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Twisted bilayer graphene at the magic twist angle features flat energy bands, which lead to superconductivity
and strong correlation physics. These unique properties are typically limited to a narrow range of twist angles
around the magic angle with a small allowed tolerance. Here, we report on a mechanism that enables flattening
of the band structure using coherent optical illumination, leading to emergence of flat isolated Floquet-Bloch
bands. We show that the effect can be realized with relatively weak optical beams at the visible-infrared range
(below the material bandwidth) and persist for a wide range of small twist angles, increasing the allowed twist
tolerance by an order of magnitude. We discuss the conditions under which these bands exhibit a nonzero Chern
number. These optically induced flat bands could potentially host strongly correlated nonequilibrium electronic
states of matter.
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I. INTRODUCTION

Van der Waals heterostructures are a prominent tool for dis-
covery of emergent phenomena in condensed-matter physics.
These materials allow for a considerable degree of control in
their physical structure, being formed by stacking of individ-
ual atomic layers [1–3]. Stacking different atomic layers with
a relative angular twist has become a salient mechanism in
structuring the energy bands of these materials [4–7]. This
twist forms a slowly varying moiré pattern, which modulates
the interlayer electronic potential. At certain twist angles,
the bands near the charge-neutrality point (CNP) can be-
come flat and relatively isolated from other bands [8–11].
These flat bands have recently attracted considerable attention
with the discovery of superconductivity, correlated insulating
states, and ferromagnetism, which emerge at low temperatures
[12–17].

Twisted bilayer graphene (TBG) exhibits isolated flat
bands when twisted near the magic twist angle θm ≈ 1.1◦. At
smaller twist angles θ < θm, a larger moiré pattern is formed,
eliminating the energy gap to distant energy levels and in-
creasing the bandwidth of the bands near the CNP [9,18].
Therefore, the discovery of strong correlated phenomena has
been limited to a small range of twist angles near the magic
angle where the band-structure features narrow gaped bands.

Floquet engineering with optical fields is a valuable tech-
nique that could induce topological band structures and
electronic correlations in various materials [19–35]. Floquet
engineering of TBG has been considered as a technique to
tune the value of the magic angle using longitudinal waves
[36], and to control the topology of the bands near the CNP
at large twist angles [37]. However, the idea of significantly
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reducing the bandwidth of certain bands in the band structure
generating flat bands has never been realized in Van der Waals
heterostructures with optical fields. Although the mechanism
of dynamic localization could be theoretically applied [38],
it practically requires extremely high fields which render it
unfeasible.

Here, we consider small-angle twisted bilayer graphene
driven with optical fields as shown in Fig. 1. We demonstrate
that a driving laser could improve the flatness of the bands
near the CNP even at twist angles smaller than the magic
angle. We further show that the driving field opens a gap
between the emerging flat bands, increases the gaps separating
them from other bands, and could induce a nontrivial Berry
curvature. The presented effect is found robust for lattice re-
laxation and could potentially be implemented with relatively
weak sub-bandwidth optical fields in the visible range.

FIG. 1. Schematics of Floquet twisted bilayer graphene. (a) TBG
driven by a circularly polarized optical laser field. (b) Illustration
of the band structure of optically driven TBG with zero interlayer
coupling near the K points of the two layers. The laser frequency � in
the visible range is much smaller than graphene bandwidth, opening
a photoinduced gap P at the K points of the two layers whereas
avoiding side-band transitions near these points. Nonzero interlayer
hopping leads to hybridization of the Dirac cones. (c) Moiré Brillouin
zone with the trajectory K ′ → K → � → M → � → K ′.
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II. MODEL

We model the low-energy band structure of TBG using a
continuum model for a single valley and spin [9,10,39–43].
These models, accurately describe the Hamiltonian of TBG
with a relatively small twist angle (θ � 10◦) where intervalley
processes are strongly suppressed. We focus our discussion
on a simple model which has relatively few parameters, and
verify our results with a detailed model that accurately treats
lattice reconstruction effects which is presented in Sec. VI.
In the absence of a driving field, our model Hamiltonian is
given by

H =
(

h(θ/2, r) T (r)
T †(r) h(−θ/2, r)

)
, (1)

which acts on the spinor �(r) = (ψ1A, ψ1B, ψ2A, ψ2B)T . The
subscripts 1 and 2 denote the top and bottom layers, respec-
tively, and the A, B subscripts denote the sublattice isospin of
a monolayer. The Hamiltonians of the two rotated monolayers
of graphene are denoted by h(±θ/2, r), and feature a nearest-
neighbor coupling with a hopping amplitude τ . The operator
T (r) denotes the periodic interlayer moiré potential,

T (r) =
3∑

n=1

[w0σ0 + w1(σx cos nφ + σy sin nφ)]ei(nφ−φ−qnr).

We use the standard Bernal stacking for untwisted lay-
ers (θ = 0) and φ = 2π/3. The set of wave-numbers q1 =
kθ (0,−1), q2,3 = kθ (±√

3, 1)/2, represents the relative dis-
placements of the Dirac cones between the layers where
kθ = 4πθ/(3

√
3a) is determined by the twist angle θ and

a = 1.42 Å. The 2 × 2 Pauli matrices and identity matrix
are denoted by σ and σ0, respectively. w0 denotes the in-
terlayer coupling between the AA and BB domains, and w1

denotes the AB and BA interlayer coupling. Our model uses
the exact band structure of monolayer graphene (generalizing
approaches using the kp approximation) for better model-
ing of the higher-energy levels. We use τ = 2.73 eV, w1 =
110 meV, and account for the effects of lattice relaxation by
approximating w0 = 0.8w1 [10,18,40,41]. The lattice relax-
ation parameter w1/w0 is, in fact, the leading term of the
detailed model in Sec. VI.

