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S U M M A R Y
The viscoelastic load Love numbers encapsulate the Earth’s rheology in a remarkably efficient
fashion. When multiplied by a sudden increment of spherical harmonic load change, they
give the horizontal and vertical surface displacements and gravity change at all later times.
Incremental glacial load changes thus need only be harmonically decomposed, multiplied by
the Love numbers and summed to predict the Earth’s response to glacial load redistributions.
The computation of viscoelastic Love numbers from the elastic, viscous and adiabatic profiles
of the Earth is thus the foundation upon which many glacial isostatic adjustment models
are based. Usually, viscoelastic Love numbers are computed using the Laplace transform
method, employing the correspondence principle to convert the viscoelastic equations of
motion into the elastic equations with complex material parameters. This method works well
for a fully non-adiabatic Earth, but can accommodate realistic partially adiabatic and fully
adiabatic conditions only by changing the Earth’s density profile. An alternative method of
Love number computation developed by Cathles (1975) avoids this dilemma by separating the
elastic and viscous equations of motion. The separation neglects a small solid-elastic/fluid-
elastic transition for compressible deformation, but allows freely defining adiabatic, partially
adiabatic or fully non-adiabatic profiles in the mantle without changing the Earth’s density
profile. Here, we update and fully describe this method and show that it produces Love
numbers closely similar to those computed for fully non-adiabatic earth models computed
by the correspondence principle, finite element and other methods. The time-domain method
produces Love numbers as good as those produced by other methods and can also realistically
accommodate any degree of mantle adiabaticity. All method implementations are available
open source.

Key words: Phase transitions; Loading of the Earth; Numerical solutions; Dynamics of
lithosphere and mantle; Rheology: crust and lithosphere; Rheology: mantle.

1 I N T RO D U C T I O N

Numerical models of the mantle’s self-gravitating, viscoelastic deformation in response to shifting surface loads are used to predict local sea
level changes, correct observations of geodetic measurements and constrain mantle rheology and glacial chronologies (Steffen & Wu 2011;
Peltier et al. 2015). For model Earth’s mantles in which material parameters vary more with depth than lateral location, radial symmetry
can be assumed and the spherical harmonic transformations employed. Solving the equations of motion and gravity gives depth-dependent
displacements, stresses and perturbations to gravity in response to the application of a spherical–harmonic load. When normalized to the
load’s gravitational potential, the computed surface displacements and gravitational potential are called the loading Love numbers (Peltier
1974; Wu & Peltier 1982; Vermeersen et al. 1996b). Methods differ in how they perform the integration through the mantle and, more
importantly, how they treat the time dependence of the response.
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Time-domain viscoelastic Love numbers 2137

The most commonly used technique today for computing the time-dependent viscoelastic Love numbers is to transform the time
variable t into the complex frequency s using the Laplace transform. In the Laplace domain, the viscoelastic equation of state for a
Maxwell viscoelastic body has the form of the elastic equations of motion with the elastic parameters replaced with s-dependent expressions
that incorporate the viscosity of the material. The time-dependent Love numbers are found when the s-dependent Love numbers are
inverted back to the time domain. That the elastic equation of motion can be used to determine the viscoelastic solution by making the
elastic parameters complex is called the correspondence principle (Cathles 1975; Wu & Peltier 1982; Sabadini et al. 2016). Multiple
implementations of the correspondence principle method of Love number computation were shown to agree with each other and with
finite element methods for the self-gravitating, incompressible deformation of layered mantles in the benchmarking exercise of Spada et al.
(2011).

In the correspondence principle methods, the mantle is typically stratified into layers within which the material properties are constant.
In this case, the inverse Laplace transformation is dominated by isolated, first-order poles in the complex plane, called the viscoelastic normal
modes (Peltier 1985; Wolf 1985). Each mode can be associated with aspects of the mantle model considered (Wolf 1985). For instance, there
are modes associated with the relaxation of buoyancy forces at the lithosphere and from the density contrast between the mantle and the core
(called L0 and C0, respectively). There are two modes associated with each jump in viscoelastic parameters at each layer boundary, called
the transient modes (Ts). These adjust quickly and have small amplitudes. Finally, there are modes associated with jumps in density at the
layer boundaries, called the mantle modes (Ms). These adjust more slowly, are larger in magnitude and have more impact on the computed
viscoelastic deformation. All the density jumps inhibit flow because buoyancy forces build that slow their displacement. They must, therefore,
be considered either compositional discontinuities or the boundaries of a fully non-adiabatic phase change (Wu & Peltier 1982; Sabadini et al.
2016).

This last statement has important implications. In an adiabatic fluid, a displaced parcel of material enclosed in an insulating but
deformable sack immediately conforms to its new environment (in density, temperature, etc.). Flow mimics this adiabatic sack, and so moves
in an adiabatic mantle as if any changes in density were not present (Turner 1979). Only the non-adiabatic portion of density gradients in
the mantle inhibit flow. The density discontinuities bounding the layers of a correspondence principle solution are fully non-adiabatic and
introduce a buoyant mode that affects the timing of total viscoelastic deformation (Nakada 1999; Wolf & Kaufmann 2000). Not all the density
changes in the Earth’s mantle are non-adiabatic, however. At least half the approximately 2000 kg m−3 increase in density between the top and
bottom of the mantle is due to self-compression and hence is adiabatic (Dziewonski & Anderson 1981; Johnston et al. 1997). Furthermore,
a density jump at a phase boundary could be adiabatic if heat is being advected through it by mantle flow quickly enough that an adiabatic
temperature profile is maintained across it (Cathles 1975; Johnston et al. 1997). Deciding which parts of the changes of density in the mantle
are adiabatic and which are not is not a straight-forward task, and, therefore, a method that allows the fraction of a density change that is
non-adiabatic to be freely specified is useful.

Separating self-compression from non-adiabatic density changes within the correspondence principle method has been addressed by
Nakada (1999) and Cambiotti & Sabadini (2010). They separated the density stratification into the density change expected from elastic
self-compression and a remaining ‘compositional’ (by which they mean non-adiabatic) component. As described by Cambiotti & Sabadini
(2010), this results in a set of modes (the C modes) that are associated with non-adiabatic stratification. They simulate an adiabatic or partially
adiabatic mantle by reducing the magnitude of the compositional component. This changes the mass of the Earth and sacrifices accuracy in
the gravitational perturbations (Fjeldskaar & Cathles 1984).

