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One-dimensional systems exhibiting a continuous symmetry can host quantum
phases of matter with true long-range order only in the presence of sufficiently
long-range interactions'. In most physical systems, however, the interactions are
short-ranged, hindering the emergence of such phases in one dimension. Here we use
aone-dimensional trapped-ion quantum simulator to prepare states with long-range
spin order that extends over the system size of up to 23 spins and is characteristic

of the continuous symmetry-breaking phase of matter>*. Our preparationrelies on
simultaneous control over an array of tightly focused individual addressing laser
beams, generating long-range spin-spin interactions. We also observe a disordered
phase with frustrated correlations. We further study the phases at different ranges of
interaction and the out-of-equilibrium response to symmetry-breaking perturbations.

This work opens an avenue to study new quantum phases and out-of-equilibrium
dynamics in low-dimensional systems.

The exploration of new phases of matter has long been a frontier
of physics. Quantum phases are particularly interesting, featuring
non-local and macroscopic properties that have no classical coun-
terpart®. One-dimensional quantum systems have captured special
attention because they can often be efficiently described using vari-
ous computational or analytic approaches>*”. The microscopic form
and range of the interaction between constituent particles directly
determine the macroscopic properties and phases that such systems
can exhibit. Perhaps the best example is the Mermin-Wagner theorem',
which forbids low-dimensional short-range interacting systems with a
continuous symmetry from exhibiting long-range order at any finite
temperature.

One-dimensional systems with long-range interactions, by contrast,
can manifest phases with long-range order***, A prime exampleisa
chainof spin1/2 particles featuring long-range ferromagneticinterac-
tionsthat have a continuous rotational U(1) symmetry. In the absence
of magnetic fields, the chain can possess an exotic phase in which the
spins existinasuperposition of collective statesin the symmetry plane
with no preferred orientation, and the spontaneous breaking of the
continuous symmetry manifests in sizeable magnetic correlations
across the entire chain®?. Such a continuous symmetry-breaking (CSB)
phase of matter has never been observed ina one-dimensional system.

Chains of trapped atomic ions are a pristine one-dimensional spin
system, featuring high isolation from the environment, high-fidelity
measurement and preparation of individual spins, and fully connected
spin-spininteractions whose strength and range can be controlled
by optical fields'® 2. There have been proposals for observing CSB
in trapped-ion systems??, requiring simultaneous control over each
optical field addressing individual ions in along and closely spaced
crystal, which to date has been beyond experimental reach.

Here we report on continuous symmetry breaking in a one-
dimensional trapped-ion quantum simulator. Using simultaneous
individual control of a linear array of 23 optical beams addressing
individual ions, we prepare the system in a CSB phase, manifesting
long-range spin-spin correlations. Individual control over the spins
enables the precise engineering and measurement of the interactions
between spins as well as the study of non-equilibrium dynamics under
symmetry-breaking perturbations. These results represent a frontier
in the control of quantum phases and open new avenues in studying
low-dimensional quantum systems.

The trapped-ion crystal under study comprises 27 7'Yb* ions con-
finedinalinear Paul trap on achip®2¢, asillustrated in Fig. 1a. A fluor-
escence image of the crystal is shown in Fig. 1b. Each ion stores an
effective spin comprising two ‘clock’ levels in its electronic ground
state (1) = |[F=1,M=0)and|Y,) = |F=0,M=0)) (ref. 27). We use a uni-
formly spaced array of tightly focused laser beams, together with an
orthogonal wide global beam to simultaneously drive Raman transi-
tions between the spin states of individualions. The Raman addressing
is sensitive to the motion along the wavevector difference between the
individual and global addressing Raman beams'®, The electrostatic
trapping potential is configured to align the middle 23 ions with the
array of individual addressing beams. The two pairs of non-illuminated
edge ions facilitate the alignment of the 23 middle ions. The spins are
initialized and measured using optical pumping and state-dependent
fluorescence techniques® and the collective motional modes of the
ion chain that mediate their interaction are cooled using sideband
cooling?. Single-spin rotations enable the orientation of each spin
along any axis on the Bloch sphere for initialization or measurement.

We deformthe spin Hamiltonian as a function of time for different ini-
tial states to prepare different quantum phases of matter. Specifically,
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Fig.1| Trapped-ioncrystal. a, lllustration of a one-dimensional crystal
of27ions, confinedinalinear Paultrap onachip. Alineararray of 23 tightly
focused andindividually controlled laser beams simultaneously generates
site-dependent fields and aprogrammableinteraction between the trapped-ion
spins; anadditional beam, propagating parallel to the trap surface, illuminates
theentireion chain fromthe side to facilitate these processes based on Raman

weramp down astaggered transverse-field Hamiltonian and ramp up
an effective long-range XY Hamiltonian'® (Methods), so that the total
time-dependent Hamiltonian is

N AD)A() | DAl NG
H=> > (U(f)o(f) + 0(,')0(3)) +(1-5) Y h6Y, o)
i J

where s = s(t) isatime-dependent parameter changing from O to1dur-
ing the time interval from¢=0to t=Tand 6" are the Pauli operators
of the j-th ion. Here h;= (-1Yh is a uniform-magnitude magnetic
field with amplitude h that alternates between adjacent spins. Each
interaction amplitude J; is positive and describes the flip-flop rate
between the i-th and j-th spins.

