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Synchronization of strongly interacting alkali-metal spins
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The spins of gaseous alkali-metal atoms are commonly assumed to oscillate at a constant hyperfine frequency,
which for many years has been used to define a standard unit of time, the second. Indeed, under standard
experimental conditions, the spins oscillate independently, only weakly perturbed and slowly decaying due to
random spin-spin collisions. Here we consider a different, unexplored regime of very dense gas, where collisions,
more frequent than the hyperfine frequency, dominate the dynamics. We find that the hyperfine oscillations become
significantly longer lived, and their frequency becomes dependent on the state of the ensemble, manifesting strong
nonlinear dynamics. We reveal that the nonlinearity originates from a many-body interaction which synchronizes
the electronic spins, driving them into a single collective mode. The conditions for experimental realizations of
this regime are outlined.
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I. INTRODUCTION

Binary collisions are a fundamental relaxation mechanism
in atomic spin ensembles. During a collision, a pair of atoms
within the ensemble briefly interacts, and its mutual electronic
wave function is altered. Since the impact parameters are ran-
dom, the quantum state of the ensemble relaxes at a rate R, pro-
portional to the collisions rate � [1]. This prevailing relaxation
mechanism limits the sensitivity of shot-noise-limited atomic
sensors [2], such as magnetometers [3,4], gyroscopes [5],
accelerometers [6], and clocks [7–11]. It is often desirable to
increase the density of the ensemble in order to either increase
the signal-to-noise ratio or allow for miniaturization of the
device. However, with the increased density, the collisional
relaxation rate R ∼ � increases, yielding no improvement in
the sensor sensitivity [2].

Polarized alkali-metal ensembles were shown to overcome
this limit at low magnetic fields [12–14]. When the Zeeman
splitting ωB satisfies ωB � �, the magnetic Zeeman coher-
ences undergo a process akin to motional narrowing via fre-
quent spin-exchange collisions. The relaxation rate is reduced
to R ∼ ω2

B/� and so is the magnetic linewidth. This effect,
denoted as spin-exchange relaxation free (SERF), stimulated
the development of SERF magnetometers with unprecedented
sensitivities [15].

While the SERF effect protects the Zeeman coherences at
high atomic densities, the hyperfine coherences widely used
for quantum information applications [16–18], radio astron-
omy [19], and atomic clocks [7–11] are subject to rapid relax-
ation rates R ∼ �. Based on previous works which neglected
the nonlinearity of the spin-exchange interaction [12], it is
widely accepted that increased density yields faster hyperfine
decoherence. In this paper, we prove the opposite. We derive
the collisional dynamics of a dense ensemble and find that
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the hyperfine coherence time increases significantly at high
densities. We further show that rapid spin-exchange collisions
synchronize the individual spins to a single frequency, which
depends on the collective spin magnitude, leading to a unique
nonlinear many-body dynamics.

II. MODEL

Consider first a toy model of N alkali-metal atoms, the
ground level of which encompasses an electronic spin S = 1/2
and a nuclear spin I = 1/2. Most standard models describe
the spin state and interactions with an effective ensemble-
averaged set of equations [1,12,20,21]. Here we generalize
these derivations and describe the many-body dynamics of the
different atoms using a general master equation formalism of
open quantum systems (see Appendix A for the full derivation).
The atomic state of the nth atom is described by the observables
of electronic spin Sn, nuclear spin In, and hyperfine coherence
An ≡ Sn × In. The electrons are internally coupled to their
nuclei by the hyperfine interaction ωnSn · In, while every pair
of electrons Sn, Sm experiences spin-exchange interaction at a
time-averaged rate �mn. At time scales longer than the time
between collisions ∼(

∑
m �mn)−1, the coherences between

different atoms average to zero due to the randomness of
collisions [1]. The many-body dynamics of the atoms can then
be represented by a compact set of 9N nonlinear first-order
Bloch equations:

d

dt
〈Sn〉 = ωn〈An〉 +

∑
m

�mn(〈Sm〉 − 〈Sn〉), (1)

d

dt
〈In〉 = −ωn〈An〉, (2)

d

dt
〈An〉 = − ωn

2
(〈Sn〉 − 〈In〉) −

∑
m

�mn〈An〉 (3)

+
∑
m

�mn〈Sm〉 × 〈In〉.
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The first term in Eqs. (1)–(3) describes the hyperfine precession
of 〈Sn〉 and 〈In〉 through the coupling with the hyperfine-
coherence vector 〈An〉. The second term in Eq. (1) describes
the collisional exchange between the nth electronic spin and
all its neighbors. This term tends to synchronize all 〈Sn〉 by
equilibrating them with the other electronic spins 〈Sm〉. In
Eq. (3), the second term describes a decay of the hyperfine
coherences at a rate

∑
m �mn, and the last term describes the

nonlinear coherence buildup, a result of the spin-conservative
part of the collisional interaction.

