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Abstract. Self-potential electric and magnetic anomalies are increasingly being observed 
associated with hydrothermal fields, volcanic activity, and subsurface water flow. Until now a 
formal theoretical basis for predicting streaming potential of porous materials has not been 
available. We develop here a model giving both the macroscopic constitutive equations and the 
material properties entering these equations. The material properties, like the streaming potential 
coupling coefficient, depend on pore fluid salinity, temperature, water and gas saturations, mean 
grain diameter, and porosity. Some aspects of the model are directly tested with success against 
laboratory data. The streaming potential increases with temperature, grain size, and gas saturation, 
and decreases with salinity. At the scale of geological structures the model provides an 
explanation for the presence of kilometer-scale dipolar self-potential anomalies in geothermal 
systems and volcanoes. Positive self-potential anomalies are associated with fluid discharge areas, 
whereas negative self-potential anomalies are associated with fluid recharge areas. Self-potential 
anomaly maps determined at the surface of active hydrothermal fields appear to be a powerful way 
of mapping the fluid recharge and discharge areas. In the case of free convection the vorticities of 
the convection pattern generate a magnetic field. The greater these vorticities, the greater the 
associated magnetic field. It follows that hydrothermal systems act as natural geobatteries because 
of the flow of pore fluids in the subsurface of these systems. 

1. Introduction 

There are now many observations of self-potential anomalies 
associated with the activity of hydrothermal fields and volcanoes 
[e.g., Fitterman and Corwin, 1982; Sill, 1983; Ishido et al., 1983; 
Massenet and Pham, 1985; Antraygues and Aubert, 1993; 
Zlotnicki and Le Mougl, 1990; Hashimoto and Tanaka, 1995; 

Sasai et al., 1997; Apostopoulos et al., 1997; Michel and 
Zlotnicki, 1998]. These electrical potential anomalies can have 
large amplitudes (e.g., +2.3 V measured over the Kilauea 
geothermal area in Hawaii by Zablocki [1976], + 2 V measured 
over the La Foumaise volcano, R6union Island, Indian Ocean, by 
Michel and Zlotnicki [1998], and +1.0 V measured around the 
lava dome on Unzen Volcano, Japan, by Hashimoto and Tanaka 
[1995]). Very often, they show dipolar characteristics. Examples 
include -600/+400 mV in the Long Valley geothermal area in 
California [Anderson and Johnson, 1976], + 80 mV in the Cerro 
Prieto geothermal field in Baja California, Mexico [Fitterman and 
Corwin, 1982], -40/+20 mV at Red Hill Hot Spring, Utah [Sill, 
1983], -200/+100 mV in Ergani, Turkey [Abdelrahman and 
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Sharafeldin, 1997], -30/+70 mV at Lesvos Island, Greece 
[Apostopoulos et al., 1997], and -500/+300 mV on Karthala 
volcano, Grande Comore, Indian Ocean [Ldnat et al., 1998]. 
Sometimes, the evolution of these electrical potential anomalies is 
observed with time. For example, Hashimoto and Tanaka [1995] 
observed the development of a bipolar self-potential anomaly with 
time at the Unzen Volcano on the Shimabara peninsula of 
southwest Japan. They detected a positive self-potential anomaly 
in the vicinity of a lava dome and the development of negative 
self-potential anomalies to its side. In this case these self- 
potential anomalies was probably the result of an electrokinetic 
phenomenon related to the local hydrothermal system associated 
with the cooling process of intruded magma close to the summit 
of the volcano. Sasai et al. [1997] have also observed a positive 
self-potential anomaly up to +700 mV centered on the summit of 
Miyakejima Island, a volcano located 150 km south of Tokyo in 
the Izu-Bonin Arc. This positive self-potential anomaly is 
surrounded by negative anomalies amounting to -250 mV on the 
north and -100 mV on the southwestern mountainside. Anderson 

and Johnson [1976], Ishido and Mizutani [1981], Massenet and 
Pham [1985], and Morgan et al. [1989], among others, have 
suggested that the self-potential anomalies in geothermal areas 
and volcanoes could be explained best as the result of 
electrokinetic effects related to fluid flow. However, no formal 

theory of these effects has been described in the past. The 
purpose of this paper is to provide such a theory. 
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In order to understand and to model the electric and the 

magnetic fields of electrokinetic nature generated in geothermal 
environments, four kinds of equations have to be established. 
They are (1) the constitutive macroscopic relationships between 
the fluxes (the electrical current density and the hydraulic flux) 
and the generalized thermodynamic forces, (2) the conservation 
equations for the fluid mass and the electrical charge, (3) the 
boundary conditions, which close the system of equations, and (4) 
the relationships between the material properties of a porous 
representative elementary volume, the thermodynamic conditions 
existing in that system (e.g., pore fluid temperature, pH, and ionic 
strength), and the microstructure of this porous material. These 
equations are described in this paper, and we discuss, in section 4, 
some of the implications for geothermal systems and volcanoes of 
electrokinetic phenomena related to fluid flow, including the 
effect of free convection. 

Grain diameter distribution 

Clays 

Coarse 

grains 

2. Macroscopic Relationships 

We consider a porous material to be composed of an 
interconnected pore space saturated by a multicomponent 
electrolyte, and an electrically insulating mineral phase called the 
matrix (Figure 1). The matrix is composed of mineral grains and 
the nonconnected porosity. We assume a bimodal grain size 
distribution with the clay particles representing the small grains. 
The fine and coarse grain size distributions are assumed to be 
relatively narrow, and they do not overlap. The term 
"macroscopic" refers to a representative elementary volume 
(REV), assuming implicitly that the scale adopted to describe 
such a volume exists. We use throughout this paper the two 
following assumptions: (1) The fluid flow inside the 
interconnected pore space is laminar, and (2) the thickness of the 
electrical diffuse layer associated with mineral surface charge 
(Figure 1) is much smaller than the radii of curvature of the 
interface between the matrix and the interconnected pore space; it 
is also much smaller than the aperture of throats controlling 
transport properties in the interconnected pore space (the "flat and 
thin electrical double layer assumption"). This last assumption is 
usually valid because the thickness of the electrical double layer is 
directly related to the salinity of the pore water fluid. In natural 
conditions found in most geological systems, the salinity is higher 
than 10 -3 mol L -1, and the electrical .double layer thickness is 
smaller than 10 nm. Consequently, assumption 2 holds for grain 
sizes of the order of 0.1 gm or bigger. 

2.1. Electric Potential Distribution 

Under the previous assumptions the macroscopic constitutive 
and conservation equations describing the macroscopic electrical 
current density j (in A) and the water flux u (in m s -l ) (also called 
the Darcy velocity) due to the generalized forces applied to the 
porous medium are 

V. j: --•-[p(r,t)], (3) 

V-q = -•-(pf•p), (4) 

where q = ,Osf_• is the water mass flux (in kg S -1 m-2), œij (i •: j) (in m 2 V -1 ) represents the coupling between the electric and 

?=•'.• •i•i• Si--O' Na+ 

'•i::::-•:':",ii', I Si -- OH Na + 

!ii:i:iii.iiiils,_o. ,ecr,ca. Si -- O 'Na + diffuse Free 
:ilili•:iiiiiii?ii:ii!i}i:!:•:?i•: Si--OH layer water 

Figure 1. We consider porous materials with a bimodal grain 
size distribution, the finest grains corresponding to the clay 
particles. The fine and coarse grains are coated by an electrical 
double layer with an excess of ions in the vicinity of the 
mineral water interface. The drag of this excess of ions by the 
pore water flow is responsible of a macroscopic polarization 
phenomenon, which leads to the presence of both macroscopic 
electrical and magnetic fields. 

hydraulic forces (with el2 =e21 by virtue of Onsager's 
irreversible thermodynamic theorem [e.g., Bear, 1988, p. 87]), p 
is the pore fluid pressure (in Pa), g is the gravity acceleration 
vector (in m s-2), p(r,t) is the macroscopic electrical charge 
density (C m-3), t is time (in s), and •p is the interconnected 
fractional porosity. Other couplings leading to spontaneous 
electric potentials are described in Revil [ 1999]. The macroscopic 
electrical field (in V m -l ) is given by 

