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A simple analytical method for calculating temperature perturbations
in a basin caused by the flow of water through thin,
shallow-dipping aquifers
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hypothesize these deposits formed as the result

INTRODUCTION

THE TEMPERATURE distribution in sedimentary basins
is important for a number of reasons: (1) it controls
how rapidly hydrocarbons mature; (2) it governs the
rate of diagenetic alteration reactions such as the
transition of smectite to illite; and (3) it controls the
viscosity of oil and the solubility of silica and metals
in aqueous solutions. Thus temperature is related to
the diagenetic alteration of basin sediments and the
initial (generation or dissolution) stages of basin
hydrocarbon and mineral resources.

Work over the last 15 years has documented that
fluid flow can significantly change the temperature
distribution in basins. In some cases the fluid flow is
reasonably steady and driven by variations in hy-
draulic head that are related to topography
(HrrcHoN, 1984). In other cases the flow is driven by
compaction and may be episodic (BonsaM, 1980;
CaTtHLEs and SMITH, 1983). Theoretical analyses have
been offered for the temperature perturbations
caused by topography-driven fluid flow in basins with
homogeneous permeability (DoMENICO and Par-
c1auskas, 1973; SmrtH and CHAPMAN, 1983). Torr-
ANCE et al. (1980) consider the thermal effects of flow
through a semi-circular aquifer. Their results are
similar to those presented in this paper. Numerical
calculations illustrate the thermal effects of fluid flow
in geologically more realistic cases where the per-
meability is anisotropic and inhomogeneous (Smrt
and CHAPMAN, 1983; GARVEN, 1985; BETHKE, 1986).
Analyses have also been presented for compactively
driven flow (CaTHLES and SMITH, 1983; BETHKE,
1986).

A practical drawback of the models so far pre-
sented is that they are either numerical or theoreti-
cally complicated. No simple analytical model has
been published that would allow an interested party
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to calculate the temperature perturbation due to fluid
flow in some aquifer system of interest. The main
purpose of this paper is to present a simple equation
that allows the calculation of steady-state tempera-
ture perturbations due to flow in an aquifer that
consists of segments with shallow dip. This expression
is not applicable in all cases and cannot answer all the
questions we might have about fluid flow in sedimen-
tary basins. It can, however, contribute to our under-
standing of many cases where flow is confined, mainly
to very permeable units with shallow dip, and it can
clarify some questions regarding flow in deep aquifers
that must be resolved if we are to understand fluid
flow in basins. The analytical expression is physically
derived in the next section. Mathematical details are
given in the appendix. The model is then illustrated
through a variety of heuristic applications.

THE MODEL

Consider flow into a shallow-dipping aquifer as
shown in Fig. 1. The initial aquifer segment is con-
sidered to be straight and thin compared to the
average depth of the segment.

In the absence of flow through the aquifer, the
temperature gradient would be linear and “normal”
for the heat flow in the area. For example, if the
thermal conductivity of the basin sediments, K,was4
meal/cm s °C (or TCU), and the “normal” heat flow,
jo, 1 mcal/cm® s (or HFU), the thermal gradient
would be 25°C/km. Mathematically, we can write:

j() = —K 3T/3z

so that 8T/9z = —j/K.

If water flows from the surface into the aquifer,
temperatures along the aquifer will be reduced. If the
flow is very rapid, the temperature will be depressed
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Fre. 1. Diagram showing heat balance that determines
steady-state temperature in an aquifer.

to close to the average ambient surface temperature
to substantial depths. At steady state, the thermal
gradient will still be “normal” below the aquifer, but
it will be depressed above the aquifer. The thermal
gradient above the aquifer will be linear. At any point
the gradient above the aquifer will simply be the
difference between the temperature at the surface
and the temperature in the aquifer divided by the
depth to the aquifer:

9T/oz|above the aquifer = (T(z) — T,)/z

= AT(2)/z. 2)

Note, we have defined AT as the temperature relative
to the average ambient surface temperature at the
basin location. Because T, is a constant, AT can be
substituted for 7'in Eqn (1). The linear temperature
gradients above and below the aquifer envisioned in
our simple physical model are illustrated in the left
hand portion of Fig. 1. If the flow is very fast, the
temperature gradient above the aquifer will be close
to zero.