Challenges also arise within the correspondence principle method when considering mantles that are compressible or have parameters
that vary continuously with depth because non-isolated poles (Fang & Hager 1995; Han & Wahr 1995) or poles off the real axis (Al-Attar
2011) appear that are difficult to locate and integrate. Methods have been developed to approximate the poles (Vermeersen et al. 1996b),
and to handle them by carrying out a more comprehensive inverse transform integration (Klemann et al. 2003; Tanaka et al. 2006), but
appropriately modelling compressibility may require addressing additional issues associated with continuous parameters (Wolf 1991; Wolf
& Kaufmann 2000).

Another method for computing the time-dependent viscoelastic Love numbers, avoids these problems of compressibility, continuously
varying parameters and artificial sources of buoyancy (e.g. phase boundaries that may be adiabatic), is to compute the elastic and viscous
deformations separately at each time step of the evolution and add them together. This time-domain method was developed by Cathles
(1975). The advantage of separating the elastic and viscous equations of motion is that it allows an explicit distinction to be made between
adiabatic and non-adiabatic density gradients without modifying the total densities that are the source of the gravity field. Hanyk et al. (1996)
also presents a time-domain method. Although it does not discard the solid-elastic/fluid-elastic transition, it also cannot include a separate
non-adiabatic density parameter and so will encounter the same difficulties when treating partially non-adiabatic conditions as described for
the correspondence principle next.

As discussed extensively in Cathles (1975), linearly separating the viscous and elastic equations requires neglecting the small elastic
change associated with the transition from the initial solid-elastic response to loading and the ultimate fluid-elastic response. As first noted
by Cathles (1971), the initial response of a viscoelastic body to harmonic loading is purely elastic, but after a period on the order of
the Maxwell time (the ratio of the viscosity to the elastic rigidity or ∼300 yr for a mantle with 1021 Pa s viscosity and 1011 Pa rigidity)
the dilational elastic response relaxes. The increase in elastic displacements during this solid-elastic/fluid-elastic transition (elsewhere
called the elasticoviscous transition; e.g. Peltier 1974) is less than 6 per cent of the initial elastic response for all wavelength loads, and
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is thus quite negligible. As this transition is between elastic shear and compressive displacements, it does not occur in incompressible
materials.

The early work by Cathles (1975) was not cast in terms of Love numbers and did not include the elastic deformation of the lithosphere.
This paper fully describes the Cathles (1975) method in modern terms and incorporates the elastic deformation of the crust. We benchmark the
resulting time-domain Love numbers against Love numbers computed using the correspondence principle and discuss the small differences
between the two methods. Our purpose here is not to model the viscoelastic response of the Earth to glacial load changes. It is simply to compare
two different methods of computing the Love numbers that are used to compute these changes. The clear and complete benchmarking offered
here should be useful to those interested in using this method, available in the open-source package giapy1 [Glacial Isostatic Adjustment
(GIA) in PYthon].

The benchmarking exercises reported here compare the viscoelastic Love numbers computed using our time-domain method to the
viscoelastic Love numbers published in tests 5/1 and 6/1 of Spada et al. (2011). Since Spada et al. (2011) found close agreement between
the Love numbers computed using many different theoretical and computational methods in both of these benchmark tests, including the
correspondence principle (Spada 2003; Spada & Boschi 2006) and finite element methods (Martinec 2000), the comparison applies to a
broad set of computations by many workers using a variety methods. We show next that our elastic Love numbers are identical to those
computed by other methods. There are slight differences in the viscoelastic Love numbers, but they do not produce significant differences
in isostatic adjustment when used to calculate the response to the instantaneous loading of a spherical ice dome. We show that our method
can reproduce the adiabatic and non-adiabatic Love numbers as computed by Nakada (1999) without changing the Earth’s density gradient.
Compressible elastic Love numbers computed by us for PREM (Dziewonski & Anderson 1981) agree with those computed by Pan et al.
(2015), and the compressibility we calculate affects viscoelastic deformation in the same way as shown for the correspondence principle
methods by Vermeersen et al. (1996b) and Sabadini et al. (2016).

In what follows, we first fully describe the time-domain method, emphasizing how non-adiabatic sources of buoyancy within the
mantle are treated and giving full details and deriving the equations in supplemental material. We also describe our transformed re-
laxation implementation for the spatial integration through the mantle. We then show that the time-domain solution of the decoupled
viscous and elastic equations generates viscoelastic Love numbers similar to those computed using the correspondence principle. Fi-
nally, we discuss the minor differences noted in this comparison. All of the methods described here are available as part of the open-
source giapy (GIA in PYthon) package, which also includes a benchmarked implementation of the sea level equation (Martinec et al.
2018).

2 T H E O RY

2.1 Self-gravitating elasticity

The self-gravitating, compressible elastic equations of motion linearized for small perturbative displacements u are given by the following
constitutive, momentum and gravitational potential equations (Cathles 1975; Peltier 1982; Tromp & Mitrovica 1999):

τ = λTr(ε)I + 2με, (1)

0 = (∇ · τ )I − ∇(ρgu · r̂) + g∇ · (ρu)r̂ − ρ∇ψ, (2)

∇2ψ = −4πG∇ · (ρu), (3)

where τ is the stress tensor, ε = 1

2
(∇u + ∇uT ) is the strain tensor, ψ is the perturbation to the gravitational potential, I is the identity tensor

and G is Newton’s gravitational constant (6.6732 × 10−11 N m2 kg−2). We assume that the material parameters λ(r), μ(r), ρ(r) and g(r) (the
first and second Lamé parameters, the unperturbed density and gravity, respectively) are all functions of the radius r alone, specified by a
globally averaged model, for example, PREM (Dziewonski & Anderson 1981).

So that the system includes only first-order derivatives, we introduce a new variable, q, that we define as the first radial derivative of
the perturbation to the gravitational potential q ≡ ∂ψ /∂r, or the perturbation to the radial acceleration due to gravity. This definition of q is
different from the generalized gravitational flux frequently used in the literature (Farrell 1972; pg 772), but retains explicit dependence of the
equations of motion on the density gradient. This is important when separating the adiabatic and non-adiabatic density gradients as discussed
next. See also the discussion surrounding eqs (A.27) and (A.28) in the Supporting Information text A.