The simultaneous time-dependent control of the Raman beams ena-
bles the generation of the staggered-field Hamiltonian. This control also
allows the selection of a subset of N spins in the middle of the crystal
that caninteract with one another while remaining decoupled fromthe
rest of the spins in the crystal: switching off the beam addressing the
n-thionnullsits hopping amplitude/,, toall otherionsi. Theindividual
control also enables the experimental reconstruction of the interac-
tion matrix/J; as shown in Fig. 1c for the first five nearest neighbours
(li —jl <5).Here, the measured long-range interaction decreases slowly
asafunctionof theinterspinspacing, where the spatialinhomogeneity
is determined by the structure of the applied trapping potential.
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transitions (notshown). b, Fluorescence image of a crystal composed of
27Yb*ions. ¢, Experimental reconstruction of the spin-spininteraction
matrix/;of the 23 spins between the five nearest neighbours. The bars are
horizontally aligned with theion crystalimage inb, and the coloursindicate the
interaction between spins at different distances |i - j| (see Methods for the full
modelledinteraction).

The Hamiltonian evolution is also accompanied by decoherence
induced by the optical drive (Methods).

Toinduce long-range correlations, we firstinitialize the spinsin the
Néel state in the zbasis, corresponding to the highest excited state of
the staggered-field Hamiltonian. We then ramp the Hamiltonian with
the profile of s(¢) shown in Fig. 2a. After the ramp, we immediately
measure the transverse correlations C;= 6ff)6(_j) + 6(_")6(]') . The meas-
urements are performed simultaneously on all spinsin the xand then
intheybases separately. To reduce statistical errors, each measurement
isrepeated 3,000t0 5,000 times, resulting inalobinomial uncertainty
0.007 t0 0.010 for each correlation C;. We first consider the time evo-
lution for asubset of N =7 interacting spins (-3 <i,j < 3) showninFig.2b.
Asthe staggered field decreases and the interactionincreases, correla-
tions develop between all theinteracting spinsin the x-y plane, indicat-
ingthe CSB phase. Onthe other hand, when the spins are initialized in
the ground state of the staggered-field Hamiltonian, shorter-range
correlations develop in the x-y plane after evolving under the same
ramp?>. Figure 2c presents the formation of alternating and
fast-decaying correlations between the N = 7 interacting spins, indicat-
ing a disordered phase®*. We focus on the CSB phase and study the
correlations at the end of the ramp for a different number of interact-
ing spins in the same ion chain, shown in Fig. 3a and Extended Data
Fig. 8. Dark blue spheres indicate the set of interacting ions that are
illuminated by the addressing beams. In all configurations, we observe
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Fig.2|Preparation of quantum phases. a, Adiabatic ramp profiles of the
effective XY Hamiltonian, s(¢), and the staggered magnetic field Hamiltonian,
1-s(t),asafunctionoftimet. Theinset shows the average correlation
MAN=7)= % i< Cj»where experimental data points are represented by
triangles and an exponential fitlineisincluded to guide the eye. b,c, Measured
spin-spin correlations C;= <6,-+6; + é;é;> developed during the ramp for the
subsetof N=7interactingspins (-3 <i,j<3) areindicated with small dark blue
spheres; the otherions (lightblue) are not addressed by optical fields and their
spinstates do not participate in the dynamics. b, Initializing the spinsin the
highest excited state of the staggered-field Hamiltonian along the zdirection
leads toalow-temperature state of the ferromagnetic XY Hamiltonianat the
end of theramp. The pronounced positive correlations between all interacting
spinsindicate the continuous symmetry-breaking (CSB) phase. ¢, Initializing
thespinsinthe ground state of the staggered-field Hamiltonian preparesa
low-temperature state of the antiferromagnetic XY Hamiltonian.

sizeable and positive correlations C;between the interacting spins. To
quantify the spatial dependence of the long-range order, we present
the spatially averaged spin correlations Cy({) = ﬁ 2; C; ;. for diffe-
rent system sizes NV as a function of the interspin distance1</<N-1
in Fig. 3b. The averaged correlations for different system sizes in the
CSB phase nearly overlap and saturate to anon-zero valueinthe N> 1
and /> 1limitindicated by the purple dashed line. The measured values
of C\(l) also agree well with those from the numerical simulation of the
experiment shown in Extended Data Fig. 6. The simulation takes into
accountsingle-qubitand collective decoherence processes presentin
our experiment, and is thus limited to N < 11 (see Methods for the tech-
nical details). By contrast, the spatially averaged correlations of the
disordered phase alternate in sign and quickly decay to zero.

We further quantify the averaged correlation of the CSB phase by
extracting the order parameter

1

as shown in Fig. 3c. The order parameter M(N) clearly saturates ata
non-zerovalue, indicating the emergence of long-range order. We also
note that the measured average correlation M2(N) in our system is
generally larger than the asymptotic correlation C,(e), due to the spa-
tial variation of the correlations C;across the system.

Onthe other hand, the magnetizations in the x-y plane, obtained by
averaging over Nspins and over thousands of experimental repetitions,
are nearly zero. This result is expected from the underlying U(1) sym-
metry and the finite size of the chain. The average magnetizationalong
zinthe CSB phase and the average magnetizations in the disordered
phaseare presented in Extended DataFig. 4. We point out that, for each
cycle of the experiment, the measured spin magnetizations areinfact
non-zero along the x or y direction (or any direction in the x-y plane),
as indicated by the measured order parameter M(N) in Fig. 3c. The
continuous U(1) symmetry is therefore explicitly broken by
symmetry-breaking measurements here. For a sufficiently large system
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Fig.3|Long-rangeorder.a, The measured correlation matrix C;;of the prepared
CSB phase forasubset of N=7,11,15,19 and 23 interacting spins. Dark blue
spheresindicate theionsthatareilluminated by the addressingbeams.

