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Abstract

Angiogenesis involves stimulation of endothelial cells (EC) by various cytokines and growth factors, but the signaling
mechanisms are not completely understood. Combining dynamic gene expression time-course data for stimulated EC with
protein-protein interactions associated with angiogenesis (the ‘‘angiome’’) could reveal how different stimuli result in
different patterns of network activation and could implicate signaling intermediates as points for control or intervention. We
constructed the protein-protein interaction networks of positive and negative regulation of angiogenesis comprising 367
and 245 proteins, respectively. We used five published gene expression datasets derived from in vitro assays using different
types of blood endothelial cells stimulated by VEGFA (vascular endothelial growth factor A). We used the Short Time-series
Expression Miner (STEM) to identify significant temporal gene expression profiles. The statistically significant patterns
between 2D fibronectin and 3D type I collagen substrates for telomerase-immortalized EC (TIME) show that different
substrates could influence the temporal gene activation patterns in the same cell line. We investigated the different
activation patterns among 18 transmembrane tyrosine kinase receptors, and experimentally measured the protein level of
the tyrosine-kinase receptors VEGFR1, VEGFR2 and VEGFR3 in human umbilical vein EC (HUVEC) and human microvascular
EC (MEC). The results show that VEGFR1–VEGFR2 levels are more closely coupled than VEGFR1–VEGFR3 or VEGFR2–VEGFR3
in HUVEC and MEC. This computational methodology can be extended to investigate other molecules or biological
processes such as cell cycle.
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Introduction

Angiogenesis, the formation of new blood vessels from pre-
existing vessels, is involved in both physiological (e.g. development,
wound healing and exercise) and pathological conditions (e.g.
cancer and ocular neovascularization, such as neovascular age-
related macular degeneration). Numerous molecules are involved
in angiogenesis: for example, vascular endothelial growth factors
(VEGF) and their receptors, fibroblast growth factors (FGF) and
their receptors, proteins in the matrix metalloproteinase (MMP)
and Notch families. Other pro-angiogenic factors such as
angiopoietin-1 and anti-angiogenic factors such as thrombospon-
din-1 are also associated with regulation of angiogenesis. In order
to integrate hundreds of angiogenesis-related molecules and infer
angiogenesis-annotated genes, we have developed an algorithm to
construct the angiome, a global protein-protein interaction
network (PIN) relevant to angiogenesis [1].

Major regulators of angiogenesis for the endothelial cell, both
ligands and their cell-surface receptors, were summarized in [2].
These regulators were classified as pro- or anti-angiogenic; such
classification is important for application of our understanding of
angiogenesis regulation to diseases. For example, suppression of
major angiogenic regulators like VEGFA (conventionally referred
to as VEGF), or release of endogenous anti-angiogenic factors like
endostatin or thrombospondin can be used to inhibit tumor
angiogenesis. An extended list of molecules involved in regulation
of angiogenesis was constructed in [1], which included the families
of VEGF, TGF (transforming growth factor), IGF (insulin-like
growth factor), and PDGF (platelet-derived growth factor).
Negative regulators of angiogenesis and associated proteins,
including chemokines, angiopoietin, and serpin, were also
considered.

Time course microarray data can help identify genes that are
important in angiogenesis [1,3]. Cultured endothelial cells are
widely used in angiogenesis research. The most commonly used
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EC are human umbilical vein EC (HUVEC) and human
microvascular EC (MEC); telomerase-immortalized human mi-
crovascular (TIME) EC are also used in functional genomics
angiogenesis research [4]. Several time course microarray studies
have been conducted to identify expressed genes in VEGF-treated
HUVEC [5], MEC [6] and TIME cells [7]. The goal of this study
is to combine the angiome with time-series gene expression data
on VEGF-treated EC to investigate the dynamic responses of the
key proteins and protein complexes in angiogenesis under different
in vitro experimental conditions.

Materials and Methods

Constructing the networks of positive and negative
regulation of angiogenesis

The flowchart of constructing the PIN of positive and negative
regulation of angiogenesis is shown in Figure 1. We have
constructed a gene search engine GeneHits described in [1]
(accessible at http://sysbio.bme.jhu.edu). We constructed the
angiome (the global protein-protein interaction network of
angiogenesis) using the resources of SABiosciences, Gene Ontol-
ogy (GO) and GeneCards [8]. The information on edges was
downloaded from Michigan Molecular Interactions (MiMI) [9],
which integrates eleven protein interaction data sources (BIND,
CCSB, DIP, GRID, HPRD, IntAct, KEGG, MDC, MINT,
PubMed and Reactome). The angiome network comprises 1,233
proteins and 5,726 interactions [1]. We will describe the new
strategies, software and experimental datasets used in this study in
the following sections.