We consider a circularly polarized driving light field
of frequency �, represented by the electric-field E (t ) =
E[cos(�t )x̂ − sin(�t )ŷ]. We take the light field to be at nor-
mal incidence and uniform over the sample. We model the
interaction with the driving field using a Peierls substitution
for the intralayer hopping parameters in the Hamiltonian, τ →
τ exp(−ieEa/h̄�). In the presence of the time-periodic drive,
the solution of the Schrödinger equation can be indexed by the
quasienergies ε, which fall within a single “Floquet-Brillouin”
zone −h̄�/2 � ε < h̄�/2, and can be written as

|ψν (t )〉 = e−iεν t/h̄
∞∑

m=−∞
e−im�t

∣∣ψ (m)
ν

〉
, (2)

where the index ν carries all other quantum numbers of
the state. The set of modes

∑
m |ψ (m)

ν 〉 are the eigenmodes
of the Floquet Hamiltonian which we numerically solve in
momentum-space, truncating both the number of Floquet

FIG. 2. Floquet band structure of TBG below the magic angle for
the simple model. The band structure shown corresponds to θ = 0.9◦

and θ = 0.7◦ (the first magic angle is at θm ≈ 1.1◦) and are plotted
along the contour shown in Fig. 1(c). (a) and (c) Undriven TBG. At
the charge neutrality point, level crossing at the � point increases the
effective bandwidth of the two bands near E = 0, and no isolated
flat bands are observed. (b) and (d) Optically driven TBG. The upper
and lower bands near E = 0 become gapped, resulting with nearly
flat bands. In panels (b) and (d), we plot the time-averaged density
of states ρ̄0(E ), see Eq. (3), for a driving field of frequency h̄� =
1.5 eV and peak electric field of E = 5.6 MV/cm. Only Floquet
states with significant spectral weight [A0

ν (k) > 0.05, cf. Eq. (3)] are
shown.

blocks and the infinite representation of the matrix T (k), see
Appendix A.

III. FLOQUET FLAT BANDS

Typical Floquet band structures of TBG are shown in
Figs. 2(a)–2(d), in the presence and absence of a driving field.
The band structures are plotted along a contour in the first
moiré Brillouin zone (mBz), which is a hexagon with size kθ

as shown in Fig. 1(c). For the undriven case of TBG with twist
angle θ = 0.9◦, the lower and upper bands near E = 0 expe-
rience level crossing with other bands at the � point shown
in Fig. 2(a). The large bandwidth of the resulting connected
group of bands manifests larger kinetic energy of the electrons
which hinders the observation of strong correlation effects.
Upon driving, an energy gap δ between the lower and the
upper bands is opened, as well as an energy gap � isolating
these two bands from the rest of the spectrum. These gaps are
shown in Fig. 2(b) for a drive with h̄� = 1.5 eV and peak
electric field of E = 5.6 MV/cm. For θ = 0.7◦, the undriven
band structure exhibits larger bandwidth and multiple level
crossings as shown in Fig. 2(c). The drive opens the energy
gaps δ and � and decreases the bandwidth of the lower and
upper bands, thus, flattening the bands as shown in Fig. 2(d).
Interestingly, here, the drive also flattens the next-nearest
bands to CNP.

To quantify the effect of the drive on the band structure, in
Figs. 3(a)–3(c), we plot the gaps and bandwidth of the upper
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FIG. 3. Characteristics of the upper Floquet band near the charge-neutrality point at h̄� = 1.5 eV and angles θ � 1◦ below the first magic
angle for the simple model. (a) Increase in the gap � to remote bands with increasing photoinduced gap P (proportional to the optical
intensity), which isolates the flat bands. E denotes the peak electric field of the drive. (b) The gap δ between the upper and the lower bands at
the charge-neutrality point increases as a function of P. (c) Narrowing of the bandwidth (BW) with increasing P at θ � 0.8◦. (d) Closing of
the gap � near P = 10 meV for θ = 1◦ is associated with change in the topology of the flat band. In all panels, the quantities were calculated
from the time-averaged density of states ρ̄0(E ), see Eq. (3), including only Floquet states with significant spectral weight A0

ν (k) > 0.05.

Floquet band at h̄� = 1.5 eV as a function of the twist angle
θ and the quantity P = (3τeaE )2/(2h̄3�3), which gives the
photoinduced gap in monolayer graphene (and is proportional
to the intensity of the drive at a given frequency) [21,23]. In
the absence of a drive, the energy gap δ between the lower and
the upper bands vanishes due to the symmetries of monolayer
graphene, and the gap � isolating these two bands vanishes
for θ � 0.9◦ as shown in Figs. 3(a) and 3(b). Upon irradiation,
for θ � 0.9◦, the gaps � and δ obtain nonzero values and
increase almost linearly with P, thus, yielding isolated, narrow
bands. In Fig. 3(c), we plot the bandwidth of the upper Floquet
band εup(k) given by BW = max[εup(k)] − min[εup(k)] for k
in the mBz. For θ � 0.8◦, the bandwidth of the upper band
decreases as the amplitude of the drive is increased. We, thus,
conclude that light irradiation allows for emergence of narrow
isolated bands at twist angles smaller than the magic angle.

IV. DEPENDENCE ON THE DRIVE FREQUENCY

The Floquet band structure of TBG in the presence of
the drive is a result of both on-resonant and off-resonant
processes. Since the number of bands in the reduced mBz
for any quasimomentum is extremely large, it is important to
demonstrate that the interaction with the drive, especially at
frequencies below the bandwidth of the material, does not mix
the low-energy bands with high-energy bands. We, therefore,
demonstrate that the presented mechanism is associated with
an off-resonant process and identify the range of frequencies
in which the hybridization of the resulting flat bands with
high-energy bands is suppressed.

A. Numerical analysis

To this effect, we define the time-averaged density of states
(DOS) defined as [35]

ρ̄0(k, E ) =
∑

ν

∑
m

A(m)
ν (k)δ(εν + mh̄� − E ), (3)

with A(m)
ν (k) = |ψ (m)

ν (k)|2. The DOS ρ̄0(k, E ) is the imagi-
nary part of the time-averaged Green’s function [24,35,44].
To quantify the sharpness of the bands near E = 0, we

integrate ρ̄0(k, E ) in a small interval �E = 40 meV and com-
pute the total intensity I (k) = ∫ �E/2

−�E/2 dE ρ̄0(k, E ) at a given
momentum. I (k) consists of discrete contributions from Flo-
quet bands with 2|εν | � �E , written as I (k) = ∑

ν Iν (k). In
Figs. 4(a)–4(c), we plot the distribution of Iν = Iν (k)dk where
the integral follows the contour in Fig. 1(c). We compare the
histograms of Iν for different drive frequencies at θ = 0.9◦,
maintaining the gaps �(�) and δ(�) constant throughout the
three panels by keeping the photoinduced gap constant with
P = 33 meV.