b, Spatially averaged correlations Cy (/) = ﬁ 3, G j-iasafunctionof theinterspin
distanceIfor different subsystemsizes N. The correlationsin the CSB phase
(greyish purple) saturate asymptotically atanon-zero value of 0.062+ 0.005in
the N, [>1limit (dashed line), manifesting long-range order. By contrast, the
staggered correlations of the disordered phase (magenta) decay quickly to zero.
Theshapeandbrightness of the symbolsindicate the number ofinteracting spins
N.c, The purple dataforthe order parameter of the CSB phase M(N) (equation (2))
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saturate asymptotically atasizeable non-zero value of B=0.35 + 0.08, while the
average transverse magnetizationinthex-yplane (pale symbols) is small, as
expected fromthe continuous U(1) symmetryinafinite system.Datainaandbas
wellasthe purpledatainccorrespond to theinteraction matrix thatis partially
showninFig.1c. Theblack datainccorrespondstotheinteraction matrix thatis
partially shownin Extended DataFig.1and exhibits ashorterinteractionrange.
Theblack dataforthe order parameter saturates asymptoticallyatB=0.36 + 0.18.
Solidlinesinband crepresent fitstof(x) =Ae™" + B,where A, L and Bare fitting
parameters. Both configurations exhibitasimilar Binlight of the standard
deviationerrorsthatare estimated from the fit.
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Fig. 4 |Out-of-equilibrium dynamics. Following the preparation of the CSB
phase for N=19 spins, we perturb the state by rotating the spinsin the x-y plane
byaspin-dependentangle@atr=0.a, Measured spin-spin correlations<éf’6(x">>
developed during the evolution by the effective XY Hamiltonian for time 7. At
=0 (top left), spins within the right or within the left side of the chain feature
positive correlations, while correlations between spins on different sides are
negative. The middle spin has anear-zero correlation with the rest of the chain.
At7=0.14 ms (topright), the intercorrelations between the two sides decay
quickly while theintracorrelations within each side are maintained. At later
times (bottom) the entire chain develops positive correlations. b, Average
correlationasafunction of time. The dots in different colours correspond
tothecorrelation averaged within the corresponding coloured contours
shownina (top left). Exponential fits with an offset (solid lines) are applied
toguidetheeye. Theerrorbarsindicate one standard error ofthe mean. The
datain this figure correspond to the interaction matrix partially shownin
Extended DataFig.1.

size, the continuous symmetry may also be broken spontaneously by
generic symmetry-breaking perturbations.

The CSB phaseis expected to persist in a system described by the XY
Hamiltonian as long as theinteractions have a sufficiently long range?>.

716 | Nature | Vol 623 | 23 November 2023

The dependence of theinteraction range on optical Raman fields allows
us to examine the relationship between the correlations and interac-
tion range. We repeat the experiment with two other configurations
exhibiting differentinteraction ranges, following asimilar preparation
protocol (Methods). In one configuration, which corresponds to the
experimentally reconstructed interaction matrixJ;shownin Extended
Data Fig.1and Extended Data Fig. 5a (black curve), we prepare a spin
state that exhibits long-range correlations, with anon-zero, yet smaller,
order parameter for the CSB phase, as shown in Fig. 3c. In the other
configuration, which has a considerably shorter interaction range as
showninExtended DataFig. 5a (blue curve), we prepare aspin state that
exhibits short-range correlations and is associated with a disordered
phase (Extended DataFig. 5b (right),c (blue)). These results highlight
the keyrole played by thelong-range interactionsinrealizing the emer-
gentlong-range order.

While the state we prepareis notin thermal equilibrium, we can esti-
mateits effective temperature using numerical simulations. Here, we
compare the correlations of our final state to those of a thermal state
at the same energy. Our analysis, which focuses on the configuration
corresponding to the black curvein Extended Data Fig. 5a, reveals that
the final state has alow effective temperature 7. For example, for N=11,
we find k37= 0.07E;,, where E; . = % 2isihij denotes the average value
of the total interaction strength per spin and k is the Boltzmann con-
stant. See Methods and Extended Data Fig. 9 for details.

We also utilized numerical simulations to model potential future
experiments that could be conducted on our platform with larger sys-
tem sizes and a wider range of interactions (Methods). These experi-
ments would allow for the direct study of the exotic phase transition
between the CSB phase and the disordered phase that isinduced by
changing the interaction range.

The simultaneousindividual control over the Raman fields provides
aprobe tothe CSB phase’s dynamical response to different perturba-
tions. We observe the response of a perturbed CSB phase under the
effective XY Hamiltonian in a system of N =19 spins. We perturb the
prepared CSB phase by rotating the spin of the individual ions by a
variable angle 6; about the z axis while maintaining them in the x-y
plane. Weinvert the spins to theright of the centre (j> 0) (6;= ) while
leaving the spins to the left of the centre (j < 0) unperturbed (6,=0).
Thecentral spin (j= 0) isrotated by 8, = /2. This operation breaks the
global U(1) symmetry of the state while preserving the symmetryinthe
left and right subsystems.

Figure 4 shows the measured correlations (6’69 as a function of
the evolution time 7 from state preparation at r = 0. Initially, the spins
within each side (i,j < 0 or i,j > 0) of the crystal have positive correla-
tions, while the correlations between spins on different sides are
negative, asshowninFig.4a. During the evolution, the intercorrelations
between the two sides decay faster than the intracorrelations within
eachside. Atlongerevolution times, the two sides of the crystal, as well
as the middle spin, overcome the perturbation and develop positive
correlations. In Fig. 4b, we show the full time evolution of the system
by plotting the averaged correlation C, =3 ; ;C; for {i, j} taken within
the coloured contours labelled as 1, 2, 3 in Fig. 4a, corresponding to
n=1,2,3,respectively. This demonstration shows our capability for
further investigation of the properties of the symmetry-breaking phase.
We have also performed numerical simulation of this quench experi-
ment in the absence of dissipation. The simulation results, shown in
Extended Data Fig. 7, agree qualitatively with the experimental data
inFig. 4.