Gene Ontology (GO) provides a rich resource of gene functions
and locations in many different species [10]; positive regulation of
angiogenesis (GO:0045766) and negative regulation of angiogen-
esis (GO:0016525) are included. Four genes are listed in both
positive and negative regulators of angiogenesis: thrombospondin
1 (THBS1), angiopoietin 4 (ANGPT4), chemokine receptor 1
(CX3CR1), and serpin peptidase inhibitor member 1 (SER-
PINE1). However, THBS1 and SERPINE1 have been identified
as anti-angiogenic [11–13]. Angiopoietin ANGPT4 is a protein
that promotes angiogenesis [14]. Fractalkine (FKN)-induced
activation of CX3CR1 in EC leads to in vivo angiogenesis
through the induction of HIF-1alpha and VEGF-A gene
expression by CX3CR1 activation and subsequent VEGF-A/
KDR-induced angiogenesis [15]. Table 1 (A) and (B) presents 56
and 39 proteins annotated as positive and negative regulation of
angiogenesis, respectively. We select the proteins in the extended
angiome [1] which are linked to the 56 and 39 proteins in Table 1
(A) and (B) and their interactions to construct the two networks of
positive and negative regulation of angiogenesis, respectively.
Cytoscape is used to draw the PIN [16].

Microarray data analysis
We compiled five time-course microarray datasets at different

experimental conditions on endothelial cells (Table 2). Schweigh-
ofer et al. [5] measured gene expression in HUVEC stimulated by
VEGF and epidermal growth factor (EGF) (GSE10778). Glesne et
al. [6] measured transcripts during proliferation and tubulogenesis
in human MEC stimulated with VEGF (GSE2891). Mellberg et al.
[7] cultured TIME cells (telomerase-immortalized human micro-
vascular endothelial cells) in 3D collagen gels and on 2D

Figure 1. Flowchart of finding the protein complexes of angiome and merging time course gene expression data. We marked the
methods used in the angiome study [1] with the red frame, and displayed the new methods in the lower part of the figure. These new strategies used
in this study include software such as BiNGO (Biological Networks Gene Ontology) and STEM (Short Time-series Expression Miner), curated gene sets
of positive and negative regulation of angiogenesis, use of microarray datasets and experimental design.
doi:10.1371/journal.pone.0110871.g001
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fibronectin matrix, stimulated with VEGF and measured gene
expression. Raw microarray data on TIME cells from Mellberg et
al. [7] were kindly provided by the authors. We downloaded the
time course microarray datasets from Gene Expression Omnibus
(GEO) databases [5,6] and recovered the missing data from
Mellberg et al. [7] using GenePattern 3.6.1 [17]. Gene Expression
Omnibus (GEO) data were imported by GEOImporter version 5.
Genes with missing values in Mellberg et al. [7] were recovered by
the k nearest neighbors (KNN) algorithm in ImputeMissingVa-
luesKNN version 13 module. We used the default settings in
GenePattern software.

Temporal expression pattern
We use Short Time-series Expression Miner (STEM) [18] to

identify significant temporal expression profiles and the genes
associated with these profiles integrated with Gene Ontology (GO)
database from microarray experiments. The clustering method of
gene expression profiles is based on STEM clustering method;
details of the algorithms are described in [19]. This clustering
algorithm first selects several distinct and representative temporal
expression profiles, called ‘‘model profiles’’. The model profile
starts at the first time point, and then the profile between the two
time points can be unchanged, increase or decrease with an
integer number of time units. The model profiles are selected
independently from the data to determine the significance of the
different clusters. The STEM clustering algorithm assigns each
gene to the model profile that matches the expression profile of
genes most closely by the correlation coefficient. We set GO
annotations as biological processes and molecular functions with
minimum GO depth of 3, number of permutations per gene to 50,
and significance level p-values to 0.05 by Bonferroni correction.