Because the temperature gradient below the
aquifer is greater than that above the aquifer there is
a net heat flux into the aquifer. At steady state this
heat flux must be balanced everywhere by heat fluxes
caused by the movement of fluid through the aquifer.
The appropriate balance is indicated in Fig. 1. The
fluid entering any volume element along the aquifer
must be cooler than the fluid leaving so that the net
heat introduced by the “kink” in the thermal gradient
is carried off. Mathematically:

Net heat flux due to “kink” in thermal gradient =
{(KAT/z) ~ j,}AsAw cos B.

Net heat flux due to fluid flow =
qeAhAwW{AT_ — AT, }.

Setting the two expressions equal to one another,
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heat balance requires:
(AT, = AT )/As = (/K ~ ATIz)K cos Bl(gAhc).

In the above expressions AT, is the temperature of

* the fluid leaving the volume element, AT_ the tem-

perature entering the element, 8 the dip of the
aquifer, s the distance down the aquifer from its
outcrop in cm, z the depth measured downward, ¢
the mass flux through the aquifer in grams of fluid per
cm® s, and ¢ the heat capacity of the water in the
aquifer in cal/g °C; Aw is the width of the volume
element of the aquifer and A its height as shown in
Fig. 1.

If we note that the distance down the aquifer from
its outcrop is related to the depth of the aquifer, then
z=yssinf, and the above expression can be modified:

ATz = (jy/K — AT/z)a 3
where
a = K/{(Qc tan B).

Note, we have converted the finite difference to a
partial derivative, and have defined a new quantity Q
= qAh. Q is the total flow of fluid through the aquifer
per unit strike length perpendicular to the cross-
section in Fig. 1.

Equation (3) can be solved by substitution of vari-
ables; the techniques are shown in the appendix. The
result is the following simple formula giving the
temperature in the aquifer as a function of depth:

AT = (joz/K)(a — B{z/z}“*Vy/(a + 1) (4a)
where
B = (AT./AT,,)(a + 1) - a. (4b)

The temperature at one point along the aquifer seg-
ment must be known to apply Eqn (4a). This particu-
lar temperature is assumed to be at depth z, and is
designated AT, in Eqn (4b). AT, . is the “normal”
temperature (relative to the ambient surface tem-
perature) at depth z,. ATy, can be easily calculated
from Eqn (1). Because we have assumed that lateral
conduction of heat is insignificant, 8 must be a small
angle, probably <10°. However, A can be negative as
well as positive. Outflow as well as inflow can be
calculated. For inflow, a is positive, and it is negative
for outflow. A value of & = —1 must be avoided (by
taking & = —1.01 or ~0.99, for example) but other-
wise Eqn (4a) is quite general. Finally, if 8 = 0 Eqn
(4a) must be replaced:

AT = AT, + (AT, - ATy.,) exp (=xK/Qcz.). (5)

Equations (4a) and (5) may be used to calculate the
temperature in a basin in which flow is through a
segmented aquifer. For example, we can calculate
the perturbation caused by flow through the aquifer
loop in Fig. 2 as follows: first, the temperature in
segment 1 can be calculated from Eqn (4a) by taking
AT, = 0 and z, small. This is equivalent to assuming
water enters the aquifer at shallow depths and at
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Fic. 2. Example of flow in a segmented aquifer. The steady-

state temperature distribution along, above and below such

an aquifer can be calculated using Eqn (4a) as discussed in
the text.

temperatures very near ambient. Note, B is positive
because, by definition, it is measured clockwise
(downward) from the horizontal. The temperature at
the end of the first segment at z is AT, . These values
can be used with §, as inputs to Eqn (4a) to calculate
the temperature distribution in segment 2. If the
second segment is horizontal, Eqn (5) rather than
(4a) should be used. The temperature at the end of
the second segment at depth z, can be used with 3
(which in this case is negative) in Eqn (4a) to calculate
the temperature distribution in the third segment,
and so forth. By such “daisy chaining” of aquifer
segment solutions, the temperature distribution
along any aquifer can be calculated.

The temperature above the aquifer can be found
by linear extrapolation to AT = 0 at the surface. The
temperature distribution below the aquifer can be
found by extrapolating downward along the “nor-
mal” geothermal gradient.

EXAMPLES

It is instructive to consider a few examples of the
use of Eqns (4a) and (5).