In summary, we observe a continuous symmetry-breaking phase
with long-range order in a one-dimensional spin chain, manifested
at different interaction ranges. Moreover, we show the preparation
of adisordered phase with fast-decaying staggered correlations. As a
teaser on the study of non-equilibrium dynamics, we show the full time
evolution of the perturbed CSB phase. This work opens new avenues
for studying quantum phases of matter in low-dimensional systems.



The techniques presented in this work can be extended to study, for
example, the phase diagram of the ferromagnetic XXZ model that was
studied theoretically inref. 3. This model extends the XY model studied
inthiswork by adding anadditional interaction termthat couples spins
in the zdirection. Such a Hamiltonian can potentially be simulated
using the techniques presentedinrefs.17,29, which essentially involve
adding a spatially uniform longitudinal field to the Hamiltonian we
implement in equation (3). For example, applying a field that domi-
natesthelsinginteraction yields approximately the XXZ Hamiltonian,
where the anisotropy of the interaction can be controlled through
the orientation of the field with respect to the Ising interaction axis".
The additional longitudinal field term canberealized in atrapped-ion
quantum simulator in a native manner',

While completing this project, we became aware of acomplementary
demonstration of CSB in a two-dimensional Rydberg array®.
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Methods

Interaction Hamiltonian

We generate spin-spininteractions using Raman transitions that virtu-
ally excite collective motion of the ions. The beam that globally
addresses the ion chain traverses an acousto-optical modulator that
is simultaneously driven with two radio-frequency signals, splitting
the optical beaminto two components with distinct tones. These two
tones drive simultaneously the first red and blue sideband transitions
in the dispersive regime with symmetric detunings 4 of the Raman
beatnote from the highest-frequency mode of theion chain. We control
the radial electrostatic potential to spectrally separate the two sets
of radial modes and to align the wavevector difference of the Raman
fields to the addressed set. In this configuration, we realize the Ising
Hamiltonian Hyy(£) = s(t) 3;J. 696 (f) . The time dependence of the
Ising Hamiltonian is reallzed f)y varying the Rabi frequencies of the
ions by a factor of W; this is achieved by controlling the power
of N (greater than 23) radio-frequency signals feeding a multichan-
nel acousto-optical modulator which modulates the amplitude of
theindividually addressing beams, while turning off all other (23 - N)
channels.

We apply an effective transverse field at each spin by shifting
the frequency of the beam addressing the j-th ion as a function of
timeby f;= 2s(t)B + 2(1 - s(t))(-1Yh, where Bis a spatially uniform trans-
verse field. This combination generates the transverse-field Hamil-
tonian that is composed of two terms: a spatially uniform transverse
fleld Hamiltonian Hy=s3; BO'(J) and a staggered field Hamiltonian

=(1-5)3; h(-1)/6"". The total experimentally applied time-dependent
Hamr]toman is therefore

H’=Hyyx +Hg+ Hj. (3)

The longer-range configuration with the interaction matrix in
Fig. 1c and purple curve in Extended Data Fig. 5a corresponds to
A=2mx20kHz, B=2mx1.6 kHz, h=2mx 0.9 kHz, and a ramp time of
T=2. 55 ms. The average nearest-neighbour interaction strength
is]J = N 1 2iJ; 141 =21 % 0.09 kHz. The second configuration with the
interaction matrixin Extended DataFig.1andblack curvein Extended
Data Fig. 5a corresponds to A =2m x 55 kHz, B=2mx 6.5 kHz,
h=2mx4.2kHz, aramptimeof T=0.54 ms,and / =2mx 0.5kHz. The
third configuration with the interaction profile shown in Extended
DataFig.5a (blue) correspondsto4 = (w, — w,,) — 2 x 500 kHz (detuned
by about 2 x 200 kHz from the zig-zag mode), B=2m x 430 Hz,
h=2m=x330Hz,aramp time of T=4.4 ms, and J =2m x 50 Hz. We set
thevalues of the Rabiamplitudes Q;to ensure that the nearest-neighbour
interactions satlsfyjl 1 =7 (equation (4)). However, this leads toinho-
mogeneous light shifts due to the non-uniformity of the Rabi ampli-
tudes. To address this, we independently calibrate and compensate
for the inhomogeneity during the experiment by adding an effective
site-dependent magnetic field. Moreover, we make sure that the evolu-
tionis represented by J; > O for this configuration. We correct for the
staggered sign of the J; matrix that is obtained from equation (4)
through the application of astaggered spin-phase, which corresponds
to the transformation A(') 6(;) forodd iin Hyy(£).

The applied transverse field overwhelms the Ising interaction
because B>/ . Using the definition of the raising and lowering spin
operators, 63)— 2(A(’)+za(’)) we can represent the Ising interaction in
aframe rotatmg at the Larmor frequency of the uniform field by
606~ 2(6V6Y"+ 6"6') , bestowing fast oscillations to the 6 506
terms. ThlS construction produces the effective XY Hamrltoman
described in the main text.

Theinhomogeneity in the experimentally measured/; primarily origi-
nates from the structure of the mode participation factors b,,, which
determine the extent to which the n-thion participatesin the k-th pho-
nonmode. To achieve long-range interactions, we detuned our Raman

lasers far from the mode spectrum but on the side of the centre-of-mass
mode, which is the highest-frequency mode whose participation fac-
tors are most uniform. In an ideal scenario, the non-uniformity of the
mode participation factors would lead to a variation of about 3% in
the nearest-neighbour spin-spin coupling across the chain, assuming
uniform Raman power for all ions. However, the larger experimental
non-uniformity is attributed to additional variation in the mode par-
ticipationfactors. After the experiment was conducted, we discovered
that this variation was likely caused by a defective connection of one of
theelectrodes that make up theiontrap, whichled to aninhomogeneity
ofthe electrostatic trapping potential.