E = 

where 09 is the scalar electrical potential (in V) which contains in 
the electromagnetic theory an arbitrary additive constant, and A 
(in V s m -l) is the magnetic potential vector (in the Coulomb 
gauge V.A = 0). Equation (1) shows that even in the absence of 
an electrical current density (j = 0) and in steady state conditions 
(•3A/oat = 0 ), there is a macroscopic electrical potential gradient. 
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This electrical potential gradient is due to the polarization 
generated by the drag of the excess of charge located in the 
vicinity of the grain water interface (Figure 1) by the pore water 
flow. This electrical potential gradient is called "the streaming 
potential." Equations (1) and (2) are valid only for small forces, 
at least small enough to neglect any quadratic terms. The 
elements entering into the matrix •ij are all second-rank 
symmetrical tensors, whereas e ij itself is a matrix belonging to a 
mixed affine and metric space [e.g., Bear, 1988, p. 89]. The first 
term of (1) corresponds to Ohm's law, and the second term of (2) 
represents the Darcy's law. Consequently, we note 

ell =•, (6) 

f12 = f21 = f, (7) 

•22 =k/tlf, (8) 

where cr and k are the electrical conductivity (in S) and intrinsic 
permeability (in m 2) tensors of the porous material, respectively, 
/'If is the dynamic shear viscosity of the pore fluid, and œ is the 
coupling electrokinetic tensor, which is analyzed in section 3 for 
isotropic and anisotropic porous materials. We assume that or, k, 
and œ have the same principal directions because they are all 
related to the same tortuosity tensor of the interconnected pore 
space. Consequently, if the tortuosity tensor is known from 
electrical conductivity measurements or from permeability 
measurements, it can be used to compute the principal directions 
of the tensor œ (see section 3.2). For most porous media, with 
the exception of highly compacted shales with high specific 
surface areas like smectite-dominated shale, the hydraulic 
equation can be decoupled from the electric equation because 

(9) 

From (2) and (9) we recover the classical Darcy' s law: 

(10) 

The pore water pressure and density are given by 

P= Po +8p, (11) 

P f = Po + 6p f , (12) 

where Po (in Pa) and Po (in kg m -3) are the hydrostatic pore 
fluid pressure and density in a hydrostatic reference state 
(Po =Pogz, where z is the depth), 8p is the pore fluid 
overpressure, and 8pf is the density perturbation due to 
temperature, salinity, or fluid pressure variations. Typically, a 
first order state equation for the fluid is given by 

,of =Po[1-af(T-To)+Yf(S-So)-fif(p-po)]. (13) 

The reference state is characterized by the temperature T O , the 
salinity S o, and the fluid pressure Po. Additional assumptions are 
made corresponding to the incompressibility of the pore fluid and 
the use of the Boussinesq approximation in the equations. From 
(12) and (13): 

8pf =po[-O•f(T-To)+Yf(S-So)]. (14) 

Introducing (11 ) and (12) into (10), yields 

(15) 

From (15) the water mass flux can also be written 

q=-(k/uf )V•}p+Vx•, (16) 

where V f = •f / pf is the kinematic viscosity of the pore fluid 
and •P is the stream vector potential, which is the three- 
dimensional analog of the stream function for 2-D problems 
[Hirasaki and Hellurns, 1968]. The decomposition corresponding 
to (16) is useful when numerical modeling is used to solve the 
differential equations corresponding to free convection [Holst and 
Aziz, 1972]. Comparison between (15) and (16) leads to 

VxUd=(6Pf )k.g. (17) 
As •F is solenoidal [Hoist and Aziz, 1972], •F is determined from 
(17) by 

V2•p=-VxftSPfk ß g). (18) •,v• 

Taking V. j = 0 and inserting (1) leads to 

(19) 

In steady state conditions, E =-Vqo, and the linearity of the 
equations allows one to split (19) into two equations: 

V. (or. Vqoc) = +V.[vfe. k -I . V x •P], 
qo = qOp 

(20) 

(21) 

(22) 

where qo is the total electrical potential distribution due to fluid 

flow, the potential % is the contribution due to the overpressures, 
and qOc is due to free convection. Consequently, the electrical 
potential distribution is determined by the solution of two scalar 
Poisson equations with source terms corresponding to pore fluid 
overpressures and free convection, and the use of the 
superposition principle. In homogeneous porous materials and 
small temperature gradients, the contribution from (21) can be 
neglected, and the only contribution results from the solution of 
(20). 

2.2. Magnetic Field Distribution 

We specify now the equation for the magnetic field H, which is 
related to the magnetic vector potential by H=(1/#)VxA, 
where # is the magnetic permeability. The magnetic permeability 
of virtually all geologic materials does not vary significantly from 
the magnetic permeability of free space. The macroscopic laws of 
Ampere and Faraday are given respectively by 

8D 

VxH=j+-•-, (23) 
8H 

VxE=-#•. (24) 
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where D is the dielectric displacement and D = e'E, e is the 
dielectric tensor of the porous material. Taking the curl of 
Ampere' s law and developing V x V x H, we have 

(25) 

Combining (24) and (25), the magnetic field obeys: 

V2l- = vx - . (26) 

Equation (26) is a propagation-diffusion type equation for the 
magnetic field with a source term. As shown in section 3, the 
coupling term œ depends on the porosity, the temperature, and 
the pH and salinity of the pore fluid. Any variation in these 
parameters associated with a fluid flow, such that the right side of 
(26) is different from zero, will generate a magnetic wave 
(together with an electric wave). Electromagnetic waves lose 
almost no frequency when they propagate in porous materials 
[e.g., ttaartsen and Pride, 1997]. Consequently, they provide 
information at the top surface of the structure about the transient 
dynamics of fluid flow. Two characteristic time constants appear 
in (26): •'c = cr •L 2 and r e =L(E•) 1/2 where L is the 
characteristic distance from the source. For typical values of e 
and cr we have l.' e << •'c "few seconds. In the limit t >> •'c, the 
time-derivative terms can be neglected and the solution is given 
by the stationary part of (26) [Majaeva et al., 1997]. Using 
V. H = 0 (because H = (1//.t)V x A ) and /l is a constant) and 
taking (26) in its quasistatic limit (we use also V x E = 0), we 
obtain 

(27) 

Equation (27) can be split to give 

v2a. = v x[e. v&], (28) 
V21-1 c = -V X[Vf•' k -l. V x •?], (29) 

H = Hp + H c . (30) 

Here H is the total magnetic field induced by fluid flow. The 

magnetic field H e is the contribution due to the pore fluid 
overpressures, and Hc is due to free convection. Consequently, 
the magnetic field due to water flow is determined by the solution 
of two vectorial Poisson equations with source terms 
corresponding to pore fluid overpressures and free convection and 
the use of the superposition principle. Assuming the spatial 
variations of the tensor ( œ k -l) can be neglected (homogeneous 
porous materials and small temperature gradients) yields: 

The electrical and magnetic fields solution of (20)-(22), and 
(28)-(30) with the appropriate boundary conditions (see section 
2.3) have to be added to the electric and magnetic fields due to 
other sources (e.g., related to the presence of ferromagnetic 
mineral concentrations, ore deposits, or human activities or due to 
induction phenomena). 