Spin may be exchanged between atoms when they collide,
but their total spin is conserved. Defining the atomic spin
operators Fn = Sn + In, we find from Eqs. (1)–(3) that the
total spin of the ensemble 〈F〉 ≡ ∑

n 〈Fn〉 is constant. In
practice, this property holds for time scales shorter than the
spin destruction rate of the ensemble (see Appendix B). As no
external magnetic field is included, the model is isotropic, and
the constant 〈F〉 essentially sets a preferred direction.

III. MEAN-FIELD SOLUTION

We first consider the mean-field solution of Eqs. (1)–(3),
assuming that ωn → ω, �mn → �/N , and 〈Fn〉 → 〈F〉. It
follows that 〈Sn〉 = ∑

n 〈Sn〉/N ≡ 〈S〉, satisfying

¨〈S〉 + � ˙〈S〉 + ω2(〈S〉 − 1/2〈F〉) − ω�〈F〉 × 〈S〉 = 0. (4)

Since 〈F〉 is constant, Eq. (4) is a set of three linear nonhomo-
geneous equations, the general solution of which is

〈Sq〉 = 1

2
〈Fq〉 +

2∑
i=1

a
q

i e−λ
q

i t .

Here, the subscript q = 0,± denotes the three directions
ẑ,(x̂ ± iŷ )/

√
2, with the ẑ axis defined as the direction of the

vector 〈F〉, and the six coefficients a
q

i determine the weights
of the modes and depend on the initial condition of the spins.
The time-dependent dynamics are described by six complex
eigenvalues⎛

⎜⎝
λ0

1,2

λ+
1,2

λ−
1,2

⎞
⎟⎠ = 1

2

⎛
⎜⎝

−� ± √
�2 − 4ω2

−� ±
√

�2 + 4i�ω|〈F〉| − 4ω2

−� ±
√

�2 − 4i�ω|〈F〉| − 4ω2

⎞
⎟⎠, (5)

where λ0
1,2, λ+

1,2, and λ−
1,2 are the eigenvalues of 〈S0〉, 〈S+〉,

and 〈S−〉, respectively. The real part of these eigenvalues,
associated with the relaxation rate R, is shown in Fig. 1(a)
for a partially polarized ensemble |〈F〉| = 1/2.

In standard hot vapor experiments, the alkali-metal densities
are kept low, such that � � ω. In this regime, the eigenvalues
in (5) are approximately given by⎛

⎜⎝
λ0

1,2

λ±
1

λ±
2

⎞
⎟⎠ ≈

⎛
⎜⎝

±iω − �/2

±iω − (1 − |〈F〉|)�/2

±iω − (1 + |〈F〉|)�/2

⎞
⎟⎠. (6)

The oscillation frequency of the hyperfine coherences
|Im(λ)| = ω is constant. The relaxation rate of the λ0

1,2 modes,
associated with the so-called clock transition (0 − 0) used
by atomic frequency standards [7,9,10], is R = �/2. The
end resonances relax at R = (1 − |〈F〉|)�/2, leading to the
well-known line narrowing for |〈F〉| → 1 [11].

In the strong-interaction regime � 
 ω, the hyperfine
oscillation is strongly perturbed by spin-exchange collisions,
and the eigenvalues in (5) become

⎛
⎜⎜⎜⎝

λ0
2

λ0
1

λ±
2

λ±
1

⎞
⎟⎟⎟⎠ ≈

⎛
⎜⎜⎜⎝

−�

−ω2/�

±iω|〈F〉| − �

±iω|〈F〉| − (1 − |〈F〉|2)ω2/�

⎞
⎟⎟⎟⎠. (7)

We find that the relaxation of the λ
±,0
1 modes scales as

ω2/�, which we attribute to motional narrowing; increasing
the collision rate � slows down the hyperfine decoherence.
We denote this property as hyper-SERF, as the hyperfine
coherences become free from spin-exchange relaxation. Fur-
thermore and quite uniquely, the hyperfine frequency becomes
dependent on the absolute magnitude of the spin |〈F〉|. The
modified frequency of the λ±

1,2 modes, shown in Fig. 1(b), is
given by ω|〈F〉|. On the other hand, the λ0

1,2 modes have no
oscillatory terms, indicating that the 0-0 clock-transition will
“stop ticking.”

IV. MANY-BODY SPIN DYNAMICS

To understand the nature of this mechanism, we generalize
the mean-field result by numerically solving Eqs. (1)–(3) and
obtaining the many-body dynamics of the spins. The initial
values of 〈Sn〉, 〈In〉, 〈An〉 are derived from the initial density
matrices of the atoms ρn. We start with an optically pumped
vapor in a spin-temperature distribution ρ̃n = exp(−βF z

n )/Z,
where 0 � β � 1 determines the degree of polarization, and
Z is a normalization factor [21]. To generate initial hyperfine
coherences, we perturb ρ̃n by tilting the electronic spins by
angles θ

y
n , θz

n and the nuclear spins by angles φ
y
n, φz

n, such that
ρn = Unρ̃nU

†
n with the rotation matrices

Un = eiθz
nSzeiθ

y
n Sy eiφz

nIzeiφ
y
n Iy .