First, consider the case, perhaps applicable to the
compactive expulsion of fluid from a basin, where the
fluid enters the “outflow” aquifer in thermal equilib-
rium with the normal temperature of the deep parts
of the basin, as illustrated in the insert to Fig. 3.
Because by hypothesis ATp = ATq B = 1in Eqgns
(4b) and (4a) becomes the following particularly
simple expression:

ATIAT,,, = [(212p)" + a(zzp)li(@ + 1). (6)

The results are plotted in Fig. 3 for § = -0.01
radians, K = 3.5 X 103 cal/ems°Candc =1 cal/g°C.
In the diagram, Q is converted to the convenient
units of m? of fluid throughout per m strikelength of
aquifer per year. It can be seen from Fig. 3that as the
fluid throughout increases, an increasing fraction of
the aquifer approaches temperatures of ATy, .

The temperatures actually attained at any depth
depend, of course, on what particular values of ATy,
and zj, are appropriate for the case at hand. The top
and right axes of Fig. 3 show temperatures and depths
for zp = 5 km, and ATy, = 150 or 300°C. These
values correspond to an unperturbed basin tempera-
ture gradient of 30 and 60°C/km, respectively, and a
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Fic. 3. Result of fluid flow out of an aquifer with 1% slope,
assuming the aquifer fluids are in thermal equilibriumat zp.

“pormal” or unperturbed heat flow of 1.05 and 2.10
mcal/em? s if K = 3.5 cal/em s °C. These particular
values suggest that if a AT of 100°C is desired at 1km
depth (x in Fig. 3), a minimum flow rate of 440 m*/m/a
would be required. This corresponds to a Darcy flow
rate of 15 m/a in a 30 m thick aquifer.

The ratio nature of the temperature and depths of
Eqn (6) are particularly useful. For example, we can
treat AT, and zp as variables for some fixed values
of AT and z. Suppose we want to examine the flow
rates required to produce a AT of 100°C at a'depth of
1 km in basins with various initial (unperturbed)
temperature gradients. We can proceed as shown in
Fig. 4. The right axis of Fig. 4 shows the values of zp
that correspond to the ratio on the left with z = 1km.
The top axis shows the values of AT, that corre-
spond to the ratios on the bottom axis and AT =
100°C. The dashed lines on Fig. 4 show different
unperturbed temperature gradients compatible with
the top and left axes. At 20°C/km, for example, the
temperature at the base of a 5 km deep basin would
be 100°C and at the base of a 10 km deep basin the
temperature would be 200°C. This defines the dashed
line marked 20°%km. Similarly, for a temperature of
40°C/km the temperature at the bottom of a 2.5km
deep basin will be 100°C, at the bottom of a5 kmdeep
basin 200°C. If we do not consider basins hotter than
400°C in their deepest portions we can define the Tp
= 400°C cutoff in Fig. 4. It can be seen from Fig. 4
that, provided the unperturbed thermal gradient is
<60°C/km, flow rates of at least 440 m*/m/a are
required to produce temperatures 100°C above
ambient at depths of 1 km by flow through a basal (or
deep) aquifer in a basin with a slope of 1%. Greater
flow rates are required for smaller unperturbed ther-
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mal gradients. This is the same result as was reached
in Fig. 3, but more general because the sensitivity of
the results to basin depth and different initial temper-
ature gradients are considered in the diagram.

The results can be used in various ways. For
example, Fig. 5 shows the maximum fluid expulsion
rate during the accumulation of sediments in a basin
roughly the size of the Illinois Basin is three orders of

above, the compactive expulsion of fluids must be
episodic. These matters have been discussed at
greater length in CatHLES and Smita (1983). We
might note, parenthetically, that in that paper, Eqn
(3) was solved by finite difference techniques with
results identical to the analytical solution given in
Eqn (6).

As asecond example consider flow through a basal
aquifer across a sedimentary basin as illustrated in
the insert in Fig. 6. Temperatures are computed by
“daisy chaining” Eqns (4a) and (5) as described
above, and starting with a temperature near ambient
at a very shallow depth. The basin is 5 km deep and

EXPULSION MUST BE EPISODIC TO PERTURB TEMPERATURE
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Fi6. 5. Idealized expulsion of brines from a basin roughly the size of the Illinois Basin. If reasonable

porosity vs depth relations and basin subsidence and filling rates are chosen (see CATHLES and Smrru, 1983

for details) the hatchured sediment volume will expel fluids at a rate (0.32 m*/m/a) three orders of

magnitude smaller than that required to perturb the temperatures at basin margins to the degree suggested
by Mississippi Valley-type Pb-Zn deposits.
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Fic. 7. The maximum warming at the discharge margin of

the basin illustrated in Fig. 6 is never more than half the

initial temperature in the deepest parts of the aquifer loop.