Following the notation of Pan et al. (2015), each variable is expanded into its vector or scalar spherical harmonic fields:

u(r) =
∑
�,m

[UL (r )L(θ, φ) + UM (r )M(θ, φ) + UN (r )N(θ, φ)] , (4)

1https://github.com/skachuck/giapy
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τ r (r) =
∑
�,m

[TL (r )L(θ, φ) + TM (r )M(θ, φ) + TN (r )N(θ, φ)] , (5)

ψ(r) =
∑
�,m

�(r )Y m
� (θ, φ), (6)

q(r) =
∑
�,m

Q(r )Y m
� (θ, φ). (7)

Y m
� (θ, φ) is the spherical harmonic function of order � and rank m. The subscript L identifies coefficients for radial vectors L(θ, φ) =

Y m
� (θ, φ)r̂. Similarly, subscripts M and N identify poloidal and toroidal coefficients, associated with basis vectors M(θ, φ) = ∇Y m

� (θ, φ) and
N(θ, φ) = r̂ × ∇Y m

� (θ, φ).
The elastic equations of motion (1and 2) are then expressed

∂

∂r

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

U E
L

U E
M

TL

TM

�

Q

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= AE

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

U E
L

U E
M

TL

TM

�

Q

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ bE , (8)

with

AE =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 2λ

r (λ + 2μ)

�(� + 1)λ

r (λ + 2μ)

1

λ + 2μ
0 0 0

−1

r

1

r
0

1

μ
0 0(

4μ(3λ + 2μ)

r 2(λ + 2μ)
− 2gρ

r
+ 4πGρ2

)
−

(
2μ(3λ + 2μ)

r 2(λ + 2μ)
− gρ

r

)
�(� + 1) − 4μ

r (λ + 2μ)

�(� + 1)

r
0 ρ(

ρg

r
− 2μ(3λ + 2μ)

r 2(λ + 2μ)

)
2μ(2(λ + μ)�(� + 1) − (λ + 2μ))

r 2(λ + 2μ)
− λ

r (λ + 2μ)
−3

r

ρ

r
0

0 0 0 0 0 1

−4πG

(
ρ ′ + 4μρ

r (λ + 2μ)

)
8πG

�(� + 1)μρ

r (λ + 2μ)
−4πG

ρ

λ + 2μ
0

�(� + 1)

r 2
−2

r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (9)

in which ρ
′

is the density gradient with respect to radius (∂ρ/∂r) and the superscript E indicates an elastic component. This is identical to
the matrix A given by eqs 9(a–f) in Wu & Peltier (1982), with the important exception of terms in the last two rows, which are different as
a result of the choice of the definition of the gravitational flux, q. This choice is made so that there is an explicit dependence of the gravity
perturbation on the density gradient ρ

′
. This allows us to separate the density gradient into a non-adiabatic component ρ ′

nonad (which affects
viscous flow due to a buoyancy term introduced next) and an adiabatic component ρ ′

ad (which does not)

ρ ′ = ρ ′
nonad + ρ ′

ad, (10)

while leaving the total density gradient (which affects the elastic and gravitational perturbations) unchanged. Density gradients associated
with self-compression are adiabatic and should be incorporated in the ρ ′

ad term. The inhomogeneous vector bE incorporates the stresses and
gravitational effects associated with viscous displacement of non-adiabatic density gradients, and is defined in eq. (28) below.

A full derivation of this matrix may be found in Supporting Information text A. The toroidal components (subscript N) are independent
of the radial and poloidal components. As no toroidal stresses are present in mantles with spherically symmetric material parameters loaded
at their surface, these deformations are exactly zero and not considered here.

It is common to normalize the displacements and perturbed gravity potential at the surface of the Earth in response to an applied surface
load σ (e.g. Wu & Peltier 1982; eq. 12). When normalized to the gravitational potential of the applied load, these surface perturbations are
called Love numbers. The Love numbers are defined as⎡
⎢⎣

h
l

kd

⎤
⎥⎦ = 1

�l

⎡
⎢⎣

g0UL

g0UM

�d

⎤
⎥⎦

rE

, (11)

where g0 is the acceleration due to gravity at the Earth’s surface. The gravitational potential of the load is

�l = 4πGrE

2� + 1
Cm

� , (12)
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where Cm
� are the expansion coefficients of the surface load σ (θ, φ) = ∑

�,m Cm
� Y m

� (θ, φ). Here, kd and �d refer to the perturbations of the
gravitational potential due to the deformation alone, excluding the effect of the load. Including the self-gravitation of the load gives us k =
kd + 1. Normalization makes it easier to evaluate the significance of terms in the equations of motion and reduces numerical errors.

It is convenient to consider azimuthally symmetric, unit loads so that all C0
� ≡ 1 kg/m−2. The response to an arbitrary load can then be

found by decomposing the load into spherical harmonic coefficients, multiplying each coefficient by its order’s Love number and synthesizing
back into the spatial domain.

To keep all terms of order unity in the equations of motion in eq. (8), we define L = �l and K = �k. Normalization for the remaining
variables (TL, TM, Q) is based on the surface boundary conditions, giving

h = (2� + 1)g0

4πGrE Cm
�

UL ; L = �(2� + 1)g0

4πGrE Cm
�

UM ; kd = 2� + 1

4πGrE Cm
�

�d ; (13)

fL = 1

g0Cm
�

TL ; FM = �

g0Cm
�

TM ; q = 1

4πGCm
�

Q.