We first simulate the mean-field solution for N = 100, ωn = ω,
and �mn = �/N , as shown in Fig. 2. The initial conditions are
given by θz

n = φ
y
n = φz

n = 0, θy
n = π/8, and β = 0.51 (|〈F〉| =

1/4). We find indeed that the coherence time of the mean spin
〈Sx〉 is improved at high collision rate �. We further simulate

FIG. 1. (a) Relaxation rates of the hyperfine coherences for I =
1/2 and |〈F〉| = 1/2. At high collision rates � 
 ω (high densities),
the relaxation of the λ

±,0
1 modes decreases. (b) Modified hyperfine

frequencies. At high collision rates, the oscillation frequency of the
hyperfine coherences becomes linearly dependent on the magnitude
of the spin |〈F〉|.
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FIG. 2. Numerical simulation of the mean-field case. The coher-
ence time revives at high densities � 
 ω.

the many-body dynamics of the spins for unequal initial
values and unequal interaction strengths ωn and �mn. We set
β = 0.73 (|〈F 〉| = 0.32), θ

y
n , θz

n ∼ N (π/3, π/15), φy
n , φz

n ∼
N (π/6, π/30), randomly sampled from a normal distribution
N (μ, σ ) with mean μ and standard deviation σ , resulting with
unequal initial spin orientations. The collision rates �mn =
�pmn are set by generating a random double stochastic matrix
pmn. For the generality of the model, we also allow a spread
for the atomic hyperfine frequencies ωn ∼ N (ω,ω/50). In the
standard, low-density, regime (� � ωn), the individual elec-
tronic spins precess independently at their inherent frequencies
ωn, forming spiral trajectories around their local spin vectors
〈Fn〉, as shown in Fig. 3. The local spin vectors slowly relax to
their equilibrium state 〈Fn〉 → 〈F〉 = 1

N

∑
n 〈Fn〉 due to spin-

exchange collisions, at a rate R ∼ �/2. As a result, the spin
coherences decay, and the center of each spiral adiabatically
follows 〈Fn〉. The mean electronic spin 1

N

∑
n 〈Sn

x 〉 (black
line in Fig. 3) decays faster than the individual spins 〈Sn

x 〉.
This results from an additional (inhomogeneous) dephasing of
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FIG. 3. Precession of the electronic spins in the standard, low-
density regime with � = ω/100 (25 out of N = 100 simulated spins
are shown). Each electronic spin 〈Sn〉 precesses independently around
its local vector 〈Fn〉, slowly decaying due to collisions. The mean
electronic spin (black) precesses around the conserved spin 〈F〉 (black
dotted line), dephasing at an increased rate R ∼ max(�,�ω).
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FIG. 4. Synchronization of the electronic spins in the strong-
interaction regime with� = 100ω (25 out ofN = 100 simulated spins
are shown). The electronic spins synchronize rapidly after t ∼ �−1

to a common electronic mode (black). The electronic spins precess
coherently at a modified, spin-dependent, frequency � and decay at
a slow rate R ∼ ω2/�.

the different hyperfine frequencies ωn with a relaxation rate
R ∼ [

∑
n(ωn − ω)2]1/2 ≡ �ω.

In the strong-interaction regime (� 
 ω), the electronic
spins no longer precess individually, but rather synchronize to a
single trajectory as shown in Fig. 4. All spins precesses around
the mean spin 〈F〉 with identical frequency of oscillation �.
The synchronization time is rapid, scaling as �−1.

V. SPIN SYNCHRONIZATION

To reveal the synchronization mechanism, we expand
Eqs. (1)–(3) by the small parameter ω/�, keeping only second-
order terms (see Appendix C):

d

dt
〈Fn〉 =

∑
m

�mn(〈Sm〉 − 〈Sn〉), (8)

d

dt
〈Sn〉 ≈

∑
m

�mn(〈Sm〉 − 〈Sn〉) + ωn〈Fn〉 × 〈Sn〉

− ω2
n

�n

(〈Sn〉 − 1/2〈Fn〉). (9)

This set of equations is known as the “tops model” [22], with
ωn〈Fn〉 playing the role of a local external torque. The first term
in Eq. (9) initially dominates and synchronizes the electronic
spins over a transient time ∼�−1, as shown in Fig. 4. Once
the electronic spins are synchronized 〈Sm(t )〉 ≈ 〈Sn(t )〉, the
spin vectors 〈Fn〉 remain approximately constant [Eq. (8)].
The second term in Eq. (9) describes a local torque exerted
on 〈Sn〉 by the local field ωn〈Fn〉. We note that the directions
and magnitudes of these local fields could be random. The third
and least dominant term in Eq. (9) describes the slow relaxation
of the electronic spin 〈Sn〉 towards its steady value 〈Fn〉/2 at the
hyper-SERF rate ω2

n/�n. It is interesting to note that, although
the electronic spins are frustrated by the different local fields
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ωn〈Fn〉, the synchronization term overcomes this frustration
in the strong-interaction regime. As a result, the synchronized
electronic spins precess collectively around an effective mean
field:

� ≈ 1

N

∑
n

ωn〈Fn〉. (10)

Hence electronic spins with random initial orientations are
phase synchronized, and consequently precess coherently
around the vector �, with a new collective modified hyperfine
frequency �. Note that our result is valid also for the case
of nonequal frequencies ωn. This frequency depends on the
polarization of the spin vectors 〈Fn〉, recovering the mean-
field results when ωn = ω. Since the vectors 〈Fn〉 do not
synchronize, the directions of the nuclear spins 〈In〉 remain
unsynchronized as well. Nevertheless, the different nuclear
spins precess coherently, experiencing the slow electronic
relaxation ω2

n/�n.
It is also instructive to interpret our results from the view-

point of collision-driven thermal equilibration, by extending
the description of the SERF effect in Ref. [12] and considering
the hyperfine interaction as an out-of-equilibrium term. At low
atomic densities, spin-exchange collisions reduce the electron-
nuclear coherence, as they redistribute the electronic spin be-
tween different atoms. At the same time, the hyperfine interac-
tion strongly couples the nuclear spin to the electron spin within
each atom. Consequently, the system is driven into a so-called
spin-temperature distribution ρn = exp(− �βFn)/Z with no hy-
perfine coherence, thus maximizing the entropy of the spin de-
grees of freedom [23,24]. The mean thermalization rates of the
different hyperfine coherences correspond to the decay rates
of Eq. (6) (proportional to �). In contrast, at high atomic den-
sities, the electron spins alone quickly thermalize (at a rate �)
into a spin-temperature distribution ρs

n = exp(− �βsSn)/Zs

through the spin-synchronizing term in Eq. (1). This thermal-
ization leads to rapid loss of any initial correlations between
the electronic and nuclear spins, making the electronic spins
act as a single macroscopic magnetic moment on the nuclear
spins 〈An〉 ≈ 〈S〉 × 〈In〉. Application of this result to Eq. (1)
shows that | �βs | = 2atanh(2|〈S〉|) is constant in magnitude but
precesses according to ∂t β̂s = β̂s × �, i.e., the electronic spins
oscillate around the modified hyperfine vector �. In turn,
the nuclear spins precess around the electronic spin 〈S〉 as
suggested by Eq. (2), also with a precession frequency �.
Full thermalization of the nuclear spins happens slowly, at
an approximate rate ∼�(ω/�)2, where (ω/�)2 is the small
angular loss during the synchronization time, similar to the loss
in the standard SERF effect of the Zeeman coherences [12].

Our model predicts several new physical phenomena in
the strong-interaction regime � 
 ω. The first prediction is
the motional narrowing of the hyperfine coherence, leading
to its slow relaxation with a rate that scales as ω2/� rather
than �. The second prediction of the model is the nonlinear
splitting of the hyperfine levels, “dressed” by the collisional
interaction, such that both electronic and nuclear spins should
precess at a rate ω〈|F|〉. The splitting depends linearly on
the magnitude of the spin, and should therefore vary for
different optical-pumping rates. This dependence can thus lead
to intriguing nonlinear behavior when the probing scheme
inherently involves optical pumping, such as in coherent

FIG. 5. Numerical calculation of the hyper-SERF effect for I =
3/2, for different initial polarizations |〈F〉| . Shown are the dominant
relaxation rate of 〈Sx〉 (left) and its frequency (right). The results are
qualitatively similar to the I = 1/2 case (note that here the maximal
spin is |〈F〉| = 2).

population trapping [25]. A third prediction pertains to the case
of nonzero bandwidth �ω. For alkali-metal ensembles, a mix-
ture of different species with different hyperfine frequencies ωn

effectively features nonzero�ω. In these hybrid ensembles, the
electronic spins of all species would synchronize and oscillate
in a common mode. The synchronization mechanism can be
optically probed by measuring the oscillation frequency of
each species separately [26].

We analyzed above a toy model with I = 1/2 and no
magnetic field ( �B = 0). To verify that the hyper-SERF features
persist for I > 1/2 we numerically solved the master equation
[Eq. (A4)]. Figure 5 presents the dominant relaxation rate and
frequency of 〈Sx〉 for atoms with I = 3/2, initialized with
θz = φy = φz = 0, θy = π/8. These results show that the toy
model results are qualitatively valid for I > 1/2 spins. If a
magnetic field is applied, both the direction and magnitude of
〈F〉 could vary in the presence of collisions. At magnetic fields
B � 10 G, the Zeeman splitting is small (gsB � ω, where gs

is the gyromagnetic ratio), 〈F〉 slowly precesses around �B, and
our solution for the hyperfine coherences adiabatically follows
the instantaneous 〈F〉.