Functional enrichment of genes associated with positive
and negative regulation of angiogenesis

We used BiNGO 2.44 (Biological Networks Gene Ontology
tool) [20] on Cytoscape 2.8 [16] for the functional enrichment
analysis of genes in the positive and negative regulation of
angiogenesis PINs to identify pathways and biological processes.
The p-values were computed by the hypergeometric test, and the
Benjamini & Hochberg false discovery rate (FDR) correction was
also computed at a significance level 0.05.

Cell culture
Human microvascular endothelial cells (MEC) and human

umbilical vein endothelial cells (HUVEC) were purchased from
Lonza (Walkersville, MD). MEC were propagated in microvascu-
lar endothelial cell growth medium-2 (EGM-2MV, Lonza).
HUVEC were grown in endothelial cell growth medium-2
(EGM-2, Lonza). Cells were maintained under standard condi-
tions of 37uC and 5% CO2 and the passage numbers of the
endothelial cells were kept between 3 and 6.

Western blot assay
MEC and HUVEC in passages 3 to 6 (Lonza) were plated in

75T tissue culture flasks at 1,000,000 cells/well in the normal
growth media (EGM-2MV for MEC; EGM-2 for HUVEC, from
Lonza). After 48 hr, normal growth media were replaced with
serum-free media (EBM-2 without supplements) and incubation
lasted 24 hr to starve the cells. Human VEGF165 (50 ng/ml, R&D
systems) in serum-free media was applied, and the flasks were
incubated for 0, 1, 3, 6, 12, 24 hr at 37uC, and 5% CO2. VEGF
treatment was stopped by adding cold PBS and the cells were lysed
in cold lysis buffer (150 mM NaCl, 1 mM EDTA, 1 l/ml protease
inhibitors (Sigma Aldrich), 1 l/ml phosphatase inhibitors (Sigma)
and 1% Triton X-100) for 2 hr at 4uC, then scraped to collect the
lysates. Cell lysates were spun at 14,000 g for 30 min to remove

Table 1. List of genes in the angiome that are annotated as positive and negative regulators of angiogenesis shown in (A) and (B),
respectively.

(A) 56 proteins annotated as positive regulators of angiogenesis: ADM, AGGF1, ANGPT4, ANGPTL3, ANXA3, AQP1, BTG1, C3, C3AR1, C5, CCL11, CCL24, CCL5, CCR3,
CD34, CHRNA7, CTSH, CX3CR1, EPHA1, ERAP1, F3, FGF1, FGF2, FLT1, GATA2, GATA4, GATA6, HDAC9, HIF1A, HIPK1, HIPK2, HMOX1, IL1A, IL1B, KDR, MMP9, NOS3, PRKD1,
PRKD2, PTGIS, PTGS2, RAMP2, RAPGEF3, RHOB, RRAS, RUNX1, SFRP2, SPHK1, TEK, TNFRSF1A, TNFSF12, TWIST1, UTS2R, VEGFA, VEGFB, WNT5A

(B) 39 proteins annotated as negative regulators of angiogenesis: AMOT, ANGPT2, APOH, BAI1, CCL2, CCR2, COL4A2, COL4A3, CXCL10, FASLG, FOXO4, GHRL, GTF2I,
HDAC5, HHEX, HOXA5, HRG, KLF4, KLK3, KRIT1, LECT1, LIF, MAP2K5, NF1, NPPB, NPR1, PDE3B, PF4, PML, PTPRM, ROCK1, ROCK2, SERPINE1, SERPINF1, STAB1, THBS1,
THBS2, THBS4, TIE1

doi:10.1371/journal.pone.0110871.t001

Table 2. Five VEGF-treated time-course microarray datasets with different experimental conditions on endothelial cells.

Treatment Cells Time Resource Ref

VEGFA HUVEC 0,0.5,1,2.5,6 hr GSE10778 (Schweighofer, et al., 2009)

VEGFA MEC
(proliferation)

0,0.5,1,2,4 hr GSE3891 (Glesne, et al., 2006)

VEGFA MEC
(tubulogenesis)

0.5,1,2,4,8 hr GSE3891 (Glesne, et al., 2006)

VEGFA TIME (3D
collagen I)

15 min,1,3 6,9,12, 18,24 hr Provided by authors (Mellberg, et al., 2009)

VEGFA TIME (2D
fibronectin)

