k + ip̂ ′

k =
S†
ψ ,χ âSψ ,χ , where x̂′

k and p̂ ′
k are the dimensionless quadra-

tures used to illustrate phase space in all figures. Then, the
equivalent transformation of these phase-space operators
in the Heisenberg picture reads

x̂′
k(t) =

M∑

m=1

λkm(t)x̂m + λkm̃(t)p̂m, (A1)

p̂ ′
k(t) =

M∑

m=1

λk̃m(t)x̂m + λk̃m̃(t)p̂m, (A2)

where k̃ = k + M and m̃ = m + M for brevity. The trans-
formation matrix λ(t) of size 2M × 2M is a function of ψ
and χ that is given by

λmk = Re(ψmk + χmk) and λm̃k̃ = Re(ψmk − χmk),
(A3)
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λm̃k = Im(ψmk + χmk) and λmk̃ = Im(χmk − ψmk).
(A4)

It preserves the commutation relations of x̂k and p̂k at any
time and mathematically corresponds to a linear symplec-
tic transformation. It therefore acts to scale, rotate, and
mix the different phase-space coordinates, as we illustrate
in Fig. 3. The components λkk and λk̃k̃ �= 1 change the
scaling of the coordinates of the kth mode in phase space
and the components λkk̃ and λk̃k �= 0 correspond to their
rotation. All other components correspond to correlated
mixing of the different modes: λkm and λk̃m̃ �= 0 mix the
coordinates of two different modes m �= k in the form of
correlated scaling (i.e., via two-mode squeezing) and λkm̃
and λk̃m �= 0 mix the two modes via correlated rotations
(i.e., by exchange of phonons between the modes).

We now discuss a specific representation of the coordi-
nate transformation defined byψ and χ and show how they
determine the evolution operator Sψ ,χ . The representation
we use supports the simple physical interpretation of scal-
ing and rotation of phase space by the end of the squeezing
evolution at time τs. Based on the polar decomposition car-
ried in Refs. [54,88], the complex scaling-parameters at a
given time t can be represented by

ψkm(t) = (cosh reiθ )km, (A5)

χkm(t) = (sinh reiϑe−iθT
)km, (A6)

where r(t), ϑ(t), and θ(t) are Hermitian, M × M matrices
and 1 ≤ m, k ≤ M . r(t) is a positive semidefinite matrix
that describes the degree of squeezing of phase space at
time t, ϑ(t) describes the axes of squeezing in phase space
at time t, and θ(t) describes all phase-space rotations at
time t. The roles of these different matrices can also be
seen via explicit representation of the evolution operator
by [89]

Sψ ,χ = e
1
2
∑

mk

(
â†

mâ†
k zmk−âmâkz†

mk

)

ei
∑

mk θmkâ†
mâk , (A7)

where z(t) = reiϑ is a symmetric matrix that represents the
multimode squeezing in a polar form. The first exponen-
tial map in Eq. (A7) is the multimode squeezing operator,
which mixes and scales the phase spaces of the modes,
and the second exponential term is a beam-splitter term,
which rotates and mixes phase space. The representation
in Eq. (A7) uniquely determines the evolution operator,
which establishes a relation to the transformation param-
eters via Eqs. (A5) and (A6) by

r = log
(√
ψψ† +

√
χχ†

)
, (A8)

θ = −i log
((√

ψψ†
)−1

ψ

)

, (A9)

where all operations including log () and √ are full matrix
operations. Equation (A9) is derived by inverting Eq. (A5)
as eiθ = (cosh r)−1ψ and using (cosh r)2 = ψψ†. For
other representations of Sψ ,χ , see Refs. [90,91].

It is insightful to consider the values of the transfor-
mation λ(τs) for some particular sets of target values.
Specifically, we consider cases for which the target matri-
ces r(τs) and θ(τs) are nearly diagonal and for ϑ(τs) that is
nearly the zero matrix. The former condition minimizes the
mixing between different modes by the squeezing interac-
tion, whereas the latter condition aligns the squeezing and
antisqueezing axes to be predominantly along the x̂k and
p̂k coordinates in all 1 ≤ k ≤ M phase spaces. Under these
conditions, the transformation matrix is given to zeroth
order by
(
λmm λmm̃
λm̃m λm̃m̃

)

≈
(

ermm 0
0 e−rmm

)

×
(

cos θmm − sin θmm
sin θmm cos θmm

)

,

(A10)

where all other m �= k coefficients are small:

λmk, λmk̃, λm̃k, λm̃k̃ � 1. (A11)

In this representation, the phase-space coordinates trans-
form by a two-stage process. First, the x̂m and p̂m coordi-
nates of the mth mode are rotated by an angle θmm. Then,
the rotated coordinates are scaled by a factor ermm along the
rotated x̂m and by a factor e−rmm along the rotated p̂m.