VI. EXPERIMENTAL ROADMAP

The hyper-SERF effect with I = 3/2 can be experimen-
tally realized using 41K, which has the lowest hyperfine
frequency 2ωK ∼ 254 (2π ) MHz (the factor of 2 enters since
I = 3/2). The density required for entering the strong-
interaction regime is nK > ωK/(σSEv̄) ≈ 5 × 1017 cm−3, where
v̄ ≈ 105 cm/s is the mean thermal velocity at T ≈ 600 ◦C
and σSE = 1.5 × 10−14 cm2 is the spin-exchange cross sec-
tion. High-temperature cells based on sapphire windows were
demonstrated [27], as sapphire can withstand alkali metal at
elevated temperatures for long time.

To observe hyper-SERF dynamics, relaxation mechanisms
of the vapor should be kept low with respect to the hyperfine
frequency. We propose to utilize a miniature cell of length L =
100 μm with 1 amagat of N2 buffer gas at T = 620 ◦C (corre-
sponding to nK = 2.1 × 1018 cm−3 and RSE = 3.2 × 109 s−1).
Estimation of the main relaxation mechanisms of the vapor
based on the theory in Refs. [28,29] yields RSD < 5 × 106 s−1

(see Appendix B), so that spin exchange dominates. The N2

buffer gas can mitigate both the interaction with the walls
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and other molecular relaxations. Choosing N2 also enables
efficient optical pumping at elevated densities, by quenching
excited-state alkali-metal atoms and, consequently, avoiding
spontaneous emission of stray photons [30]. An effective
optical depth of ∼700 is expected, with an optical linewidth
of ∼70 GHz dominated by alkali-metal self-broadening [31]
and pressure broadening. At these conditions the probability
to spontaneously radiate a photon is kept low (∼ 0.2%), and
the photon multiplicity is moderate (∼30), mitigating radiation
trapping [30]. Optical pumping at a rate of up to RP ≈ 1 GHz
can be realized with a circularly polarized laser beam at
the 1-W level, tuned near the D1 resonance line and cover-
ing the entire miniature cell. High spin polarization |〈S〉| =
1
2RP/(RP + RSD) could be reached, even in the presence of
a small molecular background that will be pumped through
chemical-exchange collisions [32]. RP can be experimentally
varied (e.g., by detuning the pumping light from resonance) to
verify the theoretical dependence on the spin polarization |〈F〉|.
The magnetic field should be either zeroed or aligned with the
optical-pumping axis for both efficient pumping and zeroing of
the Zeeman coherences. Initial excitation of the hyperfine co-
herence, in low magnetic fields, can be realized by application
of a magnetic field pulse which rotates the electron spin with
little direct effect on the nuclear spin (see Appendix B). The
spins can be monitored using standard schemes (e.g., absorp-
tion spectroscopy or off-resonant Faraday rotation) using fast
photodiodes, as the susceptibility of the vapor strongly depends
on the hyperfine coherence [33]. Fast optical modulators [34]
can be used to switch off the optical pump beam, eliminating
pump-induced relaxation during the measurement.

VII. CONCLUSION

In conclusion, we have shown that at high spin-exchange
rates the oscillation frequency of the hyperfine coherence is no
longer constant. Instead, many-body interactions govern the
dynamics of the spins, resulting in a collectively synchronized
and surprisingly coherent spin state. Operation at high alkali-
metal densities along with maturity of miniaturized high-
temperature cells could lead to the emergence of highly sen-
sitive or highly nonlinear applications in small-scale devices.
These include, for example, miniature SERF magnetometers
for geomagnetic fields and potentially new applications of
multiphoton processes such as coherent population trapping.
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APPENDIX A: DERIVATION OF THE MANY-BODY
MASTER EQUATIONS

The dynamics of dense thermal alkali-metal spins is usually
described by a mean density matrix ρ̄ satisfying the Liouville

equation [1,20]. This evolution yields the average spin prop-
erties of the gas. Including the spin-exchange interaction, this
equation is given by [see Eq. (10.20) in [1]]

∂t ρ̄ = − i

h̄
[H0, ρ̄] + �〈Scρ̄S†

c − ρ̄〉c, (A1)

where H0 is the single-atom hyperfine interaction Hamiltonian,
and Sc is the alkali-metal–alkali-metal scattering matrix for
a specific collision event, characterized with a particular set
of collisional parameters (including the impact parameter, the
orbital plane, and the instantaneous velocity) which are labeled
with a subscript “c”. � is the mean collision rate and 〈· · · 〉c
denotes an ensemble average over the possible collisional
realizations.

Here we generalize this equation to describe the many-body
dynamics of N ≫ 1 different spins, which would finally yield
Eqs. (1)–(3). We define ρ as the global density matrix of the
vapor, describing the state of the N electronic and N nuclear
spins in the electronic ground state. Spin-exchange collisions
of alkali-metal atoms are binary and sudden [1], such that
after a collisional event c between the mth and nth atoms the
density matrix evolves as ρ → S (mn)

c ρS (mn)†
c where S (mn)

c is
the scattering matrix of the c collisional event, operating on
the bipartite state of the density matrix within the mth and nth
atomic subspace. On average, the many-body density matrix
of the spins ρ would evolve as

ρ(t + dt ) = − i

h̄
[H0, ρ]dt +

∑
m,n

∑
c

pmn
c (dt )S (mn)

c ρS (mn)†
c

+ [
1 − pmn

c (dt )
]
ρ(t ).