Units are removed from parameters using the following scales:

r̃ = r/rE ; g̃ = g/g0; ρ̃ = ρ/ρ̄ ≡ ρ/
g0

4πGrE
; λ̃, μ̃ = λ, μ/ρ̄g0rE . (14)

With these choices, which differ from some of the literature (e.g. Vermeersen et al. 1996b), all normalized parameters are of unit magnitude.
The normalized surface boundary conditions for a load with no horizontal tractions are

⎡
⎢⎣

fL

FM

q

⎤
⎥⎦

r = rE

=

⎡
⎢⎢⎣

−1
0

−1 − 1

2� + 1

(
ρ̃hE + (1 + �)kd

)

⎤
⎥⎥⎦

r = rE

. (15)

The bottom boundary conditions are the stresses and gravitational perturbations from the displacement of the boundary between the mantle
and the inviscid core:

⎡
⎢⎣

fL

FM

q

⎤
⎥⎦

r = rc

= 1

2� + 1

⎡
⎢⎢⎣

ρ̃c g̃chE + ρ̃ckd

0

(ρ̃c − ρ̃m)hE + �

r̃c
kd

⎤
⎥⎥⎦

r = rc

, (16)

where ρc and ρm are the densities of the core and mantle on either side of the core mantle boundary. These are the same boundary conditions
given elsewhere (Cathles 1975; Sabadini et al. 1982; Wu & Peltier 1982; Vermeersen et al. 1996b), re-expressed in terms of the unknown
quantities of interest to facilitate our method of computation, as described below.

Finally, we introduce a novel transformation of the radial variable that simplifies the equations and their solution. For a flat half-space,
the deformations and stresses decay into the bulk exponentially with a length-scale proportional to the wavelength of the load (Cathles
1975) so that smaller loads deform ever shallower regions of the mantle (Wu & Peltier 1982). This suggests we rescale the radial vector
as

χ ≡ e
−

(2� + 1)

2
(1 − r̃ )

, (17)

so that an equispaced mesh in χ samples regions of the mantle where the solutions actually change (i.e. closer to the surface for higher �).
Normalized, and in the transformed variable, the system in eq. (9) is

∂

∂χ

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

hE

L E

fL

FM

kd

q

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= ÂE ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

hE

L E

fL

FM

kd

q

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ b̂E (18)
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with

ÂE = 1

χ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 4λ̃

r̃ (λ̃ + 2μ̃)

1

2� + 1

λ̃

r̃ (λ̃ + 2μ̃)

2(� + 1)

2� + 1

2

λ̃ + 2μ̃
0 0 0

− 1

r̃

2�

2� + 1

1

r̃

2

2� + 1
0

2

μ̃
0 0(

4μ̃(3λ̃ + 2μ̃)

r̃2(λ̃ + 2μ̃)
− 4ρ̃ g̃

r̃

)
2

(2� + 1)2
−

(
2μ̃(3λ̃ + 2μ̃)

r̃2(λ̃ + 2μ̃)
− ρ̃ g̃

r̃

)
2(� + 1)

(2� + 1)2
− 4μ̃

r̃ (λ̃ + 2μ̃)

2

2� + 1

1

r̃

2(� + 1)

2� + 1
− ρ̃

r̃

2(� + 1)

(2� + 1)2

2ρ̃

2� + 1(
ρ̃ g̃

r̃
− 2μ̃(3λ̃ + 2μ̃)

g̃r̃2(λ̃ + 2μ̃)

)
2�

(2� + 1)2

4μ̃(2(λ̃ + μ̃)�(� + 1) − (λ̃ + 2μ̃))

r̃2(λ̃ + 2μ̃)(2� + 1)2
− λ̃

r̃ (λ̃ + 2μ̃)

2�

2� + 1
− 3

r̃

2

2� + 1

ρ̃

r̃

2�

(2� + 1)2
0

0 0 0 0 0 2

−
(

ρ̃′ + 4μ̃ρ̃

r̃ (λ̃ + 2μ̃)

)
2

(2� + 1)2

2μ̃ρ̃

r̃ (λ̃ + 2μ̃)

2(� + 1)

(2� + 1)2
− ρ̃

λ̃ + 2μ̃

2

2� + 1
0

2�(� + 1)

r̃2(2� + 1)2
− 4

r̃ (2� + 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (19)

with material parameters linearly interpolated to the χ mesh locations. There are now no terms with an � in the numerator that is unmatched
by an � in the denominator, so no terms diverge in the limit of small loads (� → ∞). For large �, this matrix simplifies to a form where small
wavelength perturbations to the Earth’s internal gravity do not contribute to the dynamics (see Supporting Information text B).

We solve eq. (18) using the relaxation method of Press (2007; section 18.3). In this method, the differential equations are replaced
explicitly with finite difference equations in the variable χ and a test solution is iteratively refined by backpropagation from one boundary to
another until the average error in the finite differences between points in the solution mesh are within a desired tolerance (10−14). The method
takes advantage of the slow variation of the normalized solutions with respect to order number and time (frequency). Using the previous order
number’s or time step’s (frequency’s) solution as the initial guess, the method usually requires only one iteration to converge.

2.2 Viscoelasticity

For a fluid with dynamic viscosity η, the constitutive equation that relates stresses τ to shear rate ε̇ is given as

τ = 2ηε̇, (20)

where the dot over a function represents a derivative with respect to time. In a Maxwell fluid, each material element is modelled as a viscous
and elastic element in parallel, with equal stresses and displacements that add. The constitutive equation for the Maxwell body can be
expressed (Cathles 1975; Wu & Peltier 1982) as

τ̇ + μ

η

(
τ − 1

3
Tr(τ )I

)
= λTr(ε̇)I + 2με̇. (21)

Our approach to the time dependence is to linearly separate the elastic and viscous displacements, allowing them to influence each other via
stresses and gravity, as in Cathles (1975). In this view, the total viscoelastic displacements are expressed as the sum of the elastic and viscous
displacements, computed at each time:

hVE(t) = hE (t) +
∫ t

−∞
ḣV (t ′)dt ′, (22)

LVE(t) = L E (t) +
∫ t

−∞
L̇V (t ′)dt ′. (23)

This is similar to the model of Hanyk et al. (1996), which decomposed the stress into an elastic component and a viscous (memory) component
but did not use different density profiles for elastic and fluid motion. Our approach omits a small magnitude trade-off between compressible
elastic deformation and viscous flow that occurs on the order of the Maxwell time (η/μ; about 300 yr for a mantle with 1021 Pa s viscosity and
1011 Pa shear strength; see above and Cathles 1975). For incompressible mantles, however, this transition does not occur, so no deformation
is omitted in separating the elastic and viscous displacements. This separation allows us to address sources of fluid buoyancy independently,
as discussed next.