For drive frequencies in the UV-visible range, the upper
and lower flat bands are sharp. This is indicated by the distri-
bution of Iν which has a sharp peak at I = 1 corresponding to
the two flat bands and no other weights except at I ≈ 0. Such
a distribution is shown in Fig. 4(a), for a driving field in the
visible range (h̄� = 3 eV). For a near-infrared driving field,
the spectral weight of the flat bands is reduced whereas back-
ground spectral weight and band crossings appear as shown in
Fig. 4(d) in which we plot ρ̄0(k, E ) at h̄� = 0.94 eV. These
effects lead to the broad distribution of Iν shown in Fig. 4(b)
with many Floquet eigenstates corresponding to 0 < Iν < 0.2
and the two flat Floquet bands corresponding to Iν > 0.2 at
most momenta (recall that the distributions Iν are averaged
along the contour in the mBz). The band structure in Fig. 4(d)
can be compared with the sharply defined bands in Fig. 2
which shows ρ̄0(k, E ) at h̄� = 1.5 eV. At even lower driv-
ing frequencies, the DOS is dominated by rapidly oscillating
Floquet bands with low spectral weight at the |E | � �E/2
spectral window as implied by Iν approaching a Poisson dis-
tribution, shown in Fig. 4(c) for h̄� = 0.3 eV.

To estimate the range of frequencies for which the DOS at
energies |E | � �E/2 is predominately sharp, we consider the
quantity,

Sn =
∮ (∑

ν

[Iν (k)]n

/ ∑
ν

Iν (k)

)
dk, (4)

along the contour in Fig. 1(c). For n � 2, Sn approaches
unity for a fully sharp DOS, i.e., when the distributions Iν (k)
are bimodal and peaked at I = 0 or I = 1 at all k’s. Con-
versely, Sn with n � 2 becomes vanishingly small when Iν (k)
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FIG. 4. Mixing with higher-energy bands at low driving frequencies. (a)–(c) Distributions of Iν , characterizing the time-averaged DOS
at energies |E | � 20 meV, averaged along the contour K ′ → K → � → M → � → K ′ for θ = 0.9◦ and constant photoinduced gap P =
33 meV in the simple model. (a) For a high drive frequency h̄� = 3 eV, the time-averaged DOS in the energy interval |E | � 20 meV is sharp,
yielding a bimodal distribution peaked at I = 1 and I = 0 (not shown). (b) and (c) For lower frequencies h̄� = 0.94, 0.3 eV the number of
bands with significant spectral weight increases, indicating mixing with higher-energy bands. (d) The time-averaged DOS at h̄� = 0.94 eV,
which shows mixing with higher energy bands. (e) Characterization of the sharpness of the time-averaged DOS as a function of drive-frequency.
At drive frequencies in the UV-NIR range h̄� � 1.2 eV, the sharpness parameter S4 approaches unity, indicating that the interaction with the
drive is predominately off-resonant.

takes the Poisson form peaked at I = 0 as in Fig. 4(c). In
Fig. 4(e), we plot S4(�), finding that the DOS remains sharp
for driving frequencies � � �∗ with h̄�∗ = 1.2 eV, which
contains the visible range down to frequencies which are
significantly smaller than the graphene bandwidth ∼17 eV. At
drive frequencies in the infrared and below, � � �∗, the DOS
becomes smeared.

B. Analytical estimation

To understand the threshold frequency �∗, we analyze
the mechanism that decreases S4 for weak interlayer cou-
pling, α = (w0 + w1)/(3tkθ ) � 1 and weak driving P � h̄�.
When the interlayer coupling is absent (α = 0), the Floquet
band structure is that of two driven graphene monolayers as
shown in Fig. 1(b). Note that the Floquet band structure in
Fig. 1(b) exhibits contours of resonant momenta kR which
encircle the K points of both monolayers and for which the en-
ergy difference between the conduction and the valence bands
is equal to �. At momenta which are deep within this contour
(for which |εν | � h̄�/2), the expansion of the Floquet states
according to Eq. (2) is dominated by the m = 0 component.
At the resonant momenta, the original valence and conduction
bands with energies Ev(k) and Ec(k) are strongly mixed, and,
therefore, the Floquet states consist of both m = 0 and m = 1
(or m = −1) components with similar amplitudes. Moving
away from the resonant momenta, the square of the amplitude
of the m = ±1 component, which we denote by Ñ (k), de-
creases as a Lorentizan with argument [Ec(k) − Ev(k) − �]
width

√
h̄�P and maximum value of 1/2.

We now study the effect of nonzero interlayer coupling,
α > 0. The Floquet-Bloch wave functions of TBG can be
written as

|ψ (k, t )〉 =
∑
ν,n

cn,ν |ψ̃ν (kn, t )〉, (5)

where |ψ̃ (k, t )〉 are the Floquet states at α = 0 and kn is a dis-
crete set of momenta in the extended mBz (cf. Appendix A).
Importantly, the coefficients cn,ν of the flat bands decrease as
|α|r with r = |kn|/kθ since r interlayer tunneling processes
are required to connect Floquet states near the K point with
Floquet states at kn. At large drive frequencies, the variation of
I (k) along the contour in the mBz is small since the resonant
momenta are outside the first mBz, i.e., |kR| � kθ . We, there-
fore, estimate S4 ≈ |I0|3 where I0 is the contribution to the
intensity from one of the Floquet flat bands near the K point.
For high frequencies (larger than the graphene bandwidth)
the expansion of these states, cf. Eq. (2), is dominated by the
m = 0 component yielding I0 → 1 and S4 → 1. Lowering
the frequency below the graphene bandwidth decreases the
magnitude of the resonant momenta |kR|. This leads to an
increase in the amplitudes cn,ν corresponding to the resonant
momenta in Eq. (5), which, in turn, reduces I0.