Here the first term describes the unitary evolution of the spins
with H0 = h̄

∑
n ωnIn · Sn being the hyperfine Hamiltonian

of all particles. The second term describes the collisional
interaction between the particles: pmn

c (dt ) is the probability
that a specific pair of atoms m and n had collided during
a time interval dt where c labels a set of specific collision
parameters. pmn

c (dt ) is determined by the kinetic theory
of thermal atoms, and on average has a memoryless time
dependence (see Chap. 12 in [35]) such that pmn

c (dt ) =
[1 − exp (−�dt )]p̃mn

c ≈ p̃mn
c �dt , where � is the hard-sphere

collision rate and p̃mn
c depends on the relative distance and

velocity of the two atoms and is nonzero when the atoms are
close to each other (on the order of the mean free path). We
then find the Liouville equation

∂tρ = − i

h̄
[H0, ρ] + �

∑
m,n

∑
c

p̃mn
c (S (mn)

c ρS (mn)†
c − ρ),

(A2)
describing the state of the vapor for times shorter than
other relaxation rates and spatial diffusion (see Appendix B).
The collisional scattering matrix associated with strong spin-
exchange collisions is manifested as a correlated two-spin rota-
tion S (mn)

c = exp (iδc�
e
mn) = cos (δc ) + i sin (δc )�e

mn, where
�e

mn = 1
2 + 2Sn · Sm is the exchange operator of the m-n

spin pair,and δc is the phase accumulated during the specific
collisional event [see Eq. (10.252) in [1]]. Substitution of this
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scattering matrix in Eq. (A2) gives

∂tρ = − i

h̄
[H0, ρ] + �

∑
m,n

∑
c

p̃mn
c

(
i

2
sin(2δc )

[
�e

mn, ρ
]

+ sin2(δc )
(
�e

mnρ�e
mn − ρ

))
,

where the first term describes collision-induced frequency
shifts and the second term describes real collisional exchange
of the two spins. The phases δc can be estimated either with
a partial-wave analysis or using a classical path analysis [12].
Upon ensemble averaging, we obtain the simpler equation

∂tρ = − i

h̄
[H0, ρ] +

∑
m,n

�mn

(
�e

mnρ�e
mn − ρ

)
(A3)

where �mn ≡ 〈� ∑
c p̃mn

c sin2 (δc )〉
c

is the average spin-
exchange rate of the atomic pair m-n. The frequency-shift term
is omitted, since δc � π such that, upon ensemble averaging,
〈∑c p̃mn

c sin (2δc )〉
c

is negligible (see Fig. 10.8 in [1]). Direct
substitution of the exchange operator �e

mn = 1
2 + 2Sn · Sm

results in the generalized evolution equation

∂tρ = − i
∑

n

ωn[InSn, ρ] +
∑
m,n

�mn

(
−3

4
ρ

+ SnSmρ + ρSnSm + 4SnSmρSnSm

)
.

We now assume that the quantum correlations developed
between different colliding atoms during the interactions are
rapidly lost. These coherences are assumed to be lost for
time scales longer than the short collision duration (a few
picoseconds) due to the randomness of the collision parameters
and the random choice of colliding pairs [see both Eq. (10.105)
in [1] and the discussion in Sec. IV.D.4 in [36]]. We therefore
consider the case that the density matrix is interatomic separa-
ble and assume the simple form

ρ = ρ1 ⊗ . . . ρn . . . ⊗ ρN,

where ρn is the reduced density matrix of the nth atom. Using
this form, we derive the equation of motion for ρn = Tr �=n(ρ)
by partial tracing the state of all spins but n, yielding

∂tρn = − iωn[In · Sn, ρn] +
∑
m

�mn

(
−3

4
ρn

+ SnρnSn + 〈Sm〉(ρnSn + Snρn − 2iSn × ρnSn)

)

(A4)

where 〈Sm〉 ≡ Tr(ρmSm) is the mean electronic spin of the
mth atom, and εijk is Levi-Civita symbol. Equation (A4)
is the many-body generalization for the mean-field evolution
of the spin-exchange interaction [see [37], in particular Eqs.
(VI.8) and (VI.15)].

The evolution of the different moments 〈Si
n〉, 〈I i

n〉, and
〈Ai

n〉 in Eqs. (1)–(3) is then derived by calculating the ex-
pectation values using the density matrix formalism 〈Xn〉 =
Tr(ρnXn) and the commutation relations of the electronic spins
{Si

m, S
j
m} = 1

2δij and [Si
m, S

j
n ] = iδmnεijkSk and the nuclear

spins {I i
m, I

j
m} = 1

2δij and [I i
m, I

j
n ] = iδmnεijkIk .