The resulting system of coupled differential equations for the viscous velocities in the transformed radial variable χ is

∂

∂χ

⎡
⎢⎢⎢⎣

ḣV (t)
L̇V (t)
fL (t)

FM (t)

⎤
⎥⎥⎥⎦ = ÂV ·

⎡
⎢⎢⎢⎣

ḣV (t)
L̇V (t)
fL (t)

FM (t)

⎤
⎥⎥⎥⎦ + b̂V (t), (24)
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where the superscript V indicates a viscous component and

ÂV = 1

χ

2

2� + 1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2

r̃

(� + 1)

r̃
0 0

−�

r̃

1

r
0

2(2� + 1)

η̃
6η̃

r̃ 2

1

(2� + 1)
−3η̃

r̃ 2

(� + 1)

(2� + 1)
0

(� + 1)

r̃

−3η̃

r̃ 2

�

(2� + 1)

η̃

r̃ 2

(2�(� + 1) − 1)

(2� + 1)

�

r̃
−3

r̃

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (25)

The normalization for η and t is the average mantle viscosity η̄ = 1021 Pa s and the time constant for the exponential decay of a harmonic
load on a uniform viscous half-space (Cathles 1975):

tvisc = η̄(2� + 1)

ρ̄g0rE
. (26)

Although the matrix ÂE (eq. 19) is a 6 × 6 matrix for two components of displacement, the two components of stress, the potential
perturbation and the gravity perturbation, the matrix ÂV (eq. 25) is a 4 × 4 matrix for the viscous velocities and stresses. The gravitational
perturbations and stresses from elastic displacements are communicated as source terms to these viscous equations through the vector b̃V :

b̂V (t) = 1

χ

1

(2� + 1)2
ρ̃

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0

2� + 1)q(t) +
(

ρ̃ − 4g̃

r̃

)
hE (t) + g̃

r
(� + 1)L E (t) − ρ̃ ′

nonad g̃hV (t)

g̃

r̃
�hE (t) + 1

r̃
�kd (t)

⎤
⎥⎥⎥⎥⎥⎥⎦

. (27)

b̂V makes eq. (24) inhomogeneous and makes the flow dependent on the elastic and viscous displacements and gravity perturbations. Most
importantly, b̂V contains a buoyancy term from the viscous displacement of non-adiabatic density gradients through the term ρ̃ ′

nonad g̃hV (t)
(see eq. 10). Again, the non-adiabatic density represents the degree to which displaced fluid does not immediately equilibrate (in density,
temperature, composition, etc.) and so generates a buoyancy that inhibits the approach to iostatic equilibrium. Likewise, the gravitational
effect of the viscous displacement of non-adiabatic density gradients in the mantle is source terms for the stresses and gravity of the elastic
system. These are communicated to the elastic equations with the vector (Cathles 1975)

b̂E (t) = 1

χ

1

(2� + 1)2
ρ̃ ′

nonadhV (t)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

−g̃
0
1

−(� + 1)

2� + 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (28)

which is added to the right-hand side of eq. (18).
The time-dependent boundary conditions for both the elastic and viscous components of the viscoelastic equations at the top of the

viscoelastic mantle (r = rM) are

⎡
⎢⎣

fL (t)
FM (t)
q(t)

⎤
⎥⎦

r = rM

=

⎡
⎢⎢⎢⎣

−α − ρ̃

2� + 1
hV (t)

0

−α − 1

2� + 1

(
ρ̃

(
hE (t) + hV (t)

) + (1 + �)kd (t)
)

⎤
⎥⎥⎥⎦

r = rM

(29)

and at the core–mantle boundary are

⎡
⎢⎣

fL (t)
FM (t)
q(t)

⎤
⎥⎦

r = rc

= 1

2� + 1

⎡
⎢⎢⎣

ρ̃c g̃chE (t) + (ρ̃c − ρ̃m)g̃chV (t) + ρ̃ckd (t)
0

ρ̃c − ρ̃m)(hE (t) + hV (t)) + �

r̃c
kd (t) − �

(2� + 1)2

(ρ̃c − ρ̃m)

r̃c
hV (t)

⎤
⎥⎥⎦

r = rc

. (30)

Here, α is a dimensionless value incorporating the effect of the elastic lithosphere as described next.
The time-domain integration of the viscous velocities is an initial-value differential equation starting with zero-displacement and ending

in isostatic equilibrium. At each time ti, the Ordinary Differential Equation (ODE) in eq. (18) for the instantaneous elastic displacements at
ti is prepared with the inhomogeneity b̃E of eq. (28), using the previously computed viscous displacements (hV(ti − 1)). These equations are
solved using the relaxation method (Press 2007; section 18.3), taking the solutions from ti − 1 as the initial guess. The inhomogeneity vector
for the viscous ODE, b̃V of eq. (27), is prepared using the previously computed viscous displacements (hV(ti − 1)) and the just computed elastic
values. The ODE of eq. (25) is then solved for the viscous velocities at ti, again using the relaxation method. The viscous displacements for
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the next time step ti + 1 are updated using a fifth-order Dormand–Prince method (a Runge–Kutta method with adaptive step sizes; Press 2007;
section 17.2). The equations are stepped forward in time until either equilibrium, when fL in eq. (29) is below some threshold (e.g. 10−6 in
dimensionless units), or a prescribed amount of time has elapsed (e.g. the 103 ka limit used here).

2.3 The lithosphere

The usual approach to the lithosphere is to treat it as an additional viscoelastic layer with a numerically infinite viscosity (typically around
1040 Pa s). A viscosity this large makes the matrix in eq. (25) poorly behaved, so numerical round-off errors compound and lead to unphysical
results (Press 2007). Following Cathles (1975) (note the definition of α here is α−1 in Cathles 1975), we model the effective elastic lithosphere
as an infinitesimally thin shell. Small wavelength loads are supported by elastic stresses in the lithosphere and, therefore, induce less
viscoelastic flow in the mantle. The ratio between an applied harmonic stress at the top of the lithosphere and the stress at its bottom that
induces the viscoelastic flow in the mantle is

α−1 = 1 + (2� + 1)4 D

16r 4
Eρg

, (31)

where ρ and g are the density and the gravity of the uppermost part of the viscoelastic mantle and D is the flexural rigidity of the elastic
lithosphere, given by

D = 1

3

μ(λ + μ)

λ + 2μ
H 3 (32)

for a lithosphere with thickness H and Lamé Parameters λ and μ. The limits are α → 1 for � ∼ 1 and α → 0 for � 
 1, as expected for a
low-pass filter. The lithosphere flexure modifies the viscous velocities by multiplying them by α−1, as noted by McConnell (1965) and Cathles
(1975).