15 min,1,3,6,9,12, 18,24 hr Provided by authors (Mellberg, et al., 2009)

doi:10.1371/journal.pone.0110871.t002
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dead cells and cell debris. Cell lysates were separated by sodium
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)
and transferred to nitrocellulose blots (Invitrogen, Carlsbad, CA),
using the iBlot transfer module (Program 3, 14 min). We blocked
the nitrocellulose membrane for 1 hr with 5% non-fat milk+1%
BSA (bovine serum albumin, Sigma) in TBST (1X TBS with 0.1%
Tween 20) at room temperature, and the membrane was probed
with antibodies detecting human VEGFR1 or VEGFR2 or
VEGFR3 at 1:1000 dilution (Cell Signaling Technology and
Abcam). Glyceraldehyde 3-phosphate dehydrogenase (GAPDH,
1:2000, Cell Signaling) was used as a loading control. HRP-
labelled secondary antibodies were added at 12000 dilution and
protein bands were detected with the Amersham ECL Prime
Western Blotting Detection Reagent (GE Healthcare). Western
bands were analyzed by quantifying number of pixels in the band
using ImageJ free software (NIH, Bethesda, MD). Full length
VEGFR1 (180 kDa) in MEC and HUVEC were analyzed, as
HUVEC does not show sVEGFR1 (110 kDa). Similarly full length
VEGFR3 (195 kDa) was analyzed, as HUVEC do not show the
unglycosylated precursor form (175 kDa). Each band was
normalized by using the GAPDH level.

Results

Constructing the networks of positive and negative
regulation of angiogenesis

Following the description in Methods and flowchart in Figure 1,
we constructed the two networks of positive and negative
regulation of angiogenesis. The PIN of positive regulation of
angiogenesis comprises 367 proteins and 1,972 interactions (Table
S1); the PIN of negative regulation of angiogenesis comprises 245
proteins and 1,154 interactions (Table S2). Some proteins in the
positive regulation of angiogenesis are also connected to the
proteins in the negative regulation of angiogenesis by physical
interactions present in the MiMI [20] database and literature
reports, such as anti-angiogenic thrombospondin (THBS1) direct-
ing binding to angiogenic proteins COL1A1 (collagen type I) [21]
and MMP9 (matrix metallopeptidase 9) [22]. Details of protein
interaction types and resources of interactions are provided in
Table S1 and S2. The list of repeated proteins included in both
positive and negative regulation of angiogenesis is provided in
Table S2. We used BiNGO 2.44 (Biological Networks Gene
Ontology tool) [23] for the functional enrichment of genes in the
two angiogenesis PINs (Table S3 and S4).

Temporal gene expression pattern
Among microarray datasets shown in Table 2, Mellberg’s

dataset on TIME cells [7] contains the most time points at
15 min and 1, 3, 6, 9, 12, 18, and 24 h. We used the STEM [18]
to identify significant temporal gene expression profiles and the
genes associated with these profiles integrated GO database. We
found the temporal gene expression pattern of all the genes in the
raw microarray data. We normalized the microarray data to the
first time point in each of the set [5,6] except Mellberg’s data [7]
which have been normalized to the untreated conditions. The
maximum number of model profiles was set as 20 and also
compared with the maximum number of model profiles as 10 and
40 in temporal gene expression profiles of TIME cells on 2D
fibronectin and 3D collagen I (Table S5). The genes with absolute
log2 fold change between the maximum and minimum values of
any two over all time points less than 1 are removed in the
analysis.

We show the four statistically significant (adjusted p-value,0.05
by Bonferroni correction) temporal gene expression profiles of

TIME cells on 2D fibronectin, and sort the four profiles by their p-
values in Figure 2 (A). The p-value was calculated by the number
of genes assigned to the model profile, compared to the expected
number of assigned genes. The number on top left represents the
assigned profile number by STEM, and the number on bottom left
represents the significance level before the Bonferroni correction.
The box is colored if the statistically significant number of genes,
based on the adjusted p-value,0.05 by Bonferroni correction, are
assigned to the model profile. The black and red lines in the
individual profile boxes indicate the assigned pattern, e.g. the
sequence (0,1,2,3,4,5,6,7,8) over the eight time points and initial
points in profile #16, and the gene expression of genes assigned in
that profile. We compare the four statistical significant profiles on
2D fibronectin in Figure 2 (A) with 3D type I collagen, and plot
the four profiles (#16, #4, #5, #9) in Figure 2 (B). We found
statistically significant patterns of continuous up- and down-
regulation depicted by profiles #16 and #4 (shown on the top-left
corner of each profile box) exist for both matrices on TIME cells,
but fluctuation patterns depicted by profiles #5 and #9 are only
exhibited on 2D fibronectin (Figure 2A).