Using the discussion above, we can estimate the norm of
the m = ±1 component of the upper Floquet flat band as N =∑

n α2r(kn )Ñ (kn). This component does not contribute to I0,
and, therefore, I0 ≈ (1 + N )−1. Taking the largest contribu-
tion in the sum N , we arrive at I0 ≈ [1 + 3r∗α2r∗Ñ (r∗kθ )]−1

where r∗ = |kR|/kθ , and the factor 3r∗ arises due to the num-
ber of kn momenta with hopping number r∗ in the hexagonal
grid (see Appendix A). For drive frequencies in the visible
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FIG. 5. Chern numbers of flat bands resulting from off-resonant
coupling to circularly polarized light. At twist angles θ � θ∗ ∼ 1◦,
the lower and upper bands near E = 0 of TBG with an added Hal-
dane mass term exhibit nonzero Chern numbers when the magnitude
P of the mass term is below a critical value. The peak electric-field
E corresponding to P is given for an optical field of frequency
h̄� = 1.5 eV.

range, we estimate |kR| ≈ h̄�/(3ta) and for θ = 0.9◦ and
P = 33 meV we get α = 0.64. The condition S4 ≈ |I0|3 �
0.5 yields a threshold frequency of h̄�∗ ≈ 1 eV, which can
be compared with the numerically calculated value of h̄�∗ =
1.2 eV as shown in Fig. 4(e).

V. TOPOLOGY OF THE FLAT BANDS

For drive frequencies higher than the threshold frequency
(h̄� � 1.2 eV), a direct coupling between the bands near
CNP and higher levels in the mBz is suppressed. Thus, the
leading-order effect of the interaction with the drive can be
approximated with the effective static Hamiltonian Heff ≈
H + [H01,H10]/�, describing an off-resonant process which
is second order in the drive. The effect of a weak drive P �
h̄�, can be approximated with an addition of a photoinduced
Haldane mass term to the Hamiltonian describing each mono-
layer. Thus, in this limit, the Hamiltonians h±(k) describing
a monolayer in reciprocal space near the K (+) and K ′(−)
points acquire an additional term ηPσz, where η = ±1, re-
spectively. Therefore, the band structure of the driven system
can be described as the result of the interlayer hybridization
between gapped Dirac cones of the two layers.

The Haldane mass term breaks time-reversal symmetry
and, therefore, the bands may exhibit nonzero Chern numbers.
In undriven TBG, the lower and upper bands cross and, thus,
a Chern number cannot be defined for each of them sepa-
rately. Upon driving the system, a nonzero gap δ between
the lower and the upper bands near E = 0 is opened. We
calculate the Chern number of these bands resulting from the
addition of Haldane mass term near the K point as presented
in Appendix B. At angles θ � θ∗, a nonzero Chern number
is obtained for weak driving as shown in Fig. 5 for a sin-
gle spin and valley for w0/w1 = 0.8, which gives θ∗ ≈ 1◦.
The nonzero Chern number at θ � θ∗ is maintained upon
increasing the drive strength until a critical drive strength is
reached where the bands cross with the nearest remote bands
above and below the upper and lower flat Floquet bands. This
crossing occurs since for θ � θ∗, the gap � decreases as the
drive strength is increased from zero [cf. Fig. 3(d) at θ = 1◦].

For larger drive strength than this critical value, the Chern
numbers are trivial.

Using these Chern numbers, we can obtain the values of the
W 3

ε topological invariant [45,46] in the spectral gaps adjacent
to the flat Floquet bands. The W 3

ε topological invariant at a
particular quasienergy ε counts the total number of chiral edge
states at that quasienergy. The value of W 3

ε=0 at the limit of
high driving frequencies can be obtained by first considering
a TBG in which all interlayer couplings are zero. In this
case, the system corresponds to two copies of single-layer
graphene. Illumination by circularly polarized light opens a
gap between the Dirac nodes and, for each spin, yields two
edge states. Importantly, increasing the interlayer tunneling to
its physical value does not close the gap δ, implying that the
number of edge states in this gap remains the same. There-
fore, in the driven TBG system, we study W 3

ε=0 = −1 for a
single spin and valley. The W 3

ε invariant for any quasienergy
ε is related to the Chern number Cε,ε′ of the band lying
between quasienergies ε and ε′, where ε > ε′ and satisfies
W 3

ε = W 3
ε′ + Cε,ε′ [45,46]. Therefore, W 3

ε above (below) the
upper (lower) flat Floquet bands can be computed using the
computed Chern numbers presented in Fig. 5.

VI. LATTICE RELAXATION EFFECTS

The interplay between the vdW interaction energy and the
elastic energy at the interface leads to structural reconstruc-
tion of TBG. This reconstruction includes expansion of the
AB/BA domains at the expense of the AA/BB domains, peri-
odic variations in the height, and appearance of sharp solitonic
boundaries between the different types of domains [47]. These
effects introduce additional energy scales, such as the width of
the boundary, which become important at small twist angles.

To validate the emergence of optically induced Floquet
flat bands at small twist angles, we have extended the gen-
eralized continuum model in Refs. [39,48] which reproduces
the results of discrete Fourier transform-quality tight-binding
Hamiltonians. The extended model, includes the interaction
of TBG with a circularly polarized optical driving field. The
static Hamiltonian of the generalized model H̃ is given by

H̃ =
(

h̃1(r) + Ã1(r) T̃ (r)
T̃ †(r) h̃2(r) + Ã2(r)