Because of the lithospheric support, the mantle can only respond viscoelastically to a portion α of the applied load (again, 0 < α < 1),
hence the −α in the surface boundary conditions used to compute both viscous and elastic components of the viscoelastic flow (eq. 29) as
opposed to the −1 in eq. (16) for the elastic response alone. Furthermore, the viscoelastic mantle begins beneath the purely elastic lithosphere
(e.g. at a radius rM, which is at 80 km depth in PREM), and thus the two surfaces do not coincide. Perturbations of the surface of the mantle to
the filtered load are thus assumed to transmit to the surface of the lithosphere [see Supporting Information Figs A1(a and b)]. We emphasize the
different boundary conditions (filtered load) and domain (core–mantle boundary to rM) by writing the time-dependent viscoelastic response
as hVE

rM ,α(t).
Having computed the response of the viscoelastic mantle, we need to add in the response of the lithosphere for the full response of

the surface. Being purely elastic, the response of the lithosphere is immediate and constant in time. The elastic response of the lithosphere
that supports the fraction (1 − α) of the load, hE

Lith, is the difference between the elastic response of the entire Earth hE
rE

, computed from the
core–mantle boundary to the surface, and the initial elastic response of the viscoelastic mantle to the filtered load hE

rM ,α , computed from the
core–mantle boundary to the top of the mantle. We add this response to the time-dependent viscoelastic Love number for the filtered load to
obtain the total viscoelastic Love number h(t):

h(t) = hVE
rM ,α(t) + hE

Lith (33)

[illustrated in Supporting Information Figs A1 (c and d)]. This correction is also applied to the other Love numbers. For long-wavelength loads
(small �), α ≈ 1 and the total response are dominated by the full viscoelastic relaxation of the fluid mantle. For short-wavelength loads (large
�), α approaches zero and the total response is dominated by the purely elastic component, which occurs primarily in the lithosphere. The
equispaced mesh in the transformed radial variable χ (eq. 17) concentrates nodes near the surface for higher � (see Supporting Information
Fig A3), so we capture small radial variations in elastic parameters near the surface, as in the models VSS96 (Vermeersen et al. 1996a; Spada
et al. 2011) and PREM (Dziewonski & Anderson 1981).

3 R E S U LT S

3.1 Benchmark of elastic Love numbers

We compute the elastic Love numbers for several models of the Earth’s elastic parameters (ρ(r), λ(r), μ(r)) of increasing complexity. The
first two models are M3-L70-V01 and VSS96 from the viscoelastic benchmarking exercise of Spada et al. (2011), which will be used again
in the next section to benchmark the time-domain viscoelastic Love numbers. These models are incompressible, with step-wise constant
layers: the first has three layers and the second has 28. Their parameters are listed in Tables A1 and A2. The third model is the compressible
model 56C-UInc of Pan et al. (2015), with 56 step-wise constant mantle layers taken from PREM (Dziewonski & Anderson 1981). The layer
parameters are listed in Table A3. The elastic Love numbers for the three models are shown in Fig. 1, computed using the relaxation method
on an equally spaced mesh in the transformed radial variable χ of 1000 points, with material parameters linearly interpolated to mesh points.
The agreement between the two sets of calculated elastic Love numbers is excellent.
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Figure 1. Elastic Love numbers −h (blue), L (red) and K (purple) for 2 ≤ � ≤ 6000 computed by us using the transformed, normalized relaxation method with
1000 nodes between the core–mantle boundary and the surface (lines) are compared to published Love numbers (the crosses) for (a) M3-L70-V01, (b) VSS96
and (c) PREM. (a) and (b) as reported in Spada et al. (2011; which go to � = 256) and (c) as reported in Pan et al. (2015). Note the difference in vertical scales
and sign changes between the incompressible (a and b) and compressible (c) deformations.

Figure 2. Comparison of viscoelastic Love numbers in the isostatic (equilibrium) limit computed by the method described here (the solid lines) and by the
correspondence principle (the crosses) for viscoelastic models M3-L70-V01 and VSS96 from Spada et al. (2011). The dash–dotted curves show our Love
numbers before the elastic response of the lithosphere has been added back in, for example, when h = hVE

α (t) rather than h = hVE
α (t) + hE

Lith.

3.2 Benchmark of viscoelastic Love numbers

We compute the time-domain viscoelastic love numbers using the elastic and viscous profiles of M3-L70-V01 and VSS96 in benchmarking
tests 5/1 and 6/1 in Spada et al. (2011).

Fig. 2 compares viscoelastic Love numbers in the isostatic (equilibrium) limit. Equilibrium occurs when there are no longer any surface
stresses, for example, when hV = −α(2� + 1)/ρ̃(rM ) (obtained by setting fL to zero in eq. 29). For long-wavelength (� < 10) loads, the
lithosphere is unimportant and the viscous flow in the mantle isostatically compensates most of the load. For smaller wavelength loads (� 

1), the lithosphere elastically supports more of the load and at short enough wavelengths it supports all of it (where −h becomes constant).
The match between the equilibrium Love numbers calculated by our method (the solid line) and the correspondence principle (the crosses) is
close, though small differences appear upon closer inspection, as described next. The dash–dotted lines show Love numbers from the original
theory of Cathles (1975) for which the elastic response between the surface and the bottom of the lithosphere is not included and thus the
Love numbers go to zero for small-wavelength loads.

Fig. 3 compares our time-dependent Love numbers (lines) to those computed by the correspondence principle (the crosses) for an
incompressible Earth by Spada et al. (2011). The vertical displacement (−h, a–c and g–i) and gravity potential perturbation (−k, d–f and j–l)
Love numbers are shown for two viscoelastic models: M3-L70-V01 (a–f) and VSS96 (g–l). The Love numbers were reconstructed from the
M published amplitudes hi and relaxation times si of the normal modes using

h(t) = hE +
M∑

i=1

hi (1 − esi t ), (34)

where hE are the elastic (instantaneous) Love numbers. The other love numbers are reconstructed in a similar fashion (see Vermeersen &
Mitrovica 2000; eqs 10–12). The number of modes, M, is determined by the layering of the earth model.