APPENDIX B: THE REACHABLE SET OF
EFFECTIVE HAMILTONIANS

In this appendix, we construct the Lie algebra L, the
elements of which compose the reachable set of effec-
tive time-independent Hamiltonians that can be realized
by the time-dependent Hamiltonian HS + HD. This set is
constructed by repeated application of the commutator
operation over the operators appearing in the Hamiltonian.
First, we construct the elements of the simple Lie algebra
span(S) that is associated with the squeezing Hamiltonian.
We do so by commuting the operators that appear only in
the squeezing Hamiltonian. This Hamiltonian contains the
set of operators

S1 = {s(1)i (â
2
m ± â†2

m ), s
(1)
i (âmâk ± â†

mâ†
k)} (B1)

for 1 ≤ k, m ≤ M and m �= k, where s(1)i = σ
(i1)
x and 1 ≤

i1 ≤ M . The operator s(n)i compactly denotes a product of
n spin operators by

s(n)i = σ (i1)x ⊗ . . .⊗ σ (in)x , (B2)

where the vector i = (i1, . . . , in) indexes all possible spin
combinations that appear in the product via 0 ≤ n ≤ M .
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Using the bosonic commutation relations [âm, â†
k] = δmk

and [âm, âk] = 0 and the identities
[
â2

m, â†2
m

] = 4â†
mâm + 1

2 and
[
âmâk, â†2

m

] = 2â†
mâk,

(B3)

by commuting the terms in S1 we find the linearly inde-
pendent set of operators

S2 = {s(2)i (â
†
mâm + 1

2 ), s
(2)
i (â

†
mâk ± âmâ†

k)}, (B4)

where s(2)i = σ
(i1)
x σ

(i2)
x and 1 ≤ i1, i2 ≤ M . Commutation

of the different terms in S1 with the terms in S2 and use
of the identities

[
â2

m ± â†2
m , â†

mâm
] = 2(â2

m ∓ â†2
m ) and

[
âmâ†

k , â†2
m

]
= 2â†

mâ†
k , (B5)

yields the linearly independent set of operators

S3 = {s(3)i (â
2
m ± â†2

m ), s
(3)
i (âmâk ± â†

mâ†
k)}, (B6)

where s(3)i = σ
(i1)
x σ

(i2)
x σ

(i3)
x and 1 ≤ i1, i2, i3 ≤ M . Simi-

larly, commutation of the terms S1 with the terms in S3
as well as commutation of terms in S2 with terms in S2
yields the set of operators

S4{s(4)i (â
†
mâm + 1

2 ), s
(4)
i (â

†
mâk ± âmâ†

k)}, (B7)

where s(4)i = σ
(i1)
x σ

(i2)
x σ

(i3)
x σ

(i4)
x and 1 ≤ i1, i2, i3, i4 ≤ M .

It is therefore evident that for every Sn that is constructed
by n − 1 commutations of the terms in S1, the motional
operators would maintain their quadratic form and be mul-
tiplied by a product of n spin operators. The set S is then
constructed by

S = S1 ∪ . . . ∪ SM , (B8)

which yields

S = {âkâms(no)
i , â†

k â†
ms(no)

i , (â†
k âm + 1

2δmk)s
(ne)
i }, (B9)

where no (ne) run over all odd (even) values of n. Mathe-
matically, if we consider the set along an eigenstate of the
spin operators, then S corresponds to the simple Lie group
Sp(2M , R) [55].

Interestingly, S extends the set of operators that directly
appear in the Hamiltonian HS, introducing new spin-
motion terms in the unitary evolution. From the spin sector,
the squeezing interaction generates products of n > 1 spin
operators, whereas HS contains a single spin operator (n =
1 in Eq. (B2)). From the motional sector, new terms that are
proportional to (â†

k âm + 1
2δmk) appear, which act to rotate

the phase-space coordinates as visualized in Fig. 3. How-
ever, as the quadratic dependence of the motional operators
in S is preserved, the motional identity 1 that can be asso-
ciated with a motion-independent effective Hamiltonian is
not generated.