)
, (6)

where h̃1,2 are the low-energy Hamiltonians of the two rotated
graphene layers, T̃ is the generalized interlayer coupling term,
and Ã1,2 is the in-plane pseudogauge field coupled to the Dirac
electron, generated from the geometric deformation and strain
for each layer. To account for the formation of the domain line,
T̃ includes up to ten orders of the momentum-independent
and angle-dependent interlayer tunneling processes of the
interlayer coupling in the reciprocal Fourier space as well
as additional first-order terms with explicit momentum de-
pendence in the mBz. Ã includes first-order angle-dependent
intralayer tunneling terms. The numerical values of these
terms is adapted from Refs. [39,48] using the parameters
of the “full relaxation model.” Recall that the interlayer
term T of the simple model in Eq. (1) includes only the
first-order momentum-independent and angle-independent in-
terlayer process, neglecting the other terms considered here.
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FIG. 6. Floquet band structure of TBG including lattice relaxation effects. (a)–(d) At small twist angles (θ = 0.5◦ and θ = 0.7◦), the drive
flattens the upper band near E = 0 and opens a gap from remote bands. (e) and (f) At θ = 0.9◦, a gap δ between the upper and lower bands
near E = 0 is opened but the gap � from remote bands decreases. (g) and (h) For larger twist angles at θ = 2◦, the driven bands are gapped but
are not flattened by the drive. The upper and lower bands near E = 0 become gapped, resulting with nearly flat bands. In panels (b), (d), (f),
and (h), we plot the time-averaged density of states ρ̄0(E ) for a driving field of frequency h̄� = 3 eV and photoinduced gap of P = 63 meV.
Only Floquet states with significant spectral weight [A0

ν (k) > 0.05, cf. Eq. (3)] are shown.

In Fig. 6, we present the driven and undriven Floquet band
structures of the generalized model for various twist angles at
P = 63 meV and h̄� = 3 eV. For θ = 0.5◦, 0.7◦, spectrally
isolated flat bands near E = 0 are induced by the optical
driving, properties which are distinct from the band structure
of the undriven system as shown in Figs. 6(a)–6(d). The effect
of the optical drive on the spectrum of the simple model in
Eq. (1) and generalized model Eq. (6) is qualitatively similar:
The bands near E = 0 are flattened, and the gaps δ and � are
opened for any θ � 0.8◦. One modification with respect to
the spectrum obtained within the simple model, however, is a
smaller gap for the lower band near E = 0 from other remote
bands. We associate the emerging asymmetry of the upper and
lower bands near E = 0 with the electronic nature of these
bands at small twist angles. The upper band is associated with
the electronic orbitals of the domain wall whereas the lower
bands are associated with the electronic orbitals of the AA/

BB domains [39]. At larger twist angles, θ > 0.8◦, the band-
width of the driven bands near E = 0 increases, and the gap
to remote bands for the upper band starts to decrease as
shown in Figs. 6(e) and 6(f) for θ = 0.9◦. Finally, for angles
greater than the magic angle, both interlayer coupling and
reconstruction effects have minor effects on the spectrum,
which is dominated by the dispersion of the twisted graphene
layers. Consequently, for these angles, the Dirac cones at K
and K ′ become apparent again as shown in Figs. 6(g) and 6(h)
for θ = 2◦. For these angles, the drive mainly opens the gap
between the Dirac cones.

The generalized model utilizes numerous parameters to
describe the effects of lattice relaxation at any angle. The
simple model presented in Sec. II, on the other hand, partially
captures the lattice relaxation effects whereas using a single
parameter w0/w1. For w0 < w1, this parameter reduces the
interlayer coupling in the AA/BB regions with respect to the
AB/BA regions. In Appendix C, we present the robustness of

the results obtained using the simple model to variation of the
lattice relaxation parameter w0/w1.

VII. DISCUSSION

In conclusion, we show that driving TBG with UV to
near-infrared light can lead to the appearance of flat bands
in the Floquet spectrum. The effect persists at a wide range
of twist angles, enabling to engineer flat bands without
the need of accurate tuning of the relative twist angle be-
tween the graphene layers. Thus, Floquet engineering of
flat bands may play a particular important role for twisted
van der Waals heterostructures which typically exhibit long-
wavelength nonuniformity in the twist angle.

In this paper, we focused on the Floquet spectrum of
twisted bilayer graphene subjected to coherent optical driving
field. The Floquet representation is most fruitful in describing
the system’s properties when the state of electrons at ener-
gies near E ≈ 0 is described by the occupations of the flat
Floquet bands, dominating the spectral function ρ0(k, E ) at
these energies. The extent to which such a description is useful
depends on the timescales and balance of heating and cooling
mechanisms in the driven system [35]. Heating mechanism
in the driven TBG system mainly arise due to “Floquet-
umklapp” electron-phonon and electron-electron scattering
processes in which the total final quasienergy of the particles
differs from the initial one by a quanta of h̄�. Cooling, on
the other hand, arises predominantly due to phonon-assisted
scattering.

The Floquet-umklapp processes involving the flat Floquet
bands near E ≈ 0 arise predominantly due to off-resonant
coupling at driving frequencies above h̄�∗ (cf. Sec. IV). As a
result, Floquet-umklapp processes involving electrons in these
bands are suppressed in powers of evE/(h̄�2), where v is
the Fermi velocity in graphene. The interaction of the drive
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is, however, resonant for bands at energies E = ±h̄�/2 at a
ring of momenta in the extended Brillouin zone as shown in
Fig. 1(b). These resonances cause excitation of electrons into
high-energy states which lead to a nonequilibrium carrier dis-
tribution (a similar situation occurs in single-layer graphene).
At short timescales, the flat bands can be probed using ul-
trafast techniques as long as the density of excited electrons
remains small and the equilibration between the excited elec-
trons and the flat Floquet bands has not yet occurred [28]. At
long times, the excited electrons will equilibrate with elec-
trons in the flat bands near E ≈ 0 and affect their many-body
state via various scattering processes [49–53]. Yet, with the
introduction of efficient cooling mechanisms, the flat Floquet
bands may play an important role in the electronic steady
states of irradiated samples [54–58].

The Floquet band structure can be observed via spec-
troscopic methods, such as time-resolved angle-resolved
photoemission spectroscopy [27], and transport properties can
be measured via ultrafast electrical measurements [28]. The
possibility to drive the material with standard pulsed lasers in
the visible-infrared range renders the experimental parameters
similar to measurements of single-layer graphene [32].