APPENDIX B: SPIN-RELAXATION MECHANISMS
AND INITIALIZATION OF HYPERFINE COHERENCE

The dominant spin-relaxation mechanisms in the high-
temperature atomic vapor we consider are [28] (a) interaction
with the walls at a rate Rwall, (b) K-K destructive collisions
at a rate RKK, (c) molecular relaxation by singlet dimers
1�+

g at a rate RS, and (d) spin rotation through collisions
with N2 at a rate Rbuff. Other relaxation mechanisms, such
as magnetic field gradients [21], can be made small. The total
electronic relaxation rate is then given by

RSD = Rwall + RKK + RS + Rbuff.

We estimate the electronic relaxation Rwall by assuming that
the walls are completely depolarizing and consider the least
decaying diffusion mode [see Eq. (10.286) in [1]]

Rwall ≈ 4π2QD/L2 ≈ 106 s−1,

where D ≈ 0.4 cm2/s is the diffusion coefficient for 1 amagat
of N2 and Q = 6 is the slowing down factor (for I = 3/2)
accounting for the loss of nuclear spin during the interaction
with the wall [see Eq. (10.271) in Ref. [1]]. Spin destruction
of alkali-metal–alkali-metal collisions consists of two main
mechanisms: spin rotation in binary collisions and spin-axis
relaxation in molecular triplet dimers [29,38]. These two
interactions were found to have equal magnitudes and together
destruct the spin at a rate

RKK = nKσKKv̄ ≈ 2 × 105 s−1

where we used nK = 1.7 × 1018 cm−3, v̄ ≈ 105 cm/s and we
assumed the cross section σKK = 10−18 cm−2, which was
measured at low temperatures [39], with no known depen-
dence on temperature variation. The current theoretical models
predict an order-of-magnitude smaller value for the σKK we
use [29,38], and this cross section should be considered only
as an order-of-magnitude estimate. To validate the molecular
estimation at higher temperatures, we also compute the chem-
ical potential for triplet dimers at T = 620◦ C by following
a procedure similar to Ref. [28] and using the molecular
potential in [40]. We then estimate that the chemical equilib-
rium coefficient of the triplet dimers is KT = 3 × 10−23 cm3,
using a triplet binding energy of D(T )

e = 0.032 eV < kBT and
assuming that during a molecular lifetime the spin loses a
fraction αT � 1 of its coherence. The estimated triplet destruc-
tion at T = 620 ◦C is then bounded by RKK ≈ αT τ−1

c KT nK <

3 × 106 s−1, where τ−1
c = nN2(σ v̄)K2-N2 ≈ 6 × 1010 s−1 is the

hard-sphere collision rate with N2 molecules (which serve as
third bodies).

Singlet dimers are the most populated molecular state, with
estimated dimer to monomer ratio limited to a few percent at
T = 620 ◦C. (Using measured data of the molecular partial
pressure of K2 by Ref. [41] we estimate a molecular fraction
of 3.5%, and using the potentials of Ref. [40] we numerically
calculate the chemical potential following a similar procedure
to Ref. [28] and estimate a fraction of 5%. We verify that
our chemical potential fits the results of Ref. [28] at low
temperatures.) We note, however, that the molecular fraction
calculated here could be larger for alkali-metal halides, and
therefore pure alkali metal should be used instead [41]. The
atomic decoherence due to singlet dimers results mainly
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from molecular dissociation, where relaxation of the nuclear
spins during a molecular lifetime is found negligible. Upon
dissociation of the dimer, the total spins of the atomic pair
are conserved but the atoms could possibly result in hyperfine
coherence being unsynchronized with the rest of the atomic
ensemble. Such atoms would spin thermalize with the rest of
the ensemble and contribute to the total decoherence rate. We
approximate this rate by

RS = αS

(
nK2

nK

)
τ−1
c exp

(
−D(S)

e

kBT

)
< 1.5 × 106 s−1

where D(S)
e ≈ 0.55 eV is the molecular binding energy, nK2

is the density of singlet dimers, and αS � 1 is the amount of
coherence lost at a single dissociation of a singlet dimer. The
singlet dimers have no electronic spin and during their lifetime
only the nuclear spin is subject to relaxation. The nuclear
spin is subject to both electric-quadruple and nuclear spin
interactions [28]. As a singlet molecule experiences multiple
collisions before dissociation, the nuclear spin relaxation
is given by R(1)

s ≈ ( 2
3�2

q + c2〈J 2〉)τR < 10 s−1 where �q ≈
1.9 × 105 s−1 is the quadruple interaction strength, c

√
〈J 2〉 ≈

3.5 × 104 s−1 is the spin rotation interaction strength, and τR is
the typical reorienting collision time. In our setup τR is equally
split between collisions with buffer gas atoms, which reorient
the molecular rotation (J ), and chemical-exchange collisions
with other alkali-metal atoms, which swap the nuclear spin
of one of the nuclei (which is equivalent to reorientation
of the nuclear spin) such that overall τ−1