Increasing the length of the fiat bottom of the aquifer helps

little because most of the heat is lost as the aquifer nears the
surface.

there is a 100 km long flat segment at its base. The
margin slopes are f = +1% (inflow) and —1% (out-
flow). Again, particular values of Q are calculated for
K = 3.5 TCU and ¢ = 1 cal/g °C. The initial unper-
turbed thermal gradient is taken to be 30°C/km.
Several features of interest are displayed by Fig. 6.
As the rate of flow through the aquifer increases the
inflow margin is cooled and the outflow margin
heated. As flow increases, the basin as a whole is
cooled. When flow becomes very fast the entire basin
is cooled to close to ambient temperatures. It should
be noted that at no location along the basal aquifer
does fluid flow ever increase temperature above the
maximum temperature that the deepest part of the
aquifer would have in the absence of fluid flow.
Figure 7 shows aquifer temperatures as a function
of flow rate on the outflow margin where the aquifer
is 1 km deep (dashed line in Fig. 6). Figure 7 shows
that the temperature increase reaches a maximum at
a flow rate of about 2200 m*a and then decreases as
flow rate increases further and the entire basin is
cooled. The maximum temperature achieved at 1 km
depth on the shallow basin flank is only about half the
unperturbed (no flow or “normal”) temperature at
the bottom of the basin. This result has been pre-
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Fic. 8. Temperature anomalies are produced in the base-

ment under the elevated temperatures along the discharge

margin. It is important to appreciate that no flow goes

through this anomaly. If it did the flow would tend to erase
the anomaly.

viously pointed out by TORRANCE et al. (1980). Fur-
thermore, because most of the heat is lost on the
discharge flank, increasing the flat, deep part of the
basin increases the maximum exit temperature only
slightly.

As discussed previously, the temperature in a basin
with temperature-perturbing flow in a segmented
aquifer can be determined by extrapolating AT from
the aquifer to 0 at the surface and along the “normal”
(unperturbed) temperature gradient at depth. Figure
8 shows this for the “optimum” temperature pertur-
bation along the aquifer in Fig. 6. Perhaps the most
dramatic temperature anomaly in Fig. 8is the isolated
hot anomaly at the discharge margin of the basin.
Because of the blanketing effects of the heated
aquifer, temperatures in the “basement” (i.e. the
strata below the aquifer) at the far end of the dis-
charge margin are raised about 50°Cabove “normal”.
This is enough to produce accelerated maturation of
hydrocarbons, accelerated diagenesis, perhaps some
aquathermal pressuring. It should be remembered
that in our model there is no flow through this “base-
ment” temperature anomaly. The isolated hot spot at
the discharge margin is produced because fluid flow
has elevated the temperature of overlying strata and
thermal steady state requires a normal geothermal
gradient below the aquifer.

Figure 8 helps us understand similar discharge
flank temperature anomalies in published numerical
calculations, an example of which is given in Fig. 9.
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Fic. 9. Example of the steady-state temperature anomalies that numerical calculations indicate will form
at the margins of basins subject to cross-basin hydrological flow. The origin of the anomaly in this diagram
is similar to that in Fig. 8. The calculated anomaly shown in this diagram is from GaRVEN (1985, Fig. 6).
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These anomalies are also “conductive” in nature,
owing their existence to the fact they underlie a
heated cap. This can be seen most easily by consider-
ing the convective heat flux through the 90°C isother-
mal contour. Because fluid must cross the 90°C
isothermal contour both entering and leaving the
“anomaly” there is no net fluid transport of heat into
the anomaly. The anomaly therefore owes its exis-
tence to conductive heat flux from below and is not
produced by whatever flow occurs through it. In fact,
fluid flow into the anomaly tends to reduce or erase it,
because any inflow represents the introduction of
colder water. The anomaly might, in fact, be
enhanced by permeability distributions that reduced
flow through the “deep anomaly” while maintaining
the temperature of the “cap”. It is important to
appreciate the nature of the flank anomaly when
considering Mississippi Valley-type mineralization.
For example, periodic incursions {(perhaps due to
faulting) of flow into a distal margin anomaly, such as
is shown in Figs 8 or 9, might lead to temporary
increases in temperature and the intensity of Pb~Zn
precipitation above the anomaly. These fluctuations
could produce banding in the mineralization that it is
otherwise tempting to attribute to episodic basin
dewatering.