2.3. Boundary Conditions 

To close the electrokinetic problem, the boundary conditions 
for the electrical potential and the magnetic field have to be 
specified at any boundaries dF• of the homogeneous volume F• in 
which the solutions of (20)-(22), and (28)-(30) have to be 
computed. The boundary conditions are 

•p(_) Idfl = •p(+)Idfl, (34) 

t•tp(_) t•tp (+)Idtl, (35) O'(_) o•n Idt 1 =O'(+) o•n 
H(_) Idn= H(+)Idn, (36) 

• (H(_) - H(+)) Idn = n x (j(_) - j(+)) Idn , (37) 

on the boundaries dF•, where tp(_), H(_), and j(_) are the electrical 
potential, the magnetic field, and the electric current density, 
respectively, on dF•(_), tp(+), H(+), and j(+) are the electrical 
potential, the magnetic field, and the electric current density, 
respectively, on dF•(+), and 8./• is defined by 

: n.V(. ), (38) 

where n is a unit vector normal to the boundary and pointing from 
region (+) into region (-). At the boundaries dF• of a geological 
object in contact with air or a very resistive structure (e.g., 
sediments in contact with basalts or granites), we consider o'(+) = 
0 and j(+) = 0 (dF•(_) being the intemal surface and dD,(+) being the 
external surface), so (35) and (37) become 

&P(-) Idfl = 0 (39) 3n ' 

•-(H(_) - H(+))Idtl= nx j(_) Idt 1 . (40) 

If the boundary dF• is in contact with water, for example, we have 

ø•tP(-) Idt 1 = O'f o'(_) o•n o• n Idfl, (41) 

•(H(_)- H(+))Idn = n x (j(_) - j(+)) Idn, (42) 

Hp =0, (31) 
V2Hc = -v f f . k -1 .{o, (32) 

H=H c . (33) 

where • = V x V x •P is the vorticity vector. Consequently, the 
sources for the generation of the magnetic field, in that special 
case, are the vorticities of the convection pattern. The greater 
these vorticities are, the greater the associated magnetic field is. 
These magnetic fields of electrokinetic origin could explain the 
so-called "volcanomagnetic effect" observed on Piton de la 
Foumaise Volcano (R6union Island) by Zlotnicki and Le Mouel 
[ 1988, 1990] 

where O'f is the electrical conductivity of the fluid at the 
boundary dF•. Note that if crf is high enough to consider the 
fluid to be a perfect conductor, dF• is an equipotential and no self- 
potential anomalies (or at least very small anomalies) can be 
observed. For example, Corwin and Hoover [1979] reported very 
small electrical potential anomalies (< 1 mV) measured at the 
bottom of Mono Lake (California) near the active hot springs area 
on Paoha Island (the reported electrical conductivity of the highly 
saline Mono Lake water is 10 S m -1). Consequently, the higher 
the salinity of the water at the surface of a geological object is, the 
lower the electrical potential anomalies associated with 
subsurface pore fluid circulations are. At the opposite, subsurface 
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fluid flows in lakes with fresh water should exhibit high electrical 
potential anomalies. 

The hydraulic flow rate (in kg s -1) and electrical current (in A 
m 2) over a surface element S are defined by the fluxes of the 
vectorial fields q and j: 

Q = • q.n dS, (43) 
s 

I = •I j.n dS, (44) 
s 

where n is the unit vector normal to the unit surface element dS of 

S oriented positive outward. For realistic modeling of complex 
hydrological systems, various boundary conditions can be 
specified on d•2. In terms of heat and flow transfer, conductive 
and/or convective boundary conditions can be chosen, and Q 
and/or I can be fixed on some section of the boundary dr. For 
example, for the electrical field we can fix the potential q0 = Cte 
(Dirichlet boundary condition), or we can fix the electrical current 
(Neuman boundary condition) on the boundary. Additional 
boundary conditions have to be chosen for the pore fluid pressure 
and stream vector potential [see Hirasaki, and Hellums, 1968]. 

3. Material Properties 

In this section, we investigate the relationships between the 
material properties entering the previous macroscopic laws and 
the microstructure. The influences of pore fluid salinity, pH, 
temperature, and partial saturation are accounted for in these 
relationships. 

3.1. Isotropic Porous Materials 

We first consider an isotropic REV of a water saturated quartz 
sand characterized by an average grain diameter d and the 
fractional porosity q•. We assume a unimodal grain size 
distribution, and for spheroidal grains the grain diameter is 
defined by the diameter of a sphere having the same volume as 
the grain. The phenomenological coefficients g ij are related to 
more conventional parameters by 

crf 
ell =Or = H[•], (45) 

F 

gl2 = •-21 =-•, (46) 
Of F 

k 
e22 = •. (47) 

•f 

Here cr is the electrical conductivity of the REV, O'f is the pore 
fluid electrical conductivity, • is the ratio of mineral surface and 
pore fluid electrical conductivity [Revil and Glover, 1998], and 
Y-/'[•] is a function of the parameter • (the exact expression for 
Y-/'[•] depends on the topology of the interconnected pore space, 
and we have H[•--> 0]--> 1). The parametei's F and k are the 
electrical formation factor and the permeability (in m 2) of the 
REV, respectively. The parameters p f and /'If are the density 
and the dynamic shear viscosity of the pore fluid respectively, 

ET = 80E 0 (E0= 8.84 x 10 -12 F m -1) is the dielectric constant of 
pore water, and •' is the so-called "zeta potential" and represents 
the electrical potential drop through the electrical diffuse layer 
[see Revil et aL, this issue]. Note that sign( œ ) = -sign (0 and •' < 
0, in most of the natural conditions of fluid p H, temperature, and 

salinity. Equations (45) and (47) are very general equations 
defining the electrical conductivity and the permeability. 
Equation (46) results from the model of Pride [1994] and is 
obtained by volume averaging the Nernst-Planck, Navier-Stokes, 
and Poisson-Boltzmann equations over the REV (there is a small 
correction term in the equation of Pride [1994], which is 
neglected in this paper). In clay free sands we can relate the three 
fundamental parameters (electrical conductivity, permeability, 
and coupling coefficient) to the microstructure (characterized by d 
and q): 

Y-/'[•] = l-t[+) + F•+•(t[+)-•) 1-•+ 1- + t--•-• , t(+) (+) 

(48) 
d 2 

k = (49) 
24 F(F_ 1)2 ' 

where F and •are defined by, 

F -- ((p - (pp ) -m , (5O) 

(51) 

Equation (48) results from Revil and Glover [1998], and (49) 
results fromRevil and Cathles [1999]. Equation (50) results from 
the differential effective medium approach used by Sen et al. 
[1981]; rn is called the electrical cementation exponent or 
Archie's exponent. We have accounted for the effect of the 
percolation porosity Ipp (i.e., the porosity at the percolation 
threshold, Ipp = 0.025 _.+ 0.025 for spherical particles depending 
on the cementation process). At the percolation threshold itself, 
the physics of percolation rather than the more classical methods 
leading to Eqs. (48)-(51) should be used to determine the 
macroscopic properties at a given scale. In (51), Z s is the 
specific surface conductance (in S). The specific surface 
conductance of the mineral grains characterizes the "excess" 
(surface) conductivity at the grain surface by comparison with 
that of the bulk water [e.g., Revil and Glover, 1997, 1998]. The 
parameter t[+) is the fraction of electrical electromigration current 
carried by cations in the bulk electrolyte (t[+) is called the "pore 
fluid Hittorf number of the cations" [e.g., Revil and Glover, 1997, 
1998, Revil et al., 1998], t[+) = 0.38 for NaC1; t[+) •- 0.51 for 
KC1). The parameter t[+> is simply a function of the ionic 
mobility of the cations and anions in the water phase [Revil and 
Glover, 1997, 1998]. If the grains are perfectly spherical, rn = 1.5. 
Usually, 1.3 < rn < 1.7 (see Figure 2) because the grains are not 
perfectly spherical. The lower limit for rn is characteristic of 
fractured porous media. 

In (48) the tortuosity paths for cations and anions are different 
at low salinities because only one of the ionic species (anions or 
cations) has preferential adsorption upon the mineral surface, 
depending on the thermodynamic conditions of pH, ionic strength, 
pressure, and temperature [see Revil et al., this issue]. Equation 
(49) assumes that the average pore radius is given by 
A =d/[3(F-1)] as demonstrated by Revil and Cathles [1999]. 
The predictions of (49), in which the formation factor has been 
replaced by (50), are tested in Figure 3. There is very good 
agreement between the experimental data and the prediction of 
the permeability equation over 6 orders of magnitude in 
permeability. 
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Figure 2. Relationship between the formation factor and the 
porosity for clay-free sands. Data are from (solid circle) Sen et 
al. [1981], (open square) Johnson et al. [1982], (open circle) 
Revil (unpublished manuscript, 1995), (solid square) Waxman 
and Srnits [1968], (diamond) Schwartz et al. [1989]. We use 
½/, = 0.035. 