The Lie algebra associated with the total displacement
and squeezing Hamiltonian is given by L = span(S ∪ D).
To construct the operators in D, we first identify the
operators that are generated solely by the displacement
Hamiltonian corresponding to the sets

D1 = {s(1)i âk, s(1)i â†
k} and D2 = {s(2)i }, (B10)

where D1 corresponds to the linearly independent set of
operators appearing in HD and D2 is generated by commu-
tation of the elements in D1. As the terms in D2 trivially
commute, absent the squeezing interaction DMS = D1 ∪
D2 manifests the reachable set by the MS-type interaction,
corresponding to motional displacements that are linear in
the spin operators and pairwise spin-spin interactions.

With the introduction of the squeezing Hamiltonian,
this reachable set can be further extended. Using the sim-
ple commutation relations [â2

k , â†
k] = 2âk and [â†2

k , âk] =
−2â†

k , we can commute the terms in D1 with the terms
in S1 for n ≥ 1 times and by that construct the sets
D̃n = {s(n+1)

i âk, s(n+1)
i â†

k}. Further commutation of these
sets yields the motion-independent set D̃0 = {s(j )i |1 ≤ j ≤
M }. These sets can finally be united to construct

D = D̃0 ∪ D̃1 ∪ . . . ∪ D̃M−1, (B11)

which corresponds to

D = {âks
(n)
i , â†

ks
(n)
i ,1s(n)i }, (B12)

thus containing the target n-body terms 1s(n)i that we aim
to generate.

APPENDIX C: NUMERICAL IMPLEMENTATION
OF OPTIMAL-CONTROL SOLVER

In this appendix, we describe the optimal-control tools
used to compute the control fields for the displacement and
squeezing operations in Sec. V. We first describe the sys-
tem parameters for which the calculation is demonstrated.
We consider a linear chain of 11 ions in a quadratic poten-
tial. We assume the single ion axial and secular radial
frequencies ωz = 0.39 MHz and ωr = 3 MHz, which
determine the positions of the ions, the mode spectrum,
and the mode participation factors. We order the radial
modes that are used for coupling the ions in a decreasing
order, corresponding to the ordered set of frequencies ωk ∈
{3, 2.981, 2.954, 2.919, 2.878, 2.830, 2.775, 2.713, 2.645,
2.569, 2.484} MHz for 1 ≤ k ≤ 11. We assume a single-
ion Lamb-Dicke parameter of η ≡ δK

√
�/2Mωr = 0.1
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for the driving field and that the bichromatic field couples
to the modes along a single radial axis. We also limit the
drive-field amplitude quadratures of each ion,�(i)x and�(i)y ,
to be � 0.3 MHz.

1. optimal control of spin-dependent displacements

We use a simple optimal-control tool to calculate the
control fields �(i)x (t) and �(i)y (t) for a specific ion i given
a target displacements vector α(τd). Standard optimization
tools that calculate the temporal shape of the control fields
for the MS gate typically require disentanglement condi-
tions for all modes and a target accumulated geometric
phase. To realize the protocol in Sec. IV, we instead aim
for a nonzero displacement vector but have no requirement
on the geometric phases that are accumulated in a single
stage of the evolution, owing to driving a single spin at a
time.

We assume that the control fields are decomposed
into Nd intervals of duration τ , maintaining a constant
amplitude in each segment. Mathematically, they take the
form �(i)q (t) = ∑Nd

p=1�
(i)
q,pw(t/τ , (p − 1), p) for q ∈ {x, y},

where w(t/τ , (p − 1), p) is the rectangular window func-
tion returning 1 if (p − 1)τ ≤ t ≤ pτ and zero otherwise.
�(i)q,p are the list of 2Nd amplitudes that we aim to find and
τd = Ndτ is the overall pulse duration. We use τd = 50 µs
and Nd = 40.

For driving a single spin, the target complex displace-
ments correspond to Eq. (3), the matrix form of which is
given by

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Re(αi1)
...

Re(αiM )

Im(αi1)
...

Im(αiM )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

d11 · · · d1M d̃11 · · · d̃1M
...

. . .
...

...
. . .

...
dM1 · · · dMM d̃M1 · · · d̃MM

d̃11 · · · d̃1M −d11 · · · −d1M
...

. . .
...

...
. . .

...
d̃M1 · · · d̃MM −dM1 · · · −dMM

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

�
(i)
x,1
...

�
(i)
x,Nd

�
(i)
y,1
...

�
(i)
y,Nd

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (C1)

Here, we use the 2M × 2Nd matrix d, the elements of
which are given by

dkp = −ηnksinc( δkτ2 ) cos
(
(p + 1

2 )δkτ
)

, (C2)

d̃kp = +ηnksinc( δkτ2 ) sin
(
(p + 1

2 )δkτ
)

, (C3)

for 1 ≤ j ≤ M and 1 ≤ p ≤ Nd.