Note added. After the initial submission of this paper, we
became aware of Ref. [59], which proposes the use of UV
light to obtain topological bands in low-angle TBG.
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APPENDIX A: FOURIER REPRESENTATION
OF THE HAMILTONIAN

In this Appendix, we describe the Fourier representation
of the Floquet Hamiltonian. The set of modes |ψ (m)

ν 〉 used in
the main text are the eigenmodes of the Floquet Hamiltonian
satisfying the time-independent eigenvalue equation,

∞∑
n=−∞

Hmn
∣∣ψ (n)

ν

〉 = εν

∣∣ψ (m)
ν

〉
, (A1)

where Hmn represents a block of the infinite Floquet Hamilto-
nian in the extended zone, given by

Hmn = mh̄�δmn + �

2π

∫ 2π/�)

0
dt e−i(m−n)�t H (t ). (A2)

We start with the representation of the Hamiltonian of the
undriven system.

1. Static Hamiltonian

We use a convention where the top layer is rotated by an
angle θ/2 and the bottom layer is rotated by an angle −θ/2.
We generalize the representation in Refs. [9,60] and represent
the Hamiltonian of the first monolayer of graphene rotated by
an angle θ/2 in the reciprocal space with

h1(θ/2, k′) = −τ f (θ/2, k′)σ1+ + H.c., (A3)

where σ1+ = |k′, 1A〉〈k′, 1B| is the Pauli matrix using the
isospin basis, 1 denotes the top layer (whereas 2 denotes the
bottom layer) and f (θ/2, k′) = ∑3

i=1 eik′δ′
i is the graphene

dispersion relation with δ1 = (0, a) and δ2,3 = a(∓√
3, 1)/2.

Here, and throughout the paper, primed variables corre-
spond to the top (1), e.g., k′ = Rz(θ/2)k and δ′

1 = Rz(θ/2)δ1

whereas Rz(θ ) is the rotation matrix around the z direction
which is normal to the plane of the sample. Similarly, the
Hamiltonian of the second layer is given by

h2(−θ/2, k′′) = −τ f (−θ/2, k′′)σ2+ + H.c., (A4)

where σ2+ = |k′′, 2A〉〈k′′, 2B| and k′′ = Rz(−θ/2)k and
f (−θ/2, k′′) = ∑3

i=1 eik′′δ′′
i .

The interlayer interaction operator T (k) can be represented
by an infinite matrix using the plane-wave expansion with
elements T αβ

k′,p′′ ≡ 〈k′, 1α|H⊥|p′′, 2β〉. The superscripts α, β ∈
{A, B} denote the isospin of the monolayer and the indices 1
and 2 indicate the top and bottom layers, respectively. Note
that k′ and p′′ are defined in the repeated reciprocal zone and
measured from the center of the Brillouin zone (and not rela-
tive to the Dirac point). The interlayer interaction Hamiltonian
H⊥ can be represented using a tight binding in real space,

H⊥ =
∑

i j

t⊥i j ĉ
†
1iĉ2 j + H.c., (A5)

where ĉ1i and ĉ2 j are the fermionic annihilation operators of
the top and bottom layers, respectively, the indices i, j de-
note the real-space lattice point, and t⊥i j denote the interlayer
hopping parameters. We invoke the two-center approximation,
assuming that the hopping parameters depend only on the
relative distance between the different lattice points t⊥i j =
t⊥(|Ri − Rj |) where Ri denotes the position of the ith site.
Representing H⊥ in the reciprocal Fourier space yields the
interlayer coupling coefficients [9,60],

T αβ

k′,p′′ =
∑

G′
1,G

′
2

t⊥(k′ + G′
1)

Auc
ei[G′

1δ
′
α−G′

2(δ′
β−a)−Rz (−θ )G′

2d]

× δk′+G′
1,p

′′+Rz (−θ )G′
2
. (A6)

Here, we sum over the reciprocal lattice vectors G′
1 and G′

2 of
the two layers, Auc is the unit-cell area and d is the spacing
between the two layers. The parameters δ′

α and δβ
′ indicate

the relative position of the A and B atoms within a unit cell
in the top layer with δ′

A = 0 and δ′
B = (0, a). The Kronecker-δ

δk′+G′
1,p

′′+Rz (−θ )G′
2

ensures crystal momentum conservation by

the tunneling process. To simplify the expression of T αβ

k′,p′′
further, it is plausible to assume that the interlayer tunneling is
slowly varying in space due to the large interlayer separation
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d > a such that t⊥(k) falls rapidly to zero at high momenta
(cf. Refs. [9,60]). We can, then, truncate the sum over all
reciprocal lattice vectors to a sum over the three smallest
reciprocal lattice vectors (which are of the same magnitude)
yielding

T αβ

k′,p′′ ≈
3∑

i=1

δk′+qi,p′′T αβ
i , (A7)

where the momenta qi are given in the main text. The 2 × 2
matrices Ti in the isospin basis which are given in the main
text include lattice relaxation effects. Equation (A7) can be

considered as a nearest-neighbors hopping Hamiltonian in the
reciprocal moiré lattice.

The expansion of T αβ

k′,p′′ couples the wave-function |ψ1(k′)〉
in the first layer with the wave functions of the other layer
|ψ2(p′′)〉 for p′′ = k′ + q1, p′′ = k′ + q2, and p′′ = k′ + q3.
In general, this matrix couples points on a hexagonal lattice
in reciprocal space connected by reciprocal lattice vectors of
the moiré lattice. To numerically solve this infinite expansion,
we pose a further (numerical) truncation by setting a maximal
hopping number rmax, where the total number of sites consid-
ered is 3

2 r2
max + 3

2 rmax + 1. As an example, the Hamiltonian
for rmax = 1 is given by

H (1)
k =

⎛
⎜⎜⎜⎝

h1(θ/2, k′) T1 T2 T3

T †
1 h2(−θ/2, k′ + q1)

T †
2 h2(−θ/2, k′ + q2)

T †
3 h2(−θ/2, k′ + q3)

⎞
⎟⎟⎟⎠. (A8)