The fundamental parameter usually used to describe laboratory 
streaming potential measurements is the "streaming potential 
coupling coefficient" C (in V Pa -1) defined at steady state 
conditions by 

(52) 

where 6p = (p - Pogz) is the pore fluid overpressure and z is the 
depth (usually, in laboratory experiments the gravity term Pogz 
can be neglected and dgp -dp). Combining (45), (46), and (52) 
yields 

Replacing • with (51) and using the relationship A = d/[3(F- 1)] 
between the average grain diameter d, the electrical formation 
factor F, and the mean pore radius A yields 

which is similar to equation (4) of Morgan et al. [1989]. We 
compare our model and the Helmoltz-Smoluchowski equation 
with the experimental data of Bull and Gortner [ 1932] (Figure 4). 
Bull and Gortner [ 1932] reported that C decreases with grain size 
for sand columns composed of crushed quartz grains. There is a 
good agreement between our model and their experimental data 
without the help of any adjustable parameters (the •'potential and 
the specific surface conductance are given by the model 
developed by Revil et al. [this issue]). The model of 3/Iorgan et 
al. [1989] does a better job than the Helmoltz-Smoluchowski 
equation, but it still does not describe accurately the experimental 
results displayed in Figure 4. Figure 4 also implies a difference 
between the streaming potential coupling coefficient of sands and 
shales. The average grain diameter of the shale grains is in the 
range 10-0.01 gm. According to Figure 4, a typical sand (say, 
with a grain diameter in the range 100-200 gm) has a streaming 
potential coupling coefficient much higher than a shale at the 
same salinity because the high surface conductivity of shales 
decreases the streaming potential coupling coefficient. This effect 
is also reinforced by the fact that the •' potential of quartz is 
usually higher than the •' potential of clays at the same salinity, 
except at high salinities (see section 3.3). 

Most of the time, the fluid flow equation is not corrected for 
the electro-osmotic contribution (second term of (2)) in order to 
derive the permeability. Consequently, the permeability reported 
in most of the experiments is only an "apparent permeability." 

--•1-•-- /•fO.f •_/.[•1 , (53) 
which is a new equation for the streaming potential coupling 
coefficient. In the limit • ---> 0 (e.g., at very high salinities), C 
reduces to the well-known Helmoltz-Smoluchowski equation 
[e.g., Dukhin and Derjaguin, 1974]: 

CHS = eft'/(rlftYf ). (54) 

Equation (54) shows no dependence between the streaming 
potential coupling coefficient and the microstructure. The 
Helmoltz-Smoluchowski equation is very often used to interpret 
streaming potential measurements, but this equation can lead to 
serious errors as shown below. In (53) the dependence of C with 
the microstructure comes from 9/[•]. The ratio between C and 
CH$ (a normalized streaming potential coupling coefficient) is 
given by 1 / 9/[•]. The high salinity asymptote of 9/[•] 
(corresponding to • << 1) is 

7-/[•] = 1 + 2 (F- 1) • (55) 

In such an asymptotic limit, (54) has a form similar to that given 
by Morgan et al. [1989] and Jouniaux and Pozzi [1995]. Indeed, 
(54) and (55) lead to the high salinity asymptotic limit 

rlftyf(1 + 2(F- (56) 

6 

d 2 
k= 

24F(F- 1) 2 

F= (½-½,o) -:•/2 

I 2 3 4 5 

log(measured permeability, mD) 

Figure 3. Permeability of clean sands. Comparison between 
the prediction of the permeability equation described in the 
main text (m = 3/2; ½•, = 0.035) and the experimental results 
from Chauveteau and Zaitoun [1981], Johnson et al. [1986], 
Chilindar [1964, Figure 2, p. 73], and Bear [1988] (210 
samples are used with porosities ranging from 0.056 to 0.43 
and grain diameter ranging from 12.5 to 1010 gm). 1 mD = 
10 -15 m 2. 
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Figure 4. Grain size dependence of the streaming potential 
coupling coefficient for a quartz sand. The model developed in 
the main text is compared with the data of Bull and Gortner 
[1932]. We point out that the model is free of any adjustable 
parameters. The formation factor is estimated from the 
porosity of a random packing of spheres (i.e., •p = 0.38, 
[Chandler, 1981])using F=cp -3/2 (see main text). The values 
of the specific surface conductance and •' potential are 
determined from our model [Revil et al., this issue]. Parameters 
used are as follows: crf= 2.41 x 10 -3 S m -l (determined from the 
salinity and the temperature' see appendix), t[+) = 0.38 (NaC1 

electrolyte), F = 4.27 (using Archie's formula), •' =-75 m•V, ef = (80 x 8.84) x 10 -12 F m 'l, and r/f= 8.79 x 10 -4 kg m -l s- . 

The apparent permeability is related to the true (i.e., intrinsic) 
permeability k by k* = k(1-R), where R is a dimensionless 
number defined from (1) and (2) as (using j = 0), 

•12•21 = 24 Ief•'(F- 1)12 R = •11•22 r/fo'fH[•] d ' (58) 
Equation (58) is valid only in the limit where R << 1 (say R < 
1/4), that is in the limit of the thin and locally flat electrical 
double layer. From (1) and (2) the total energy dissipation 
function can be written as [e.g., de Groot and Mazur, 1962] 

D= frL f , (59) 

where fand L are the force vector operating over the REV and the 
material transfer matrix of the REV, respectively, which are 
defined from (1) and (2) by 

f= -(Vp- p fg ' (60) 

œ=[e]• el21 (61) Le21 e22 ' 

Because D > 0 and fis arbitrary, œ must be positive definite, and 
consequently I œ I-- •11922 - g12921 _> 0. As g12 = •21 (from 
Onsager's microreversibility principle), the absolute magnitude of 
the coupling coefficient is restricted by the magnitude of the 
conductivity coefficients, and we obtain from (45) and (47) the 

following: P12 2 _< O' k / r/f, which is also R < 1. Consequently, R 
obeys the inequality: 0 < R < 1, which is a very general inequality. 

In the case of mixtures between quartz sands and clays (Figure 
1) the electrical conductivity and the streaming potential coupling 
coefficient are still given by (45) and (53). However, the non- 
dimensional parameter • is now related to the excess of surface 
charge per unit pore volume Qv by [e.g., Revil and Glover, 1998] 

Ors =•Ii_--••½)I•SsQvl. (62) •----O'f O'f 
Here ty s is the surface conductivity of the grains (in S m-l), •pis 
the interconnected porosity, and /5 s (in rn 2 s -• V-• is the mobility 
of sorbed ions in the electrical double layer. The parameter Qv 
(in C m -3) is related to the "cation exchange capacity" (CEC) by 
[Waxman and Srnits, 1968] 

Qv--pgll-•lPw CEC, (63) 

where p g is the grain density (in kg m -3) and Pw is the total 
mass fraction of clay mineral in the porous material. The CEC (in 
meq g-• of matrix weight; 1 meq g-• = (e •) C kg 'l = 96320 C 
kg -•, • is Avogadro's number, and e is the elementary charge) 
indicates the maximum number of surface exchangeable metal 
ions per unit mass of the rock clay fraction (i.e., the finest grain 
particles). The CEC is characteristic of the clay mineral type. 
Typical values are CEC(kaolinite) = 0.04 + 0.02 meq g-l, 
CEC(illite) = 0.22 + 0.02 meq g-l, and CEC(smectite) = 1.5 + 0.5 
meq g-•. For a mixture of clays we can take an arithmetic average 
with weighting corresponding to the mass fraction of each clay 
mineral, noted as Xi, that is CEC(clay) = •i (Xi CECi). Note 
that for zeolites, the CEC is not the relevant parameter for 
computing the surface conductivity. Zeolites are crystalline 
aluminosilicates with a tetrahedral framework enclosing cavities 
occupied by cations having enough freedom of movement to 
permit cation exchange. However, Clavier et al. [1984] showed 
that some zeolites have large CEC values but no surface 
conductivity at all. Olhoeft [ 1986] reported that clinoptilolite, the 
most common zeolite, behaves like kaolinite or montmorillonite, 
depending on the salinity and temperature. Additional 
experimental data concerning the surface properties of zeolites are 
needed to understand and to classify the electrical properties of 
these minerals, which are always present in geothermal areas. 