Experimental reconstruction of theJ; matrix

We measure each /; element by turning on the two beams addressing
thei-th andj-thions while turning off all other beamsin the array. The
ions areinitialized in the state| 9 1{) forj > i, and the transverse field
is adjusted to zero (f;=f;= 0). We apply a constant-amplitude pulse
with aRabifrequency thatis scaled by afactorg=1.3in thefirst confi-
guration (interaction matrix in Fig. 1) and by g=1in the second con-
figuration (interaction matrix in Extended Data Fig. 1) and measure
the population oscillations. We fit the average staggered magnetiza-
tion 5 L 6‘? A(j) to the function exp(- t)cos(ng i t) usingJ;and I’
as ﬁttmg parameters The measured values of [;are glven in Extended
DataFig.2,andanexample of the reconstructron isshownin Extended
DataFig. 3.

Numerical calculation of theJ; matrix

We calculate the interaction matrix J; that results from applying a
spin-dependent optical dipole force with the Raman lasers, following
refs.18,31. These lasers generate coupling between the spins and the
collective motional modes along a single radial direction, virtually
exciting phonons that mediate the spin-spininteraction.
Mty

j’f Z 2(A+ ;- wk) )
The spin-motion coupling matrix is represented by the Lamb-Dicke
parameters 17, = 0.08b,, where b, is the mode participation matrix
element describing the coupling between spin n and motional mode
k (ref.26). We numerically calculate the matrix b, and the frequencies
of the motional modes w,, listed in decreasing order, for the applied
trapping potentials; we consider a quadratic trapping potentialin the
radial direction with centre-of-mass frequency w, = 2 x 3.3 MHz and
anaxial potential of V(x) =250 x x* - 0.1 x x?, where x is the coordinate
alongthe chain axis in millimetres and Vis the axial electrostatic poten-
tialinelectronvolts. This potential yields anearly uniform-spacedion
chainfortheinner23ions with aspacing of 3.75 um. Q;represents the
equivalent resonant carrier Rabi frequency at ion i, and we assume a
spatially uniform profile.

In Extended Data Fig. 5 we present the numerically calculated aver-
aged interaction J(/) = ﬁ 2i) 4 @@ function of the distance [ for
the three configurations (circles), where J =J(1). To calculate the spin-
spininteraction, we model our radial trapping potential as harmonic
and the axial trapping potential with a fourth-degree polynomial. We
adjust the coefficients of each term in the polynomial expansion to
match theinterion spacingin the experiment, using a procedure sim-
ilartothatdescribedinref.28,32. Next, we compute the mode frequen-
cies and mode participation factors. Finally, we use equation (4) to
determine the spin-spin coupling, given the Ramanbeatnote detuning
and Rabi frequencies. We also present the average experimentally
measured interaction (open squares), where the bars reflect the total
spread of values between different pairs, excluding points for which
the error in the reconstructed value exceeded the actual measured
value (only for several elements with /=5 in the second configuration
which appear in Extended Data Fig. 1as zero). The measured and the



calculated values arein agood agreement. We fit the theoretical values
to the fitting function

J( =je-ﬁ’(l—1)1*a” (5)

which we adapt from ref. 33. The fitted parameters are a’=0.44,
B’ =0.19 for the first configuration (purple line), a’=1, 8" =0.19 for
the second configuration (blackline) anda’=3.4, B’ =0.0for the third
configuration (blue line).

Numerical simulation of the experiments

Here we describe the details of the numerical simulation we performed
inthis paper. We numerically simulate the evolution of the experimen-
tally prepared initial state (Fig. 2b) under the time-dependent Hamil-
tonian H’in equation (3). The Ising interaction matrix {/;} is obtained
usingequation (4), normalized such that the average nearest-neighbour
interaction matches the experimentally measured values (Fig. 1c).
Particularly, we take into account two major sources of decoherence
that likely exist in our experiment: Each qubit i is subject to an indi-
vidual dephasing rate y;along thex direction and additionally, all qubits
decohere collectively at rate y. primarily due to the heating of the
centre-of-mass phonon mode. The density matrix of the systemp then
evolves according to the following master equation:

d i, NOPING!
@ - (t),p]{'z y,-(p—oxpox )}
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where S, =7, 6(;) represents the collective Pauli operator. The values
of y;and y. are obtained by performing the best fit to the measured
pairwise decoherence rate matrix {/;} shown in Extended Data Fig. 2.
We then calculate {C,(/)} and compare them with their experimental
values from Fig.3b. Such comparisonis shownin Extended DataFig. 6
for either N=7 or N=11. A good agreement between the theory and
experiment is observed, except for some boundary effects that are
more pronouncedin the theory. Simulation for N = 15 qubits with deco-
herence is beyond our current numerical simulation capability.

Inaddition, we also simulated the unitary quench dynamics experi-
ment (in the absence of decoherence). In this case, we are evolving
the state only under the Hamiltonian in equation (3), which allows us
to simulate the experiment for N=19 qubits. The results are shown in
Extended Data Fig. 7, which agree qualitatively with the experimental
counterpartsin Fig. 4. The fast oscillationsin the numerical simulation
are due to the large transverse field (H, in equation (3)) we applied to
simulate the XY interaction. The lack of oscillations and the smaller
values of correlations observed experimentally are likely due to the
effects of decoherence.