R ≈ [nN2(σJ v̄)]−1 +
[nK(σ v̄)K-K2]

−1 ≈ 6 × 109 s−1, where we used the chemical-
exchange rate (σ v̄)K-K2 ≈ 1.5 × 10−9 cm3/s and the reorien-
tation rate σJ v̄K2-N2 ≈ 1.5 × 10−10 cm3/s based on measure-
ments with Rb2 dimers [28]. We note that atomic potassium
encounters also frequent chemical-exchange collisions with
singlet dimers, at a rate RCE = nK2(σ v̄)K-K2 ≈ 7.5 × 107 s−1,
which, in contrast to RS, is not suppressed with the Boltzmann
factor exp(−D(S)

e /kBT ) [42]. These collisions conserve the
electronic spin and can be thought of as an exchange operation
of one atomic nucleus with one of the nuclei in a molecule.
The molecular nuclei, previously formed from a pair of atomic
alkali metals, are oriented with almost the same direction as the
alkali-metal one. Therefore, the chemical-exchange collisions
play a similar role to atomic spin-exchange collisions, and
its effect on the atomic vapor is to increase RSE but not
RSD. Therefore in the strong-interaction regime it should not
impose any additional relaxation. We note that application of
high magnetic fields can significantly suppress the dimer part
of the relaxation, for both the singlet and triplet states [29].
Relaxation due to collisions with buffer gas is estimated as

Rbuff = nN2σ
′v̄′ < 104 s−1

where nN2 = 2.5 × 1019 cm−3 is the nitrogen density, σ ′ ≈
10−21 cm2 is the spin-rotation cross section of K-N2 estimated
at T = 620 ◦C (with the T 3.7 dependence taken into account),

and v̄′ ≈ 1.3 × 105 cm/s is the mean thermal velocity of the
K-N2 pair [1]. In conclusion, for the experimental conditions
considered here we predict RSD < 5 × 106 s−1, such that spin
exchange is expected to be the dominant relaxation mechanism
even for very dense vapor at high temperatures.

Initial excitation of the hyperfine coherence, in low mag-
netic fields, can be realized by application of a magnetic-
field pulse which rotates the electron spin (which has a
gyromagnetic ratio gs = 2.8 MHz/G) with little direct effect
on the nuclear spin (which has a gyromagnetic ratio of
gI = 78 Hz/G for 41K [43]). A general pulse would excite
simultaneously both Zeeman and hyperfine coherences. It is
possible, however, to excite a specific hyperfine coherence
magnetically while leaving the Zeeman coherence unexcited
by shaping the applied magnetic pulse. For example, if the
pulsed magnetic field is oriented perpendicular to the optical-
pumping axis, and consists of a single sine burst [B⊥ sin (ωBt )
for 0 � t � 2π/ωB], then it would rotate the electronic spin
back and forth. For ωB < ωK the nuclear spin is strongly
coupled to the electronic spin and follows its track such that
at the end of the pulse the spins return to their starting point,
and no coherence is introduced. If ωB > ωK only the electronic
spin precesses by the pulse and the hyperfine interaction with
I accumulates an additional phase (azimuth ∼ωK/ωB , and
elevation ∼ 1

4gsB⊥/ωB) and the spins would not return to their
initial point, exciting mainly the λ+

1 hyperfine coherence, while
the Zeeman coherences are zeroed at the end of the pulse. Low
inductance short wires can support gigahertz-bandwidth pulses
and can be positioned in the proximity of the cell [44].

APPENDIX C: APPROXIMATIONS IN THE
STRONG-INTERACTION REGIME

In this appendix, we derive Eqs. (8) and (9), which approxi-
mate the dynamics of the vapor in the strong-interaction regime∑

m �mn 
 ωn. We first transform the first-order differential
equations (1)–(3) into second-order differential equations by
eliminating the torque observable 〈An〉:

d

dt
〈Sn〉 = − d

dt
〈In〉 +

∑
m

�mn(〈Sm〉 − 〈Sn〉), (C1)

d2

dt2
〈In〉 +

∑
m

�mn

d

dt
〈In〉 + ω2

n

2
(〈In〉 − 〈Sn〉) (C2)

+ ωn

∑
m

�mn〈Sm〉 × 〈In〉 = 0.

Equation (C1) can be used to derive Eq. (8), which describes
the dynamics of the total spins 〈Fn〉 = 〈Sn〉 + 〈In〉. In the
strong-interaction regime, the oscillations slow down due to
motional narrowing, rendering the second-order derivatives
d2

dt2 〈In〉 negligible. We furthermore assume that 〈Sm〉 ≈ 〈Sn〉
due to the synchronization of the spins. Defining the mean
relaxation of the nth atom as �n ≡ ∑

m �mn and substituting
Eq. (8) into Eq. (C2) thus simplifies to Eq. (9).
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