3.2. Anisotropic Porous Materials 

The coupling coefficient œ is a second-rank symmetrical 
tensor in anisotropic porous materials and can be obtained by 
generalizing the previous equation to anisotropic porous 
materials. The coupling coefficient œ is given by 

•=-(œI•)G, (64) 
G = T 0, (65) 

where T is an extension of the tortuosity concept to 3-D flow and 
anisotropic porous media [Bear, 1988, p. 111] (note that in the 
principal directions, the main components of T are smaller than 
unity). The anisotropy of the electrical conductivity ty, the 
permeability k, and the coupling coefficient œ is actually due to 
the anisotropy of the tortuosity of the interconnected pore space, 
and the principal directions of these three tensors are considered 
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to be the same. The components of the tortuosity tensor can be 
determined from normalized electrical field integrals [Avellaneda 
and Torquato, 1991 ]. In isotropic porous media, G reduces to 

G = (1/F ) I, (66) 
T = (1/•: 2) I, (67) 

where I is the unit tensor, •: is the electrical tortuosity (> 1), and F 
is the electrical formation factor. 

3.3. Influence of the Pore Water p H and Salinity 

Because the coupling term œ depends directly on the •' 
potential and the specific surface conductance, these parameters 
play a central role in any evaluation of the electrokinetic 
properties of porous rocks. The •' potential and the specific 
surface conductance depend on several parameters including the 
mineral type, the water composition and ionic strength, the pH, 
and the temperature. For simple supporting pore electrolyte and 
silica grains the •' potential and the specific surface conductance 
can be determined by the model described in the previous paper 

of this series [Revil et al., this issue]. For more complex 
electrolyte compositions and/or for other minerals, the situation is 
more complicated. We propose that the •' potential in clay 
dominated porous materials can be determined by the following 
empirical equations (see Figure 5): 

•m (I) = a + b log10 I, 

ZsCpH, T)= (T)lsin( PH)I, 

(68) 

(69) 

(70) 

where I is the ionic strength (-salinity) of the pore fluid (in mol 
L-l), ApH--pH-pH(pzc), pH(pzc) is the value of the p H 
corresponding to •'= 0 (point of zero charge (pzc); see Figure 5), 
•'m and •;•' represent the value of the •'potential and the specific 
surface conductance, respectively, at pH-pH(pzc) = 6 (for oxides, 
•m varies with the salinity), a = -26.4 and b = 6.24. The specific 
surface conductance Z• is given by Z•(25øC) = (2.5 _+ 0.5) x 
10 -9 S [e.g., Revil and Glover, 1998]. Equation (68) represents 
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Figure 5. Zeta potential and specific surface conductance of clay minerals: (a) Zeta potential (mV) versus pH 
(clays, NaC1 electrolyte). (1 a- 1 c) Avena and De Pauli [ 1996], for amorphous aluminosilicate, pH(pzc) = 5.1 + 
0.1 (pH(pzc) represents the pH corresponding to zero surface charge), (la) 0.001 M, (lb) 0.004 M, (lc), 0.01 
M; (2) Atesok et al. [1988]; 0.003 M, Na-kaolinite, pH(pzc) = 4.75 + 0.1. (3) Lorenz [1969], (0.6-2) x 10 -3 
M, Na-Kaolinite, pH(pzc) = 4.15 + 0.1, (b) zeta potential (mV) at pH - pH(pzc) = 6 versus ionic strength (in M) 
(some of the values are extrapolated from close pH values), (c) specific surface conductance (in S) of Na- 
kaolinite versus pH (the data points are determined from Figures 6 and 7 of Lorenz [1969], salinity: (0.6-2) x 
10 -3 M, Na-Kaolinite, pH(pzc) = 4.15 + 0.1), and (d) Specific surface conductance (in S) determined from the 
electrical conductivity measurements of Waxman and Smits [1968, Table 7, samples 17, 23, 24, and 26], the 
electrical conductivity model of Revil and Glover [1998], and a surface site density of 3 sites nm 2. 
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quite well the sigmoid shape of the •'-pH curves as shown for 
various clay minerals in Figure 5 with simple supporting pore 
electrolyte like NaC1 or KNO 3. The influence of the temperature 
upon •'and E s is discussed in section 3.4. 

3.4. Influence of the Temperature 

The temperature dependence of the •' potential of quartz has 
been analyzed in the previous paper of this series [Revil et al., this 
issue]. The temperature dependence of the electrical conductivity 
and dielectric constant of the electrolyte (NaC1) are given in the 
appendix. Typically, the temperature dependence of the 
electrolyte and surface conductivities can be expressed in linear 
form, which describes laboratory measurements very well [Revil 
et al., 1998]: 

c• f (r) -- c• f (r 0 )[1 + oc f (r- r 0)], 
s(r) = + Os(r- r0)], 

(71) 

(72) 

where T O is a reference temperature (25øC), 0 I. = 0.023øC -1 and 
Os(Na +) -- 0.040 + 0.002ø0 1. Because O s > Of, the ratio of 
the surface conductivity to the electrolyte conductivity, •, 
increases with the temperature. Equations (45)-(48) and (55), 
yield in the high salinity domain (• << 1) 

dc• =l(c•f(To)Of +2(F_I)crs(To)Os). (73) dT F 

conductivity or the surface conductivity is dominant (Figure 6). If 
we had considered the •' potential to be independent of 
temperature, the streaming potential coefficient would have 
decreased slightly with temperature. Using a salinity of 1 mol 
L -1, our model indicates •'= -0.035 mV at 25øC and C = -(21 + 1) 
mV atm -1 (-0.2 V MPa -•), coincident with the value of-21 mV 
arm q measured by Morgan et al. [1989; Figure 11] for crushed 
Westerly granite in contact with a NaC1 solution (Cf= 1 mol L -• 
and T = 25øC). Using these values and the temperature 
dependence of •' with T [Revil et al., this issue], the streaming 
potential coupling coefficient increases in magnitude by about 
0.16-0.33 mV atm -1 øC -1 in the temperature range 25ø-70øC. 
This is in contradiction with the data reported by Morgan et al. 
[1989] (which assume no temperature dependence of the •' 
potential) but in agreement with the data of Ishido and Mizutani 
[1981] (which leads to a temperature dependence of the •' 
potential). A comparison between the predictions of our model 
and the data of Ishido and Mizutani[1981, their Figure 9] is given 
in Figure 7. Because the experiment of Ishido and Mizutani was 
conducted on crushed quartz, we have neglected the surface 
conductivity in our model for C(T) because of the significant size 
of the pores. There is a very good agreement between the model 
and experimental data, indicating that the •' potential increases 
with temperature. We believe that this temperature dependence 
was not observed by Morgan et al. [1989] because of the major 
difference between the two works in the equilibration time, which 
is much smaller (4 hours) in the experiment of Morgan et al. 
[1989] than in the experiment of Ishido and Mizutani [1981] (> 43 

d•lS•ld•'lS•ld(1/tlf) hours). Consequently, chemical equilibrium on a silica surface is .... + --•-. (74) implied to take several tens of hours when the temperature is dr 8•' dr 8(11 r If ) dr 
8•_ œf 

'St ef•(r) 
8(••f'• = -'•'• ' (76) 2.00 

We expand •'and 1 //'If tO the first order with temperature: 1.80 

C(r) = ;(ro ) (l + oc (r - ro ) ) , (77) 
I 

1/ tl f (T) = l / n f (To )(l + On (T - To ) ) . (78) 

d•' = •.(T ø )O•. (79) • 1.40 dT 
0 1.20 

1 o 
- ¾Z; " (80) 