To show that the experimentally prepared state at the end of the
rampisapproximately described as alow-temperature thermal state,
we first calculate the energy E of the experimental state with respect
to the ferromagnetic XY Hamiltonian (the negative of H defined in
equation (1) withs =1). This calculation is made possible by our experi-
mental measurements of 6?6‘@ and 6‘3&%’? for all pairs of (i, ), as
shown in Extended Data Fig. 8. We then numerically find an effective
temperature 7 such that the thermal state p__ = e"/®7)/ Tr [e"/®T)]
alsohasenergy £. We then compare the experimentally measured cor-
relations Cy(0) (Fig. 3c) with those calculated in the thermal state. An
example of such acomparison for the second experimental configura-
tion (black curve in Extended Data Fig. 5a) and N=11is shown in
Extended Data Fig. 9. We find a reasonable agreement between the
correlations in the two states, with kz7=2m x 0.03kHz, taking 2=1in
the simulation. As the average interaction strength per spin is about

2m % 0.43 kHz, we see that the experimental state canberegarded as a
low-temperature state.

Our platform has the potential to enable future experiments with
larger systemsizes, which could allow us to study the phase transition
between the CSB phase and the disordered phase by changing the
interaction range. To illustrate this possibility, we have numerically
simulated the order parameter M(N) (defined in equation (2)) in the
ground state of -H (where H is defined in equation (1), with s =1) for
systemsizes N=23,N=49and N = 89, using a variational matrix prod-
uctstate algorithm**. For each value of N, we compute the interaction
matrix J; by fixing the values of the axial trapping potential (taken as
asixthorder polynomial) to generate anion chain with approximately
uniformion distances. We then scan the interaction profiles that can
be achieved using the single parameter 4, which corresponds to the
sideband detuning relative to the centre-of-mass mode. Finally, we
use an approximate form by fitting the interaction matrix to equa-
tion (5) for each detuning.

We plot M(N)as afunction of the sideband detuning 4 in Extended
DataFig. 10. Increasing 4 from O to > monotonically decreases the
interactionrange fromall-to-all to dipolar. As the system sizeincreases,
the order parameter M(N) of the CSB phase undergoes a sharper
changeastheinteraction rangeis decreased, indicating a phase transi-
tion out of the CSB phase. This phase transition is of infinite order,
making it difficult to find the exact phase transition point even for
systems witha few hundred spins®. However, approximate calculations
using either spin-wave theory or field theory can be used to predict
the phase transition point in the limit of large system sizes>.

Effect of boundaries and disorder

Here, we analyse the effect of boundaries as well as the variationin the
interaction profilein both the disordered/XY phase (characterized by
power-law decaying correlations) and the CSB phase (withlong-range
order).Specifically, we argue that (1) boundaries lead to a faster decay
of correlations in the XY phase (owing to the significant role played by
fluctuations) while the CSB phase is rather insensitive to the boundaries
and (2) the CSB phase is robust against some amount of variationinJ;.

Point (1) implies that boundaries tend to weaken long-range correla-
tions in the XY phase but are inconsequential in the CSB phase. This
observation rules out the possibility that long-range order could be
anartefact of boundary effects.

Point (2) shows that the CSB phase is robust against the non-
uniformity of the interaction profile. This is particularly important
since the interaction profile J;in the experimental setting is rather
non-uniformfor agiven separation |i —j|. While the non-uniformity of
the experimentally measured/; originates from the experimental set-
tings we realize (particularly the shape of the trapping potential), inthe
analysis below, we also consider disorder in/; caused by fluctuations of
parameters fromone experiment to another and study the behaviour
ofthe XY and CSB phases at weak disorder strength. We note that there
isalso some degree of uncertainty on the measuredJ; thatis especially
pronounced at larger separations |i —j|, owing to their weaker values
compared to nearest-neighbour J;and the presence of decoherence.

Effect of boundaries
Short-range interactions. The XY model with short-range interactions
canbe described by an effective Hamiltonian in the continuum limit as®

Hgp = %J'dxi(axfﬁ)z +K(0,0)?, @

where thebosonic variables ¢ and 8 provide abosonization of the spin
variables. Roughly speaking, the field 6 gives the spin orientation in
thex-yplane, §% = §¥+ 5 ~ e*®%%, while the gradient of ¢ characterizes
the spin component along the zaxis. These bosonic variables are con-
jugate, thatis, they satisfy[0,¢(x), O(x")]= imd(x - x’). The parameter
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K is the so-called Luttinger parameter; specifically, K =1 for the
nearest-neighbour XY model. An effective action can be derived in
terms of one of the two variables as

K
=5 J axarl0,0+ @07 ®)

which determines the nature of (phase) fluctuations. These fluctuations
destroy any kind of ordering;:

(SH=e 29750, 9

as(6% = I dg/q~logN diverges logarithmically with system size N,
in agreement with the Mermin-Wagner theorem. These fluctuations,
however, give rise to long-range correlations (but not ordering)
defined by

i)~ ¢ 3 Ox)-605)>) (10)

where x; represents the position corresponding to the lattice point i.
For aninfinite system (or afinite system well within the bulk, away from
the boundaries), we have

(O -00) = %J‘dq%
av

~llo x=y|
K glx =yl

where |x - y| > 1. It then follows from equation (10) that the spin cor-
relations decay as 1/|x — y|/9,

Next, we consider an open spinchainwithaboundaryatx=0.Inthe
continuum limit, this correspondsto a ‘fixed-end’boundary condition
forthefield ¢ (ref.5). Thelatter variable is conjugate to @ with the com-
mutation relation [0,¢(x), 8(x")] = imrd(x - x’). Fixing the field ¢ then
dictates afree boundary condition for 8, that is, 8,0(0) = 0. The phase
fluctuations are then given by

(B(x) - 6))*) =

_ 2
,1( J‘ dq(cos(qx) cos(qy))
q (12)
z—3 log|x-y|
2K gxX=yl,

roughly whenx =1is close to the boundary while y is far away. Notice
that the coefficient of thelogarithmis larger than thatin equation (11)
andthusleads to afaster decay of correlations approximately equal to
1/)x - y|¥“0, Therefore, bulk-boundary correlations decay faster than
correlations well within the bulk. This should be expected because the
field 9, corresponding to a free end, is highly fluctuating at the edge.
In short, the existence of a boundary suppresses long-range correla-
tions. For sufficiently large systems, these predictions can be verified
using matrix product state algorithms. For smaller system sizes, the
same qualitative trend persists although correlations do not exactly
fall off as a power law.