Figure 2. Temporal gene expression profiles on 2D fibronectin
and 3D collagen I for TIME cells in (A) and (B), respectively.
doi:10.1371/journal.pone.0110871.g002
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We found that the top five most significant GOs on 2D
fibronectin of profile #16 (Bonferroni corrected p-value,0.008 by
using a randomization test) in Figure 2A are angiogenesis
(GO:0001525), vasculature development (GO:0001944), extracel-
lular matrix organization (GO:0030198), extracellular structure
organization (GO:0043062) and system development
(GO:0048731). The top five most significant GOs (corrected p-
value,0.001) on 3D type I collagen matrix of the monotonically
increasing profile #16 in Figure 2B are angiogenesis
(GO:0001525), blood vessel morphogenesis (GO:0048514), vascu-
lature development (GO:0001944), blood vessel development
(GO:0001568) and extracellular matrix organization
(GO:0030198). We found several significant GOs with similar
GO functions, such as angiogenesis (GO:0001525), vasculature
development (GO:0001944), blood vessel development
(GO:0001568), and blood vessel morphogenesis (GO:0048514).
The clusters of significant profiles, GOs and genes in the profile
are listed in Table S6.

We compared the statistically significant model profiles between
2D fibronectin (#16, 4, 5 and 9 in Figure 2A) and 3D type I
collagen (#4 and 16 in Figure 2B) by the maximum uncorrected
intersection p-value as 0.005 in Table S7. Table S7 also lists the
genes in the pairwise comparisons with at least one significant GO
category by the corrected p-value,0.05. The p-value was
calculated based on the hypergeometric distribution of the
intersection of genes assigned to the two profiles, one profile from
the original data set and the other from the comparison data set
[18]. 115 and 112 genes are assigned to the intersection of the
increasing profile #16 and the decreasing profile #4 on two
matrices, respectively. Among these 115 genes in pattern #16 of
the intersection, fourteen genes annotated as GO:0001525
angiogenesis (corrected p-value = 0.004) include ADM, CDH13,
COL4A1, EPHA2, HSPG2, ISL1, ITGAV, MMP2, NOTCH4,
RAMP2, RGC32, RHOB, VASH1 and VEGFC. We found three
genes, the LIM-homeobox transcription factor islet-1 (ISL1),
Response gene to complement 32 (RGC32), and vasohibin-1
(VASH1) annotated as angiogenesis, which were not included in
the angiome in our previous study [1]. We also compare the
different activation pattern pairs between the two substrates.
Profile #5 on 2D fibronectin and #4 in 3D collagen I share some
genes in the GO:0048584 positive regulation of response to
stimulus (corrected p-value = 0.006), including BCAR1, DAB2,
DAPK3, DBNL, DUSP7, F2RL1, FZD4, GPR177, IGKC and
TNFSF10.

Significant temporal gene expression profiles in VEGFA-
treated MEC and HUVEC

We used the STEM software [18] to find significant temporal
gene expression profiles in previously reported datasets of
VEGFA-treated MEC (GSE3891) [6] and HUVEC (GSE10778)
[5]; the results are presented in Tables S8–S9 listing the significant
profiles (p-value,5E-2). The GOs for the significantly decreasing
profiles #4 (p-value = 6.40E-40) in VEGF-treated MEC during
proliferation [7] include translational initiation, termination and
elongation. We compare the genes in the intersection of significant
profiles during proliferation and tubulogenesis in VEGFA-treated
MEC (Table S8). The GO categories for the genes in the
intersection of increasing profile #17 during tubulogenesis and
decreasing profile #4 during proliferation include translational
termination and elongation (p-value,0.001). This analysis shows
that some genes involved in protein translation behave differently
during endothelial cell proliferation and tubulogenesis. The
temporal gene expression profiles in HUVEC [5] in Table S9
show more diverse patterns than TIME cells shown in Figure 2.