A diagrammatic representation of the Hamiltonian in the
reciprocal space is shown in Fig. 7 for rmax = 13. In this
representation, the central node has a momentum k. Each
node represents a 2 × 2 Hamiltonian of monolayer graphene,
whereas black nodes represent the matrices h1(θ/2, k′ + kn)
whereas the gold-colored nodes represent h2(−θ/2, k′ + kn).
Here, kn ≡ klmp = lg1 + mg2 + pq1 denotes the hexagon re-
ciprocal grid in the extended zone. This grid is defined by
the moiré reciprocal lattice vectors g1 = q1 − q3, and g2 =
q2 − q1, the integers l, m, and the basis index p = ±1. Note
that, in the main text, we denote the different combinations
of l, m, and p with a single index n for brevity. A nonzero
transition matrix connecting layers 1 to 2 is represented by
an edge where the transition matrix T1 is indicated by a blue

FIG. 7. Reciprocal basis representation of the static Hamiltonian
H (k). The nodes represent the monolayer graphene Hamiltonians
whereas the edge describes the interlayer couplings. This representa-
tion is truncated with a maximal hopping number rmax = 13.

edge, a transition matrix T2 is indicated by a red edge, and a
transition matrix T3 is indicated by a green edge. Note that the
coupling between layers 2 to 1 is represented in a similar way
but with the Hermitian conjugated matrices T †

1 , T †
2 , and T †

3 .
The numbers near each point indicate the index of the vector
basis in the numerical matrix (not including the isospin degree
of freedom). It is useful to write the general static Hamiltonian
in reciprocal space with

H (rmax )(k) = T (k) +
1∑

p=0

∑
l,m

|l, m, p〉hlmp(θ/2, k)〈l, m, p|,

(A9)
where the sum is over all integers l, m satisfying r(l, m, p) =
|l|| + |m| + |l + m − p| � rmax. The hopping number r
counts the number of edges connecting that klmp grid point
to the momentum k. For even values of r(l, m, p), we iden-
tify hlmp = h1(θ/2, k′ + klmp) whereas for odd values of
r(l, m, p), we have hlmp = h2(−θ/2, k′ + klmp). In general,
rmax is determined upon convergence of the result of the
low energy (we verify that the error is less than 1% in the
low-energy spectrum of |E | � 50 meV), and we typically use
13 � rmax � 22 in our calculations.

2. Floquet Hamiltonian

We construct the time-dependent driven Hamiltonian by
applying the Peierls substitution in reciprocal space k → k −
eA(t )/h̄, where A = E/� is the vector potential. Although
the interlayer interaction is independent of the normally
incident drive field, the monolayer Hamiltonian is trans-
formed via h1(θ/2, k′) → h1[θ/2, k′ − eA′(t )/h̄] for the first
layer and h2(−θ/2, k′′) → h2[−θ/2, k′′ − eA′′(t )/h̄] for the
second layer. We expand the Hamiltonian in a harmonic ex-
pansion,

h1[θ/2, k′−eaA′(t )/h̄]=−τ

∞∑
n=−∞

[g+(θ/2, k′, n)σ1+

+ g−(θ/2, k′, n)σ1−]ein�t , (A10)
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where

g±(θ/2, k′, n) = inein(φ+θ/2)

[
e±ik′δ′

1 Jn

(
∓ea

h̄
A
)

+ e±ik′δ′
2

× e−inψ+Jn(±�+) + e±ik′δ′
3 e−inψ−Jn(±�−)

]
(A11)

are the coefficients of the nth harmonic order for the first layer.
The parameters �± and ψ± will be defined below. Similarly,
for the second layer, we use

h2(−θ/2, k′′ − eaA′′(t )/h̄)

= −τ

∞∑
n=−∞

[g+(−θ/2, k′′, n)

× σ2+ + g−(−θ/2, k′′, n)σ2−]ein�t , (A12)

where the coefficients of the nth harmonic order of the second
layer are given by

g±(−θ/2, k′′, n) = inein(φ−θ/2)

[
e±ik′′δ′′

1 Jn

(
∓ea

h̄
A
)

+ e±ik′′δ′′
2 e−inψ+Jn(±�+)

+ e±ik′′δ′′
3 e−inψ−Jn(±�−)

]
. (A13)

The above relations are derived using the identities [61],

eiz cos φ =
∞∑

n=−∞
inJn(z)einφ, (A14)

e−iqψJq(�) =
∞∑

n=−∞
Jn+q(α)Jn(β )e−iφn, (A15)

where Jn(z) is the nth-order Bessel function and φ is the phase
retardance between Ax and Ay. The parameters � and ψ in
Eqs. (A14) and (A15) can be written by two parameters α

and β as

� =
√

α2 + β2 − 2αβ cos(φ), (A16)

ψ = atan

(
β sin(φ)

α − β cos(φ)

)
. (A17)

In our case, we find that �± and ψ± in Eqs. (A10)–(A12) are
given by

�± = a

2

√
A2

y + 3A2
x ± 2

√
3AxAy cos(φ), (A18)

and

ψ± = atan

( √
3Ax sin(φ)

±Ay + √
3Ax cos(φ)

)
. (A19)

For thespecial case of circularly polarized light consid-
ered here, we use φ = π/2 and obtain the simple relations
�± = eaA/h̄ and ψ± = ±π/3. We can use the expansion in
Eq. (A10) with a truncated sum on integers from −NF to NF in
order to construct the time-independent Floquet Hamiltonian

Hmn with −NF � m � NF, yielding

Hm,m+n(k) = [m�σ0 + T (k)]δmn +
1∑

p′=0

∑
l ′,m′

|l ′, m′, p′〉

×h̃l ′m′ p′ (θ/2, k, n)〈l ′, m′, p′|, (A20)

where, for even values of r(l ′, m′, p′), we define

h̃l ′m′ p′ (θ/2, k′, n) = −τ [g+(θ/2, k′ + kl ′m′ p′ , n)σ1+
+g−(θ/2, k′ + kl ′m′ p′ , n)σ1−], (A21)

and, for odd values of r(l ′, m′, p′), we define

h̃l ′m′ p′ (θ/2, k′, n) = −τ [g+(−θ/2, k′ + kl ′m′ p′ , n)σ2+
+g−(−θ/2, k′ + kl ′m′ p′ , n)σ2−]. (A22)