For the case ND > M considered here, Eq. (C1) has
an infinite number of solutions, meaning that there are
many phase-space trajectories that can end at the target dis-
placements vector at time τd. Here, we calculate a single
solution by applying the Moore-Penrose pseudoinversion
in Eq. (C1). This particular operation yields the control
field vector with the least norm among all solutions, cor-
responding to the wave form with the lowest average
power.

2. Optimal control of spin-dependent scaling and
rotations

To find the control fields �(i)x (t),�
(i)
y (t) that yield

the target mode-mixing parameters ψkm(τs),χkm(τs), we
use the open-source quantum optimal-control algorithm
GRAPE, implemented in PYTHON [57,58]. We first sim-
plify Eqs. (10) and (11) by describing the evolution
in a frame that rotates at frequency �k/2 by defin-
ing the rotated mixing parameters ψ̃km = ei�kt/2ψkm and
χ̃∗

km = e−i�kt/2χ∗
km. Under these transformations, Eqs. (10)

and (11) become

∂tψ̃km = i
2�kψ̃km − i

∑

l

hklχ̃
∗
lm, (C4)

∂tχ̃
∗
km = − i

2�kχ̃
∗
km + i

∑

l

h∗
klψ̃lm, (C5)

where the time dependence is then determined only by
the control fields in hkl(t) [cf. Eq. (9)]. For the numerical
implementation, we use a compact vector format

ψ̄m = (ψ̃1m, . . . , ψ̃Mm, χ̃∗
1m, . . . , χ̃∗

Mm)
T (C6)

and explicitly account for the spin state of the driven ions
using the extended basis ψm = ψ̄m ⊗ |σn〉. Here, |σn〉 are
the computational-basis vectors of the spins in the x basis
(i.e., corresponding to the eigenstates of the σ (i)x opera-
tors with eigenvalues ±1 for all 1 ≤ i ≤ NS), which enable
the representation of all 1 ≤ n ≤ 2NS spin configurations in
Hilbert space. For practical implementation, we consider
only the spin states that are associated with the NS ≤ N
ions that are driven by the squeezing beams. While the
Hilbert space grows exponentially with NS, importantly,
we note that NS scales with the order of the interaction N
and not with the number of ion spins in the chain M . For
the applications we consider in this work, the exponential
increase is modest because NS = N − 2 = 2 for the four
body gate in Sec. V A and NS = N = 4 for the polynomial
spin operator in Sec. V B.

To render the time-dependent transformation in Eqs. (C4)
and (C5) compatible with the formalism of GRAPE, we
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cast them in the form

∂tψm = Hψm, (C7)

where the symmetric matrix H is given by

H = i
2 sz ⊗�⊗ 1σ + 1

2

M∑

i=1

(�(i)x sx +�(i)y sy)⊗ η2
i ⊗ σ (i)x .

(C8)

We use η2
i to denote the M × M matrix the elements

(η2
i )mk = ηimηik of which describe the coupling between

the mth and kth modes via the ith ion.� denotes a diagonal
M × M matrix with nonzero elements �k on the diagonal.
We denote by sx, sy , and sz the 2 × 2 Pauli matrices, which
are unrelated to the spin operators but, rather, construct the
correct relations between the mode-mixing parameters ψ̃mk
and χ̃∗

mk in Eq. (C6). For clarity, we denote the identity spin
matrix by 1σ .

In this form, the operator H is a (2NS+1M )× (2NS+1M )

matrix that can be decomposed into the time-independent
drift Hamiltonian Hdrift = i

2 sz ⊗�⊗ 1σ and the 2NS con-
trol Hamiltonians taken from the set {sx ⊗ η2

in ⊗ σ (in)x , sy ⊗
η2

in ⊗ σ (in)x } with 1 ≤ n ≤ 2NS, where the vector in denotes
the indices of the interacting ions. We simultaneously solve
these equations by considering an optimization toward an
objective “gate” X (τs) the columns of which are com-
posed of the target vectors ψm. As the dimensions of
X are 2NS+1M × 2NS M , we technically expand it into
a rectangular matrix by adding the 2NS M column vec-
tors (χ̃1m, . . . , χ̃Mm, ψ̃∗

1m, . . . , ψ̃∗
Mm)

T ⊗ |σq〉 for 1 ≤ q ≤
2NS and 1 ≤ m ≤ M (which physically corresponds to the
transformation of â†′). We also assume that X (0) is the
identity matrix. As the dynamics are not unitary but, rather,
complex symplectic, we use the “GEN_MAT” dynamic evo-
lution type of the algorithm, the “trace difference” as the
fidelity measure, and the BFGS algorithm for the optimiza-
tion method. For the calculation in this work, we assume
that the control fields are composed of up to 70 segments.