The Love numbers computed by our method agree well with those computed by the correspondence principle for 2 ≤ � ≤ 9 [Figs 3(a, d,
g, j)] and for 12 ≤ � ≤ 96 (b, e, h, k). For the higher order numbers (128 ≤ � ≤ 256) in Figs 3(c, f, i, l), our computed response is faster than
that computed using the correspondence principle. The mismatch between the two methods is greater for VSS96 (with a 120 km lithosphere
and 28 layers) than for M3-L70-V01 (with a 70 km lithosphere and three layers). Note, however, that the magnitude of the Love numbers is
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Time-domain viscoelastic Love numbers 2145

Figure 3. Viscoelastic load Love numbers calculated by our method (the red lines) compared to those calculated by a correspondence principle method (the
black crosses) for models M3-L70-V01 (a–f) and VSS96 (g–l) (Tests 5/1 and 6/1 in Spada et al. 2011, respectively) for three sets of order numbers: 2 ≤ � ≤ 9
(a, d, g, j), 12 ≤ � ≤ 96 (b, e, h, k) and 128 ≤ � ≤ 256 (c, f, i, l). The crosses are computed from normal modes reported in Spada et al. (2011).

small at high-order numbers (see Fig. 2). Furthermore, when decomposing loads on the scale of the last glacial cycle into spherical harmonics,
the power in these order numbers (the Cm

� ) is much smaller than the longer wavelength components. Thus, the GIA computed using our Love
numbers is not significantly different from the adjustment presented in Spada et al. (2011).

This is illustrated in Fig. 4, which compares the GIA resulting from the application of a simple load computed using Love numbers from
the two methods for the parameter profiles of M3-L70-V01. The load is a spherical ice cap centred at the north pole, with a radius of 10◦ and
a centre height of 1500 m, computed to a maximum order number of � = 128. This was the load used in benchmark test 1/2 in Spada et al.
(2011). The load is applied instantaneously at time t = 0 and the evolution of the surface is computed at times t = 1, 2, 5, 10 ka (thousand
years) and the ‘equilibrium fluid limit’ (103 ka, labelled ∞). As seen in the insets, the difference between the models is less than a few percent
of the uplift and potential change. For example, the difference in U at 10 ka and colatitude 0◦ is ∼6/300 ≈ 2 per cent. The Love number
differences between the time-domain and Laplace method of computation, shown in Fig. 3, will not result in uplift or potential differences
that are larger than the uncertainty in rebound observations. The changes in potential near 10◦ colatitude at infinite time, and the positive
uplift at about 12◦ colatitude at infinite time, reflect the flexure of the 70 km lithosphere under the load. The two computation methods capture
this flexure in a similar fashion.

3.3 Benchmark of mantle compressibility and adiabaticity

The effects of compressibility on the viscoelastic deformation are shown in Fig. 5(a) for the PREM elastic parameters, a constant, 1021 Pa s
mantle and a 70 km lithosphere. Just as reported by Vermeersen et al. (1996b) and in fig. 2.9 of Sabadini et al. (2016), compressibility
increases the magnitude of the elastic (short-time) response to loading, but has no effect on the fluid limit and has little effect on the timing
of deformation. Mantle adiabaticity has a much larger effect on the temporal form of the viscoelastic relaxation.
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2146 S.B. Kachuck and L.M. Cathles, III

Figure 4. The change in the (a) radial distance to the centre of the Earth, U, and (b) geoid height, �, after the sudden imposition of a 10◦ radius spherical
ice cap at the north pole. This corresponds to test 1/2 in Spada et al. (2011). The viscoelastic Love used to compute these changes that were computed for
earth model M3-L70-V01 with the normalized, transformed relaxation method presented here are shown as the solid lines. The changes computed using Love
numbers computed by the correspondence principle methods in TABOO (Spada 2003) are shown as the dashed lines. The curves are shown at 1, 2, 5, 10 and
1000 (labelled ∞) thousand years (ka). The differences between our calculations and the correspondence principle solution are plotted in the inserts.

Figure 5. Comparison of viscoelastic Love numbers incorporating (a) compressibility and (b) adiabaticity. (a) Viscoelastic Love numbers for parameter
profile PREM with a constant 1021 Pa s mantle and a lithosphere with effective elastic thickness of 70 km both compressible (dotted) and incompressible
(solid). Compressibility changes the initial elastic deformation but not the equilibrium fluid behaviour. (b) Viscoelastic Love numbers for parameter profile
M3-L70-V01 with a fully non-adiabatic mantle ρ′

nonad = ρ′ (the solid lines) and a fully adiabatic mantle ρ′
nonad = 0 (dashed). The correspondence principle

solution of Spada et al. (2011) for a fully non-adiabatic mantle is shown in the crosses.

The viscoelastic Love numbers shown in Fig. 3 were computed with an entirely non-adiabatic density gradient (i.e. ρ̃ ′
nonad(r ) = ρ̃ ′(r )).

Fig. 5(b) shows the viscoelastic response when there are no non-adiabatic density gradients (ρ̃ ′
nonad(r ) = 0) and so the mantle is adiabatic.

Without the internal sources of buoyancy, the mantle reaches equilibrium much faster and does not go through the temporal undulations
associated with relaxation of the modes of the density stratification.

Fig. 6(a) compares the effect of adiabaticity on the � = 2 viscoelastic Love number h2 computed by Nakada (1999; the crosses) to Love
numbers computed by our method (lines) for three models with varying degrees of non-adiabaticity: (D0,V0,0), (D1,V0,0) and (D2,V0,0).
These correspond to a fully adiabatic mantle (with all density discontinuities removed, D0), a mantle with a non-adiabatic 400 kg m−3 density
jump at 670 km depth (D1), and a mantle with a constant non-adiabatic gradient in the upper 670 km of the mantle that integrates to 400 kg m−3

(D2), respectively. All have a uniform 1021 Pa s viscosity mantle (V0) and no lithosphere (0). We were able to reproduce the Love numbers
from these models reasonably well (left), but were required to halve the magnitude of the non-adiabatic component of the jump (see Fig. 6b)
to do so, a discrepancy that will be explored in future work.