Long-rangeinteractions

The long-range interactions in our experiment take the form of J-e¢™/*
[, wherelis the distance between two spins. If Ris proportional to the
systemsize, thisinteraction patternis not very different from the sim-
ple1/l* power-law-decay interaction pattern. Therefore, for simplicity,
in thisanaIySIs we assume along-range interacting XY Hamiltonian of
theformy T (8. Si+S; S - This Hamiltonian leads to along-range
terminthe contlnuumllmlt3

7cos[O(x) - 0(y)].

[x yI (13)

Hg=- LR dxdy——=4

The integral is computed over all x and y for [x-y|>AwithAa
short-wavelength cutoff (for example, lattice spacing). If the long-range
interactions are relevant, the system becomes ordered, say along the
x direction, and the Hamiltonian can be expanded around 68 = 0. The
effective field theory describing this phase is given by?

drdxdy
— 2
/_J"drdx(a,e) +jLR f

6(x, 1) -6(y,1)*. (14)

We canthendetermine the dynamic exponent zand the scaling dimen-
sion [f] as®
a-1

Z:T’ [0]1=

(15)

The scaling dimension (6) determines the decay of the phase correla-
tions in the CSB phase: (8(x)0(y)) = 1/|x - y|*°.. The latter correlations
are due to fluctuations on top of long-range order, which implies
(57S; )~ constant at large separations.

ln contrast with the XY phase, fluctuations in the CSB phase only lead
to aslight suppression of the order parameter: (§*) = exp(—(62>/2),
where (6% = [dq/q* with z the dynamic exponent in the CSB phase in
equation (15). The dynamical exponent z <1describes a nonlinear light
cone owing to the long-range interactions®. The fact that z <1renders
the above integral finite, and the order parameter remains finite. Fur-
thermore, this means that the CSB phase could only occur forz<1,
which implies a < 3 (ref. 3). On similar grounds, one can see that the
boundary haslittle effect on the order parameter or onthe correlations
because it only modifies the fluctuations, which are inconsequential
inthe CSB phase.

Effect of disorderin/;
Wenow consider the effect of disorder intheinteraction profile {/;} inour
experiment. To be specific, we assume that either the mode structure
coefficients {n;,} or the Rabi frequencies {Q;} (or both) in equation (4)
have small (relative to their expected values) fluctuations from one
experiment to another. Such fluctuations effectively lead to fluctua-
tions inJ; that take the approximate formJ;(1+ 6, + 6,), where {6} are
assumed to be small,independent random variables with zero meanand
standard deviation D. As the spin correlations we measure come from
anaverage over many experiments with each havingaslightly different
interaction profile {/;}, the fluctuationsin/ effectively lead to disorder.
Again assuming for simplicity thatJ;~1/|i - j|% the effective Hamil-
tonian corresponding to the disordered interactioninthe continuum
limit then becomes

S5
HDiS = Z il

i<j |

*9;
e cos(6(x) - 6(x))). (16)

In the CSB phase, we expand around 8= 0 to find a quadratic term in
0(x;) - 6(x)). Performing the average over disorder using the replica
trick®, we obtain the effective action

G,06, D) - 6,06, 1)) |
IDtsN_DZIdZZ !
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drdr’dxdydy’
R o=y -y [*
X (0,06, 1) = 0,0, 1) 2(Bp(x, T') - 0,(y", T))?,

wherea=1,2,...,ndenotethereplicas; the second lineinequation (17)
isobtained inthe continuum limit. A simple scaling analysis then shows
that the strength of disorder D decreases under rescaling (x > e”'x) as

d—D=(3+2z—2a—4[0])D=—D,

d/ (18)



where we used equation (15). This result implies that the disorder is
irrelevant in the CSB phase.

Fora <1,the Hamiltonianis super-extensive (thatis, the energy den-
sity increases with system size), and the above analysis should be
modified. It is convenient to divide the Hamiltonian by a (Kac) nor-
malization factor defined as /= ﬁ >l ~N'"%, rendering the
Hamiltonian extensive®. Such normalization only affects the overall
energy scales and does not change the phase of the system. The ground
state of the XY Hamiltonian with a < 1is always in the CSB phase?*. One
canseethis, forexample, from the spin-wave analysis assuming a CSB
phase where all the spins are polarized along the +x direction.
A Holstein-Primakoff mapping gives S =1-2a/a; and S} ~a;+a].
The Hamiltonian then becomes?®

g k)
H=Y @ay| 2 [ﬁj (19)
k &%, |k
2N 2N

where ak:%Zj e¥a; and J; =3,J,cos(ki) ; specifically, we have
Ji_o =N .Thedispersion relation s then given by

(A)k:,,]._];/./\/.