Activation patterns of the receptor protein tyrosine
kinase

We used the defined gene set of the 367 and 245 genes in the
positive and negative regulation of angiogenesis in STEM
clustering, respectively (Table S10). We found 21 and 19 genes
in the positive regulation of angiogenesis which were assigned to
the increasing profile #16 on 3D type I collagen and 2D
fibronectin, respectively. We further used Toppgene [24] to
analyze the functional enrichment of proteins included in the
increasing profile #16 of positive regulation of angiogenesis (Table
S10). One of the top significant GO molecular functions for 21
and 19 genes in the increasing profile #16 of positive regulation of
angiogenesis on 3D type I collagen is protein tyrosine kinase
activity (p-value = 9.568E-5 and 2.648E-3).

Since tyrosine kinase activity is of great interest in translational
applications, we scrutinize the genes annotated as protein tyrosine
kinase activity in the functional enrichment of positive regulation
of angiogenesis in Table S3. The GO category ‘‘transmembrane
receptor protein tyrosine kinase activity’’ (adjusted p-va-
lue = 1.64E-13) contains eighteen proteins ALK, EGFR, EPHA1,
EPHB2, FGFR1, FGFR2, FGFR3, FGFR4, FGFRL1, FLT1
(VEGFR1), FLT4 (VEGFR3), IGF1R, KDR (VEGFR2), NRP1,
NRP2, NTRK2, TEK and TIE1. We merge proteomic and
genomic data based on the 2007 protocol [25] by Cytoscape [16].
The proteins with gene transcripts on 3D type I collagen for TIME
cells in Figure 3 show that FLT1 is activated consistently after 6 h,
KDR only activated at 24 h, and FLT4 decreased from 15 min to
9 hr then increased from 12 hr to 24 hr. The VEGF ligands
family and their receptors play important roles in the develop-
ment, maintenance, and remodeling of the vasculature [26,27].
Thus, we select three VEGF receptor tyrosine kinases VEGFR1
(FLT1), VEGFR2 (KDR), and VEGFR3 (FLT4) to perform
protein-level time series in vitro experiments.

Comparison between gene transcripts and protein
expression

We explored time-dependent VEGF receptor expression in
blood endothelial cells after VEGF treatment, as the VEGF-
VEGFR axis is pivotal in endothelial cell growth and mainte-
nance. The experimental results for FLT1 (VEGFR1), KDR
(VEGFR2) and FLT4 (VEGFR3) are shown in Figure 4. Briefly,
one million of HUVEC or MEC were starved overnight, after
which we treated the cells with 50 ng/ml of human VEGF165 and
incubated them for 0, 1, 3, 6, 12 and 24 hr at 37uC. Total protein
levels of VEGFR1/2/3 and glyceraldehyde 3-phosphate dehy-
drogenase (GAPDH) were obtained for normalization in data
analyses. The number of pixels of each western band was analyzed
using ImageJ (NIH, Bethesda). In VEGFR1 and VEGFR3
analyses, the full length VEGFR1 (180 kDa) and the full length
VEGFR3 (195 kDa) in MEC and HUVEC were analyzed, as
HUVEC do not express some isoforms. Each band was finally
normalized by the GAPDH level.

We plotted the ratio of measured protein levels of VEGFR1,
VEGFR2 and VEGFR3 to the GAPDH in HUVEC and MEC in
Figure 5 (A) and (B), respectively, normalized to the first time
point. We observed that VEGFR1 and VEGFR2 levels are more
closely coupled than VEGFR1-VEGFR3 or VEGFR2-VEGFR3
in HUVEC and MEC. Interestingly, VEGFR1 and VEGFR2
were restored to the initial protein level after the mid-time point of
VEGF treatment, suggesting that some downstream signaling of
VEGF pathway may induce VEGFR1 and VEGFR2 expression.
Figure 5 (B) shows that VEGFR1 drops after VEGF treatment in
MEC, showing its minimum level at 3 hr, then, VEGFR1 recovers
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continuously. Similarly, VEGFR2 shows minimum level at 6 hr,
and recovered after that time point. This ‘‘drop and recovery’’
pattern is not shown in VEGFR3. There might indicate different
regulation mechanisms for VEGFR1/2 and VEGFR3 in endo-
thelial cells.