The temperature coefficient ty•. is obtained from the analysis 
given by Revil eta[ [this issue] and is --1.71 x 10 -2 øC -1 for 0.80 
quartz. The temperature coefficient Or/has been calculated using 
the expression developed by Mercer et al. [1975] for the water 
viscosity in geothermal fields as Or/= 3.12 x 10 -2 øC -1 (for 0 <_ T 
_< 300øC). Combining the previous equations, and after some 
algebraic manipulations, we obtain in the high salinity domain (• 
<< 1) 

d___e= e(r0)(oc + o. + 2oco.(r- r0)) (81) dT ' 

We have used these dependences together with the modeling of 
the temperature dependence of •' [Revil et al., this issue] to 
determine the temperature dependence of the streaming potential 
coupling coefficient C for the case in which either the electrolyte 

Temperature (øC) 

Figure 6. Temperature dependence of the streaming potential 
coupling coefficient. When the electrolyte salinity is such 
that pore water electrical conduction remains the dominant 
mechanism of electrical conduction in the temperature range 
considered, the temperature dependence of C is much more 
important than the case where surface conductivity is the 
dominant mechanism. This is because the temperature 
dependence of surface conduction is greater than the 
temperature dependence of bulk conduction in the pore fluid and 
because the electrical conductivity term is in the denominator 
of the expression describing the streaming potential coupling 
coefficient. 
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Figure 7. Variation of the streaming potential coupling 
coefficient as a function of temperature. We compare here the 
theoretical model described in the main text with the 

experimental data of lshido and Mizutani [ 1981 ] obtained for 
crushed quartz (pH = 6.1, and 10 -3 KNO3). The numbers 
attached to the experimental points indicate the elapsed time 
from the beginning of the experiment to each measurement. 

water interface in the presence of NaC1 and for a salinity variation 
between infinite dilution and 6 mol L -1. Sprunt et al. [1994] cite 
the work of Okada and Akagi [1987] concerning •-potential 
measurements in the presence of gas bubbles which concludes 
that, in NaC1 and CaC12 solutions, the • potential of gas bubbles is 
always negative and becomes increasingly negative with 
decreasing salinity. In presence of A12(SO4)3, gas bubbles have a 
positive •potential, hence a positive surface charge, maybe as the 
result of A13+ sorption. This surface charge associated with the 
gas bubbles is not taken into account in the following analysis. 
The only effect accounted for is the insulating role of gas bubbles 
upon the electrical conductivity and the coupling coefficient. 

The influence of gas saturation upon the electrical conductivity 
can be taken into account by introducing the following 
transformation into the electrical conductivity equation [Waxman 
and &nits, 1968; Clavier et al., 1984]: 

m tl •m• Sw 

Qv -• Qv /Sw 
(82) 

where n is called the saturation or second Archie's exponent (n -- 
rn) [Waxman and Srnits, 1968]. Consequently, from (45), (48), 
and (82) the electrical conductivity as a function of the water 
saturation is given by 

changed. We have introduced here the temperature dependence 
for all parameters of the streaming potential coupling coefficient. 
We determine in section 3.5 the influence of a gas phase upon C. 

3.5. Influence of Gas Saturation 

The presence of gas or oil (or any non-wetting and insulating 
phase) in the interconnected pore space has a significant effect 
upon the streaming coupling coefficient [e.g., Morgan et al., 
1989; Sprunt et al., 1994]. Published experimental works show 
that there is an increase of the streaming potential coupling 
coefficient C with the gas saturation (1- S w) (where S w is the 
relative volume fraction of the interconnected pore space 
saturated by water, i.e., the "water saturation"). Morgan et al. 
[1989] showed that C can be enhanced by a factor of 3 or 4 
because of the presence of gas in the interconnected pore space. 
The streaming potential coupling coefficient in an oil-rock system 
is much higher than in a water-rock system [Rutgers et al., 1959]. 
Sprunt et al. [1994] showed that air bubbles increase C by more 
than 2 orders of magnitude but that the voltage produced is 
unstable (note that this instability is probably the result of gas 
bubbles trapped in the electrodes). Antraygues and Aubert [ 1993] 
showed that the flow of wet steam in sands at elevated 

temperatures leads to the generation of significant streaming 
potentials, and Marsden [ 1987] and Sprunt et al. [ 1994] that the 
flow of dry steam in porous materials does not produce substantial 
streaming potentials. 

There are two effects to consider when we are dealing with 
presence of gas bubbles in the pores. The gas bubbles are 
electrical insulators, but they also carry along their outer surfaces 
a deficiency of charge that is responsible for a negative bubble 
surface electrical potential. However, this effect remains poorly 
understood. Graciaa et al. [1995] measured a • potential of-65 
mV in deionized water for small air bubbles, and Jarvis [1972] 
reported a variation of-20 mV for the surface potential at the air- 

•= 6 fS•n l-t[+)+ + t[+ - r 

12 4r{ • + l-- • 4-tfqn+• . x l-t/•)Sw t•)Sw V+) •'w 
(83) 

A plot of rr/rrf versus • for different water saturations is given 
in Figure 8a. Because water is the wetting fluid, and because we 
consider gas saturation to be small enough so that the electrical 
double layer is not perturbed by the presence of gas in the pore 
space, the streaming potential coupling term •12 should not be 
strongly affected by the presence of gas. This is because this 
coefficient represents the drag of the excess of the charge of the 
electrical double layer during fluid flow, which is not influenced 
by the presence of gas. Consequently œ could be essentially 
independent of the gas saturation. In addition, the transformation 
corresponding to (82) is valid only if the pore fluid is at rest. 
However, the streaming potential corresponds to a dynamic 
phenomenon related to fluid flow. Consequently, there is no 
streaming potential if the water saturation is below a critical level 
corresponding to the so-called "irreducible water saturation" Swo 
(Swo -- 0.1-0.3 for sands and shales) because there is no longer 
flow of the wetting phase below this limit. Consequently, the 
water saturation must be replaced by the "effective" or "reduced" 
water saturation defined by [e.g., Bear, 1988, p. 446]: 

S w - Swo as S w > Swo, 
S e • 1- Swo 

0 ass w < Swo. 

(84) 

Consequently, the streaming potential coupling coefficient is 
given by 
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Figure 8. (a) Macroscopic electrical conductivity 
(normalized by the pore fluid conductivity) versus • for 
different values of the water saturation. (b) Normalized 
streaming potential coupling coefficient versus the normalized 
surface conductivity • for different water saturations. In the 
high-salinity domain the decrease of the water saturation is 
responsible for an increase of the coupling coefficient, 
whereas in the low-salinity domain the opposite occurs. 

1 t f + + C = Cns • 1- (+) ,•,-';-½F '• ) Se n 
-1 

+ 
X 1-t[+)Se t[+)Se ,f qn+, ' '(+)•'e 

(85) 

Here CHS--•œf/17f(T f . A plot of the normalized coupling 
coefficient C/CHs versus • for different effective water 
saturations is given in Figure 8b. When the gas saturation 
increases (i.e., S w decreases), the ratio of the electrolyte 
conductivity to the surface conductivity decreases and surface 
conductivity quickly predominates. In the high-salinity domain (• 
<< 1), (85) reduces to 

C = Cns (86) ß 

2 2 F 

The curves C/CHs versus water saturation are shown in Figure 9. 
The presence of gas in the pore space can lead to a strong 
enhancement of the streaming potential of several orders of 
magnitude. This is in agreement with the experimental data of 
Jiang et al. [1998], who noted that the streaming potential 
coupling coefficient of Red Navajo sandstone samples saturated 
with oil is about 2 orders of magnitude larger than those saturated 
by a 0.1 mol L -] brine. The characteristic water saturation at 
which the streaming potential coupling coefficient is maximum 
(see Figure 9) is given by the condition d(C/CHs)/dSw = 0, which 
corresponds to S•v = Swo +(1-Swo)(F•) •/3. The model 
presented here is consistent with the experimental observations 
concerning the streaming potential generated by water/gas flow 
[Rutgers et al., 1959; Antraygues and Aubert, 1993]. A direct 
comparison between the previous model and experimental data is 
currently impossible because there are no data in which the 
streaming potential coupling coefficient is given as a function of 
gas saturation. 