Fig. 6(b) compares the Love numbers of Nakada’s (D1, V0, 0) model with a 400 kg m−3 density jump at 670 km depth to those computed
for an earth model with a density jump at 670 km whose non-adiabatic magnitude is varied between �ρNA = 0 kg m−3 (i.e. adiabatic) and
600 kg m−3. Our continuous method requires spreading the �ρNA jump slightly so that there is a constant density gradient over a short range,
centred on the discontinuity. We use a 50 km transition—for example, the non-adiabatic density gradient is non-zero 25 km above and below
the discontinuity—though the Love numbers computed are not changed by choosing to spread the jump over 25 or 100 km instead. The solid
curves show the h2 Love numbers computed by the time-domain method for a range of non-adiabatic density jumps at 670 km depth. The
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Figure 6. Comparison of our calculated h2 Love numbers (lines) to those computed by Nakada (1999) for an adiabatic model mantle and model mantles
with phase changes as defined in the text. (a) Comparison of three models with different non-adiabatic properties. (b) Comparison of Love numbers from
Nakada (1999) for an adiabatic mantle (the blue crosses) and for a mantle with an adiabatic density jump of 400 kg m−3 at 670 km depth [the red crosses;
model(D1,V0,0)] to Love numbers computed by our method (which do not change mantle density) for non-adiabatic density jumps at 670 km that range from
0 to 600 kg m−3.

density profile is not changed. Our adiabatic mantle Love numbers (the blue curve; �ρNA = 0) reaches the same fluid equilibrium value as the
Love numbers with non-adiabatic density changes at 670 km. In contrast, the adiabatic model (D0, V0, 0) of Nakada (1999; the blue crosses)
modifies the Earth’s density to simulate adiabaticity and does not have the same isostatic limit as his model with a 400 kg m−3 density jump
(D1, V0, 0; the red crosses).

4 D I S C U S S I O N

The benchmarking in the previous section demonstrates that the viscoelastic Love numbers for a fully non-adiabatic mantle computed using
the correspondence principle are captured well by our time-domain method. The match is close enough that the computed response to glacial
loading are much smaller than the uncertainties in the Earth’s observed response (Fig. 4). The differences in the viscoelastic Love numbers
revealed by the benchmarking are nevertheless important to understanding these methods of computation, and we discuss these differences
in this section.

From Fig. 3, it can be seen that the uplift Love numbers (−h) calculated by our time-domain method for the three layer M3-L70-V01
mantle have more pronounced undulations for order numbers 2–9, and fall below the correspondence principle Love numbers at order number
128 before returning to a good magnitude match at still higher order numbers, when the response is mostly elastic. Our potential Love numbers
(−kd) agree well in form at all order numbers, lag the correspondence Love numbers slightly at low order numbers (2–9), lead them slightly at
high order numbers (128–256) and achieve a greater degree of isostatic compensation (−kd = 1 represents a fully compensated load) at long
times. For the 28 layer VSS96 model, our time-domain Love numbers for both uplift and potential lead the correspondence Love numbers
and have greater magnitude, most dramatically at order numbers above 128. The time-domain Love numbers again more closely experience
more isostatic compensation in the long-time, fluid limit.

The difference in the equilibrium displacements and potential and in the timing are significant, particularly in the amount of load
compensation at equilibrium. A load is fully compensated if the gravity perturbation is zero (the gravity of the material displaced balances
exactly the gravity of the imposed load; kd = −1). The finite strength of the lithosphere supports some of the load, preventing full compensation
of the load, even in isostatic equilibrium. As shown in Fig. 4(b), the potential in the centre of the ice load remains 1.2 m above full compensation
1 million years after the load application in the correspondence principle calculation, but only 0.4 m in the time-domain calculation, a difference
of 0.8 m (see inset in Fig. 4b). This difference reduces to 0.6 m if the correspondence principle simulation is taken to 1 billion years. The
last stages of relaxation of the low order numbers computed by the correspondence principle method are clearly very slow and exhibit more
elastic support. This is also indicated by the slower approach to equilibrium of the crosses in Figs 3(d, g and j).

The differences between the two methods of computation are earth model dependent. For example, the surface uplift Love number
computed by the correspondence principle is above our time-domain calculation at large order number for the M3-L70-V01 earth model, but
below it for the VSS96 earth model. General features in both models are that the time-domain method computes viscoelastic Love numbers
that reach isostatic equilibrium more quickly and completely, and that this feature is more pronounced at high order numbers.

The differences between our Love numbers, computed with an elastic lithosphere and Love numbers calculated using a viscoelastic
lithosphere with very high viscosity suggest that the cause of the differences noted above may be the manner in which the two methods treat
buoyancy in the lithosphere. The viscoelastic correspondence principle method ascribes buoyancy to any deflection of the top surface of the
lithosphere, whereas the elastic lithosphere in the time-domain calculations ascribes buoyancy only at the base of the lithosphere/top of the
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viscoelastic mantle. We will investigate the consequences of alternate specifications of the lithosphere in a separate paper, our purpose here
being to benchmark our method of Love number calculation against other methods.

5 C O N C LU S I O N S

This paper fully describes an updated form of the time-domain methods Cathles (1975) used to compute the response of a self-gravitating
viscoelastic Earth to surface load redistributions. This method discards the solid-elastic/fluid-elastic transition, which is too small to be of
practical consequence in GIA studies, and it specifies the lithosphere as an infinitesimally thin elastic shell as opposed to a viscoelastic layer.
Comparing the Love numbers computed using this time-domain method to those computed by the correspondence principle methods for
fully non-adiabatic mantles in tests 5/1 and 6/1 of Spada et al. (2011), we find good agreement. The two methods produce viscoelastic Love
numbers that are similar enough that their application to calculating glacial rebound would produce differences indistinguishable from the
noise in current observations.

The most important attribute of our time-domain method is its ability to compute Love numbers that capture varying degrees of
adiabaticity in the mantle without modifying the Earth’s density profile. The method accomplishes this because the separation of the viscous
and elastic equations of motion allows the introduction of a non-adiabatic density profile, the only component of density relevant to flow, that
can be varied independently of the density profile. We show that the viscoelastic Love numbers computed by Nakada (1999) for different
density jumps across the phase change at 670 km depth can be replicated without modifying the density depth profile.

The method is available for use in the open-source giapy (GIA in PYthon) package.
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