VEGFR1 and VEGFR2 levels increase after 12 hr in VEGF
treated MEC and HUVEC. This confirms that VEGF is a potent
mitogen for blood endothelial cells, and that VEGF-treated
HUVEC and MEC may not be significantly involved in VEGFR3

signaling, which is known as a lymphangiogenic receptor, though
these endothelial cells express VEGFR3. Also crosstalk between
VEGFR1 and VEGFR2 in the presence of VEGF, especially their
reciprocal mitogenic signaling is an important topic in the
endothelial cell biology. VEGFR1 has three isoforms: full
length/membrane bound form (180 kDa), and two soluble forms
(110, 75 kDa) [28]. These soluble VEGFR1 lack the intracellular
tyrosine kinase and the transmembrane domains, and play as
scavenger molecules of VEGF. VEGFR3 has three isoforms:

Figure 3. Activation pattern of receptor tyrosine kinases on 3D collagen I for TIME cells.
doi:10.1371/journal.pone.0110871.g003
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glycosylated (195 kDa), unglycosylated precursor (175 kDa), and
their cleaved form (125 kDa). Interestingly, HUVEC did not show
larger soluble form of VEGFR1 (110 kDa) and unglycosylated
precursor form of VEGFR3 (175 kDa) compared to MEC that
express all three isoforms of VEGFR1 and VEGFR3 (Figure 4)
[29]. Different expression of the VEGFR isoforms, their processes
of cleavage, and biological functions of these isoforms under
VEGF treatment in different endothelial cells need to be further
investigated.

The study of time-specific differences in gene expression in EC
could provide important insights into their role in normal
physiology and diseases. In normal physiology, temporal gene
expression can result in EC heterogeneity [30]. EC heterogeneity
is observed in different organs and different stages of development
[31]. Our study may enable understanding of angiogenesis
processes in different location or stages of organs by identifying
crucial genes in each context. We particularly identified time-
specific activation patterns of genes in VEGF-treated TIME cells,
HUVEC and MEC. VEGF is pivotal for life: if it is abolished, it
results in the embryonic death and impaired tissue maintenance
and regeneration [32]. As our study was based on microarray data,
it could be applied to the experimental design with time-
dependent quantitative RT-PCR to identify other genes that
regulate EC proliferation and migration in the presence of VEGF.
Our analyses, however, need to be further explored at protein
expression levels. The time-dependent approach for the gene
expression in angiogenesis is also important for diseases. Plasma
concentrations of VEGF and its receptors vary in a time-
dependent manner before and after lung cancer surgery [33].
Proangiogenic plasma alterations such as Angiopoietin-1 (Ang1),
VEGF and soluble VEGFR1 may result in cancer patients
developing recurrent disease after surgery. Time-dependent
changes of plasma VEGF levels and VEGFR1 in acute lung
injury in the rat sepsis model revealed the pulmonary VEGF and
the signaling pathways [33]. The VEGF and VEGFR1 levels are
increased in liver tissues in lipopolysaccharide (LPS)-induced
endotoxemia in a time-dependent manner [34]. Therefore, studies
in VEGF-dependent diseases and associated abnormalities in
blood endothelium can benefit from the current study.

In summary, we investigated the different activation patterns of
genes in VEGF treated human endothelial cells (TIME cells,
HUVEC and MEC). This computational methodology can be
extended to investigate various VEGF dependent biological
processes. All the files including the Cytoscape and microarray

Figure 4. Experiments of VEGFR1, VEGFR2 and VEGFR3 for MEC and HUVEC.
doi:10.1371/journal.pone.0110871.g004

Figure 5. Normalized protein level measurement of VEGFR1,
VEGFR2 and VEGFR3 to GAPDH on HUVEC and MEC in (A) and
(B), respectively.
doi:10.1371/journal.pone.0110871.g005
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datasets for STEM simulations are provided on our laboratory
website http://pages.jh.edu/,apopel/software.html.

Conclusions

Combining gene expression data and protein interactions could
reveal the dynamics of positive and negative regulation of
angiogenesis in different endothelial cells and under different
experimental conditions. We constructed two protein interaction
networks representing positive and negative regulation of angio-
genesis and found several clusters from gene ontology annotations
and network properties. These findings capture the dynamics of
protein interactions in regulation of angiogenesis, and can serve as
a guide for experimental design related to activation patterns of
important proteins in angiogenesis.
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positive regulation of angiogenesis.
(XLS)

Table S4 Functional enrichment analysis of genes in the
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sets of positive and negative regulation of angiogenesis
in 2D fibronectin and 3D type I collagen.
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