4. Application to Geothermal Fields 

In this section we analyze the order of magnitude of the 
streaming potential anomalies associated with geothermal 
environments. However, before to deal with these electrical 

anomalies, we have to point out that recorded field data have to be 
corrected for extraneous electrical potential variations. Indeed, 
the electrical potential variations recorded between two electrodes 

0 0•. 0.4 0.6 0.8 1 

Water saturation, S 
w 

Figure 9. Normalized streaming potential coupling 
coefficient versus water saturation in the high-salinity domain 
(• << 1). The streaming potential increases with the decrease 
of the water saturation from unity to a characteristic value, 
which depends on the value of •. Below this characteristic 
water saturation the streaming potential coupling coefficient 
decreases with the decrease of the water saturation until the 

irreducible water saturation is reached. Below this level, there 
is no flow of the water phase, and, consequently, no streaming 
electrical potential can be generated. 
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in the ground can have various origins. Self-potential monitoring 
performed for the purpose of detecting electrical potential 
anomalies of electrokinetic nature has to be corrected from 

electrical telluric potential variations caused by the magnetic 
induction in the Earth. This is because the self-potential 
variations caused by the magnetic induction can be high enough 
to mask any self-potential variations of electrokinetic nature. To 
remove the former, Kawakarni and Takasugi [ 1994] successfully 
applied the Wienner filter to self-potential variations in time on 
the basis of the magnetic field variations and the normalization 
method using the self-potential reference data points. They show 
that using this method, the accuracy of the self-potential data of 
electrokinetic origin was improved from over +30 mV to +2-3 
mV. 

where • is the effective thermal conductivity of the porous 

material and (pocf) is the heat capacity of the pore fluid. 
Symmetrically, the downward flow of cold water driven by the 
buoyancy forces also creates a self-potential anomaly with the 
temperature distribution, the Darcy velocity, and the surface self- 
potential flow given by 

ll-exp[Ra(z/H)]] r = rs -(rs - r r) •--e-•p(•i ')' (92) 
k 

q=•afPo(T r -Ts)g, (93) 

6•(0) = a f pog(Tr - T s )CH. (94) 

4.1. General Considerations 

In the case of ideal free convection, fluid flow is coupled with 
the temperature field. High temperature fluids tend to rise and 
cooler fluids tend to move downward because of buoyancy forces. 
If an electrical diffuse layer exists at the pore matrix interface 
(Figure 1), all or part of this electrical diffuse layer is carried 
along by the fluid flow. The transport of the excess charge 
density contained in the electrical diffuse layer is the source of a 
macroscopic polarization phenomenon. This process results in an 
electrical potential gradient. We use the Boussinesq 
approximation (the fluid density is regarded as temperature 
dependent in the body forces but is constant elsewhere in the 
equations). The relationship between the fluid density and the 

temperature is written as pf(r)=pf(To)[1-af(r-To) ], 
where Po = Pf(To) is the reference fluid density at the reference 
temperature T O and a f is the thermal volume expansion of water 
(af -- (1 / Vf)(dVf / dT)p). We neglect the fluid pressure 
gradient in excess of the hydrostatic pressure for upward flow 
driven by the buoyancy of the hot water, that is p= pogz. 
Consequently Vp-pfg--af(T-To)pog [Turcotte and 
Schubert, 1982, p. 402]. From (1), the thermoelectrokinetic field 
is given by, 

E = 1 j+ Car(T- T0)p0g. (87) 
o' 

Our purpose is to obtain here an order of magnitude estimate for 
the thermal electrokinetic effect in geothermal fields. Let us 
consider the simple case of one-dimensional advection of heat in a 
porous medium with z denoting depth. We note T$ the surface 
temperature, Tr the reservoir temperature, and H the depth of the 
reservoir. For steady state conditions the temperature distribution, 
the Darcy velocity, and the electrical potential anomaly at the 
surface of the geothermal field corresponding to the upflow of hot 
water are given by [Revil and Pezard, 1998] 

1-exp[-Ra(z/H)] / (88) T = T s -(T s - T r ) 1- exp(-Ra) ' 
k 

q = -•a f Po (Tr - Ts )g (89) 

6•(0) = -aT pog(Tr - T s ) C H. (90) 

where Ra is the Rayleigh number, given by 

Ra -- a f g(pø )2 k H c f (T r - Ts ) 
r•f ,•, ' (91) 

The •' potential of silica, under typical geophysical conditions of 
pH, temperature and salinity, is negative in the absence of strong 
adsorption phenomena [e.g., lshido and Mizutani, 1981]. In such 
a case the upwelling flow associated with a hot thermal plume 
generates a positive thermoelectrokinetic anomaly at the surface 
of a geothermal field, whereas the downwelling flow associated 
with a cold thermal plume generates a negative 
thermoelectrokinetic anomaly (Figure 10). Such self-potential 
bipolar anomalies can be associated with the fluid flow pattern of 
active volcanoes (Figure 11) (except that there is an additional 
effect due to the variation of the water table with the topography 
[e.g., lshido et al, 1997; Sasai et al., 1997]). Furthermore, 
Zlotnicki and Le Mouel [1988, 1990] show very convincing 
examples of strong correlation between magnetic field variations 
(up to 10 nT) and volcanic activity at la Fournaise volcano 
(R6union Island). We believe that these magnetic anomalies are 
electrokinetic in nature and associated with the vorticity of the 
fluids convection pattern inside the volcano. Bipolar self- 
potential anomalies are observed by Anderson and Johnson 
[ 1976] in the Long Valley Caldera, California, by Antraygues and 
Aubert [1993] around an active fissure on Mount Etna, Italia, by 
Sasai et al. [1997] on Miyakejima Island, Japan, and, recently, by 
Michel and Zlotnicki [ 1998] on the cone of La Fournaise volcano, 
R6union Island, Indian Ocean and by L•nat et al. [1998] on 
Karthala volcano, Grande Comore (Indian Ocean). The 
wavelengths associated with the thermal convection cells and 
flow pattern would be equal to the size of the self-potential 
anomalies. Dipolaf anomalies of + 80 mV in the Cerro Prieto 
geothermal field, Baja California, Mexico [Fitterman and Corwin, 
1982], +20/-40 mV at Red Hill Hot Spring, Utah [Sill, 1983], and 
+ 100/-200 mV in Ergani, Turkey [Abdelrahman and Sharafeldin, 
1997] have been observed. Revil and Pezard [1998] conclude 
that predictions based on (90) compare well with measured field 
data by Fitterman and Corwin [1982] for the Cerro Prieto 
geothermal field. 

Our model also predicts that positive self-potential anomalies 
should be associated with less resistive formations and negative 
self-potential anomalies are associated with more resistive 
formations. This is because (1) from (88) and (92), the 
temperature distribution is perturbed by the hydrothermal flow 
and (2) electrical resistivity decreases with the increase of the 
temperature according to (73). This is also in agreement with the 
field data of Anderson and Johnson [1976]. We now turn our 
attention to the question of how the salinity affects the intensity of 
the self-potential anomalies. The •' potential decreases with the 
salinity [Revil et al., this issue], whereas the electrical 
conductivity increases with salinity. Consequently, the 
electrokinetic coupling coefficient decreases with the salinity 
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Figure 10. Electric and magnetic fields of electrokinetic nature associated with a geothermal convective cell. 
A positive electrokinetic anomaly is associated with the rising of hot and saline fluids, whereas a negative 
anomaly is associated with the downwelling of less saline, colder fluids. 

because of the combination of these two effects and as shown by 
experimental data [e.g., Hernandez et al., 1995, Figures 11 and 
12]. It follows that the intensity of the self-potential anomalies of 
electrokinetic nature decreases with salinity. As a consequence 
we expect that the percolation of meteoritic water should be 
associated with streaming potential anomalies greater than those 
related to the upward flow of very saline water. This seems to be 
the case for the dipolar anomalies reported by Anderson and 
Johnson [ 1976], Fitterman and Corwin [ 1982], and Abdelrahman 
and Sharafeldin [ 1997]. 