3. Performance estimation of the pulse shaping

We estimate the performance of the numerically calcu-
lated pulses using two different complementary metrics.
The first metric estimates the overlap of the numerically
calculated evolution operator S1 of a single squeezing stage
with respect to the target evolution operator S2. The error
for an imperfect overlap depends on the projected quantum
state; for simplicity, we consider the motional ground state
and take the average error over all 2NS spin configurations
in the x basis. This first fidelity metric is given by

F1 = 1
2NS

2NS∑

n=1

| 〈0, σn| S1S†
2 |0, σn〉 |2. (C9)

To calculate this fidelity yet avoid an explicit represen-
tation of the motional operators using Fock states, we
follow Ref. [89] and for each spin configuration labeled
by 1 ≤ n ≤ 2NS directly compute

F1 = 1
2NS

2NS∑

n=1

exp
(

Tr
(
log (Q(n)

3 )
))

, (C10)

where the operators

Q(n)
3 =

√

1 − T(n)3 T(n)†3 , (C11)

T(n)3 = (Q(n)
1 )

−1(T(n)1 + T(n)2 )(1 + T(n)†1 T(n)2 )−1Q(n)T
1

(C12)

are cast through the representation of the numerical (q = 1)
and target (q = 2) transformation matrices rq [cf. Eq. (A8)]
by T(n)q = tanh (r(n)q ) and Q(n)

q = sech(r(n)q ). The matrices
rq for q ∈ {1, 2} are block-diagonal matrices with 1 ≤ n ≤
2NS blocks, where r(n)q denotes the nth block. Similar to
Appendix A, all of the above operations are full matrix
operations.

The fidelity F1 is sensitive predominantly to residual
coupling of spin and motion with respect to the target evo-
lution. To ensure that the overall target spin Hamiltonian is
obtained, we calculate a second fidelity metric,

F2 = 1 − 1
2N

∑

n1,n2

|�(1)
n1n2

−�(2)
n1,n2

|, (C13)

where 1 ≤ n1, n2 ≤ 2N . The numerically calculated and
target geometric phase operators, �(1) and �(2), respec-
tively, are numerically evaluated using Eq. (14). We recall
that these geometric phases are associated with the effec-
tive spin Hamiltonians in Eq. (15) and are numerically
represented in the x basis. Our numerical pulse-shaping
optimization is stopped when the conditions (F1)

4,F2 >

0.999 are both satisfied.

APPENDIX D: EQUIVALENT QUANTUM
CIRCUITS

The quantum circuits discussed in Sec. V C are shown
in Fig. 8. The circuit in Fig. 8(a) constructs the stabilizer
gate operator U = exp(−i�σ(0)z σ (1)z σ (2)z σ (3)z ) for qubits 0,
1, 2, and 3 presented in the z basis (in the main text we use
the x axis; however, basis transformation can be realized
with a set of one-qubit operations). It is decomposed of
six CNOT gates (light-blue symbols) and a single one-qubit
gate (light-red rectangles). The one-qubit operation acting
on qubit i is given by either

U3(α,β, γ ) = R(i)z (β)R
(i)
x (−π

2 )R
(i)
z (α)R

(i)
x (

π
2 )R

(i)
z (γ )

or by U1(α) = eiα/2R(i)z (α), where R(i)z (α) = e−iασ(i)z /2 and
R(i)x (α) = e−iασ(i)x /2 are the operators rotating the qubit
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(a)

(b)

FIG. 8. Equivalent circuits for the gates in Secs. V A and V B in the main text that consist of (a) six and (b) 16 two-qubit gates,
respectively.

around axes z and x in the Bloch sphere, respectively. The
CNOT gates between qubits i and j are given by the operator
exp

(
−iπ4 (1

(i)
σ 1

(j )
σ − σ (i)z 1

(j )
σ )(1

(i)
σ 1

(j )
σ − 1(i)σ σ

(j )
x )

)
and are

equivalent to MS gates up to additional one-qubit gates.
The circuit in Fig. 8(b) composes the polynomial gate

operator

U = exp

(

−i�
3∏

i=0

(1(i)σ + tanh (ξ)σ (i)z )

)

,

for ξ = 0.325 and � = π . For this gate, we use numeric
rather than parametrized values because this improves the
transpiled circuit by the QISKIT optimizer in terms of the
two-qubit gate count.
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