In practice, we observe convergence of the numerical calcula-
tions when setting a cutoff of NF = 2 or 3. The dimension of
the Floquet matrix is, then, (2NF + 1)(3r2

max + 3rmax + 2).
The function g±(±θ/2, k, n) obtains a simple form in the

low power regime eaA � h̄. In this regime, the zeroth order
describes the undriven Hamiltonian with g+(±θ/2, k, 0) =
f (±θ/2, k) and g−(±θ/2, k, 0) = f ∗(±θ/2, k). Further-
more, near the K point in the top layer, we find that
g±(θ/2, k,−1) = 0 and g±(θ/2, k, 1) ≈ 3eaAeiθ/2/(2h̄), and
near the K Dirac point of the bottom layer, we have
g±(−θ/2, k,−1) = 0 and g±(θ/2, k, 1) ≈ 3eaAe−iθ/2/(2h̄).
We also find that the contribution of terms with higher or-
ders of n are smaller by powers of (eaA/h̄)n. Importantly,
for θ � 1, we find that the effective Hamiltonian in leading
powers of the small parameter x = [(3τeaA)/(2h̄2�)] at these
conditions is given by

Heff ≈ H + [H01,H10]/(h̄�). (A23)

APPENDIX B: TOPOLOGY OF THE FLAT BANDS

We calculate the Chern number of the upper an lower bands
near E = 0 resulting from the addition of the Haldane mass
term near the K point, by following the procedure presented
in Refs. [62,63]. We discretize the reciprocal space using
a rectangular grid k = kθ (mx̂ + nŷ)/Nk for integers −Nk �
m, n � Nk and, typically, use Nk = 200. We consider only
the grid points within the first mBz hexagon. Our goal is to
diagonalize the static Hamiltonian in Eq. (A9) including a
Haldane photoinduced mass term of size P.

Recall that the static Hamiltonian Eq. (A9) is valley and
spin degenerate. The two valley degenerate bands arise from
Bloch wave functions which are superpositions of momenta
near the K or K ′ points of both layers. Here, we calculate the
Bloch wave functions in the mBz corresponding to the bands
whose momenta k are always near the K points of both layers
and far from the K′ points of both layers since rmaxkθ � |K −
K′|. Therefore, to take the Haldane mass term into account,
it is sufficient to add to the Hamiltonian h(k) appearing in
Eq. (A9) a mass term Pσz, which represents the Haldane mass
term correctly near the K point.

We diagonalize the Hamiltonian in Eq. (A9) including the
term Pσz ⊗ σ′ and find the wave-functions |ψl (k)〉 of the
lower and upper bands denoted with l ∈ {v, c}. We, then,
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FIG. 8. Berry curvature of the upper band in the mBz for θ = 1.2◦ and P = 10 meV. The effective static Hamiltonian and the full Floquet
analysis yield the same result.

calculate the local Berry curvature with

Bl (k) =
(Nk

kθ

)2

arg

[
Ul,x(k)Ul,y

(
k + x̂

kθ

Nk

)

×U ∗
l,x

(
k + ŷ

kθ

Nk

)
U ∗

l,y(k)

]
, (B1)

where the potentials Ul,x(k) and Ul,y(k) are given by

U v,c
x (k) = 〈ψv,c(k + x̂kθ /Nk )|ψv,c(k)〉. (B2)

We calculate the Chern number of the lower and upper
bands in Fig. 5 in the main text by summing the local Berry
curvature over the mBz,

Cl = 1

2π

( kθ

Nk

)2 ∑
k

Bl (k). (B3)

An example of the Berry curvature of the upper band of TBG
with θ = 1.2◦ driven by P = 10 meV is shown in Fig. 8 for
the static Hamiltonian.

At relatively high drive frequencies as shown in the main
text, the Floquet bands closely resemble the bands of the static
Hamiltonian as mixing and level crossings are suppressed.
Therefore, we expect that the Berry curvature of the Floquet
bands should closely resemble the Berry curvature of the
static calculation with the Haldane mass term up to isolated

level crossings which effect the Berry curvature in very nar-
row regions in the reciprocal space. To demonstrate this, we
calculate the Berry curvature of the Floquet bands with the
full time-dependent Hamiltonian with h̄� = 3 eV in Fig. 8.
To perform this calculation, we chose the wave functions of
the upper and lower bands as the two wave functions whose
spectral weight A0

ν (k) in the energy interval |E | < �E is
maximal, cf. Eq. (3) in the main text [at high drive frequencies,
these bands have A0

ν (k) ≈ 1]. This example demonstrates that,
indeed, the Berry curvature of the static Hamiltonian captures
the one of the Floquet bands at relatively high drive frequen-
cies.

APPENDIX C: LATTICE RELAXATION
IN THE SIMPLE MODEL

Lattice relaxation effects lead to various structural de-
formations of TBG. To leading order, we capture the an
expansion of the AB/BA domains at the expense of the
AA/BB domains using a single relaxation parameter w0/w1.
In Fig. 9, we calculate the dependence of the bandwidth and
the gaps �, δ on the parameter w0/w1 for θ = 0.7◦, 0.9◦
using h̄� = 1.5 eV and E = 4 MV/cm (P = 33 meV). For
undriven TBG, the gap δ vanishes at the K point for any value
of w0/w1, and the gap � vanishes at the � point within the

FIG. 9. The increased gaps �, δ, and low bandwidth of driven TBG are robust with variations of lattice relaxation effects. Calculation for
θ = 0.7◦ (left) and θ = 0.9◦ (right) using h̄� = 1.5 eV and E = 4 MV/cm.
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realistic parameter range of 0.7 � w0/w1 � 0.85. The driving
field (P = 33 meV and h̄� = 1.5 eV) opens both gaps for
a wide range of w0/w1. The bandwidth is also reduced by
the drive in the same range of lattice relaxation parameters.

Similar results are obtained for other twist angles below the
magic angle. We, therefore, conclude that the features induced
by the drive are robust to variations in the lattice relaxation
parameter of the single model.
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