4.2. The Case of Cerro Prieto 

We discuss now more extensively the case of the Cerro Prieto 
geothermal field. This geothermal field is located in the alluvial 
plain of the Mexicali Valley, northern Baja California, Mexico, at 
about 35 km southeast of the city of Mexicali. The Cerro Prieto 
geothermal field is one of several high-temperature water- 
dominated geothermal fields within the Salton Trough, a complex 
rift valley between the North American and Pacific plates. This 
field is used to produce electricity (720 MW electric power) from 
reservoirs up to 4000 m deep. Because of the extensive 
international program of collaborative investigation, Cerro Prieto 
is considered to be one of the best studied geothermal fields in 
North America. The relationship between the self-potential 
distribution, the temperature versus depth distribution, and the 
flow pattern on a southwest to northeast profile (from well M6 to 
well M53) is analyzed in Figure 12. The self-potential profile was 
measured in December 1977 and March 1978 [see Corwin and 
Hoover, 1979]. The temperature distribution (Figure 12b) is 
based on the calcite-water oxygen isotope geothermometer from 
cores extracted from the boreholes shown in Figure 12b (modified 
from Elders et al. [1983]). The temperature distribution shows a 
broad area of temperature inversion in the southwest because of a 
zone of horizontal hot brine flow. The fluid flow pattern is shown 
in Figure 12c (modified from Elders et al. [1983]). The positive 
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Figure 11. Electrical potential anomalies and magnetic 
fields of electrokinetic nature associated with an active 

volcano. The flow pattern is taken from Michel and Zlotnicki 
[1998]. If the pH of the fluid is higher than the pH(pzc) of the 
minerals controlling the electrokinetic properties, a positive 
electrokinetic anomaly is associated with the rising of hot and 
saline fluids in the central caldera. Negative self-potential 
anomalies are associated with the downwelling of less saline 
and colder fluids around the caldera through a concentric pattern 
of fractures. The hydrothermal cell is also responsible of an 
electrokinetic magnetic field that is added to magnetic fields of 
other origins. 
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Figure 12. Relationship between the self-potential 
distribution at the top surface of Cerro Prieto, the temperature 
versus depth distribution, and the assumed flow profile on a 
southwest to northeast profile from well M6 to well M53: (a) 
Self-potential profile measured at the top surface (z = 0) of the 
Cerro Prieto geothermal field (measured in December 1977 and 
March 1978, modified from Corwin and Hoover [1979]), (b) 
temperature versus depth distribution based on the calcite-water 
oxygen isotope geothermometer (modified from Elders et al. 
[1983]); the temperature distribution shows a broad area of 
temperature inversion in the southwest because of a zone of 
horizontal hot brine flow, and (c) flow regime (modified from 
Elders et al. [1983]). R is the recharge zone; P is the thermal 
plume zone; D is the discharge zone; and H is the horizontal 
flow zone. We add the approximate position of the faults and 
the basement. 

self-potential anomaly is clearly related to the presence of a fluid 
discharge zone of the hydrothermal system, whereas the negative 
self-potential anomaly is clearly related to the presence of a 
hydrothermal recharge zone. Numerical modeling of the heat and 
fluid flow patterns and self-potential distribution in this 
geothermal field will be analyzed in a future paper. 

4.3. Numerical Modeling 

The hydraulic and electromagnetic equations were 
implemented in the 3-D finite element BasinLAB TM software 
package. This software is already able to solve complex 
thermohydraulic problems using realistic geological structures 
evolving with time. BasinLAB TM is able to handle the presence 
of faults, complex geological bedding, compaction of sediments, 
multiphasic flow, free and forced convections, and geochemical 
equilibria between the pore water and the rock forming minerals. 
The numerical procedure is based on the Galerkin method on 
quadrilateral elements with linear basis functions. Roberts et al. 
[1996] discussed numerical stability and tests for the thermo- 
hydraulic equations. The equations at each time step are solved in 
the following order. (1) Heat and fluid flow equations [e.g., 
Roberts et al., 1996], (2) computation of the source for the electric 
potential problem using the solution to (1), and (3) determination 
of the electrical potential distribution using equations (20) to (22). 
In this paper, we show only a simple 2-D case corresponding to 
the cooling of an impermeable dike intrusion. A typical self- 
potential distribution is shown in Plate 1 (corresponding to 150 
Kyr, after the dike intrusion). A bipolar self-potential distribution 
is obtained at the open top surface of the structure with a positive 
self-potential anomaly surrounded by two negative self-potential 
anomalies. The positive anomaly shows one of these "discharge 
area" by analogy with what was found for Cerro Prieto. More 
realistic simulations will be presented in a future paper. 

5. Conclusions 

The electric and magnetic fields generated by the flow of pore 
fluids in geothermal systems are investigated in the quasi-static 
limit. The geothermal convection cells act as natural geobatteries, 
producing both a telluric electrical current (hence a magnetic 
field) and an electrical field. Consequently, the measurement of 
the electrical potential and magnetic field distributions at the 
surface of a geothermal field should provide an efficient means of 
monitoring both rate and direction of subsurface fluid flow. We 
have developed a new set of equations for the material properties 
entering the macroscopic electrokinetic equations, including the 
influence of the microstructure, salinity, temperature, and gas and 
water saturations. However, further investigations are still needed 
(1) to fully understand the role of pore fluid chemistry on the 
development of the •'potential and (2) to extend the present work 
to fractured porous materials. We believe that the understanding 
of electromagnetic effects associated with fluid flow and the 
recording of these effects in a broad frequency range can lead to a 
strong enhance of our understanding of the dynamics of 
geothermal systems in natural conditions and/or in production, 
and volcanic activity forecasting. 

Appendix 

We report here some useful empirical formulas to estimate the 
permittivity and electrical conductivity of a NaC1 solution as a 
function of the temperature and salinity. The dielectric constant 
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Plate 1. Numerical modeling of the self-potential anomaly 
associated with the cooling of a dike. The sidewalls and bottom 
of the structure are closed boundaries for fluid flow and 

electrical current, whereas the top surface is an open boundary 
(arrows: Darcy velocity; colors: self-potential distribution). 

in the quasi-static limit of a NaC1 solution is given as a function 
of the temperature and salinity by the semi-empirical equations 
presented by G. R. Olhoefi (1980, unpublished notes) 

ef(T)=a O +alT+a2 T2 +a3 T3, as273K<T<373K,(A1) 
1 

ef(T)=bo•+bl+b2T+b3T2+b4 T3, as 373K<T<643K, 
(A2) 

where T is the temperature (in Kelvin), a o = 295.68, a 1 = -1.2283 
K -1 , a2= 2.094'10 '3 K -2, a 3 = -1.41'10 -6 K -3, and bo= 5321 K; bl 
= 233.76, b 2 =-0.9397 K -1, b 3 = 1.417'10 -3 K -2, and b 4 = 
-8.292' 10 -7 K -3. The influence of the concentration of NaC1 salt 
is given by G. R. Olhoeft (1980, unpublished notes) 

ef(Cf'T)= ef(T)+clC f +c2Cf 2 +c3Cf 3, (A3) 

where Cf is the salt concentration in mol L -1, c I =-13.00 L 
mol -l, c 2 = 1.065 (L mo1-1)2, and c 3 = -0.03006 (L mo1-1)3. The 
electrical conductivity of a NaC1 solution is given as a function of 
the temperature and salinity by the semiempirical equation 
derived by Sen and Goode [ 1992]: 

o'f(ef'r) = (d, +d2r+d3r2)ef - d4 -I'd5T )3/2 (A4) 

where d 1 = 5.6, d 2 = 0.27, d 3 = -1.510 x 10 -4 , d 4 = 2.36, d 5 = 
0.099, d6 = 0.214, or/ is in S m -1, T is in øC, and the salinity in 

mol L -• . Equation (A4) can be used over a temperature range of 
20ø-200øC and over the salinity range 10-5-1 mol L -1 . 
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