Onecanseethatk=0isthe zero (or, the Goldstone) mode since w,, = 0.
For a >1, the dispersion w, depends continuously on kin the thermody-
namiclimit (N > «) and vanishes with kas k > 0.In contrast, fora <1, the
spectrumremains discrete and the zeromode at k = O has afinite energy
difference fromthe next mode at k = 2r1/N (ref. 36). The gapped modes
will not contribute to critical fluctuations and one can furthermore
show that the zero mode exhibits subextensive fluctuations, hence
the stability of the CSB phase against fluctuations. To analyse the effect
of disorder, we note that the disorder inJ; effectively couples the zero
mode to the gapped modes of the system. Such coupling is generically
irrelevant, and the CSB phase will be stable.

(20)

The behaviour of the XY phase under disorder is beyond the scope
ofthis work; however, one generally expects that disorder would lead
to asuppression or possible destruction of long-range correlations
and could even lead to localization phenomena.
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Extended DataFig.1|Partial reconstruction oftheinteractionmatrixin neighbors. The fullmodeled interactionis detailed in the Methods sectionand
the second experimental configuration. The experimentally reconstructed isshownin Extended DataFig. 5. This matrix exhibits long-range interaction,
Jymatrixis shown forasecond experimental configuration up to five nearest whichis nevertheless shorter thantheinteractioninFig. 1c.
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Extended DataFig.2|Decoherence rate matrix. The measured decoherence theinteraction matrixinthe first configuration (Fig.1c). b, The measured
rate matrix I;is extracted from the reconstruction protocol forup tofive relaxationaccompanying theinteraction matrix in the second configuration

nearest neighbors (see Methods). a, The measured relaxation accompanying (Extended DataFig.1).
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Extended DataFig. 3 | Demonstration of the reconstruction protocol.
Wemeasuretheinteractionsbetweenthei=-6ionwithitsuptofive-nearest
neighbors, by turning on the asingle pair of beams addressing two ions atime.
Specifically (i,j) =(-6,-5)ina, (-6,-4)inb, (-6,-3)inc,and (-6,-2) ind and (-6,-1)
ine,asindicated by adark bluesphere. Wefit the staggered magnetization
mg= %<ai - a{> tothe function y = cos(rg?j;£)e® i to extract the interaction
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strength/;and the decoherenceratel;. Theinteractionrate as afunction

of theinter-ionspacingisshowninf. Thefitted/;fori=- 6 (circles). The black
line correspondsto thefit functionin Eq. (5) with fitting parameters

a’=0.44, B’ =0.19.Theerrorbarsindicate one standard error of the mean. The
exemplarydatainthisfigure corresponds to theinteraction matrixinFig.1c

withascaling factorg=1.3;see Methods.
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Extended DataFig.4 | Average magnetization. The measured regular and staggered magnetization along the x (a),y (b), and z (c) axes for the first configuration
(withinteraction matrix in Fig.1c). The errorbarsindicate one standard error of the mean.
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Extended DataFig.5|Modeled interactionand measured correlations.

a, Numerically calculated spin-spininteraction based on Eq. (4) and asimple
model of the trapping potential for the three experimental configurations,
assuming a harmonic trap for the radial coordinates and acombination of
quadraticand quartic potentials for the axial direction. The filled circles
indicate the numerically calculated values with no free parameters. The solid
lines are fits to the numerical results with a profile of /() =J e # ¢ The
fitted parametersarea’=0.44, 8’ =0.19for thefirst configuration (purple),
a’=1, B’ =0.19for the second configuration (black),anda’=3.4, B’ =0for the
third configuration (blue). Opensquares are the experimental datain two out
of the three experimental configurations, where the bars represent the spread
of measured values of all pairs at aspecific spacing /, namely one standard error
ofthe mean. b, Measured spin correlation for the first (left) and the third (right)
configuration for the state prepared at the end of the ramp. ¢, Comparison
between the spatially averaged correlations Cy(/) for N=23 as afunction of
inter-spin distance [ for the long-range (purple) and the short-range (blue)
configurations.
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Extended DataFig. 6 | Numerical simulation of the experimentin the first configuration.aand b show the comparison of the correlation functions C(/)
between the experimental data (filled) and numerical results (unfilled) including modeled decoherence. Ina, the systemsizeis N=7,and, inb, itis N=11.
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Extended DataFig.7|Numerical simulation of the quench dynamics. We function of time. The dotsindifferent colors correspond to the correlation

simulate the unitary quench evolutioninFig. 4 (i.e. without considering any averaged within the corresponding colored contours shownina (top left). The

decoherence processes). a, Measured spin-spin correlatlons< 596 (’)

developed during the evolution by Eq. (3) for time 7. b, Average correlation asa

fast oscillations are due to the large but finite longitudinal magnetic field B.
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Extended DataFig. 8| Long-range correlation. The correlation matrix firstexperimental configuration (purple curvein Extended Data Fig. 5a) that

C{; = <é§f’é‘k’)>, with (a) k=xor (b) k=y, measuredin thexand ybasis, respectively,  leadstothe correlations presented inFig.3 viatherelationC;= L (C;+CY.
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Extended DataFig. 9 |Estimation of effective temperature. Comparison of
the correlations Cy(/) between the measured state (Fig.3b) (purple) anda
numerically calculated thermal-state (black) for N=11. The thermal state has an
effective temperature k3 7= 0.07E;,, with E;,, = % 2i+iJijdenoting the average
interaction energy. Here we consider the second experimental configuration
presented asablack curvein Extended DataFig. 5a.
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Extended DataFig.10|Simulation oflarger spin chains. Numerical
simulation of the order parameter M(N)of the CSB phasein the ground state
of = H(s=1) for spin chains of different sizes (N=23 inred, 49 in magenta, and
89inblue)asafunctionofthe sideband detuning A. The sharp decreasein Mat
large A (shortinteraction range) compared to that at small A (large interaction
range) indicates a phase transition from adisordered phase to the CSB phase.
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