Other matters can be addressed from diagrams
such as Fig. 6. For example, the permeability of the
basal aquifer required for any flow rate can be easily
estimated provided geological estimates can be made
of the hydraulic head difference driving the flow.
Darcy’s law relates the volumetric fluid flux to the
hydraulic head gradient: V = HVh, where V is the
Darcy velocity in em® water per cm® cross-sectional
area of the aquifer perpendicular to fluid flow per
second, X is the hydraulic conductivity of the aquifer
(for some fluid at some temperature such as 25°C)in
cm¥s, and V4 is the gradient in the hydraulic head
(the height of the water table above sea level) in cm.
Because Q = VAh, i = Q/AhVA. If a difference of
hydraulic head of 1 km is to drive fluid flow at Q=440
m*/m/a through a 1100 km long aquifer 30 m (=A#h)
thick, as shown in Fig. 4, then the permeability of that
aquifer must be 15000 m/a (or 9 darcies, taking the
viscosity of water to be 0.002 P).

The degree to which temperature differences
between the intake and discharge limbs can assist
fluid circulation can also be easily estimated. From
Fig. 6 the maximum difference in average tempera-
ture between the intake and discharge limbs pro-
duced by fluid flow is about 30°C. Assuming a
coefficient of thermal expansion of water of 1073, the
intake column of water in the aquifer has a density
about 0.03 g/cc less than the discharge limb. This
density difference over 5 km is equivalent to about a
0.15 km difference in head. The temperature differ-
ence between the intake and discharge limbs will thus
increase the flow rate produced by a head difference
of 1 km by about 15%.

The time required to flush a brine from the aquifer

e HO0 kM 5 ﬂ Q=440 m¥ m/a

V=33x10% m¥m

3.3x108

FLUSH v
TIME  Q

=7
440 500 a

Fic. 10. Cross-basin hydrological flow rates of the mag-

nitude needed to perturb basin margin temperatures would

quickly flush the original brines from the aquifer system
unless the brines are replenished by halite dissolution.

can also be estimated. A Darcy flow rate of 15 m/a
through a 1100 km long aquifer with 10% porosity .
will be flushed (or replaced) once after 7500 a, twice
after 15000 a, etc. (see Fig. 10). Unless the salinity is
“buffered” by the dissolution of salt in the aquifer,
the maximum salinity of the aquifer (at the discharge
point) will be reduced to half its initial value after the
first flush, 1/4 after the second, and so forth. If
CARPENTER (1974) is correct in maintaining that the
chemistry of oil field brines requires them to have
acquired their salinity from the evaporation of sea-
water and not from the dissolution of halite, the short
flush time of brine from an aquifer system such as is
shown in Fig. 4 is a strong argument against a cross-
basin flow origin for Mississippi Valley-type Pb-Zn
deposits. It might be commented that recent work by
KnauTh and BEEUNAS (1986) goes a long way toward
removing isotopic arguments for the flushing of basin
brines by the cross-basin flow of meteoric water.

Finally, the model embodied jp Eqn (4a) provides
a simple starting point for estimating chemical
changes related to fluid flow in an aquifer system (e.g.
Woob and HEwerT, 1982).

DISCUSSION

The main purpose of this paper is to present a
simple equation describing the temperature pertur-
bations produced by fluid flow in g segmented aquifer
system where the segments all have shallow dip. This
is done in Eqns (4a) and (5). It js hoped that this
particularly simple model may prove useful to others
engaged in research in fluid flow in basins.

Use of the equation is illustrated through a number
of examples. The samples are chosen for their rel-
evance to the origin of Mississippi Valley-type Pb-Zn
deposits. They provide some insight into the temper-
ature anomaly many numerical calculations show is
produced on the discharge flanks of basins subject to
cross-basin fluid flow. They emphasize the “salinity
problem” of hydrological flow models. Once
initiated, cross-basin hydrologic flow is not easy to
turn off quickly. Itis hard to see how saline brines can
have remained in the deep aquifers of basins
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associated with Mississippi Valley-type deposits if
cross-basin  hydrological flow produced these
deposits.
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APPENDIX

Equation (3) in the text can be solved by substitution of
variables. For simplicity, we will represent AT by T in this
appendix.

Let T/z = v. Differentiating this expression we see §7/3z
=y + zav/dz. Substituting both expressions in Eqn (3) of the
text we obtain:

v+ zovlaz = ja/K — va
which can be rearranged:

v oz

joalK — v(a — 1) z

Fach side can be integrated. Remembering the constant of
integration, substituting 7/z for v, converting the log
equation to exponential form, and using the temperature,
T.. at some particular depth, z, to determine the constant
ofintegration results in Eqns (4a) and (4b) given in the text.





